Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Asymmetric Acyl-Mannich Reaction of Isoquinolines with α-(Diazomethyl)phosphonate and Diazoacetate Catalyzed by Chiral Brønsted Acids

Wei Wu,^a Yan Wang,^a Jing Guo,^a Liu Cai,^a Yuan Chen,^a Yanmin Huang^{*b} and Yungui Peng^{*a}

^a Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

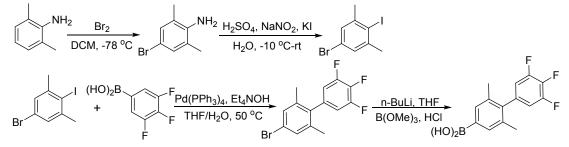
^b College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001, China

*E-mail: huangyanmin828@gxtc.edu.com (Y. Huang)

*E-mail: pengyungui@hotmail.com, pyg@swu.edu.cn (Y. Peng)

Table of Contents

1. General methods	2
2. Synthesis of chiral phosphoric acids	2
3. Screening the chiral phosphoric acids in the reaction of diazomethylphosphonate with isoquinolines optimization the reaction conditions.	
4. Optimization of the diazocarbonate with isoquinolines reaction conditions	6
5. General procedure for asymmetric acyl-Mannich reaction	8
6. Characterization of the acyl-Mannich reaction products	8
7. Gram-scale reaction to obtain product 4d	15
8. Synthesis of 7a , 8a and 9c from 4a and 7c	15
9. References	18
10. NMR spectra and HPLC for SPAs and asymmetric acyl-Mannich reaction products.	19


1. General methods

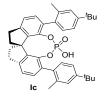
All solvents were purified by standard procedures and distilled prior to use. Reagents obtained from commercial source were used without further purification. Petroleum ether and ethyl acetate for flash column chromatography were distilled before use. All reactions were monitored by TLC with silica gel coated plates. Flash column chromatography was performed on silica gel H (10–40 μ). NMR spectra were recorded on 600 MHz instruments. Chemical shifts (δ) are given in ppm relative to TMS, coupling constants (*J*) in Hz. 1H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent signal as the internal standard (CDCl₃ at 7.26 ppm). ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.00 ppm). Melting points were determined on an X–6 digital melting-point apparatus and were uncorrected. Optical rotations were measured on a Perkin Elmer 341 Polarimeter at λ = 589 nm. Analytical high performance liquid chromatography (HPLC) was carried out on WATERS 510 instrument (2487 Dual λ Absorbance Detector and 515 HPLC Pump) using chiral column. ESI HRMS was recorded on a Bruker Apex–2.5 Å MS were purchased from J&K Chemicals and used as received (500 mesh powder).

2. Synthesis of chiral phosphoric acids

Ia-In, IIa-IIi were synthesized following the procedure described in the literature.¹

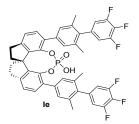
Partial intermediates for the synthesis of chiral phosphoric acids were prepared as the following procedure:

Bromine (5.38 mL, 105 mmol, 1.05 equiv.) was added slowly to the solution of 2, 6-dimethylaniline (12.3 mL, 100 mmol, 1.00 equiv.) in dried CH_2Cl_2 (250 mL) at -78 °C under argon atmosphere. After addition, the solution was allowed to warm up to room temperature. A saturated aqueous solution of Na_2SO_3 was added to the mixture to quench excess bromine in the reaction mixture. Saturated solution of Na_2CO_3 was added until the pH = 9, the organic layer was separated and the aqueous layer was extracted two times with CH_2Cl_2 (3 x 100 mL). Combined organic layers and dried over sodium sulfate, concentrated under reduce pressure. The residue was purified by column chromatography (PE/EA = 20/1) to obtain pure 4-bromo-2, 6-diethylaniline (17.9 g, 90 % yield) as a light brown solid.


4-Bromo-2, 6-diethylaniline (4.0 g, 20.0 mmol, 1.0 eq.) was suspended in 10 mL 10% aqueous H_2SO_4 and cooled to -10 °C. NaNO₂ (1.7 g, 25 mmol, 1.25 equiv.) in 10 mL H₂O was added dropwise, giving a pink precipitate, followed by formation of a clear red solution. After the addition, the solution was stirred for further 60 min at -10 °C, followed by dropwise addition of a solution of KI (4.5 g, 30 mmol, 1.5 equiv.) in 50 mL H₂O. Warmed to room temperature and stirred overnight. The solution was extracted with PE (4 × 50 ml). The collected organic phases were stirred over saturated aqueous Na₂SO₃ solution, until the organic phase had a light yellow color. The organic phase was then dried over MgSO₄ and the solvent removed under reduced pressure. The residue was purified by column chromatography (PE/EA = 100/1) to obtain pure 5-bromo-2-iodo-1,3-dimethylbenzene (2.1 g, 34 % yield).

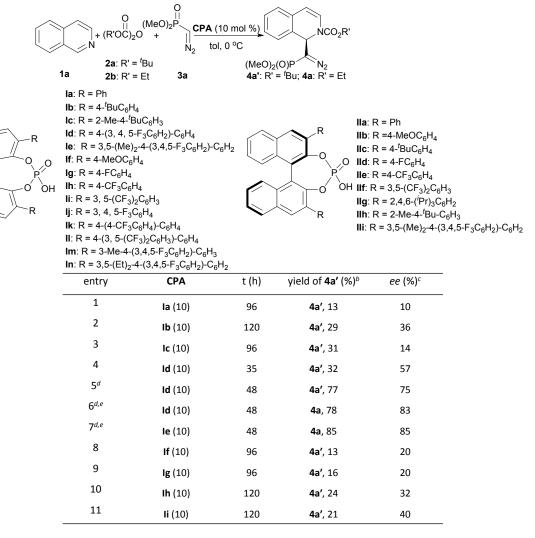
To a round-bottomed flask, Pd(PPh₃)₄ (0.388 g, 0.336 mmol) was added to the mixture of (3,4,5-trifluorophenyl)boronic acid (1.182 g, 6.72 mmol), 5-bromo-2-iodo-1,3-dimethylbenzene (2.1 g, 6.72 mmol) and Et₄NOH 7.7 mL (13.4 mmol, 25% of H₂O) in 30 mL degassing THF/H₂O = 3:1 (v:v) under an Ar atmosphere. Stirred at 50 °C until the starting material was disappear, then the mixture was concentrated under reduce pressure and the residue was extracted with EA, combined organic layer and washed with saturated NaCl, dried over with Na₂SO₄ and concentrated under reduce pressure, the residue was purified by flash chromatography (PE) on silica gel to give 4-bromo-3',4',5'-trifluoro-2,6-dimethyl-1,1'-biphenyl.

n-Butyllithium 1.0 mL (2.4 mmol) was slowly added to the solution of 4-bromo-3',4',5'-trifluoro-2,6-dimethyl-1,1'-biphenyl 0.7 g (2.2 mmol) in dry THF (20 mL) with stirring at -78 °C. The reaction was maintained at -78 °C until starting material was disappear, then trimethylborate 0.37 mL (3.3 mmol) was added slowly, the mixture was warmed up to rt slowly and stirred overnight. 1 N HCl was added to until pH = 1 and stirred for another 2 h. The mixture was extracted with EA, combined organic layer and washed with saturated NaCl, dried over with Na₂SO₄ and


concentrated under reduce pressure, the residue was purified by flash chromatography (PE/EA = 3/1) on silica gel to afford (3',4',5'-trifluoro-2,6dimethyl-[1,1'-biphenyl]-4-yl)boronic acid (0.275g, 45% yield).

(R)-6, 6'-Bis((4-(tert-butyl)-2-methylphenyl)-1, 1'-spirobiindane-7, 7'-diyl phosphate (Ic)

White solid, mp 119.8–121.4 °C, [α]25 D = + 324.9° (*c* = 0.16, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.10 (t, *J* = 11.5 Hz, 4H), 7.05 (s, 2H), 7.01 (s, 4H), 3.17–3.08 (m, 2H), 2.89 (dd, *J* = 15.9, 7.8 Hz, 2H), 2.32 (dd, *J* = 11.7, 6.2 Hz, 2H), 2.15 (s, 2H), 2.09 (s, 6H), 1.16 (s, 18H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 149.6, 144.6, 142.6, 139.9, 135.3, 134.8, 134.3, 131.0, 130.8, 127.5, 125.6, 122.2, 59.8, 38.6, 34.1, 31.3, 30.2, 20.3 ppm. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₉H₄₃O₄PNa⁺ 629.2797; Found 629.2795.


(R)-6, 6'-Bis(3', 4', 5'-trifluoro-2, 6-dimethyl-[1, 1'-biphenyl]-4-yl)-1, 1'-spirobiindane-7, 7'-diyl phosphate (le)

White solid, mp 215.7–217.0 °C, [α]25 D = + 479.8° (*c* = 0.20, CHCl₃); ¹H NMR (600 MHz, CDCl₃) δ 7.30 (d, *J* = 7.5 Hz, 2H), 7.18 (d, *J* = 7.5 Hz, 2H), 7.10 (s, 4H), 6.63 (s, 4H), 3.19–3.09 (m, 2H), 2.91 (dd, *J* = 15.8, 7.6 Hz, 2H), 2.38 (dd, *J* = 12.0, 6.3 Hz, 2H), 2.19 (q, *J* = 10.9 Hz, 2H), 1.78 (s, 12H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.9, 150.2, 145.8, 142.2, 142.1, 140.6, 139.4, 137.8, 137.4, 137.3, 137.1, 135.3, 134.1, 129.9, 128.5, 122.8, 113.3, 113.2, 60.1, 38.5, 30.3, 20.5 ppm. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₄₅H₃₃F₆O₄PNa⁺ 805.1918; Found 805.1913.

3. Screening the chiral phosphoric acids in the reaction of diazomethylphosphonate with isoquinolines and optimization the reaction conditions

Table S1. Screening the chiral phosphoric acids in the reaction of diazomethylphosphonate with isoquinoline^a

12	lj (10)	120	4a' , 37	42
13	Ik (10)	72	4a' , 21	45
14	II (10)	72	4a' , 26	48
15	lm (10)	48	4a , 87	84
16	In (10)	48	4a , 87	73
17	lla (10)	120	4a , 58	6
18	IIb (10)	83	4a , 66	23
19	llc (10)	36	4a , 69	20
20	lld (10)	18	4a , 61	15
21	lle (10)	84	4a , 90	18
22	IIf (10)	36	4a , 71	39
23	llg (10)	120	4a , 66	16
24	IIh (10)	68	4a , 63	3
25	III (10)	68	4a , 62	15

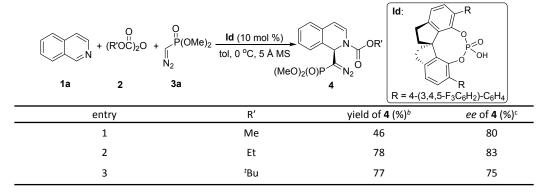
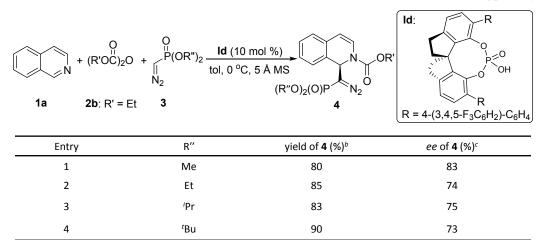

^aUnless noted otherwise, all reactions were conducted using **1a** (0.1 mmol), **2a** (0.1 mmol), **3a** (0.1 mmol), **CPA** (10 mol %) in toluene (1.0 mL) at 0 °C. ^bIsolated yield. ^cDetermined by HPLC analysis. ^dWith 5 Å MS (150 mg). ^e**2b** was employed instead of **2a**.

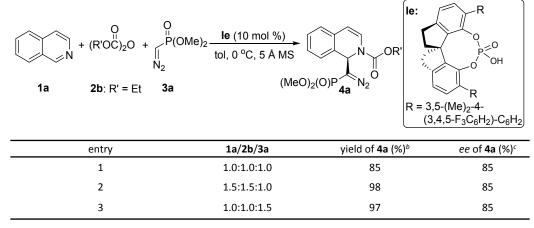
Table S2. The effect of molecular sieve on the reaction^a

	N 1a	+ $(R'OC)_2O$ + $\bigcup_{\substack{ \\ \\ N_2}}^{O}$ P(OMe)_2 N_2 2b: R' = Et 3a	Id (10 mol %) tol, MS, 0 °C (MeO) ₂	4a	R $P \in O$ $P \in O$ OH $A-(3,4,5-F_3C_6H_2)-C_6H_4$
_	entry	MS	t (h)	yield of 4a (%) ^b	<i>ee</i> of 4a (%) ^c
_	1		35	32	57
	2	5 Å (25 mg)	72	23	78
	3	5 Å (50 mg)	72	39	83
	4	5 Å (100 mg)	48	76	83
	5	5 Å (150 mg)	48	78	83
	6	4 Å (150 mg)	48	83	77
	7	3 Å (150 mg)	48	82	75

^oUnless noted otherwise, all reactions were conducted using **1a** (0.1 mmol), **2b** (0.1 mmol), **3a** (0.1 mmol), **Id** (10 mol %) in toluene (1.0 mL) at 0 °C under argon. ^bIsolated yield. ^cDetermined by HPLC analysis.


Table S3. The effect of nitrogen acylating reagent on the reaction^a

^oUnless noted otherwise, all reactions were conducted using **1a** (0.1 mmol), **2** (0.1 mmol), **3a** (0.1 mmol), 5 Å MS (150 mg), **Id** (10 mol %) in toluene (1.0 mL) at 0 °C for 48 h under argon. ^bIsolated yield. ^cDetermined by HPLC analysis.


Table S4. The effect of phosphonate ester on the reaction^a

Supporting Information

^oUnless noted otherwise, all reactions were conducted using **1a** (0.1 mmol), **2b** (0.1 mmol), **3** (0.1 mmol), 5 Å MS (150 mg), **Id** (10 mol %) in toluene (1.0 mL) at 0 °C for 48 h under argon. ^bIsolated yield. ^cDetermined by HPLC analysis.

Table S5. The effect of ratio of 1a/2b/3a on the reaction^a

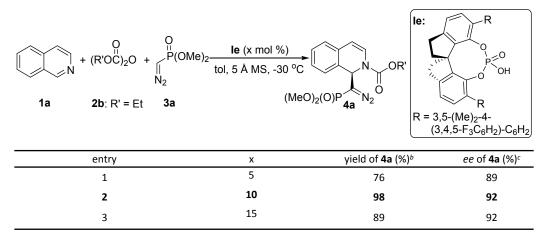

^oUnless noted otherwise, all reactions were conducted using **1a**, **2b**, **3a** (0.1 mmol), 5 Å MS (150 mg), **Ie** (10 mol %) in toluene (1.0 mL) at 0 °C for 48 h under argon. ^bIsolated yield. ^cDetermined by HPLC analysis.

Table S6. Optimization reaction temperature^a

1a	$(\text{R'OC})_2 \text{O} + \bigcup_{\substack{ \\ \\ N_2}} O(\text{OMe})_2 \text{O}$ 2b : R' = Et 3a	<u>le (10 mol %)</u> tol, 5 Å MS, T (MeO) ₂ (O)P <u>4a</u> N ₂	$ \begin{array}{c} le: \\ $
Entry	T (°C)	yield of 4a (%) ^b	<i>ee</i> of 4a (%) ^c
1	0	98	85
2	-10	98	88
3	-20	98	89
4	-30	98	92
5	-40	37	92

^oUnless noted otherwise, all reactions were conducted using **1a** (0.15 mmol), **2b** (0.15 mmol), **3** (0.1 mmol), 5 Å MS (150 mg), **Ie** (10 mol %) in toluene (1.0 mL) for 48 h under argon. ^bIsolated yield. ^cDetermined by HPLC analysis.

Table S7. The effect of catalyst loading le on the reaction^a

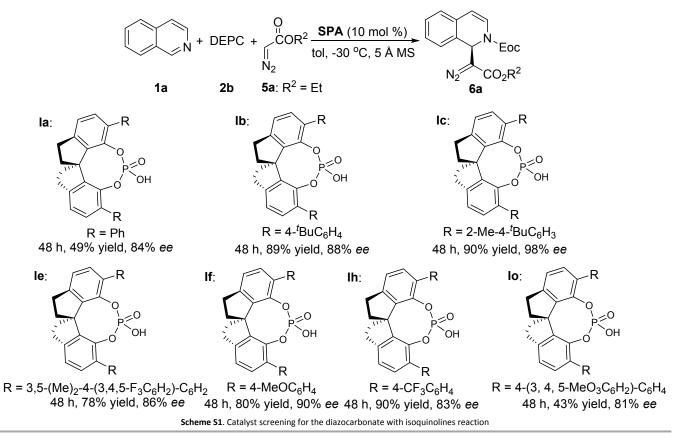
^oUnless noted otherwise, all reactions were conducted using 1a (0.15 mmol), 2b (0.15 mmol), 3 (0.1 mmol) 5 Å MS (150 mg) in toluene (1.0 mL) at -30 °C for 48 h under argon. ^bIsolated yield. ^cDetermined by HPLC analysis

Table S8. The effect of solvent on the reaction^a

	O DC) ₂ O + ⊢ P(OMe) ₂ <u>le (10</u> N ₂ Sol, -30 R' = Et 3a	(MeO) ₂ (O)P _{4a} N ₂	$P_{OR'} = \frac{1}{2} $
Entry	solvent	yield of 4a (%) ^b	<i>ee</i> of 4a (%) ^c
1	PhMe	98	92
2	DCM	60	83
3	THF	54	89
4	PhCl	98	91
5	PhF	98	87
6	PhEt	91	91
7	xylenes	91	92
8	mesitylene	85	92

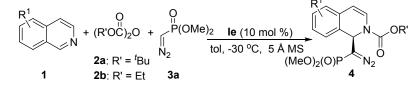
"Unless noted otherwise, all reactions were conducted using 1a (0.15 mmol), 2b (0.15 mmol), 3 (0.1 mmol), 5 Å MS (150 mg), le (10 mol %) at -30 °C for 48 h under argon. ^bIsolated yield. ^cDetermined by HPLC analysis

4. Optimization of the diazocarbonate with isoquinolines reaction conditions

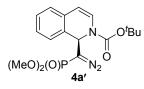

Table S9. Asymmetric acyl-Mannich reaction of diazocarbonate with isoquinolines catalyzed by le^a

$\mathbb{R}^{1} \xrightarrow{N} + DEPC + \mathbb{Q}^{0}_{N_{2}}$				le (10 mc tol, 5 Å N	IS, T R	N Eoc CO ₂ R ²
	1	2b	5		N ₂ 6	
entry	R^1	R ²	т (°С)	t (h)	yield of 6 (%) ^b	<i>ee</i> of 6 (%) ^c
1	н	Me	-30	48	79	77
2	н	Et	-30	48	78	86
3	н	ⁱ Pr	-30	48	72	84
4	н	^t Bu	-30	72	71	72

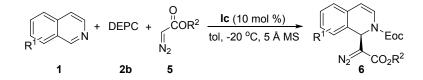
5	Н	Et	-10	40	95	84
6	н	Et	-20	68	93	84
7	н	Et	-40	92	54	84
8	6-Cl	Et	-30	96	33	86
9	5-Br	Et	-30	96	45	85
10	6-Br	Et	-30	96	84	89
11	6-Me	Et	-30	96	53	87
12	6-Et	Et	-30	96	85	84
13	6-F	Et	-30	96	65	88
14	6- ^t Bu	Et	-30	96	50	75
15	6-OMe	Et	-30	96	29	86
16	5-OMe	Et	-30	96	57	80
17	8-Br	Et	-30	96	trace	


^aConditions: Unless noted otherwise, all of the reactions were carried out with **1** (0.15 mmol), **2b** (0.15 mmol), **5** (0.10mmol), **Ie** (10 mol %) and 5 Å MS (150 mg) in 1.0 mL of anhydrous toluene; ^bIsolated yield; ^cDetermined by chiral HPLC

We have tried to extend the nucleophile from α -(diazomethyl)phosphonate to alkyl diazoacetate **5** under the optimized reaction conditions for α -(diazomethyl)phosphonate (Table S9). After preliminary investigated the influence of R² and reaction temperature on the reaction (Table S9, entries 1–7), we found that good results could be achieved when R² was ethyl and the reaction proceeded at –30 °C. We also attempted to check the substrates accommodation at this conditions (Table S9, entries 8–16). These results were not satisfactory. Therefore, we further investigate other catalysts as **Ia-Ic**, **Ie**, **If**, **Ih** and **Io** (Scheme S1), gratifying, excellent results were observed when the reaction was catalyzed by **Ic**. So the optimized reaction conditions for ethyl diazoacetate were identified as: **Ic** (10 mol %) as catalyst in toluene at –20 °C with 5 Å MS as additive and a **1a/2b/5a** ratio of 1.5:1.5:1.

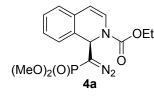

5. General procedure for asymmetric acyl-Mannich reaction

5.1. General procedure for asymmetric acyl-Mannich reaction of diazomethylphosphonate with isoquinolines


Isoquinoline **1** (0.15 mmol) and diethyl pyrocarbonate **2a** or **2b** (Boc₂O, 0.15 mmol) were added to a pre-dried tube under argon and stirred for 10 min at room temperature. Next, anhydrous toluene (1 mL), 5 Å MS (150 mg) and SPA **Ie** (0.01 mmol) was added and the system was cooled to -30 °C. The (diazomethyl)phosphonate **3a** (0.1 mmol) was then added and the mixture was stirred and monitored by TLC until **3a** had been completely consumed. The reaction mixture was then purified directly by flash chromatography on silica gel (30–50% AcOEt/petroleum ether) to obtain the corresponding product **4**.

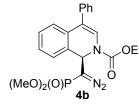
Tert-butyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)isoquinoline-2(1H)-carboxylate (4a')

Yellow oil, ¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.17 (m, 3H), 7.14 – 6.82 (m, 2H), 6.18 – 5.78 (m, 2H), 3.75 – 3.46 (m, 6H), 1.54 (d, *J* = 23.8 Hz, 9H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 151.5, 130.6, 128.5, 128.2, 127.4, 126.4, 125.4, 124.8, 108.2, 82.3, 52.6, 51.9, 47.2 (d, *J* = 233.1 Hz), 28.1 ppm.

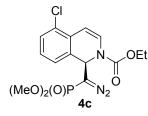

5.2. General procedure for asymmetric acyl-Mannich reaction of diazocarbonate with isoquinolines

Isoquinoline **1** (0.15 mmol) and diethyl pyrocarbonate **2b** (DEPC, 0.15 mmol) were added to a pre-dried tube under argon and stirred for 10 min at room temperature. Next, anhydrous toluene (1 mL), 5 Å MS (150 mg) and SPA **Ic** (0.01 mmol) was added and the system was cooled to -20 °C. The α -diazo carbonate **5** (0.1 mmol) was then added and the mixture was stirred and monitored by TLC until **5** had been completely consumed. The reaction mixture was then purified directly by flash chromatography on silica gel (5–10% AcOEt/petroleum ether) to obtain the corresponding product **6**.

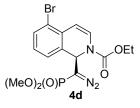
6. Characterization of the acyl-Mannich reaction products


Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)isoquinoline-2(1H)-carboxylate (4a)

Yellow oil, [α]25 D = +400.3° (c = 0.37, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/i-PrOH = 70/30, t_{major} = 14.825 min, t_{minor} = 12.409 min, ee = 92%; ¹H NMR (600 MHz, CDCl₃) δ 7.25 (m, 3H), 7.15 – 6.85 (m, 2H), 6.25 – 5.78 (m, 2H), 4.38 – 4.23 (m, 2H), 3.72 (d, J = 11.7 Hz, 3H), 3.61 – 3.53 (m, 3H), 1.38-1.24 (m, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 152.8, 130.3, 128.6, 128.1, 127.6, 126.5, 125.2, 125.0, 124.6, 108.9 (d, J = 42.5 Hz), 62.8, 53.1, 52.8, 47.4 (d, J = 227.4 Hz), 14.4. ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for

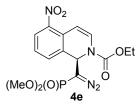

C₁₅H₁₈N₃O₅PNa⁺ 374.0882; Found 374.0880.

Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)-4-phenylisoquinoline-2(1H)-carboxylate (4b)


Yellow oil, $[\alpha]25 D = +161.8^{\circ}$ (c = 0.80, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, $t_{major} = 20.259$ min, $t_{minor} = 17.792$ min, ee = 94%; ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.32 (m, 6H), 7.30 (t, .OEt J = 7.4 Hz, 1H), 7.23 (t, J = 7.0 Hz, 1H), 7.16 – 6.89 (m, 2H), 6.32 – 6.15 (m, 1H), 4.41 – 4.24 (m, 2H), 3.75 (d, J = 10.4 Hz, 3H), 3.62 – 3.57 (m, 3H), 1.47 – 1.28 (m, 3H). ppm. ¹³C NMR (151 MHz, CDCl₃) δ 152.8, 136.8, 131.2, 128.7, 128.6, 128.4, 127.9, 127.5, 126.4, 124.3, 123.4, 122.8, 62.8, 53.3, 53.0, 52.8, 46.8 (d, J = 253.2 Hz), 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₁H₂₂N₃O₅PNa⁺ 450.1189; Found 450.1189.

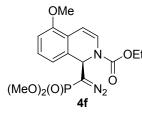
Ethyl (R)-5-chloro-1-(diazo(dimethoxyphosphoryl)methyl)isoquinoline-2(1H)-carboxylate (4c)

Yellow oil, [α]25 D = + 76.5° (*c* = 0.44, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{mojor} = 13.255 min, t_{minor} = 10.716 min, *ee* = 93%; ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.28 (m, 1H), 7.17 – 7.01 (m, 3H), 6.27 – 6.12 (m, 2H), 4.32 – 4.29 (m, 2H), 3.72 (d, *J* = 11.7 Hz, 3H), 3.58 (d, *J* = 15.0 Hz, 3H), 1.39 – 1.35 (m, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 152.6, 130.1, 130.0, 129.4, 128.1, 126.2, 125.1, 104.9, 63.1, 52.9, 52.4, 47.5 (d, *J* = 229.3 Hz), 14.4. ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₇ClN₃O₅PNa⁺ 408.0492; Found 408.0492.

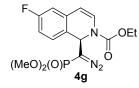

Ethyl (R)-5-bromo-1-(diazo(dimethoxyphosphoryl)methyl)isoquinoline-2(1H)-carboxylate (4d)

Yellow oil, $[\alpha]25 \text{ D} = +110.9^{\circ}$ (c = 0.38, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/i-PrOH = 70/30, $t_{major} = 13.524$ min, $t_{minor} = 10.851$ min, ee = 92%; ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, J = 7.9 Hz, 1H), 7.21 (d, J = 7.4 Hz, 1H), 7.17–6.96 (m, 2H), 6.25 – 6.11 (m, 2H), 4.31 (dd, J = 13.8, 6.8 Hz, 2H), 3.70 (t, J = 18.6 Hz, 3H), 3.58 (d, J = 13.5 Hz, 3H), 1.37 – 1.34 (m, 3H). ppm; ¹³C NMR (151 MHz, CDCl₃) δ 152.5, 132.7, 130.04, 128.4, 127.0, 126.4, 125.8, 120.4, 107.4, 63.1, 53.1, 52.9, 52.4, 47.5 (d, J = 229.2 Hz), 14.4. ppm; HRMS

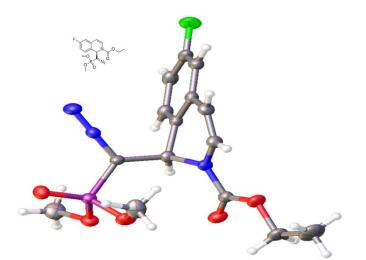
(ESI) m/z: $[M+Na]^+$ Calcd for $C_{15}H_{17}BrN_3O_5PNa^+$ 451.9987; Found 451.9981.


Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)-5-nitroisoquinoline-2(1H)-carboxylate (4e)

Yellow oil, $[\alpha]$ 25 D = + 3.4° (*c* = 0.24, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, *t_{major}* = 17.264 min, *t_{minor}* = 14.183 min, *ee* = 92%; ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.55 (d, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 1H), 7.15 (s, 1H), 6.59 (s, 1H), 6.24 (s, 1H), 4.36 – 4.33 (m, 2H), 3.74 (d, *J* = 11.7 Hz, 3H), 3.59 (s, 3H), 1.37 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 152.4, 144.5, 131.8, 130.8, 129.1, 127.2, 125.2, 102.7, 63.6, 53.2, 53.0, 53.0, 47.9 (d, *J* = 230.0 Hz), 14.3 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for


 $C_{15}H_{17}N_4O_7PNa^{\scriptscriptstyle +}\,419.0733;\,Found\,\,419.0741.$

Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)-5-methoxyisoquinoline-2(1H)-carboxylate (4f)


Yellow oil, [α]25 D = +28.0° (c = 0.74, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{mojor} = 15.823 min, t_{minor} = 13.686 min, ee = 89%; ¹H NMR (600 MHz, CDCl₃) δ 7.20 (t, J = 7.9 Hz, 1H), 7.01 – 6.84 (m, 2H), 6.78 (d, J = 8.2 Hz, 1H), 6.34–6.02 (m, 2H), 4.40–4.22 (m, 2H), 3.84 (s, 3H), 3.74 (d, J = 10.7 Hz, 3H), 3.63 – 3.56 (m, 3H), 1.37 – 1.32 (m, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 154.0, 152.8, 129.3, 128.4, 124.3, 123.7, 119.7, 118.7, 110.1, 103.7, 62.8, 55.6, 52.8, 52.1, 47.0 (d, J = 227.2 Hz), 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₂₀N₃O₆PNa⁺ 404.0987; Found 404.0991.

Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)-6-fluoroisoquinoline-2(1H)-carboxylate (4g)

Yellow solid, mp 74.9–76.0 °C, $[\alpha]$ 25 D = +99.9° (*c* = 0.35, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{mojor} = 16.756 min, t_{minor} = 12.071 min, *ee* = 95%; ¹H NMR (600 MHz, CDCl₃) δ 7.25 – 6.87 (m, 3H), 6.81 (d, *J* = 8.5 Hz, 1H), 6.18 – 5.78 (m, 2H), 4.29 (d, *J* = 6.8 Hz, 2H), 3.88–3.28 (m, 6H), 1.32 (t, *J* = 39.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl3) δ 162.6 (d, *J* = 246.9 Hz), 152.7, 132.4, 128.2, 126.4, 125.8, 123.9, 114.4 (d, *J* = 22.4 Hz), 111.4 (d, *J* = 21.4 Hz), 107.8, 63.1, 52.8, 52.1, 47.6 (d, *J* = 229.1 Hz), 14.4 ppm. HRMS (ESI)

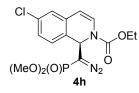
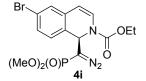

m/z: $[M+Na]^+$ Calcd for $C_{15}H_{17}FN_3O_5PNa^+$ 392.0788; Found 392.0785.

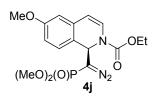
Table S10. Crystal data and structure refinement for 4g				
Empirical formula	C ₁₅ H ₁₇ FN ₃ O ₅ P			
Formula weight	369.29			
Temperature/K	149.99(10)			
Crystal system	monoclinic			
Space group	P2 ₁			
a/Å	11.2111(2)			
b/Å				
c/Å	6.05545(12) 13.6909(3) 90 112.986(3) 90			
α/°	90			
β/°	112.986(3)			
γ/°	90			
Volume/Å ³	855.66(3)			
Z	2			
$\rho_{calc}g/cm^3$	1.462			
µ/mm ⁻¹	1.831			
F(000)	393.0			
Crystal size/mm ³	0.2 × 0.05 × 0.02			
Radiation	CuKα (λ = 1.54184)			
20 range for data collection/°	7.014 to 146.1			
Index ranges	-13 ≤ h ≤ 13, -7 ≤ k ≤ 4, -16 ≤ l ≤ 16			
Reflections collected	8887			
Independent reflections	2756 [R _{int} = 0.0403, R _{sigma} = 0.0400]			
Data/restraints/parameters	2756/1/229			
Goodness-of-fit on F ²	0.990			
Final R indexes [I>=2σ (I)]	R ₁ = 0.0405, wR ₂ = 0.1041			
Final R indexes [all data]	R ₁ = 0.0425, wR ₂ = 0.1070			
Largest diff. peak/hole / e Å-3	0.27/-0.36			

Ethyl (R)-6-chloro-1-(diazo(dimethoxyphosphoryl)methyl)isoquinoline-2(1H)-carboxylate (4h)


Supporting Information

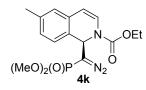
Yellow oil, [α]25 D = +46.9° (*c* = 0.64, ^{*i*}PrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{major} = 22.346 min, t_{minor} = 12.315 min, *ee* = 95%; ¹H NMR (600 MHz, CDCl₃) δ 7.20 (s, 2H), 7.14–6.88 (m, 2H), 6.15 – 5.75 (m, 2H), 4.31 – 4.28 (m, 2H), 3.72 (d, *J* = 11.7 Hz, 3H), 3.58 (dd, *J* = 10.6, 5.8 Hz, 3H), 1.47–1.28 (m, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 152.7, 134.4, 131.9, 127.8, 127.4, 126.4, 125.9, 124.6, 107.4, 63.1, 52.8, 52.1, 47.6 (d, *J* = 228.8 Hz), 14.4. ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₇ClN₃O₅PNa⁺ 408.0492; Found

408.0489.


Ethyl (R)-6-bromo-1-(diazo(dimethoxyphosphoryl)methyl)isoquinoline-2(1H)-carboxylate (4i)

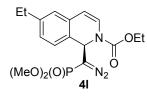
Yellow oil, [α]25 D = +31.9° (*c* = 0.54, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{major} = 25.687 min, t_{minor} = 12.392 min, *ee* = 90%; ¹H NMR (600 MHz, (CD₃)₂CO) δ 7.45 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.41 – 7.37 (m, 2H), 7.08 (s, 1H), 6.27 (d, *J* = 8.8 Hz, 1H), 5.95 (s, 1H), 4.33 – 4.28 (m, 2H), 3.70 (d, *J* = 11.7 Hz, 3H), 3.53 (d, *J* = 11.8 Hz, 3H), 1.34 (s, 3H) ppm. ¹³C NMR (151 MHz, (CD₃)₂CO) δ 153.5, 133.9, 131.0, 129.6, 128.4, 27.0, 62.7, 52.2, 52.1, 48.2 (d, *J* = 223.1 Hz), 14.7 ppm; HBMS (551) m/s; [M4 Holt Calcd for C H, BrN O PNet

128.4, 128.2, 127.3, 122.8, 107.9, 63.7, 53.3, 53.1, 48.2 (d, J = 223.1 Hz), 14.7 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₇BrN₃O₅PNa⁺ 451.9987; Found 451.9994.


Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)-6-methoxyisoquinoline-2(1H)-carboxylate (4j)

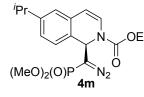
Yellow oil, [α]25 D = +41.4° (*c* = 0.46, ^{*i*}PrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{major} = 23.653 min, t_{minor} = 12.824 min, *ee* = 84%; ¹H NMR (600 MHz, CDCl₃) δ 7.17 (d, *J* = 7.6 Hz, 1H), 7.11 – 6.72 (m, 2H), 6.63 (s, 1H), 6.16 – 5.79 (m, 2H), 4.28 (d, *J* = 6.4 Hz, 2H), 3.80 (s, 3H), 3.77 – 3.52 (m, 6H), 1.38 – 1.33 (m, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 159.8, 152.7, 131.5, 127.6, 125.6, 125.0, 120.6, 113.5, 109.8, 108.8, 62.8, 55.3, 52.8, 52.2, 47.4 (d, *J* = 228.2 Hz), 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for

 $C_{16}H_{20}N_{3}O_{6}PNa^{+}$ 404.0987; Found 404.0992.


Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)-6-methylisoquinoline-2(1H)-carboxylate (4k)

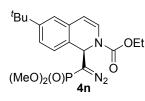
Yellow oil, [α]25 D = +32.6° (*c* = 0.66, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, *t_{major}* = 20.506 min, *t_{minor}* = 11.930 min, *ee* = 91%; ¹H NMR (600 MHz, (CD₃)₂CO) δ 7.27 (d, *J* = 7.2 Hz, 1H), 7.12 (d, *J* = 7.7 Hz, 1H), 7.01 (d, *J* = 17.2 Hz, 2H), 6.21 (d, *J* = 7.7 Hz, 1H), 5.93 (d, *J* = 24.9 Hz, 1H), 4.35–4.20 (m, 2H), 3.71 (d, *J* = 11.4 Hz, 3H), 3.54 (d, *J* = 11.8 Hz, 3H), 2.32 (s, 3H), 1.34 (s, 3H) ppm. ¹³C NMR (151 MHz, (CD₃)₂CO) δ 153.6, 139.2, 131.5, 129.2, 127.2, 126.6, 126.3, 125.8, 109.7, 63.4, 53.3, 53.2, 53.0, 48.0 (d, *J* = 222.4

Hz), 21.2, 14.7 ppm; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{16}H_{20}N_3O_5PNa^+$ 388.1038; Found 388.1041.

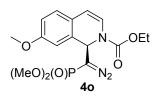

Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)-6-ethylisoquinoline-2(1H)-carboxylate (4l)

Yellow oil, [α]25 D = +63.1° (c = 0.68, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{major} = 22.588 min, t_{minor} = 11.772 min, ee = 91%; ¹H NMR (600 MHz, CDCl₃) δ 7.16 (d, J = 7.4 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 7.04–6.81 (m, 2H), 6.16 – 5.81 (m, 2H), 4.27 (d, J = 6.9 Hz, 2H), 3.72 (d, J = 11.7 Hz, 3H), 3.60 – 3.53 (m, 3H), 2.61 (q, J = 7.5 Hz, 2H), 1.37 – 1.32(m, 3H), 1.21 (t, J = 7.6 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 152.8, 144.8, 130.1, 127.2, 126.4, 125.6, 125.1, 124.3, 109.0, 62.8, 53.0, 52.7, 52.3, 47.3 (d, J =

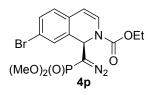
228.3 Hz), 28.5, 15.3, 14.4 ppm; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{17}H_{22}N_3O_5PNa^+$ 402.1195; Found 402.1209.


Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)-6-isopropylisoquinoline-2(1H)-carboxylate (4m)

Yellow oil, $[\alpha]$ 25 D= +43.7° (c = 0.56, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{major} = 21.760 min, t_{minor} = 11.022 min, ee = 90%; ¹H NMR (600 MHz, CDCl₃) δ 7.17 (d, J = 7.6 Hz, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.05 – 6.85 (m, 2H), 6.17 – 5.83 (m, 2H), 4.33 – 4.28 (m, 2H), 3.76 – 3.44 (m, 6H), 2.90 – 2.85 (m, 1H), 1.37 – 1.32 (m, 3H), 1.23 (d, J = 6.8 Hz, 6H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 152.8, 149.5, 130.1, 126.4, 125.8, 125.0, 124.5, 123.0, 109.4, 109.1, 62.8, 53.0, 52.8, 52.4, 47.3 (d, J = 228.1 Hz), 33.8, 23.8,

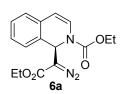

14.4 ppm; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{18}H_{24}N_3O_5PNa^+$ 416.1351; Found 416.1363.

Ethyl (R)-6-(tert-butyl)-1-(diazo(dimethoxyphosphoryl)methyl)isoquinoline-2(1H)-carboxylate (4n)

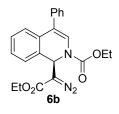

Yellow oil, $[\alpha]$ 25 D = +22.1° (c = 0.80, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{maior} = 20.991 min, t_{minor} = 10.496 min, ee = 84%; ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, J = 8.3 Hz, 1H), 7.19 (d, J = 7.9 Hz, 1H), 7.13 (s, 1H), 7.08 - 6.85 (m, 1H), 6.21 - 5.89 (m, 2H), 4.45-4.21 (m, 2H), 3.77 - 3.57 (m, 6H), 1.35 -1.42 (m, 12H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 152.8, 151.8, 129.8, 126.2, 125.4, 124.7, 124.4, 121.8, 109.5, 109.3, 52.9, 52.7, 52.3, 47.3 (d, J = 229.1 Hz), 34.6, 31.2, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₂₆N₃O₅PNa⁺ 430.1508; Found 430.1514.

Ethyl (R)-1-(diazo(dimethoxyphosphoryl)methyl)-7-methoxyisoquinoline-2(1H)-carboxylate (40)

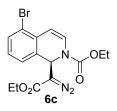
Yellow oil, [α]25 D = +80.3° (c = 0.26, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/i-PrOH = 70/30, t_{major} = 17.229 min, t_{minor} = 13.901 min, ee = 73%; ¹H NMR (600 MHz, (CD₃)₂CO) 7.16 (d, J = 8.4 Hz, 1H), 7.02 (s, 1H), 6.95–6.83 (m, 2H), 6.20 (d, J = 7.6 Hz, 1H), 5.95 (d, J = 34.5 Hz, 1H), 4.35 – 4.22 (m, 2H), 3.83 (s, 3H), 3.78–3.68 (m, 3H), 3.57 (d, J = 11.8 Hz, 3H), 1.33 (d, J = 17.4 Hz, 3H) ppm. ¹³C NMR (151 MHz, (CD₃)₂CO) δ 160.4, 153.6, 130.6, 127.2, 123.8, 123.4, 115.5, 112.6, 109.5, 63.3, 55.9, 53.3, 53.1, 53.0, 47.7 (d, J = 225.4 Hz), 14.7 ppm; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{16}H_{20}N_3O_6PNa^+$ 404.0982; Found 404.0983.


Ethyl (R)-7-bromo-1-(diazo(dimethoxyphosphoryl)methyl)isoquinoline-2(1H)-carboxylate (4p)

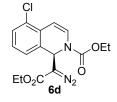
Yellow oil, [α]25 D = +98.4° (c = 0.19, ⁱPrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/i-PrOH = 70/30, t_{major} = 12.273 min, t_{minor} = 13.385 min, ee = 97%; ¹H NMR (600 MHz, (CD₃)₂CO) δ 7.63 (s, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.16 (d, J = 8.2 Hz, 1H), 7.05 (s, 1H), 6.30 (d, J = 6.4 Hz, 1H), 5.96 (d, J = 33.6 Hz, 1H), 4.34 – 4.27 (m, 2H), 3.70 (d, J = 10.9 Hz, 3H), 3.53 (d, J = 11.8 Hz, 3H), 1.34 (s, 3H) ppm. ¹³C NMR (151 MHz, $(CD_3)_2CO)$ δ 153.6, 132.4, 131.4, 130.5, 127.5, 126.8, 126.5, 120.7, 108.1, 63.7, 53.3, 53.0, 48.3 (d, J = 223.8 Hz), 14.7 ppm; HRMS


(ESI) m/z: $[M+Na]^+$ Calcd for $C_{15}H_{17}BrN_3O_5PNa^+$ 451.9981; Found 451.9982.

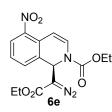
Ethyl (R)-1-(1-diazo-2-ethoxy-2-oxoethyl)isoquinoline-2(1H)-carboxylate (6a)


Yellow oil, $[\alpha]$ 25 D = + 164.3° (c = 0.52, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/i-PrOH = 90/10, t_{maior} = 15.992 min, t_{minor} = 13.286 min, ee = 98%; ¹H NMR (600 MHz, CDCl₃) δ 7.25 - 7.21 (m, 3H), 7.13 - 6.31 (m, 3H), 5.81 (s, 1H), 4.37 – 4.13 (m, 4H), 1.34 (s, 3H), 1.23 (s, 3H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 164.8, 152.8, 130.1, 128.7, 128.4, 127.6, 126.3, 125.3, 124.9, 108.2, 62.8, 60.9, 51.3, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₇N₃O₄Na⁺ 338.1117; Found 338.1118.

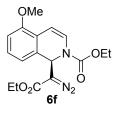
Ethyl (R)-1-(1-diazo-2-ethoxy-2-oxoethyl)-4-phenylisoquinoline-2(1H)-carboxylate (6b)


Yellow oil, $[\alpha]$ 25 D = +242.5° (c = 0.77, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/i-PrOH = 90/10, t_{mojor} = 13.381 min, t_{minor} = 11.378 min, ee = 98%; ¹H NMR (600 MHz, CDCl₃) δ 7.43 (t, J = 7.4 Hz, 2H), 7.40–7.33 (m, 4H), 7.29 (t, J = 7.4 Hz, 1H), 7.24 (t, J = 7.5 Hz, 1H), 7.17–6.91 (m, 2H), 6.54 (d, J = 48.2 Hz, 1H), 4.35 (d, J = 6.0 Hz, 2H), 4.25 (d, J = 6.9 Hz, 2H), 1.37 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.8, 152.8, 136.8, 131.0, 129.3, 128.9, 128.8, 128.7, 128.6, 128.3, 128.0, 127.5, 126.3, 124.2, 123.7, 123.4, 122.2, 62.8, 61.0, 51.2, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₁N₃O₄Na⁺ 414.1430; Found 414.1428.

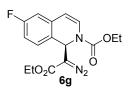
Ethyl (R)-5-bromo-1-(1-diazo-2-ethoxy-2-oxoethyl)isoquinoline-2(1H)-carboxylate (6c)


Yellow oil, $[\alpha]$ 25 D = + 161.2° (c = 0.63, EA); HPLC condition: chiralpak IC, 254 nm, 0.5 mL/min, n-hexane/i-PrOH = 90/10, t_{maior} = 21.258 min, t_{minor} = 16.897 min, ee = 98%; ¹H NMR (600 MHz, CDCl₃) δ 7.47 (dd, J = 8.0, 0.7 Hz, 1H), 7.19 (d, J = 5.3 Hz, 1H), 7.15–6.95 (m, 2H), 6.41 (s, 1H), 6.16 (d, J = 5.5 Hz, 1H), 4.37–4.26 (m, 2H), 4.19 (dd, J = 13.4, 6.5 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.7, 152.7, 132.5, 130.7, 129.8, 128.4, 126.6, 125.6, 120.3, 106.7, 63.1, 61.0, 51.3, 14.4 ppm; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{16}H_{16}BrN_3O_4Na^+$ 416.0222; Found 416.0223.

Ethyl (R)-5-chloro-1-(1-diazo-2-ethoxy-2-oxoethyl)isoquinoline-2(1H)-carboxylate (6d)

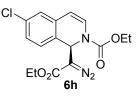

Yellow oil, $[\alpha]$ 25 D = + 156.9° (c = 0.64, EA); HPLC condition: chiralpak IC, 254 nm, 0.5 mL/min, n-hexane/i-PrOH = 90/10, t_{maior} = 19.826 min, t_{minor} = 16.341 min, ee = 98%; ¹H NMR (600 MHz, CDCl₃) δ 7.28 (dd, J = 7.6, 1.4 Hz, 1H), 7.18-6.97 (m, 3H), 6.41 (s, 1H), 6.18 (s, 1H), 4.36 – 4.27 (m, 2H), 4.20 – 4.17 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.7, 152.7, 130.6, 129.9, 129.2, 128.1, 128.1, 126.4, 124.9, 104.2, 63.0, 61.0, 51.2, 14.3 ppm. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₆ClN₃O₄Na⁺ 372.0727; Found 372.0725.

Ethyl (R)-1-(1-diazo-2-ethoxy-2-oxoethyl)-5-nitroisoquinoline-2(1H)-carboxylate (6e)

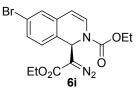

Yellow oil, [α]25 D = + 83.4° (*c* = 0.67, EA); HPLC condition: chiralpak IC, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{major} = 24.060 min, t_{minor} = 32.787 min, *ee* = 96%,¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 1H), 7.51 (d, *J* = 6.7 Hz, 1H), 7.31 (t, *J* = 7.9 Hz, 1H), 7.17 (d, *J* = 7.7 Hz, 1H), 6.56 (d, *J* = 7.1 Hz, 1H), 6.46 (s, 1H), 4.38 – 4.28 (m, 2H), 4.19 (dd, *J* = 14.1, 7.0 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.23 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.5, 152.4, 144.4, 131.6, 131.4, 129.3, 127.2, 125.2, 125.0, 102.1, 63.5, 61.2, 51.2, 14.3 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₆N₄O₆Na⁺ 383.0968; Found 383.0965.

Ethyl (R)-1-(1-diazo-2-ethoxy-2-oxoethyl)-5-methoxyisoquinoline-2(1H)-carboxylate (6f)

Yellow oil, [α]25 D = + 103.1° (c = 0.62, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{mojor} = 17.381 min, t_{minor} = 14.147 min, *ee* = 99%, ¹H NMR (600 MHz, CDCl₃) δ 7.17 (t, *J* = 7.9 Hz, 1H), 7.01 – 6.85 (m, 2H), 6.77 (d, *J* = 8.2 Hz, 1H), 6.39 (d, *J* = 53.2 Hz, 1H), 6.18 (s, 1H), 4.35 – 4.25 (m, 2H), 4.24–4.14 (m, 2H), 3.84 (s, 3H), 1.39–1.29 (m, 3H), 1.24 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.9, 153.9, 129.9, 128.3, 127.9, 123.9, 119.5, 118.5, 109.9, 102.9, 62.7, 60.9, 55.6, 50.9, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₉N₃O₅Na⁺ 368.1222; Found 368.1223.

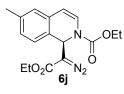

Ethyl (R)-1-(1-diazo-2-ethoxy-2-oxoethyl)-6-fluoroisoquinoline-2(1H)-carboxylate (6g)

Yellow oil, [α]25 D = + 73.1° (c = 0.58, EA); HPLC condition: chiralpak IC, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{mojor} = 18.172 min, t_{minor} = 16.829 min, ee = 97%, ¹H NMR (600 MHz, CDCl₃) δ 7.21 (s, 1H), 7.14–6.93 (m, 1H), 6.90 (td, J = 8.5, 2.4 Hz, 1H), 6.78 (dd, J = 9.1, 2.4 Hz, 1H), 6.41 (s, 1H), 5.75 (s, 1H), 4.39–4.27 (m, 2H), 4.19 (dd, J = 13.5, 6.6 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.8, 162.6 (d, J = 246.4 Hz)., 152.9, 132.2 (d, J = 8.6 Hz), 128.0 (d, J = 8.4 Hz), 126.0, 124.5 (d, J = 2.8 Hz), 114.3 (d, J = 22.3 Hz), 111.3 (d,

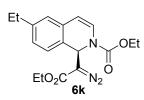

J = 22.5 Hz), 107.3 (d, J = 2.1 Hz), 63.0, 61.0, 51.0, 14.4 ppm; HRMS (ESI) m/z: [M+Na]* Calcd for C₁₆H₁₆FN₃O₄Na* 356.1023; Found 356.1021.

Ethyl (R)-6-chloro-1-(1-diazo-2-ethoxy-2-oxoethyl)isoquinoline-2(1H)-carboxylate (6h)

Yellow oil, [α]25 D = + 85.1° (c = 0.64, EA); HPLC condition: chiralpak IC, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{major} = 18.533 min, t_{minor} = 17.139 min, ee = 97%; ¹H NMR (600 MHz, CDCl₃) δ 7.17 (s, 2H), 7.12–6.91 (m, 2H), 6.39 (s, 1H), 5.73 (s, 1H), 4.37 – 4.25 (m, 2H), 4.21 – 4.17 (m, 2H), 1.34 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.7, 152.8, 134.2, 131.8, 127.6, 127.4, 127.0, 126.1, 124.6, 106.9, 63.0, 61.0, 51.0, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₆ClN₃O₄Na⁺ 372.0727; Found 372.0726.

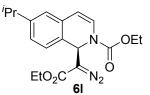

Ethyl (R)-6-bromo-1-(1-diazo-2-ethoxy-2-oxoethyl)isoquinoline-2(1H)-carboxylate (6i)

Yellow oil, [α]25 D = + 80.6° (*c* = 0.69, EA); HPLC condition: chiralpak IC, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{major} = 18.870 min, t_{minor} = 17.596 min, *ee* = 98%; ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, *J* = 8.1 Hz, 1H), 7.23 (s, 1H), 7.12 - 6.97 (m, 2H), 6.36 (d, *J* = 25.7 Hz, 1H), 5.73 (s, 1H), 4.39 - 4.26 (m, 2H), 4.26-4.15 (m, 2H), 1.34 (t, *J* = 6.9 Hz, 3H), 1.24 (t, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.6, 152.7, 132.1, 130.3, 127.9, 127.5, 127.5, 126.1, 122.2, 106.7, 63.0, 61.0, 51.1, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₆BrN₃O₄Na⁺


416.0222; Found 416.0223.

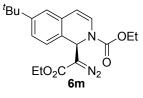
Ethyl (R)-1-(1-diazo-2-ethoxy-2-oxoethyl)-6-methylisoquinoline-2(1H)-carboxylate (6j)

Yellow oil, [α]25 D = +55.0° (*c* = 0.47, EA); HPLC condition: chiralpak IC, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{major} = 25.037 min, t_{minor} = 23.242 min, *ee* = 98%; ¹H NMR (600 MHz, CDCl₃) δ 7.13 (s, 1H), 7.07–6.86 (m, 3H), 6.38 (d, *J* = 43.8 Hz, 1H), 5.77 (s, 1H), 4.33–4.24 (m, 2H), 4.20 (s, 2H), 2.32 (s, 3H), 1.33 (s, 3H), 1.24 (t, *J* = 6.7 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.9, 152.9, 138.2, 129.9, 128.4, 126.2, 126.0, 125.5, 124.7, 108.3, 62.8, 60.9, 51.2, 21.1, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₉N₃O₄Na⁺ 352.1273; Found 352.1270.


Ethyl (R)-1-(1-diazo-2-ethoxy-2-oxoethyl)-6-ethylisoquinoline-2(1H)-carboxylate (6k)

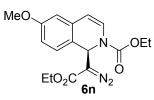
Yellow oil, [α]25 D = +104.8° (c = 0.67, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/i-PrOH =90/10, t_{major} = 17.727 min, t_{minor} = 13.646 min, ee = 98%; ¹H NMR (600 MHz, CDCl₃) δ 7.16 (s, 1H), 7.06 – 6.90 (m, 3H), 6.39 (d, J = 45.1 Hz, 1H), 5.79 (s, 1H), 4.35 – 4.26 (m, 2H), 4.24 – 4.15 (m, 2H), 2.62 (q, J = 7.6 Hz, 2H), 1.34 (d, J = 5.8 Hz, 3H), 1.23 (dd, J = 14.3, 6.8 Hz, 6H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.9, 152.9, 144.6, 130.0, 127.2, 126.2, 126.2, 125.2, 124.8, 124.3, 108.5, 62.8, 60.9, 51.1, 28.5, 15.3, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺

Calcd for $C_{18}H_{21}N_{3}O_{4}Na^{\scriptscriptstyle +}$ 366.1430; Found 366.1431.


Ethyl (R)-1-(1-diazo-2-ethoxy-2-oxoethyl)-6-isopropylisoquinoline-2(1H)-carboxylate (6l)

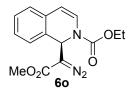
Yellow oil, $[\alpha]$ 25 D = +82.8° (*c* = 0.56, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{major} = 17.267 min, t_{minor} = 13.358 min, *ee* = 97%; ¹H NMR (600 MHz, CDCl₃) δ 7.17 (s, 1H), 7.09 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.06 – 6.86 (m, 2H), 6.39 (d, *J* = 42.0 Hz, 1H), 5.79 (s, 1H), 4.33 – 4.28 (m, 2H), 4.25–4.14 (m, 2H), 2.93 – 2.81 (m, 1H), 1.33 (t, *J* = 6.5 Hz, 3H), 1.23 (t, *J* = 5.8 Hz, 9H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.9, 152.8, 149.2, 129.9, 126.3, 126.2, 125.8, 125.4, 124.8, 122.9, 108.5, 62.7, 60.8, 51.1, 33.8, 23.8, 14.4 ppm;

HRMS (ESI) m/z: [M+Na]^ Calcd for $C_{19}H_{23}N_3O_4Na^{\scriptscriptstyle +}$ 380.1586; Found 380.1587.


Ethyl (R)-6-(tert-butyl)-1-(1-diazo-2-ethoxy-2-oxoethyl)isoquinoline-2(1H)-carboxylate (6m)

Yellow oil, [α]25 D = +96.4° (*c* = 0.56, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{mojor} = 17.314 min, t_{minor} = 12.137 min, *ee* = 95%; ¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.24 (m, 1H), 7.19 (s, 1H), 7.13 – 6.85 (m, 2H), 6.39 (d, J = 45.1 Hz, 1H), 5.81 (s, 1H), 4.35 – 4.25 (m, 2H), 4.25 – 4.15 (m, 2H), 1.31 (s, 9H), 1.24 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.9, 152.8, 151.5, 129.6, 126.0, 126.0, 125.1, 124.8, 124.6, 121.8, 108.8, 62.7, 60.8, 51.0, 34.6, 31.2, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for

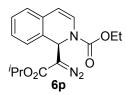
 $C_{20}H_{25}N_{3}O_{4}Na^{+}$ 394.1743; Found 394.1740.


Ethyl (R)-1-(1-diazo-2-ethoxy-2-oxoethyl)-6-methoxyisoquinoline-2(1H)-carboxylate (6n)

Yellow oil, [α]25 D = + 68.2° (c = 0.28, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/i-PrOH = 90/10, t_{major} = 25.037 min, t_{minor} = 14.508 min, ee = 97%; ¹H NMR (600 MHz, CDCl₃) δ 7.17 – 6.93 (m, 2H), 6.77 (dd, J = 8.4, 2.6 Hz, 1H), 6.61 (d, J = 2.5 Hz, 1H), 6.37 (d, J = 36.1 Hz, 1H), 5.77 (s, 1H), 4.35 – 4.25 (m, 2H), 4.25 – 4.14 (m, 2H), 3.80 (s, 3H), 1.34 (t, J = 6.9 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H). ppm; ¹³C NMR (151 MHz, CDCl₃) δ 159.6, 131.4, 127.4, 125.3, 121.2, 113.5, 109.7, 108.2, 62.8, 60.9, 55.3, 51.1, 14.4 ppm; HRMS (ESI)

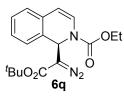
m/z: $[M+Na]^+$ Calcd for $C_{17}H_{19}N_3O_5Na^+$ 368.1222; Found 368.1226.

Ethyl (R)-1-(1-diazo-2-methoxy-2-oxoethyl)isoquinoline-2(1H)-carboxylate (60)



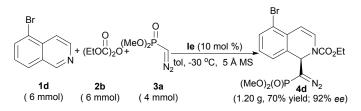
Yellow oil, [α]25 D = +142.6° (*c* = 0.59, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{major} = 16.943 min, t_{minor} = 14.009 min, *ee* = 95%; ¹H NMR (600 MHz, CDCl₃) δ 7.26–7.18 (m, 3H), 7.09-6.92 (m, 2H), 6.45-6.39 (m, 1H), 5.81 (s, 1H), 4.37–4.24 (m, 2H), 3.74 (s, 3H), 1.34 (t, *J* = 6.6 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 165.2, 152.8, 130.0, 128.6, 128.5, 127.6, 126.3, 124.9, 108.2, 62.8, 51.9, 51.2, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₁₅N₃O₄Na⁺ 324.0960; Found 324.1215.

Yellow oil, [α]25 D = +145.0° (*c* = 0.61, EA); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{mojor} = 14.290 min, t_{minor} = 12.163 min, *ee* = 98%; ¹H NMR (600 MHz, CDCl₃) δ 7.33–7.26 (m, 3H), 7.15-6.97 (m, 2H), 6.50-6.44 (m, 1H), 5.87 (s, 1H), 5.13 (dt, *J* = 12.4, 6.2 Hz, 1H), 4.44–4.29 (m, 2H), 1.40 (s, 3H), 1.30 (d, *J* = 6.0 Hz, 3H), 1.24 (d, *J* = 6.1 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.5, 152.9, 130.2, 128.9, 128.4, 127.6, 126.3, 125.3,

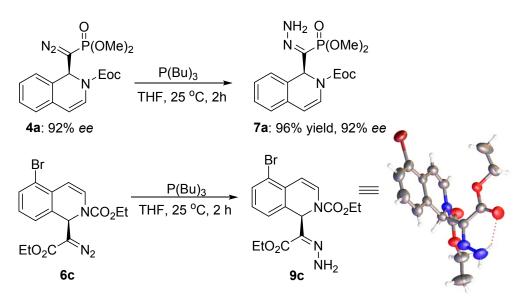

124.9, 108.3, 68.6, 62.8, 51.4, 22.0, 21.9, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₇H₁₉N₃O₄Na⁺ 352.1273;

Ethyl (R)-1-(1-diazo-2-isopropoxy-2-oxoethyl)isoquinoline-2(1H)-carboxylate (6p)

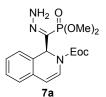
Found 352.1275.


Ethyl (R)-1-(2-(tert-butoxy)-1-diazo-2-oxoethyl)isoquinoline-2(1H)-carboxylate (6q)

Yellow oil, [α]25 D = +133.3° (c = 0.62, EA); HPLC condition: chiralpak IC, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 90/10, t_{major} = 12.094 min, t_{minor} = 12.550 min, ee = 98%; ¹H NMR (600 MHz, CDCl₃) δ 7.27–7.18 (m, 3H), 7.08-6.92 (m,


2H), 6.39-6.33 (m, 1H), 5.79 (d, J = 7.4 Hz, 1H), 4.38–4.22 (m, 2H), 1.45 (s, 9H), 1.34 (s, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 164.1, 152.7, 130.0, 129.1, 128.3, 127.6, 126.2, 125.2, 124.9, 108.2, 81.7, 62.8, 51.3, 28.3, 14.4 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₂₁N₃O₄Na⁺ 366.1430; Found 366.1431.

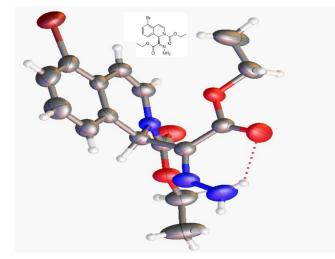
7. Gram-scale reaction to obtain product 4d.


To evaluate its potential synthetic utility, the reaction was also performed on a larger scale (4 mmol), affording α -diazo- β -isoquinolinephosphonate **4d** in 70% yield with enantioselectivity (92% *ee*) similar to that obtained in the 0.1-mmol-scale reaction with 10 mol % catalyst

8. Synthesis of 7a, 8a and 9c from 4a and 7c

 $P(Bu)_3$ (68 uL, 0.3 mmol) was added to the solution of **4a** (35.1 mg, 0.1 mmol) in THF (2.0 mL) under nitrogen atmosphere and stirred at rt. The reaction mixture was stirred overnight at the same temperature until **4a** had been completely consumed by TLC, then, the mixture was purified directly by flash chromatography on silica gel (30–50% AcOEt/petroleum ether) to give the corresponding product **7a** (33.9 mg, 96% yield, 92% *ee*). **9c** was prepared according to the procedure of **7a**

Ethyl (S, Z)-1-((dimethoxyphosphoryl)(hydrazono)methyl)isoquinoline-2(1H)-carboxylate (7a)


Colourless oil, [α]25 D = +14.6° (*c* = 0.37, ^{*i*}PrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, t_{major} = 16.348 min, t_{minor} = 13.699 min, *ee* = 92%; ¹H NMR (600 MHz, CDCl₃) δ 7.61 (s, 2H), 7.26–7.09 (m, 3H), 7.08–6.88 (m, 2H), 6.16-6.08 (m, 1H), 5.73 (d, *J* = 20.0 Hz, 1H), 4.26 (dd, *J* = 6.8, 2.7 Hz, 2H), 3.45 (dd, *J* = 101.9, 10.5 Hz, 6H), 1.31 (t, *J* = 7.0 Hz, 3H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 153.0, 130.8, 129.5, 127.9, 127.4, 126.5, 125.8, 124.6, 106.8, 62.4, 60.9, 59.8, 58.5, 52.0 (d, *J* = 4.7 Hz), 14.5 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₂₀N₃O₅PNa⁺ 376.1038; Found

Ethyl (R, Z)-5-bromo-1-(2-ethoxy-1-hydrazono-2-oxoethyl)isoquinoline-2(1H)-carboxylate (9c)

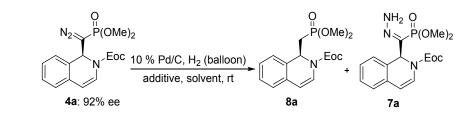

White solid, mp 90.5–92.1 °C, [α]25 D = +893.9° (*c* = 0.23, ^{*i*}PrOH); HPLC condition: chiralpak IA, 254 nm, 0.5 mL/min, n-hexane/*i*-PrOH = 70/30, *t_{major}* = 12.439 min, *t_{minor}* = 9.891 min, *ee* = 99%; ¹H NMR (600 MHz, (CD₃)₂CO) δ 8.95 (s, 2H), 7.43 (d, *J* = 7.9 Hz, 1H), 7.31 (s, 1H), 7.12 (s, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.38 (s, 1H), 5.99 (d, *J* = 7.9 Hz, 1H), 4.36–4.27 (m, 2H), 4.25-4.18 (m, 2H), 1.38 (t, *J* = 7.1 Hz, 3H), 1.27 (s, 3H) ppm; ¹³C NMR (151 MHz, (CD₃)₂CO) δ 162.3, 132.4, 131.0, 129.6, 128.5, 127.1, 120.5, 104.8, 63.1, 61.1, 56.3, 14.7, 14.6 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₈BrN₃O₄Na⁺ 418.0373; Found 418.0371.

Table S11. Crystal data and structure refinement for 9c				
Empirical formula	$C_{16}H_{18}BrN_3O_4$			
Formula weight	396.24			
Temperature/K	294.0(3)			
Crystal system	monoclinic			
Space group	P21			
a/Å	7.32373(10)			
b/Å	15.62333(14)			
c/Å	8.25080(10)			
α/°	90			
β/°	112.6346(15)			
γ/°	90			
Volume/Å ³	871.35(2)			
Z	2			
$\rho_{calc}g/cm^3$	1.510			
µ/mm ⁻¹	3.440			
F(000)	404.0			
Crystal size/mm ³	$0.2 \times 0.2 \times 0.2$			
Radiation	CuKα (λ = 1.54184)			
20 range for data collection/°	11.328 to 143.384			
Index ranges	-8 ≤ h ≤ 8, -18 ≤ k ≤ 19, -9 ≤ l ≤ 10			
Reflections collected	9511			
Independent reflections	3335 [R _{int} = 0.0177, R _{sigma} = 0.0158]			

Data/restraints/parameters	3335/2/227
Goodness-of-fit on F ²	1.041
Final R indexes [I>=2σ (I)]	$R_1 = 0.0383$, $wR_2 = 0.1058$
Final R indexes [all data]	$R_1 = 0.0386$, $wR_2 = 0.1063$
Largest diff. peak/hole / e Å-3	0.43/-0.67

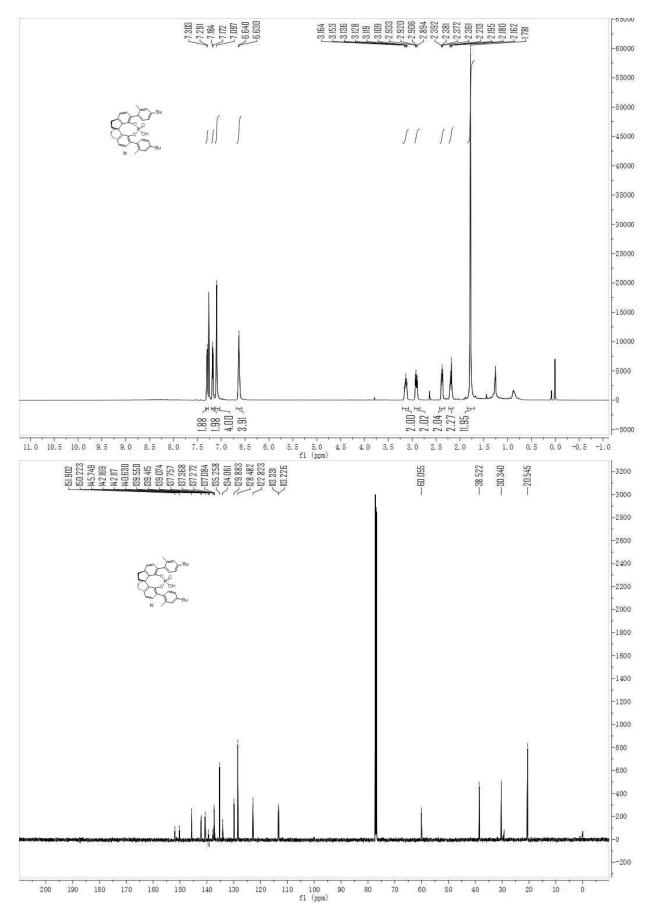
Table S12. Optimization of the reaction conditions from 4a to 8a^a

entry	solvent/0.04M	additive/equiv.	t (h)	Pd/C (%)	yield of 7a (%) ^b	yield of 8a (%) ^b
1	MeOH		24	5		confusion
2	EA		24	5		confusion
3	MeOH	DBU (1.0)	12	5	80	trace
4	MeOH	DBU (1.0)	12	1		31
5	EA	DBU (1.0)	12	1	0	0
6	MeOH/EA= 1/4	DBU (1.0)	12	1	22	49
7	MeOH/EA= 1/4	DBU (0.5)	12	1	16	55
8	MeOH/EA= 1/9	DBU (1.0)	12	1	37	53
9	MeOH/EA= 1/4	Et ₃ N (0.5)	48	1	trace	trace
10	MeOH/EA= 1/4	DBN (1.0)	48	1	20	49
14	MeOH/EA= 1/4	DBU (0.5)	48	1	12	70
15	MeOH/EA= 1/4	DBU (0.2)	60	1	trace	82

^oUnless noted otherwise, all reactions were conducted using **4a** (0.1 mmol), 10% Pd/C at rt under 1 atm of H₂ (balloon). ^bIsolated yield.

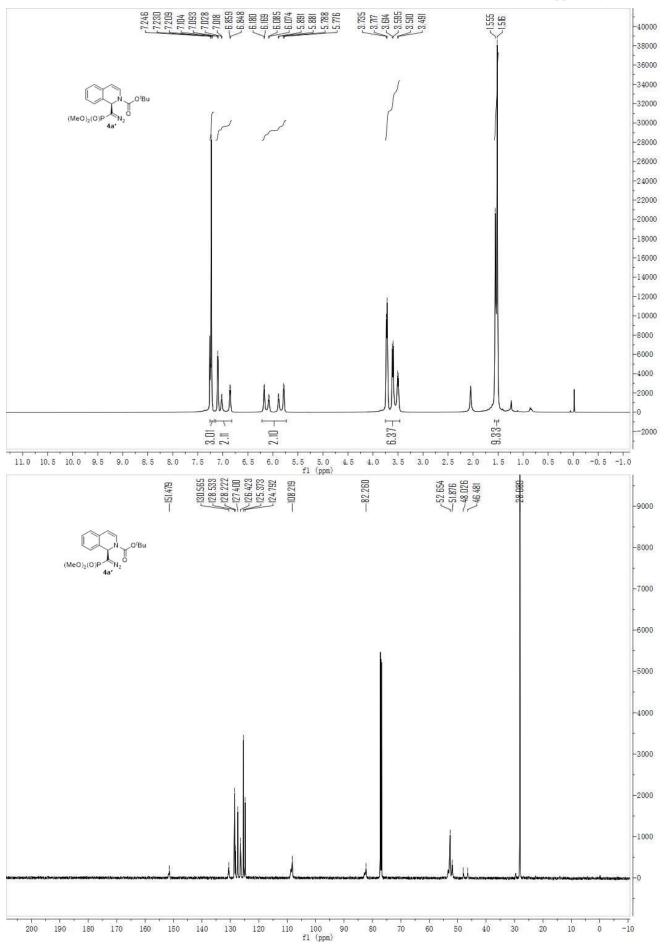
10% Pd/C (1.06 mg, 1 mol %) was added to the solution of **4a** (35.3 mg, 0.1 mmol) in EA:MeOH = 4:1 (2.5 mL). The reaction vessel was purged with H_2 (3 times), DBU (3.0 uL, 0.02mmol) was added to the mixture then stirred under 1 atm of H_2 (balloon). After the reaction completed, filtrated through a plug of celite, then the filtrate was concentrated under vacuum, the residue was purified by flash chromatography on silica gel (50–100% AcOEt/petroleum ether) to give the title compound **8a** in 82% yield (26.6 mg, 92% *ee*).

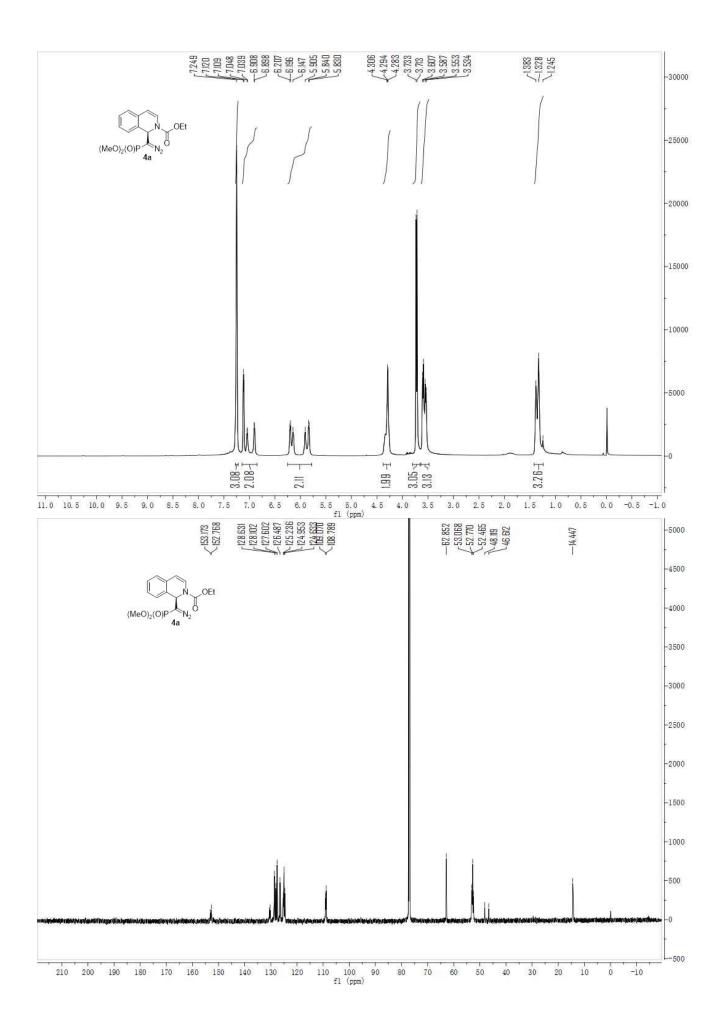
Ethyl (S)-1-((dimethoxyphosphoryl)methyl)isoquinoline-2(1H)-carboxylate (8a)


Colourless oil, $[\alpha]25 D = +597.0^{\circ}$ (c = 0.20, ⁱPrOH); HPLC condition: chiralpak IC, 230 nm, 1.0 mL/min, n-hexane/*i*-PrOH = $P(OMe)_2$ 70/30, $t_{major} = 29.220$ min, $t_{minor} = 39.308$ min, ee = 92%; ¹H NMR (600 MHz, (CD₃)₂CO) δ 7.33-7.30 (m, 1H), 7.26-7.20 (m, 2H), 7.15 (d, J = 7.3 Hz, 1H), 6.92-6.85 (m, 1H), 6.08-6.00 (m, 1H), 5.74 (dd, J = 14.9, 7.5 Hz, 1H), 4.24 (d, J = 5.6 Hz, 2H), 3.59 (t, J = 13.8 Hz, 3H), 3.52 (d, J = 10.6 Hz, 3H), 2.24–2.06 (m, 2H), 1.39–1.26 (m, 3H) ppm; ¹³C NMR (151 MHz, (CD₃)₂CO) δ 153.1, 131.2, 128.9, 127.7, 127.6, 127.4, 125.5, 125.3, 109.7, 109.5, 63.0, 52.3, 51.4, 29.9 (d, J = 175.9 Hz),

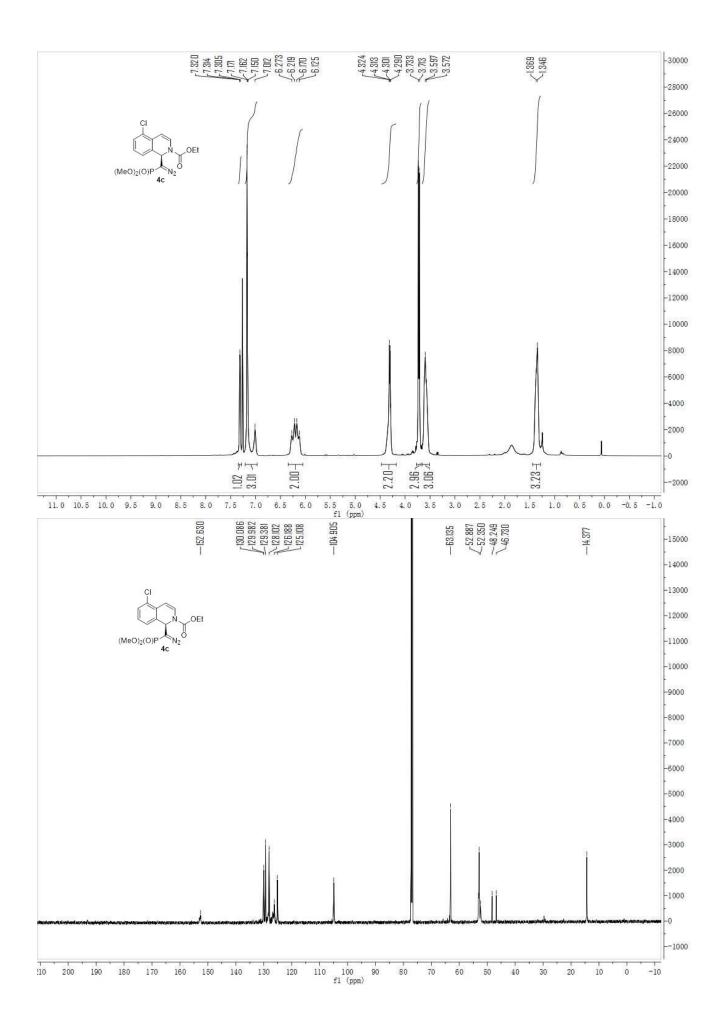

14.8 ppm; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₅H₂₀NO₅PNa⁺ 348.0971; Found 348.0971.

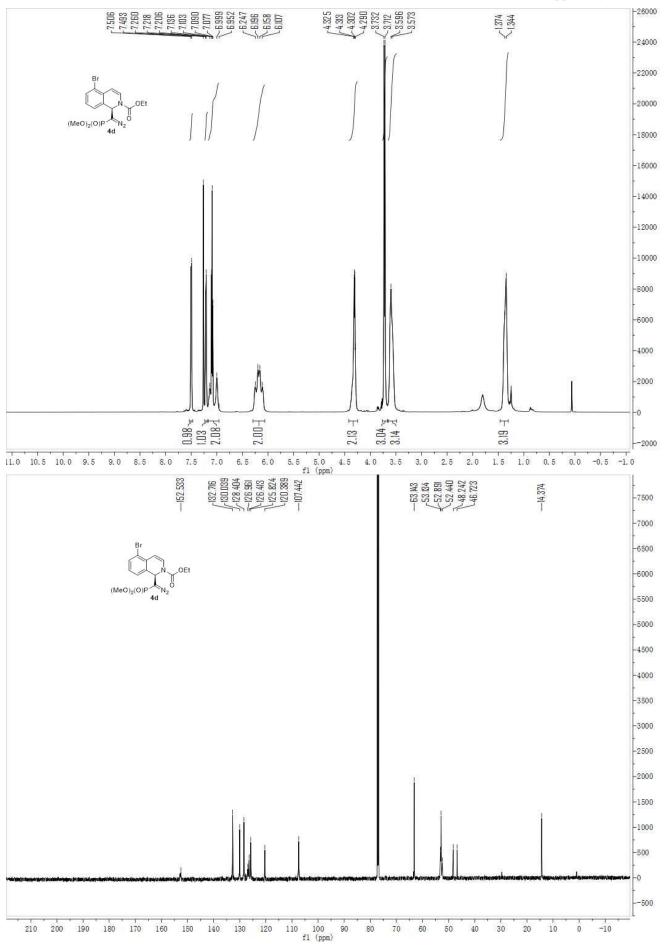
9. References

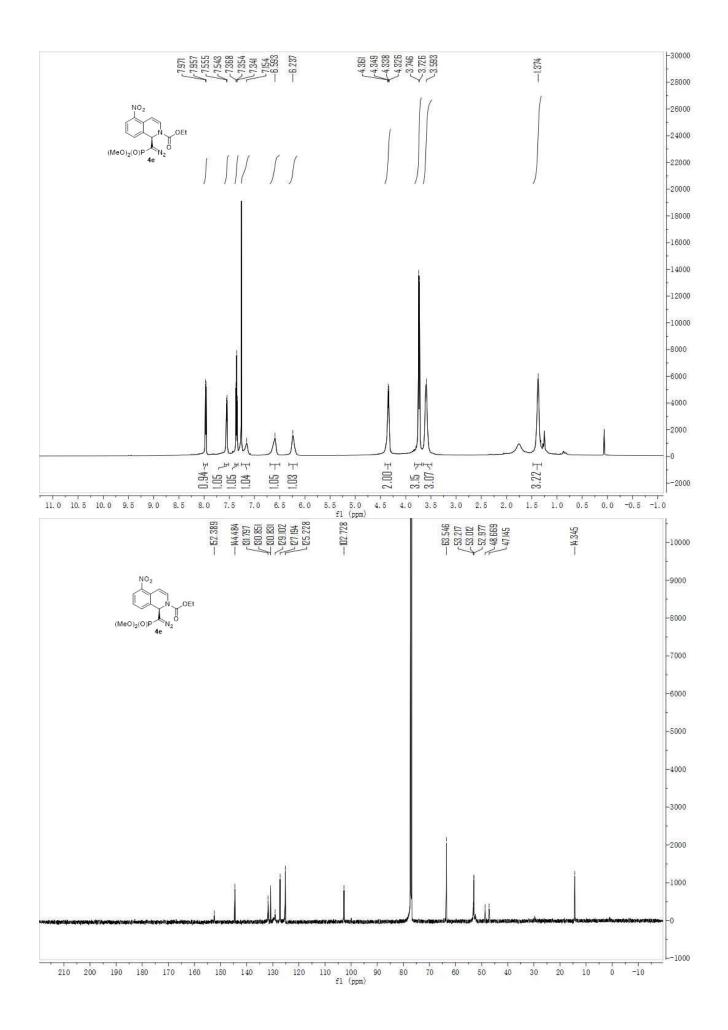

[1] a) F. X. Xu, D. Huang, C. Han, W. Shen, X. F. Lin, Y. G. Wang, J. Org. Chem. 2010, 75, 8677; b) B. Zheng, H. H. Chen, L. Zhu, X. Q. Hou, Y. Wang, Y. Lan, Y. G. Peng, Org. Lett. 2019, 21, 593. c) B. Xu, S. F. Zhu, X. L. Xie, J. J. Shen, Q. L. Zhou, Angew. Chem. Int. Ed. 2011, 50, 11483. d) Y. X. Jia, J. Zhong, S. F. Zhu, C. M. Zhang, Q. L. Zhou, Angew. Chem. Int. Ed. 2007, 46, 5565.

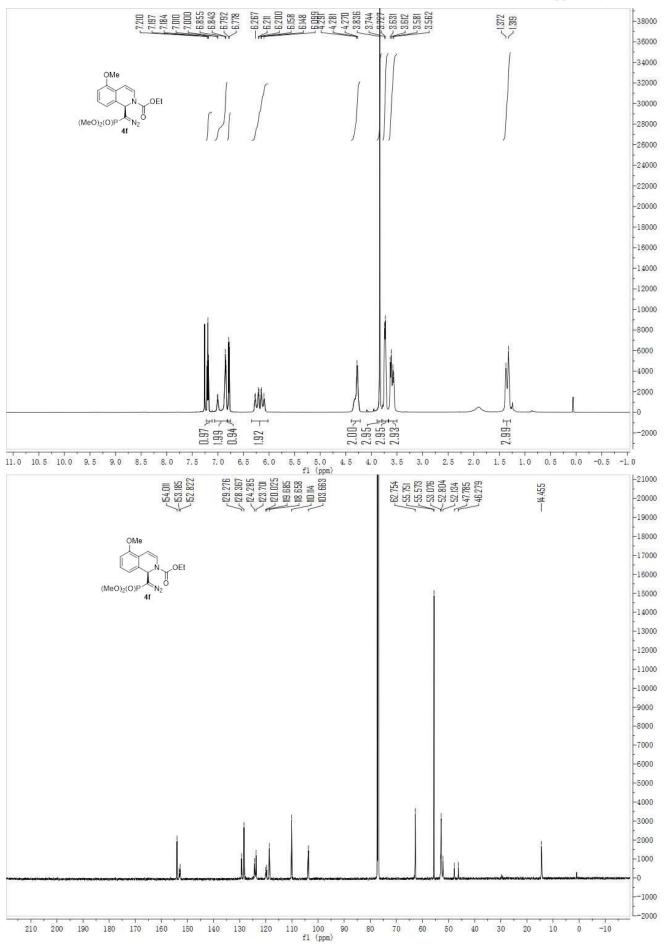


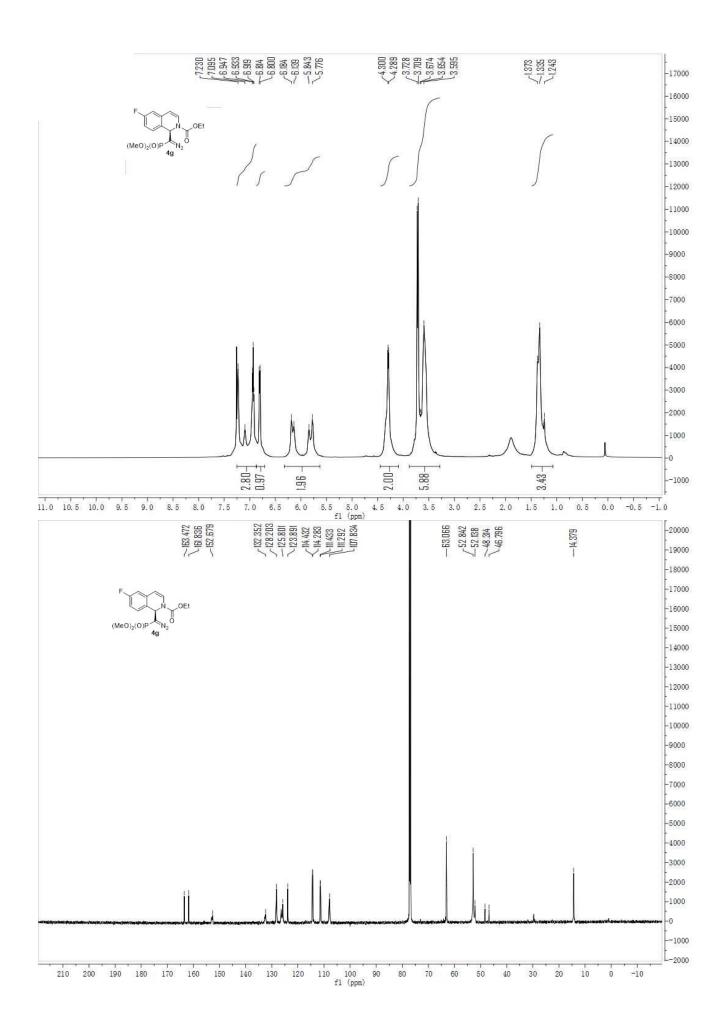


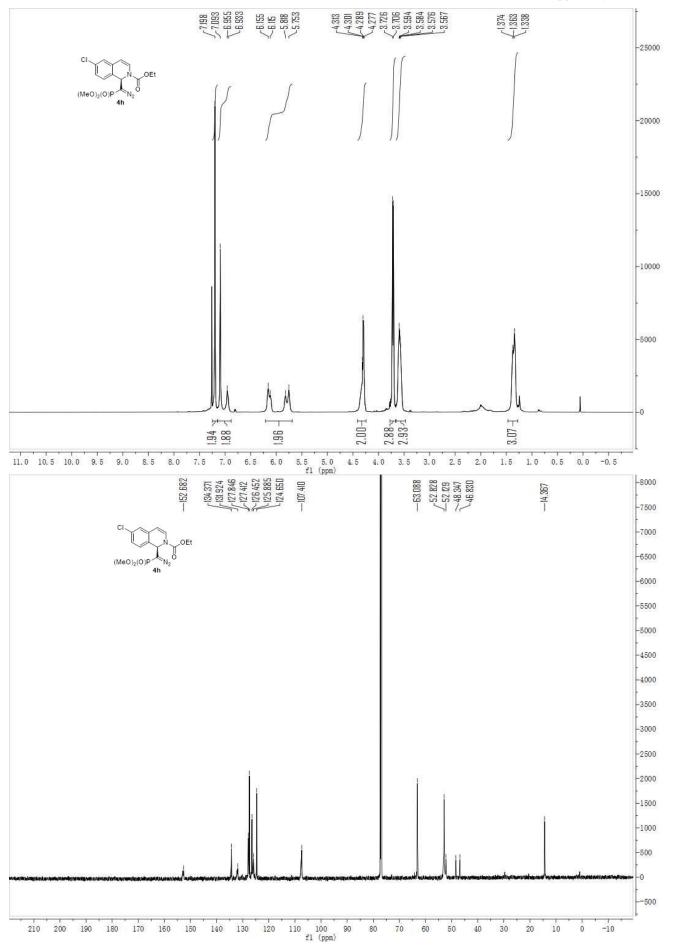

Supporting Information

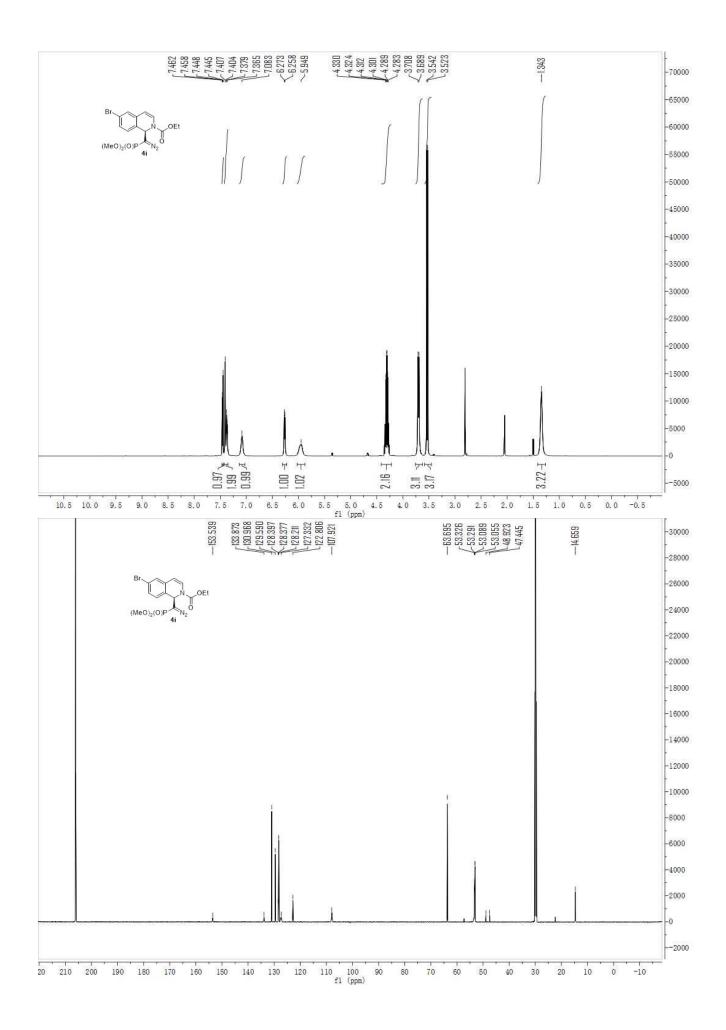


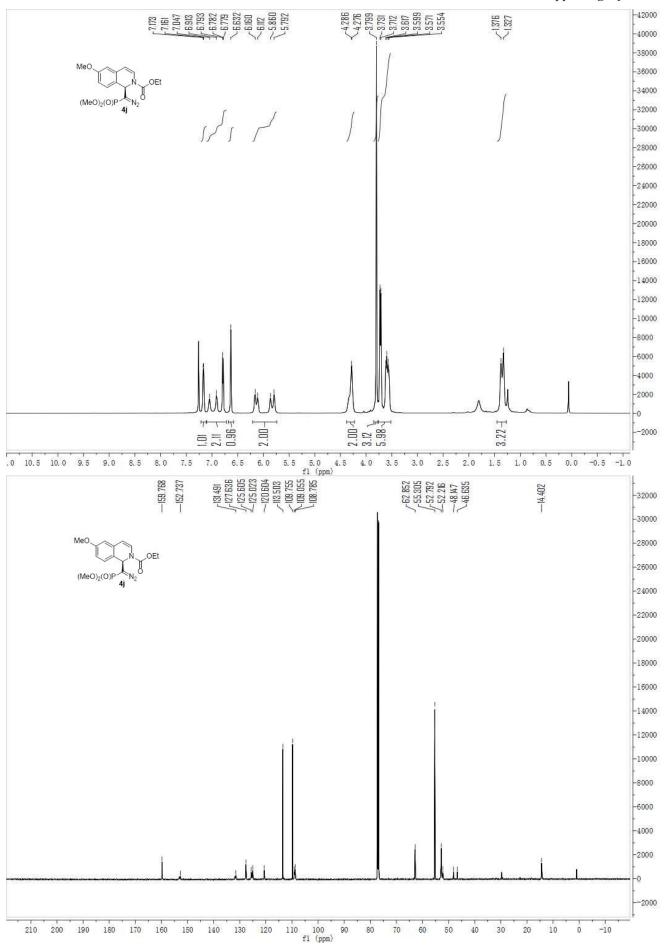

Supporting Information

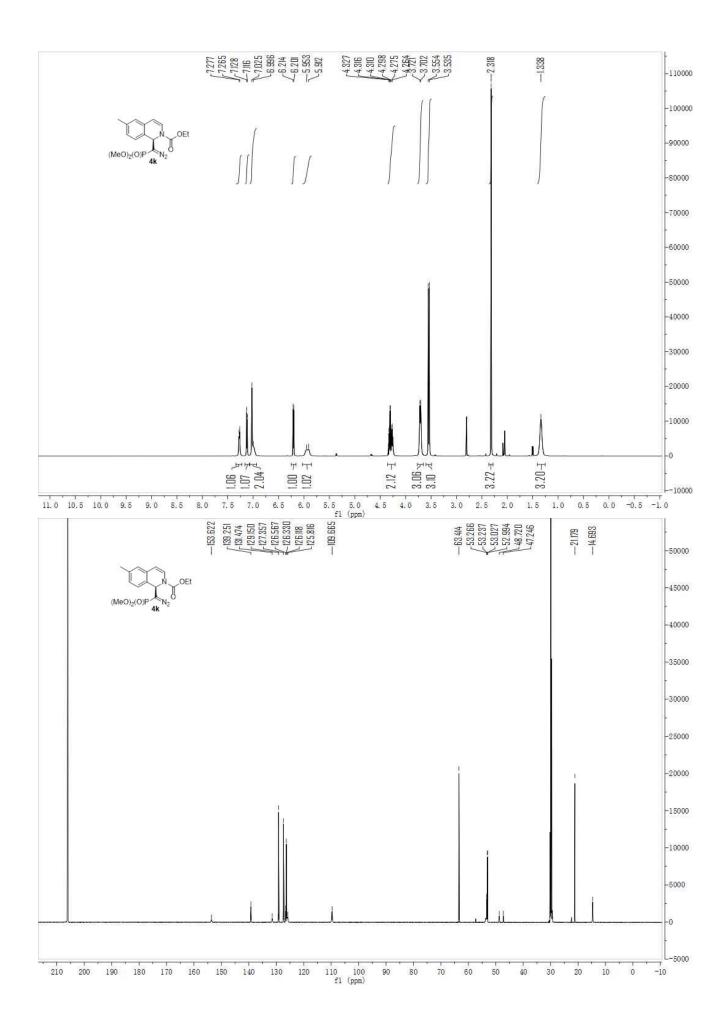


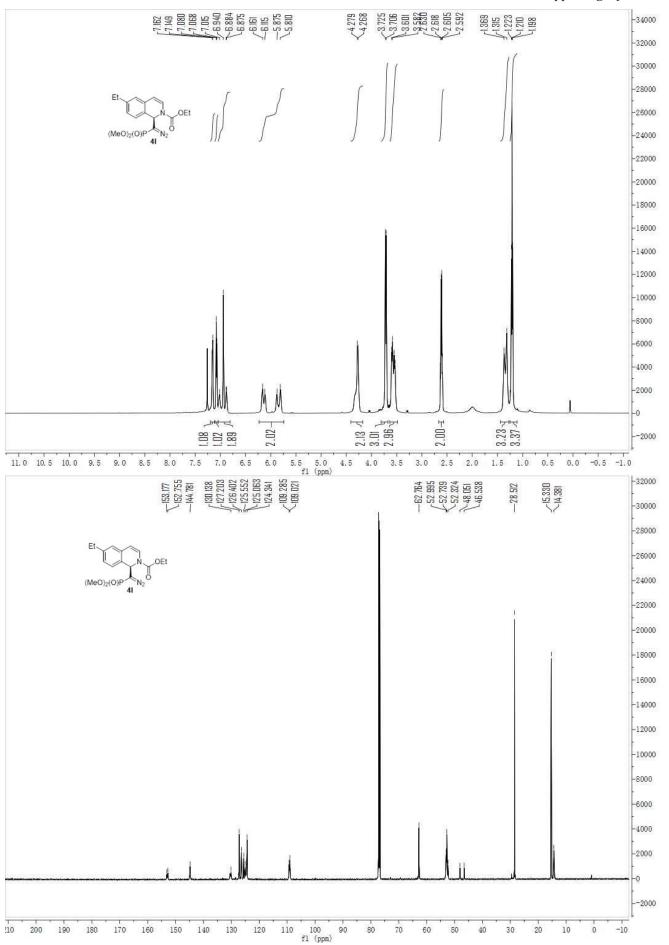

Supporting Information

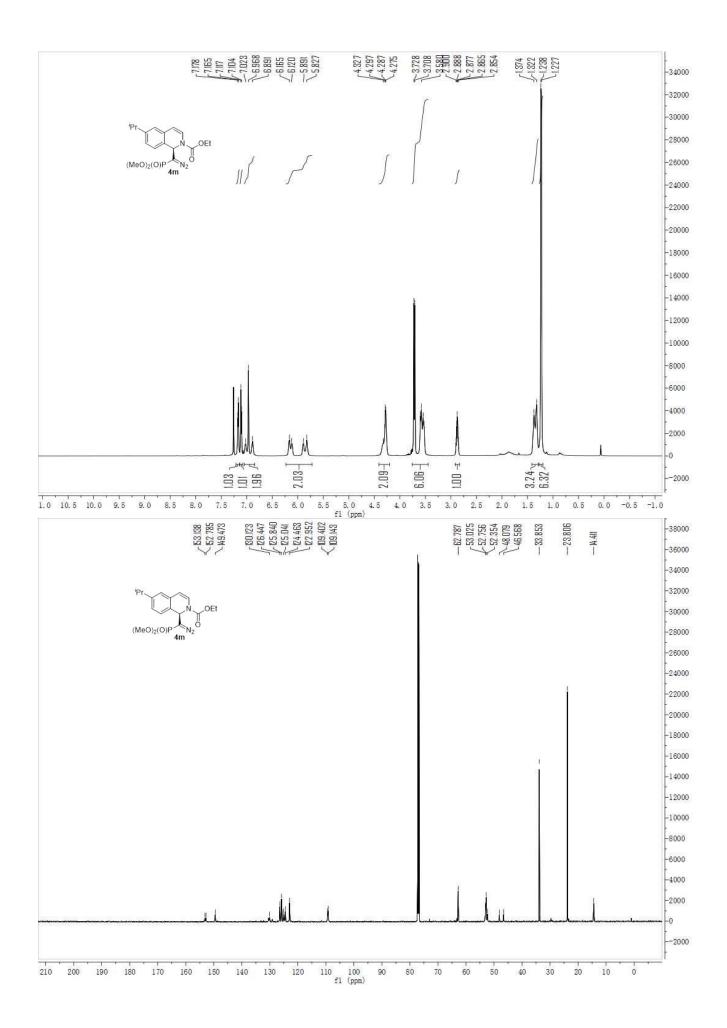


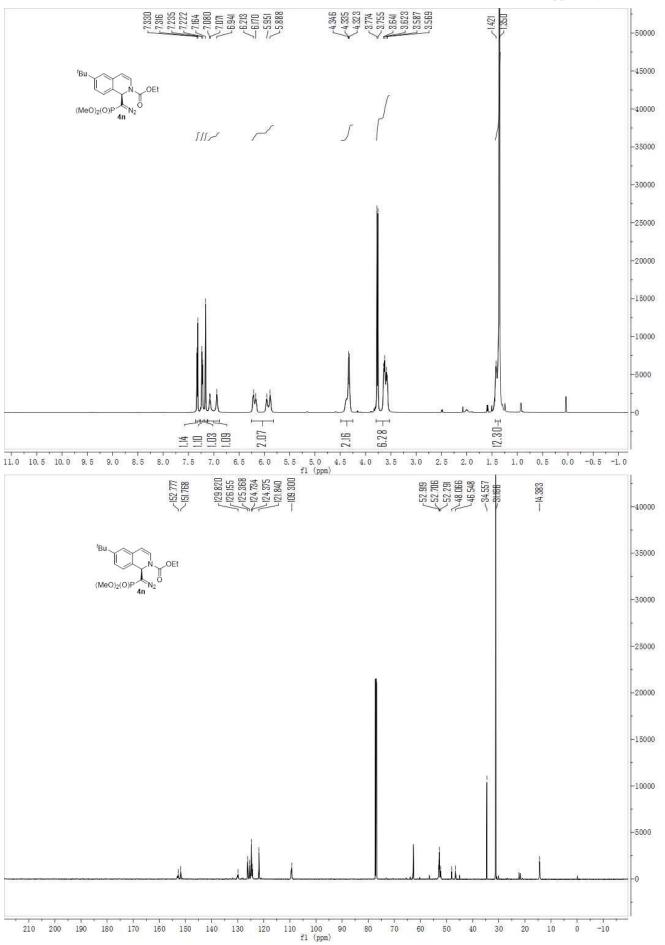

Supporting Information

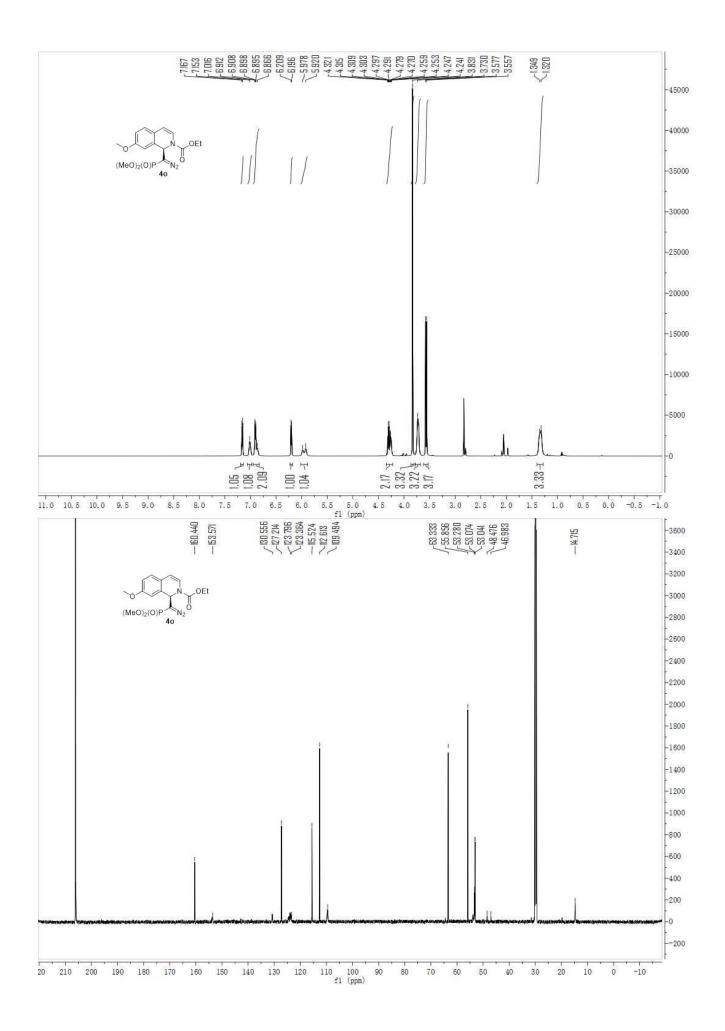


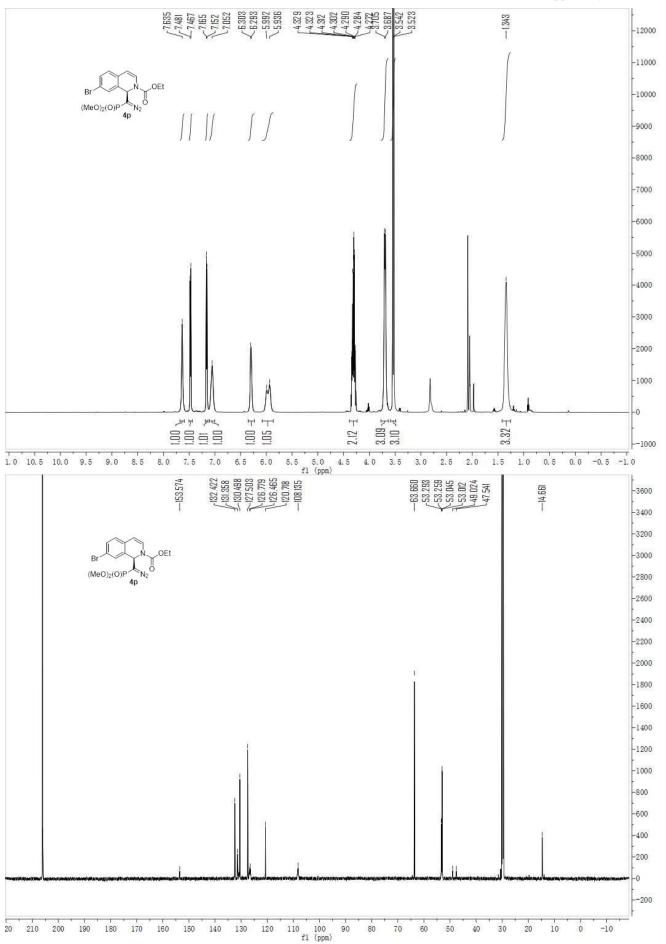

Supporting Information

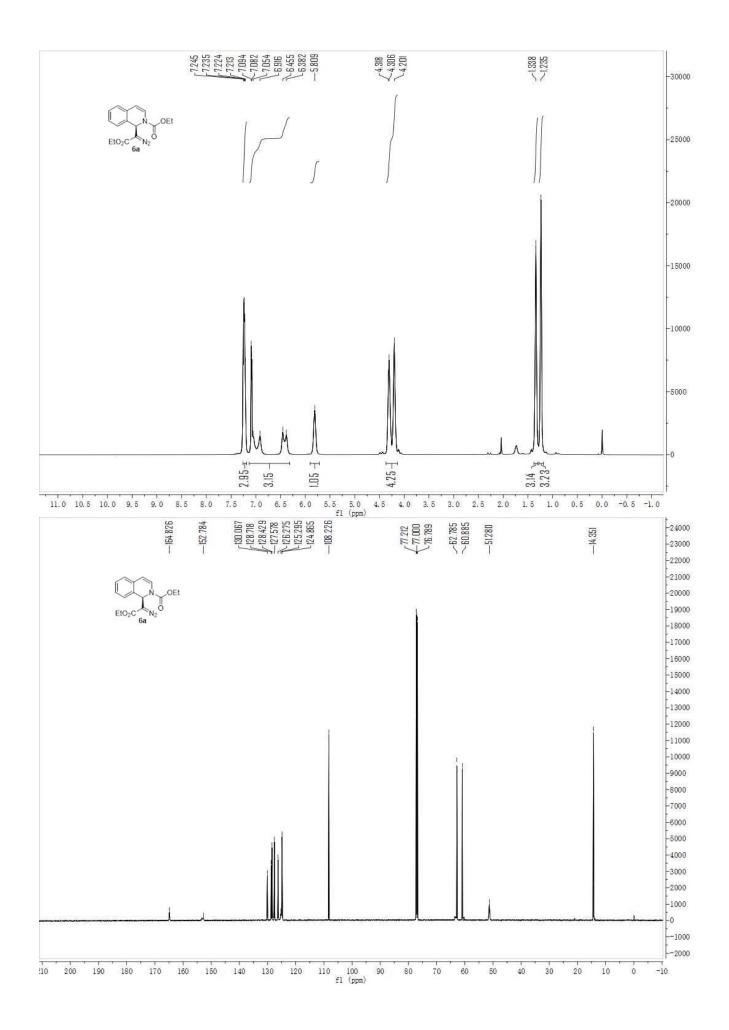


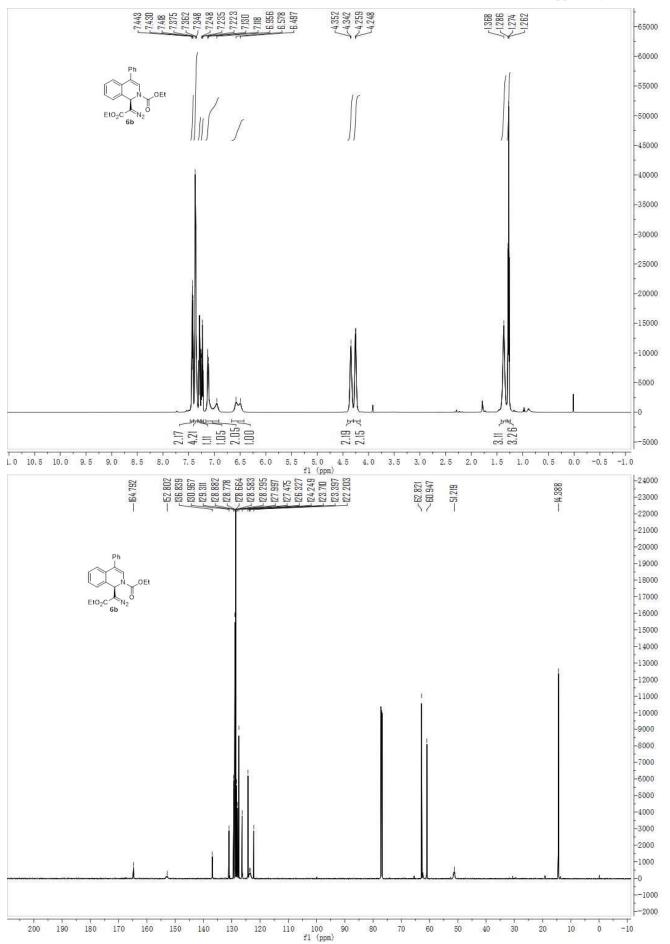

Supporting Information

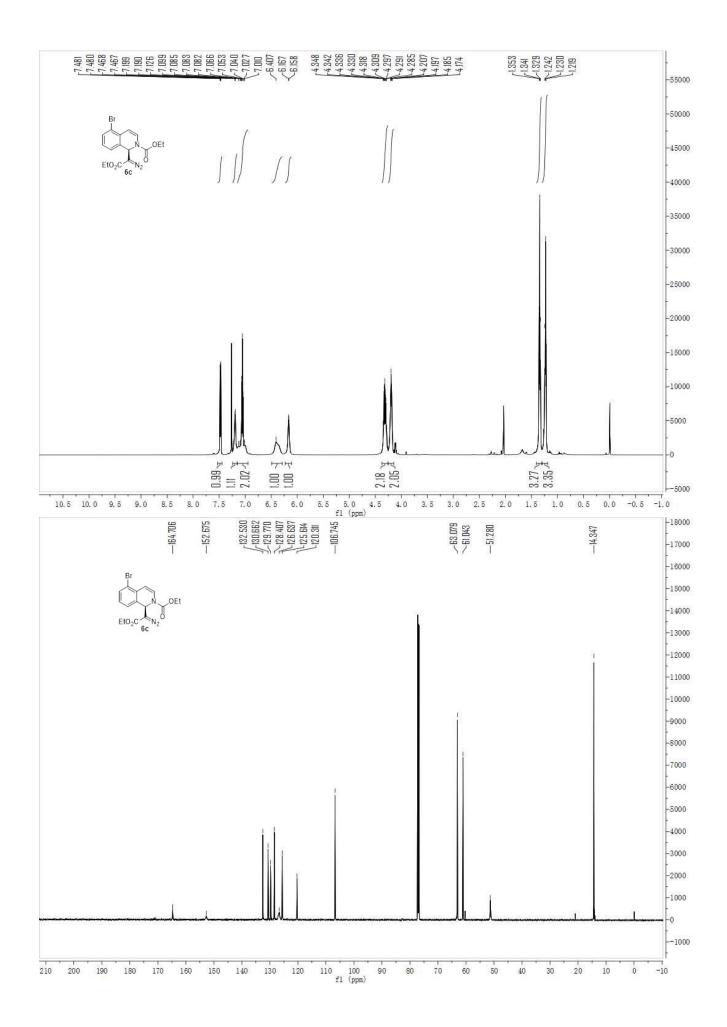


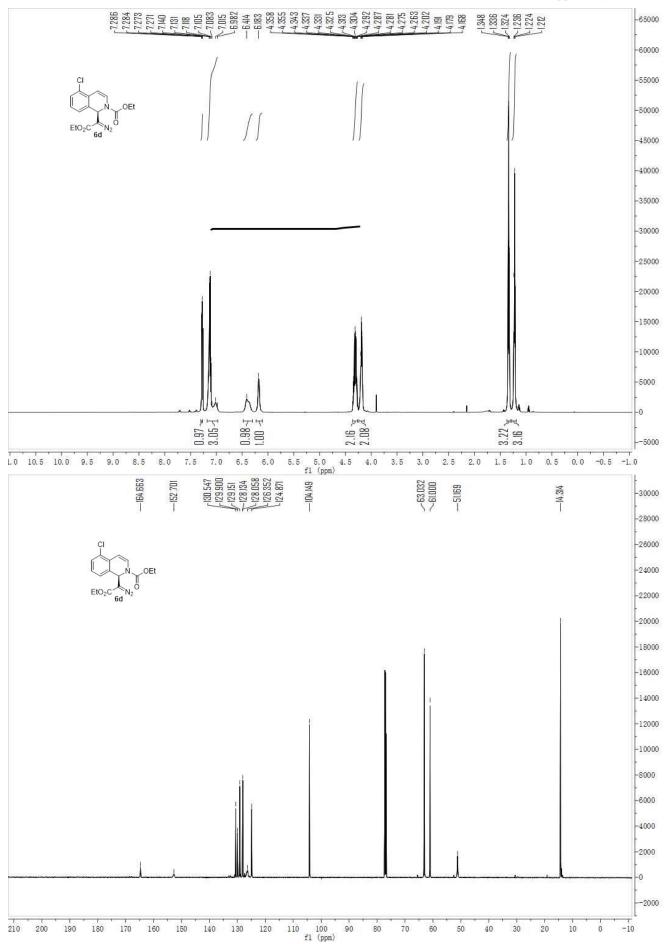

Supporting Information

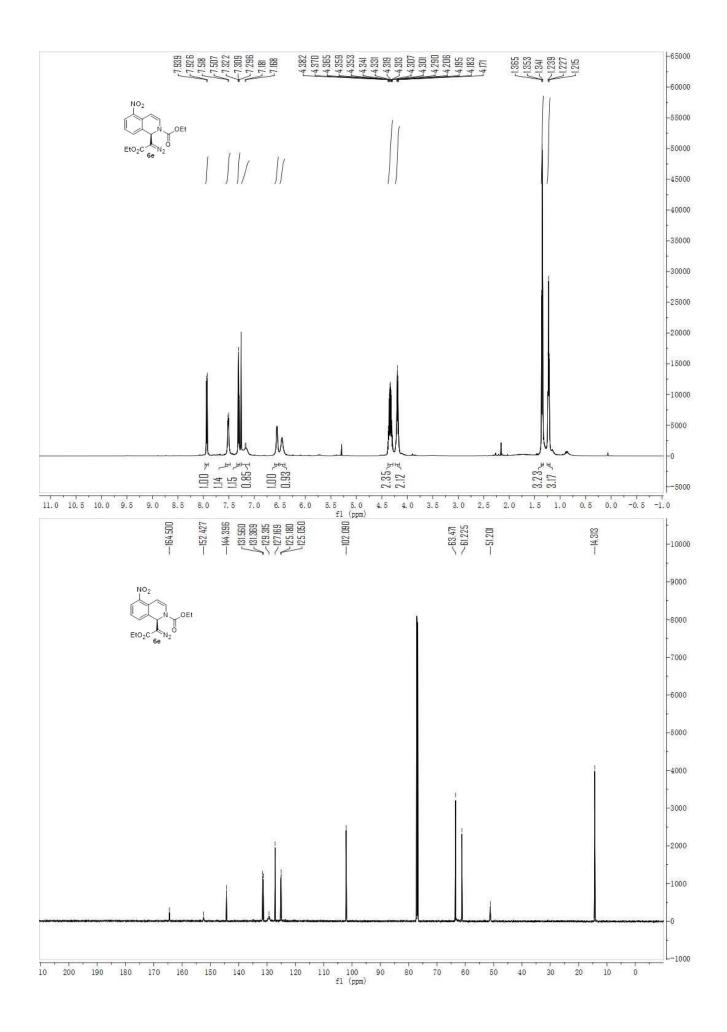


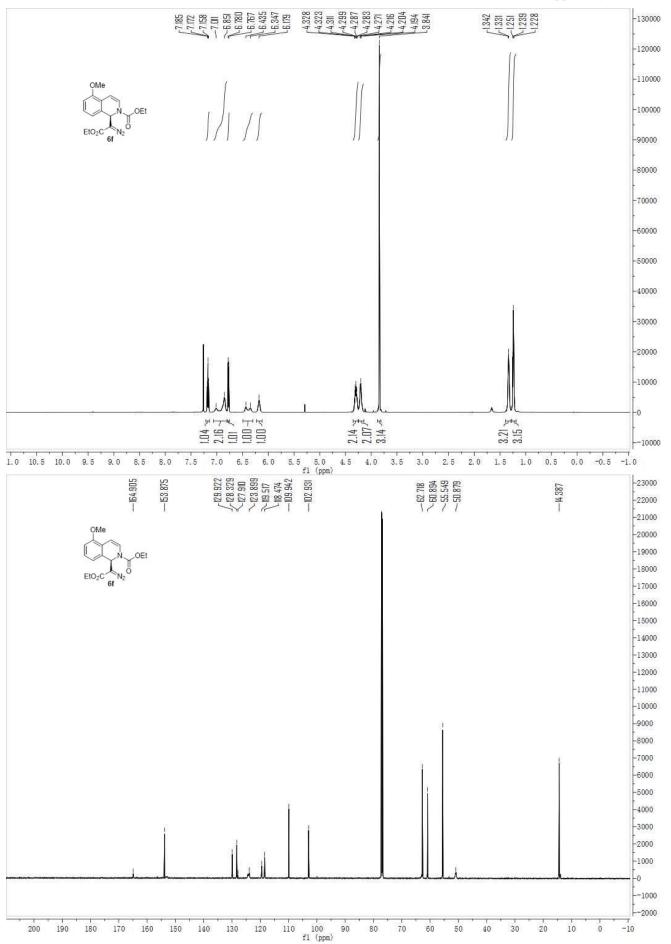

Supporting Information

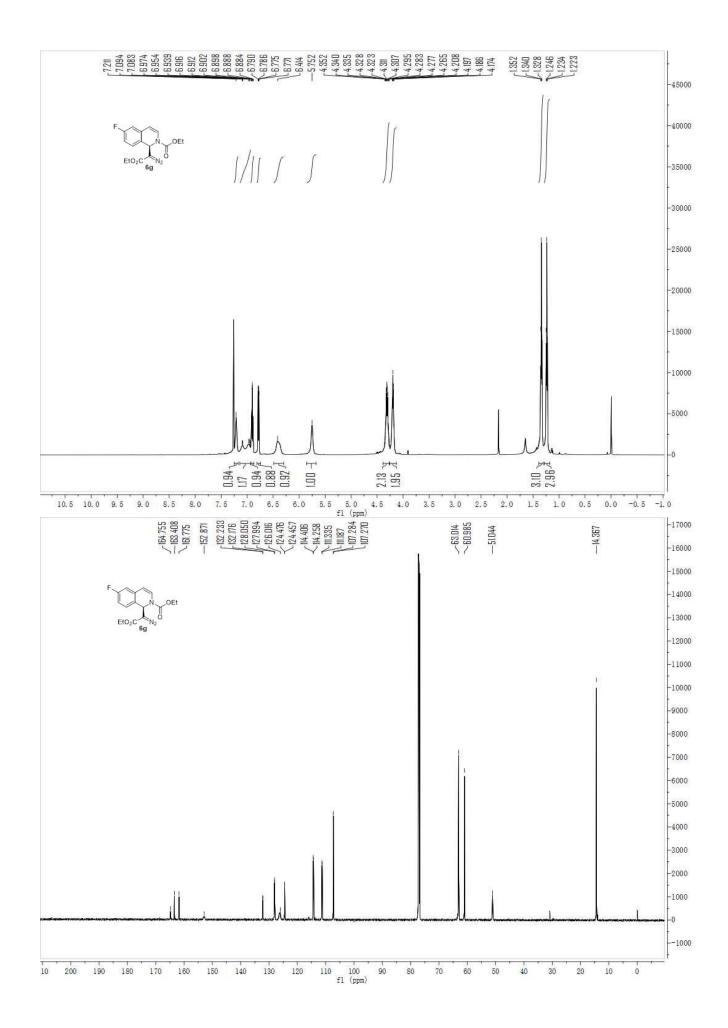


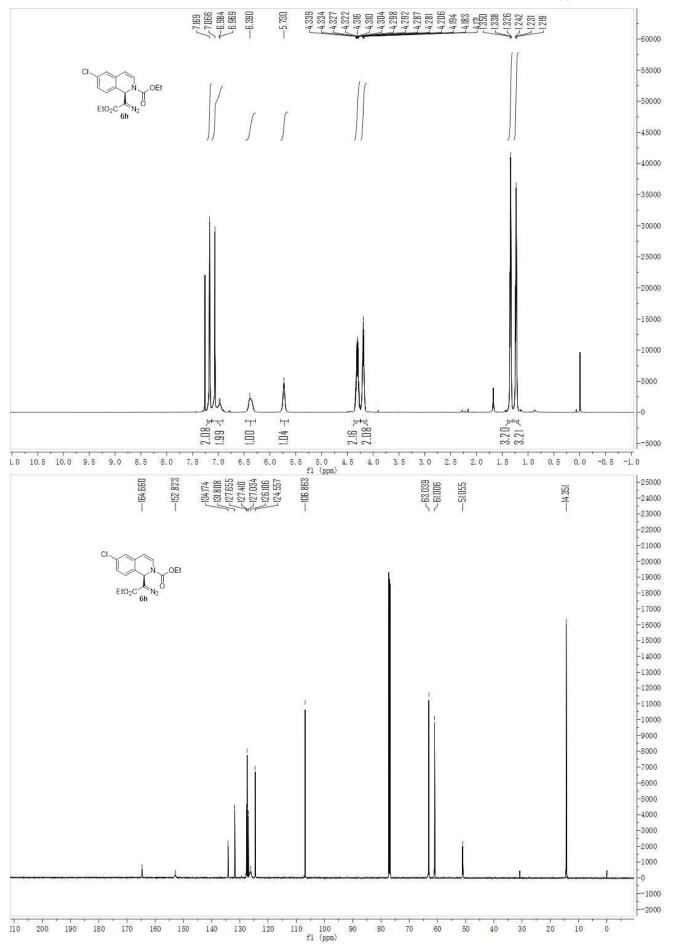

Supporting Information

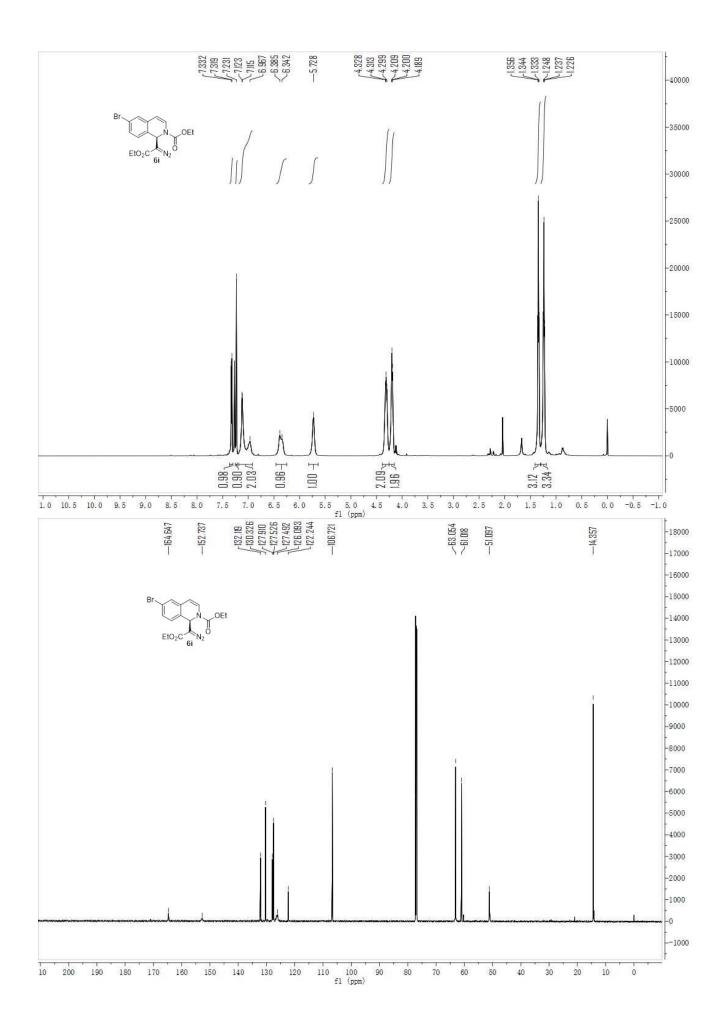


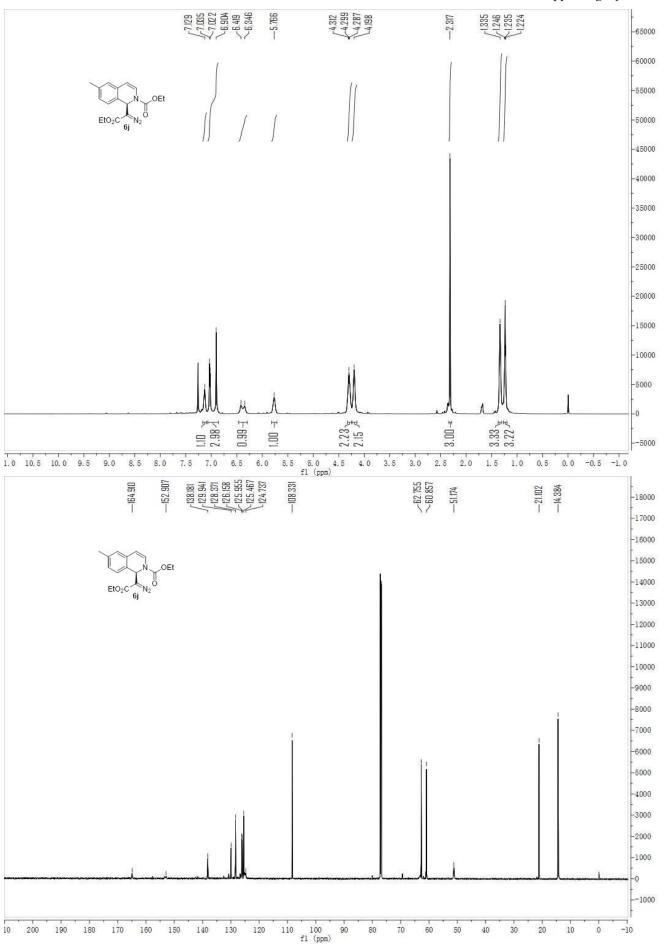

Supporting Information

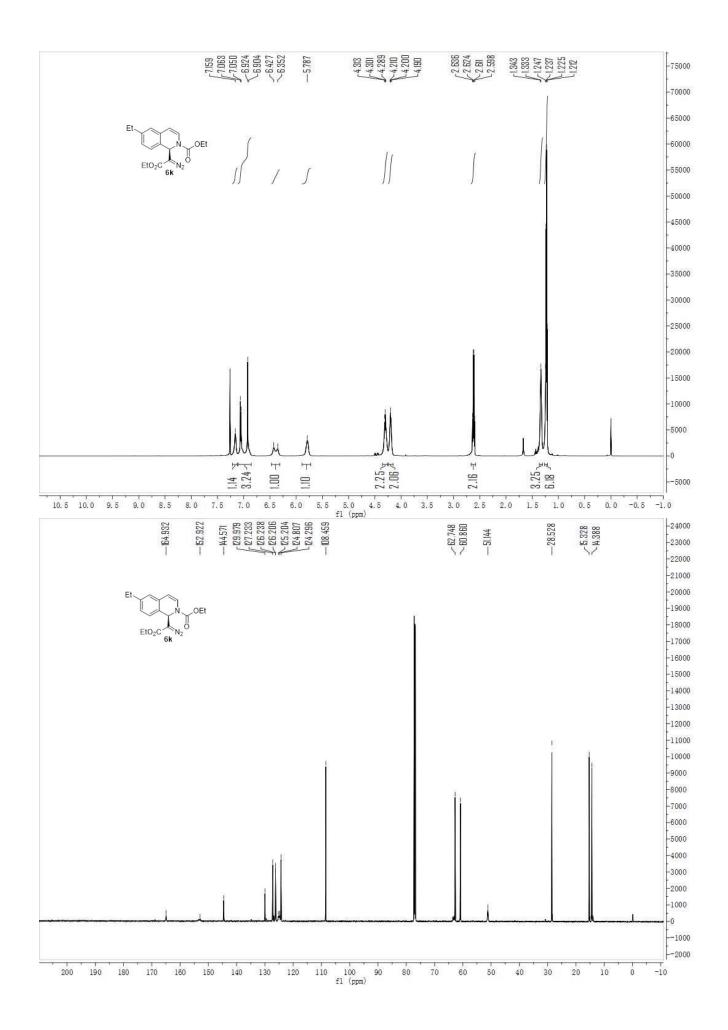


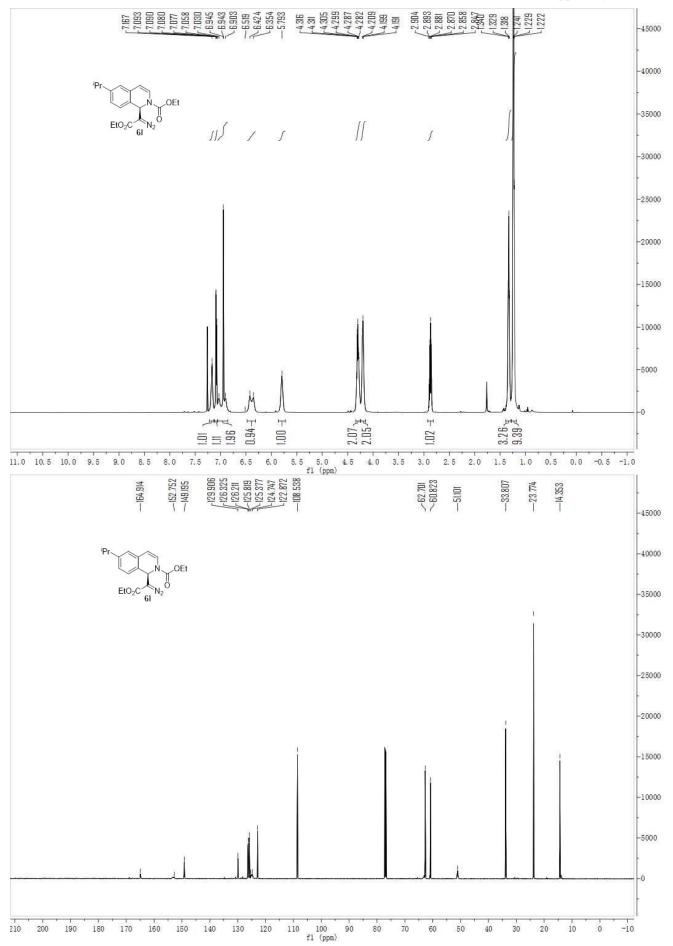

Supporting Information

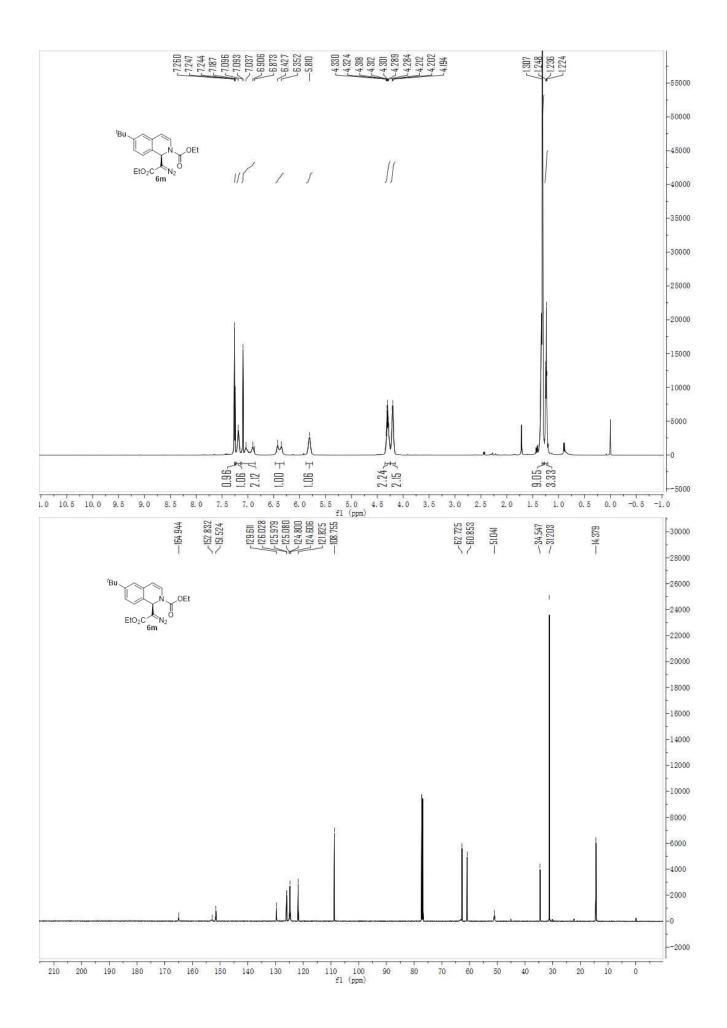



Supporting Information

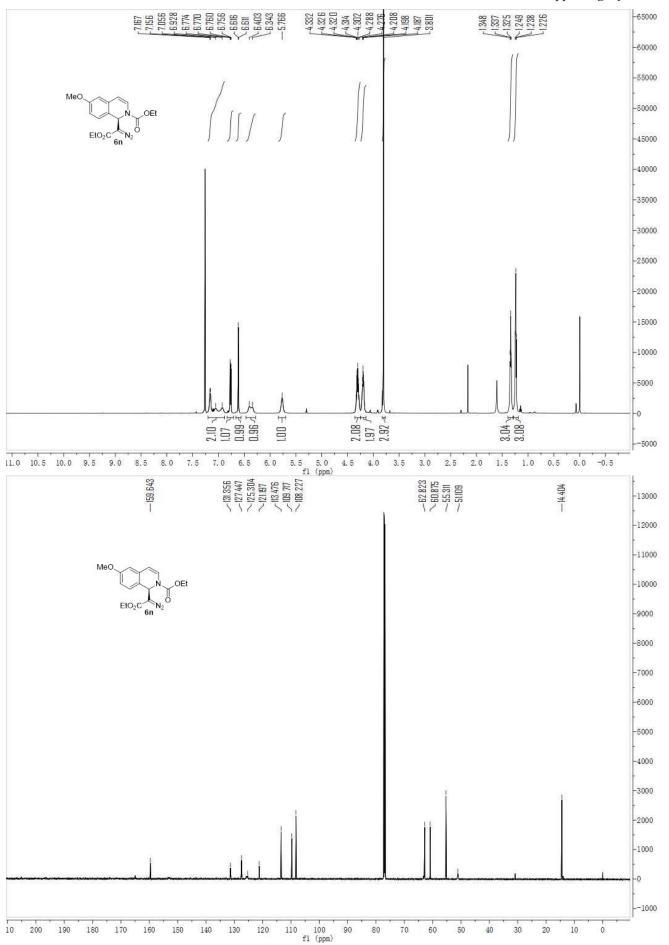


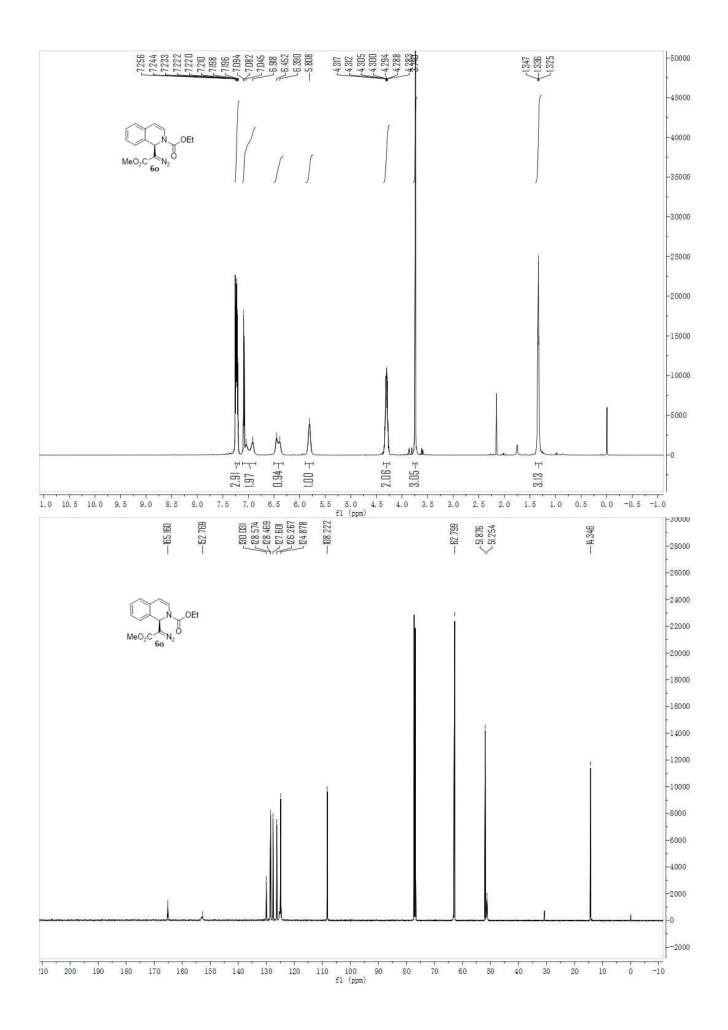

Supporting Information

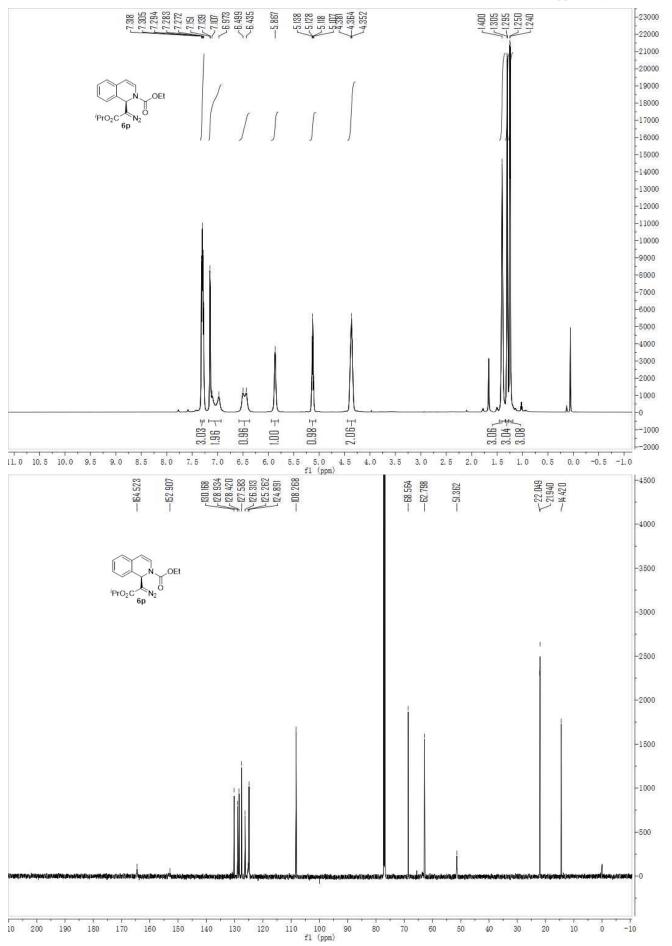


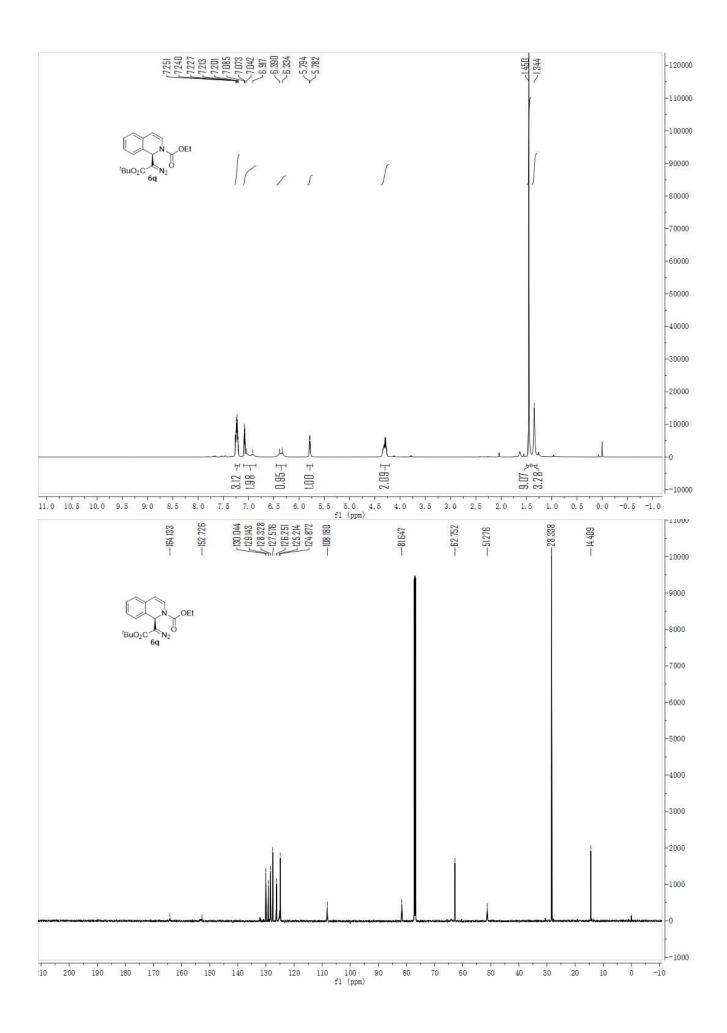


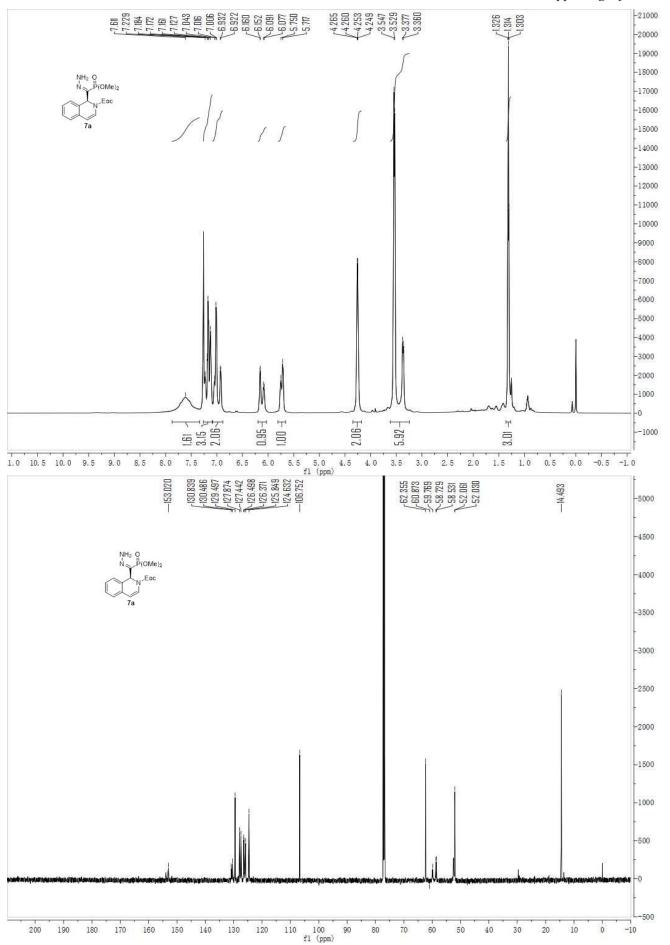
Supporting Information

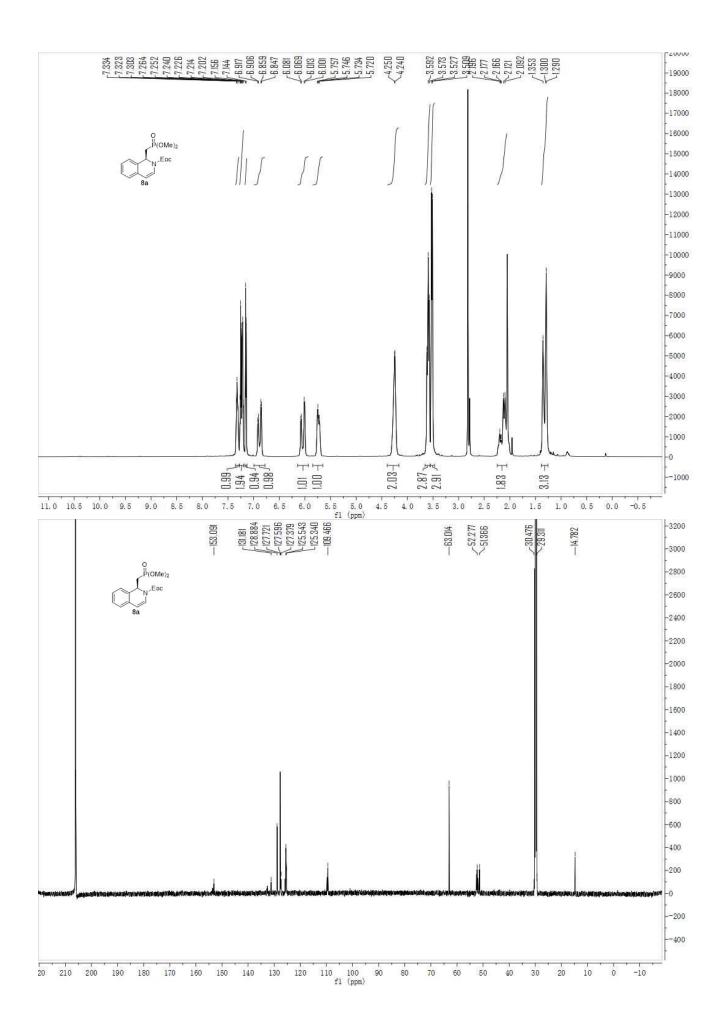


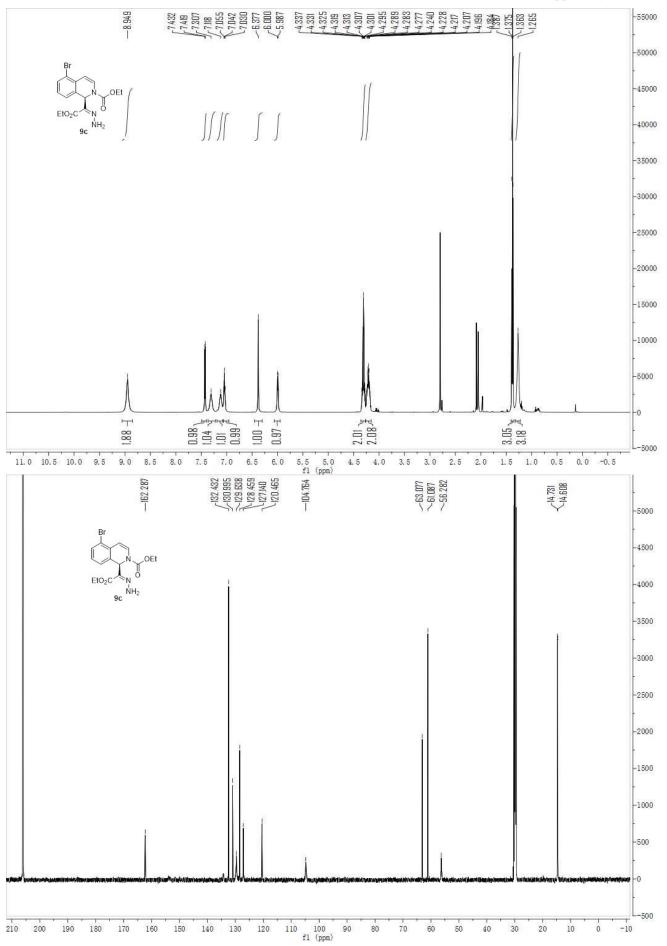


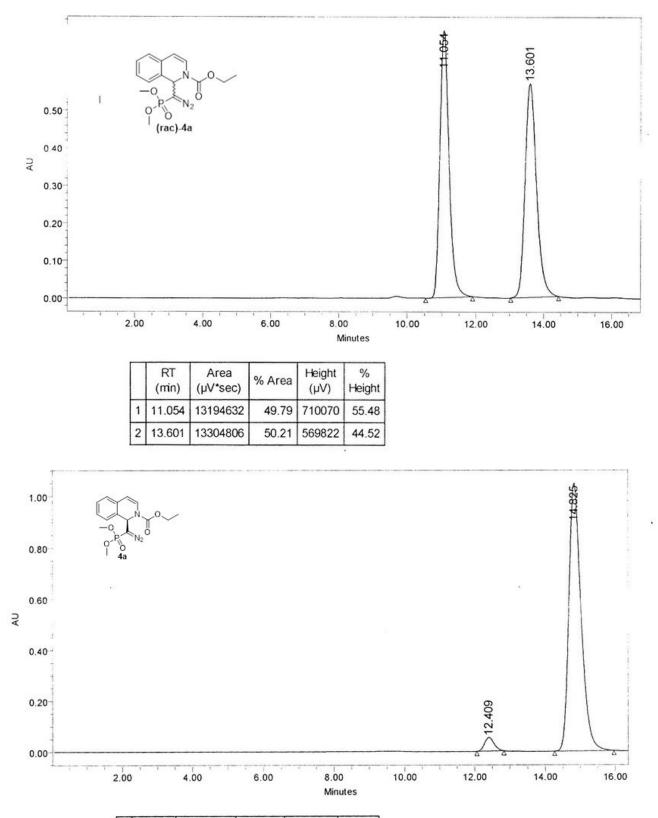


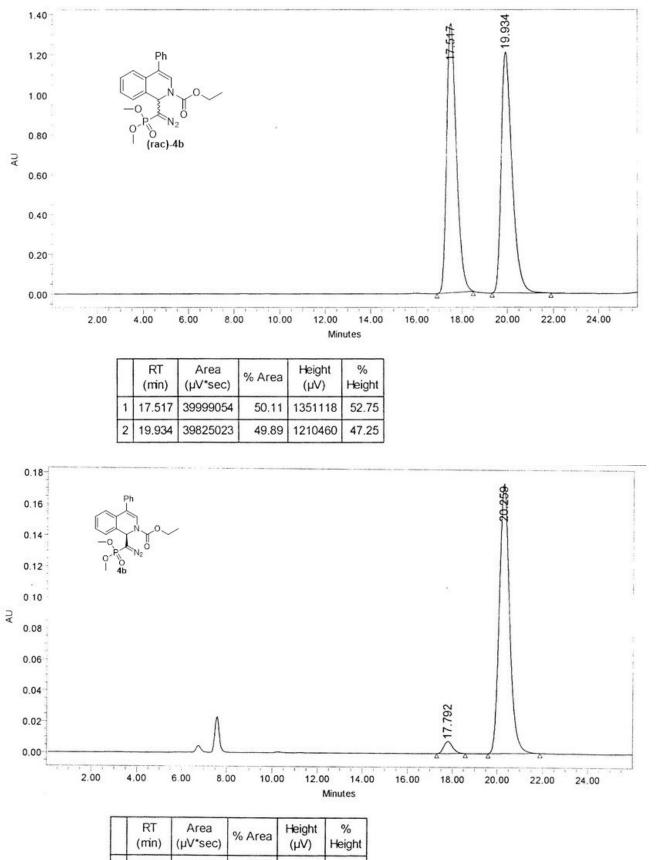

Supporting Information

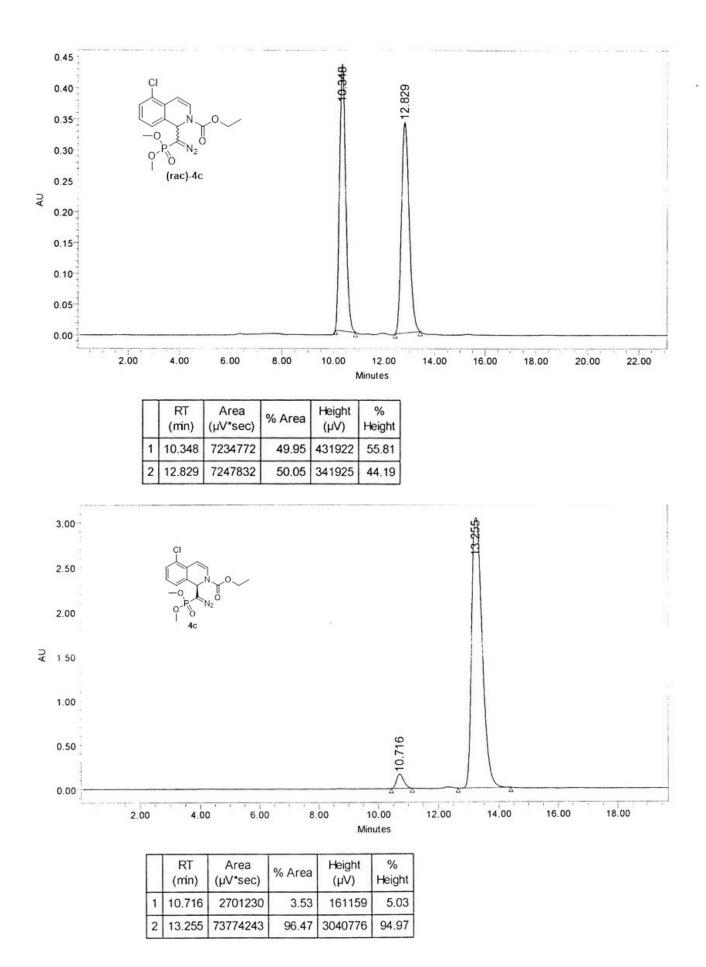


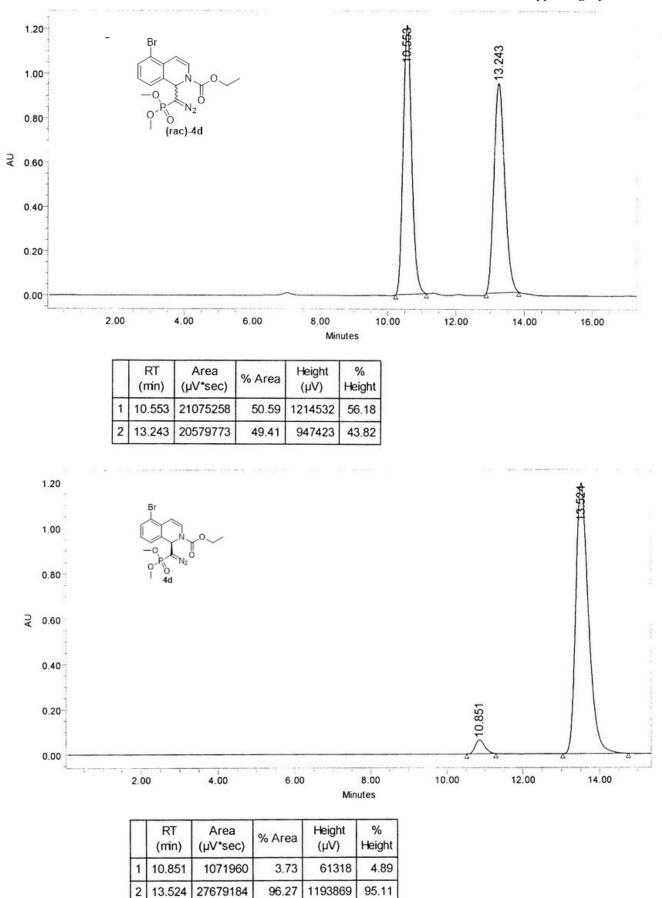

Supporting Information

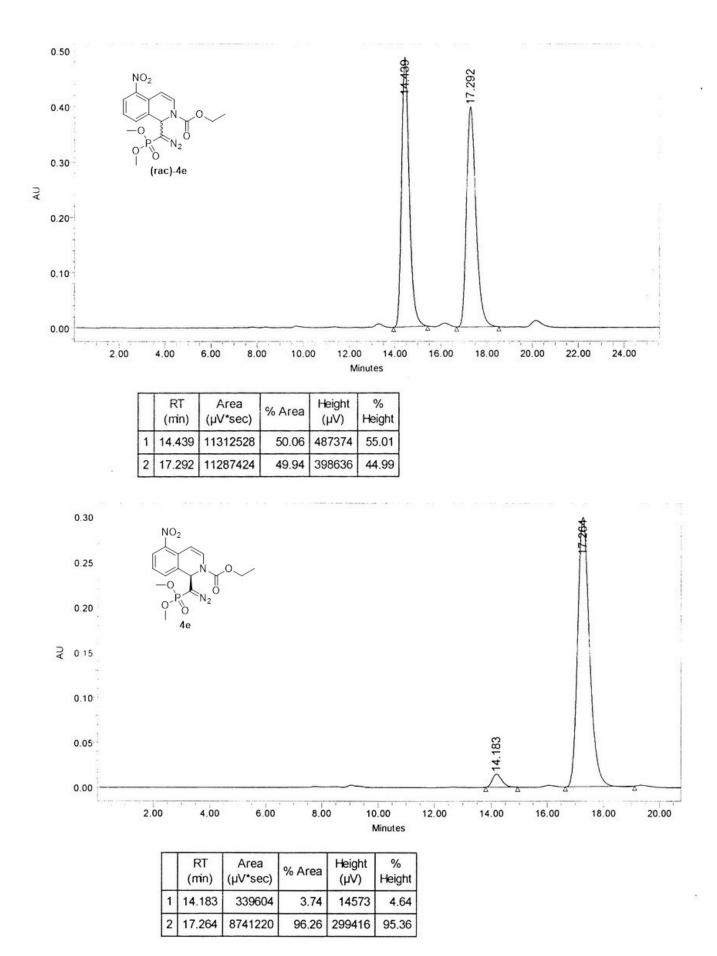


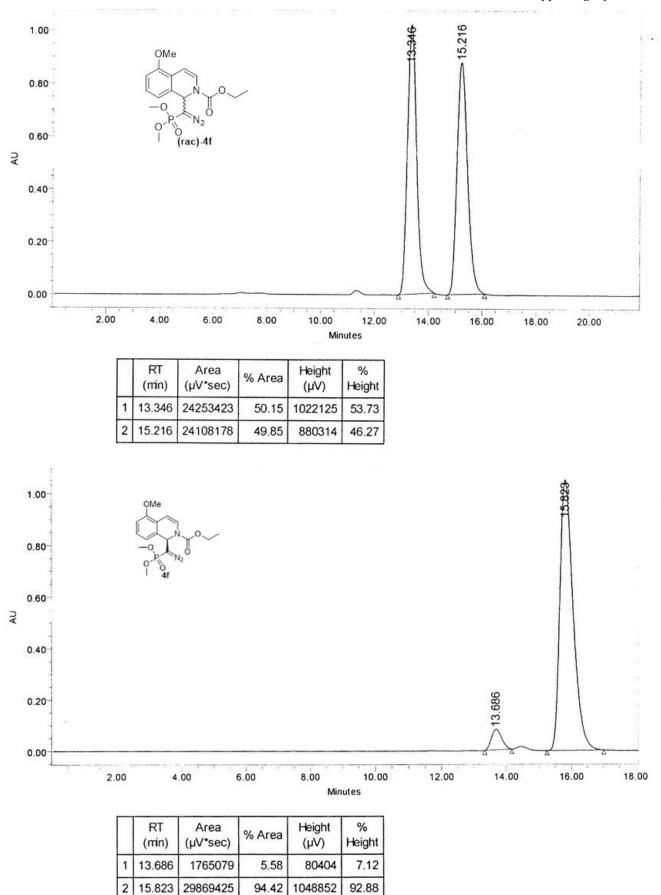

Supporting Information

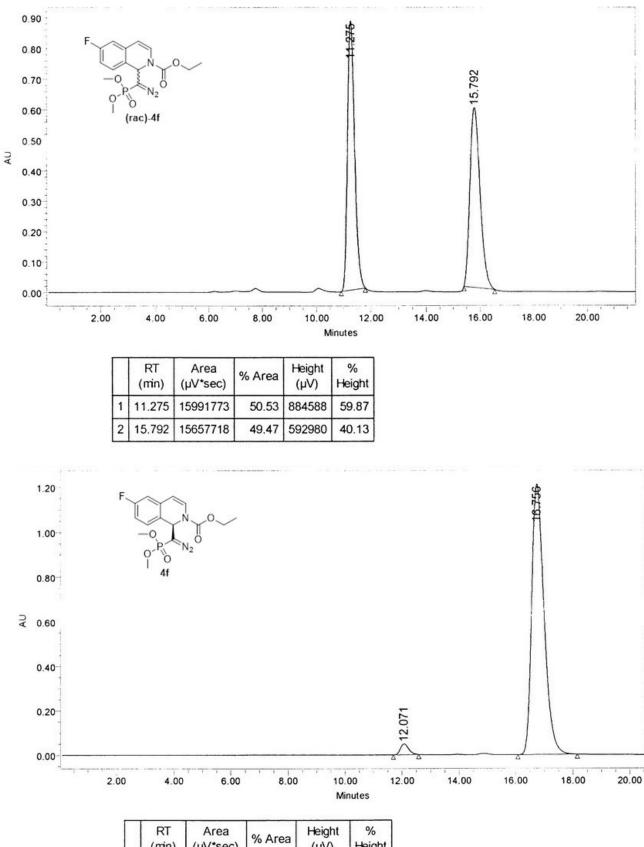

Supporting Information

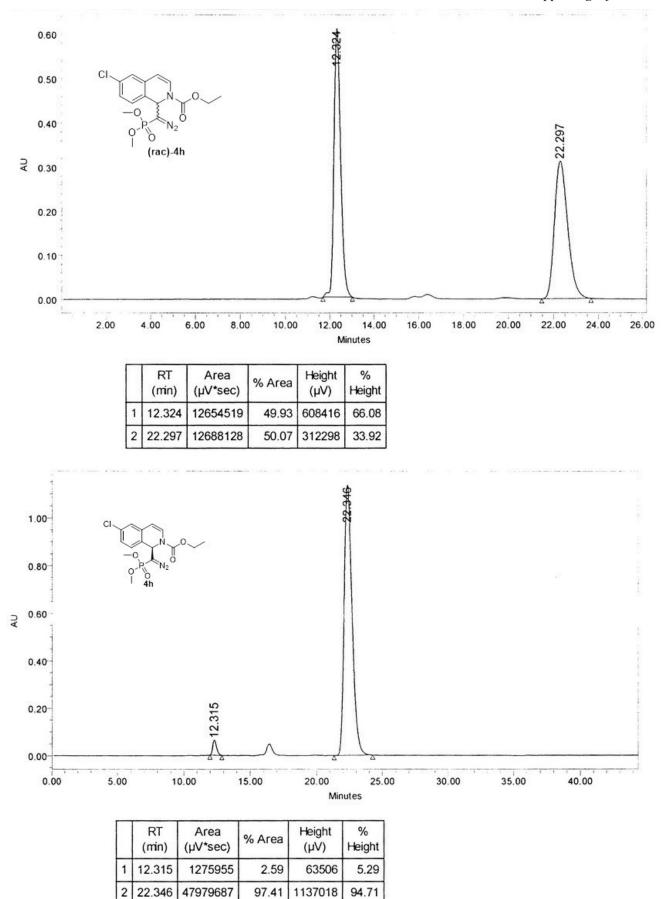


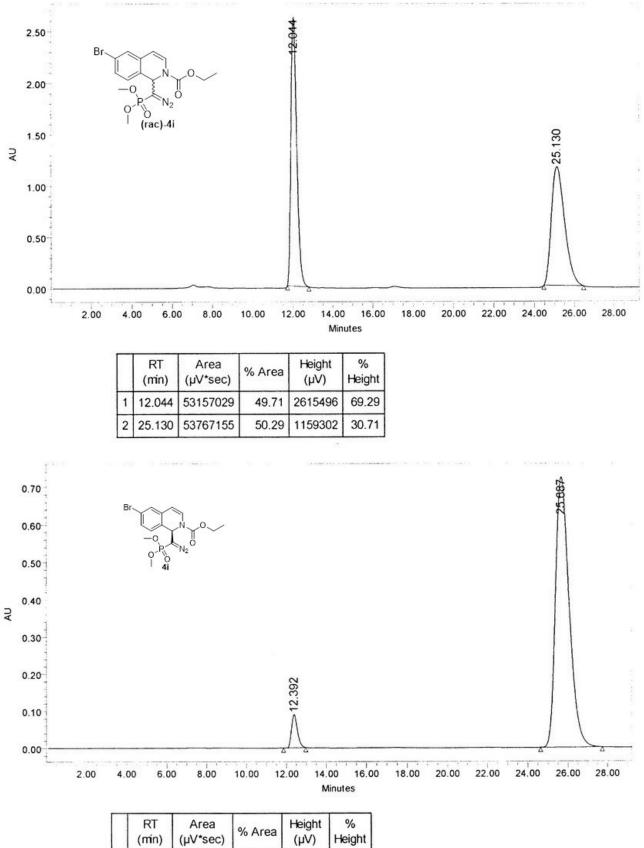

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	12.409	998061	3.75	53590	4.86
2	14.825	25599217	96.25	1048642	95.14


Supporting Information

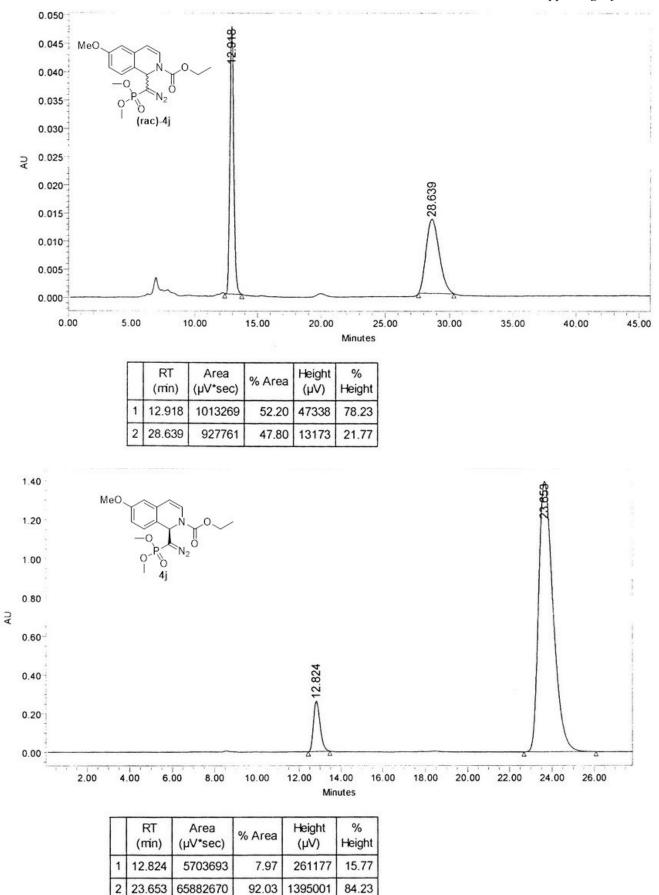


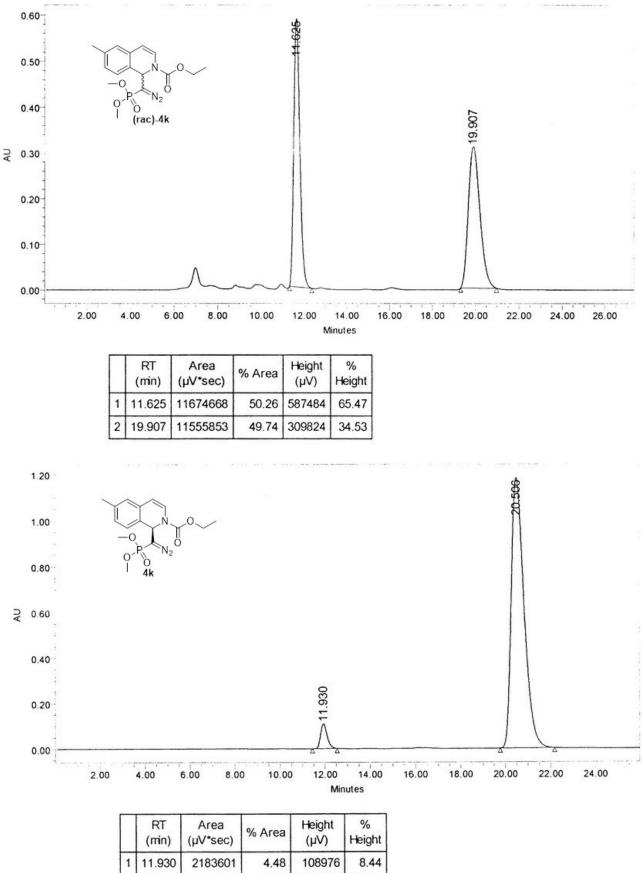

	(min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	17.792	217872	3.81	7850	4.32
2	20.259	5499330	96.19	174051	95.68





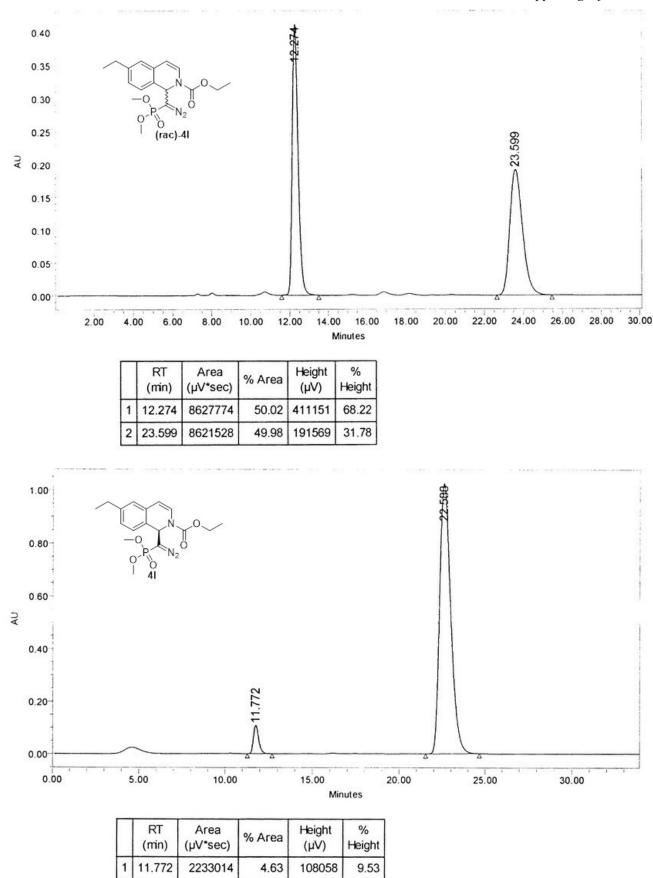
	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	12.071	958661	2.59	48424	3.84
2	16.756	36053163	97.41	1213574	96.16


Supporting Information



	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	12.392	1819405	4.98	89553	10.98
2	25.687	34745156	95.02	725987	89.02

Supporting Information

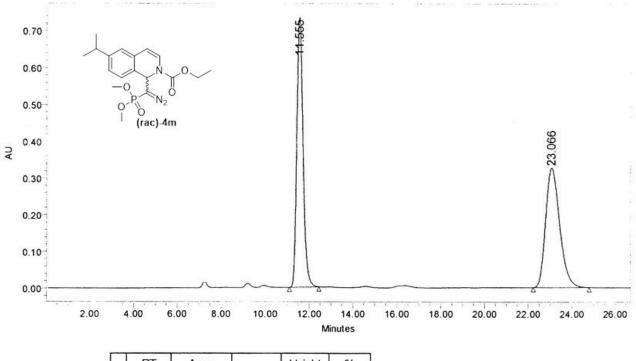


20.506 46578094 95.52 1182839 91.56

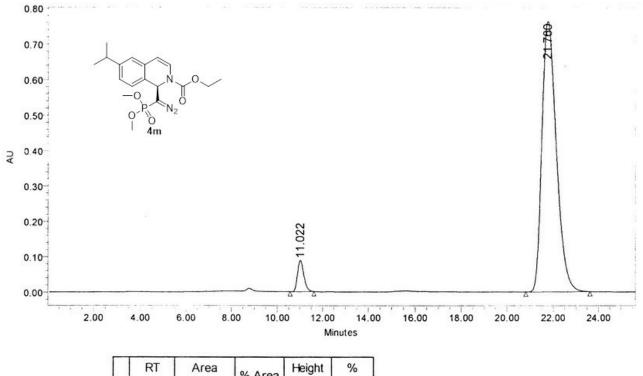
2

Supporting Information

1025979

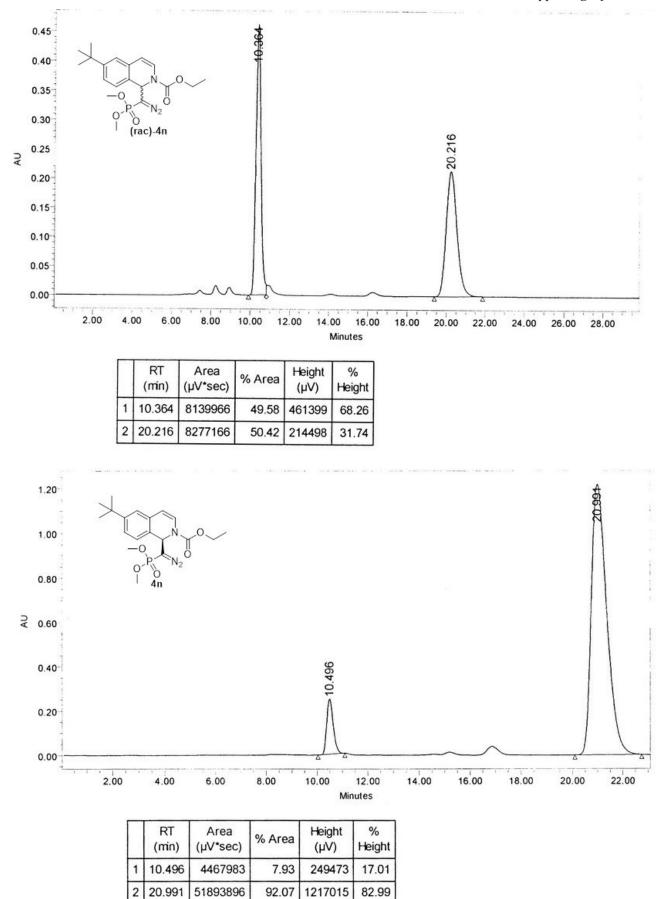

90.47

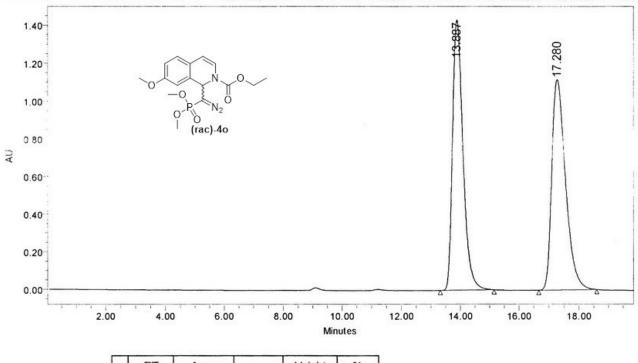
22.588

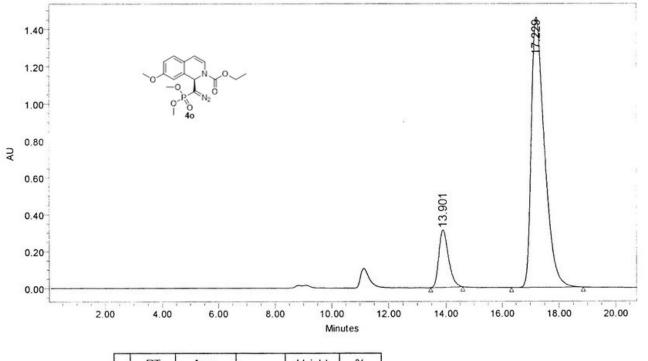

2

46024133

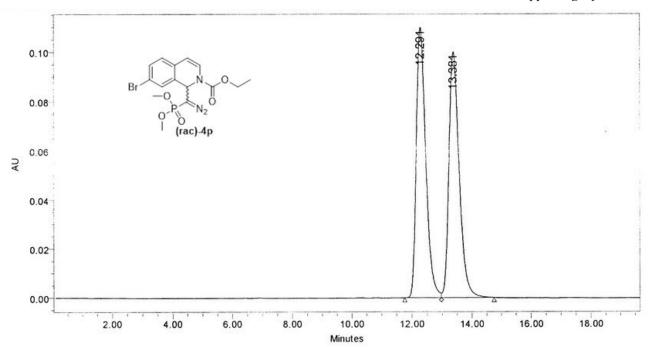
95.37



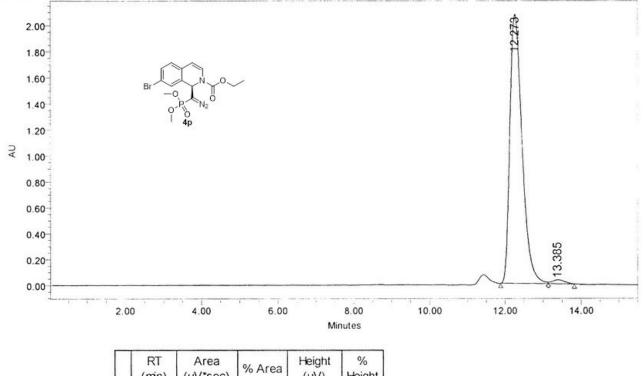

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	11.555	14438790	49.82	734375	69.26
2	23.066	14545772	50.18	325887	30.74


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	11.022	1713911	4.89	88569	10.40
2	21.760	33322932	95.11	763434	89.60

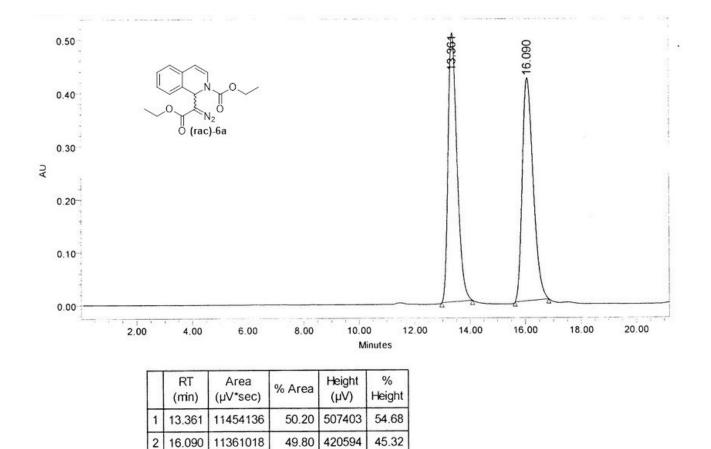
Supporting Information

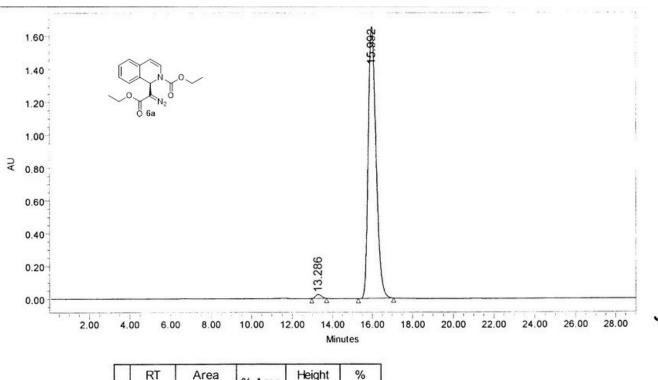


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	13.887	35595878	50.07	1433369	56.16
2	17.280	35499389	49.93	1119014	43.84

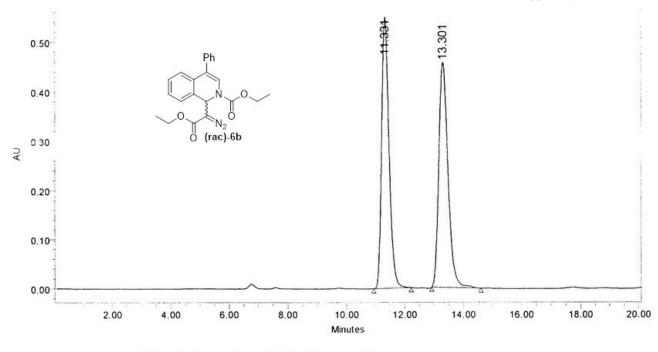


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	13.901	7333411	13.50	311193	17.56
2	17.229	46968304	86.50	1461238	82.44

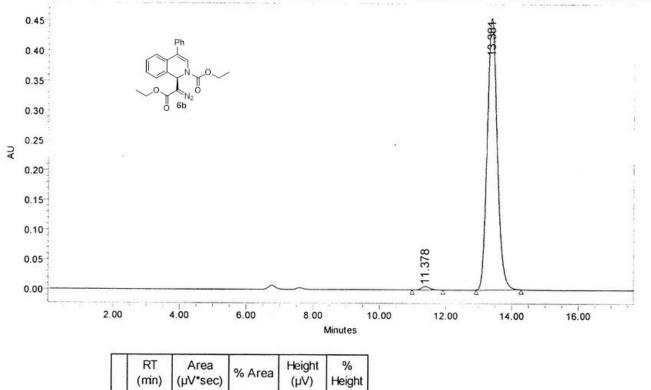

Supporting Information



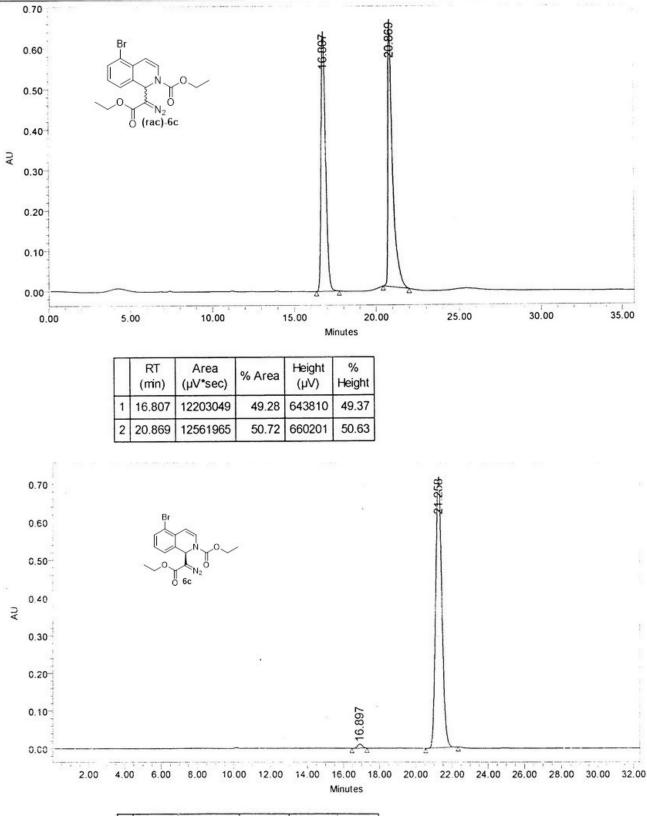
	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	12.291	2373655	49.66	110079	52.37
2	13.381	2405857	50.34	100129	47.63



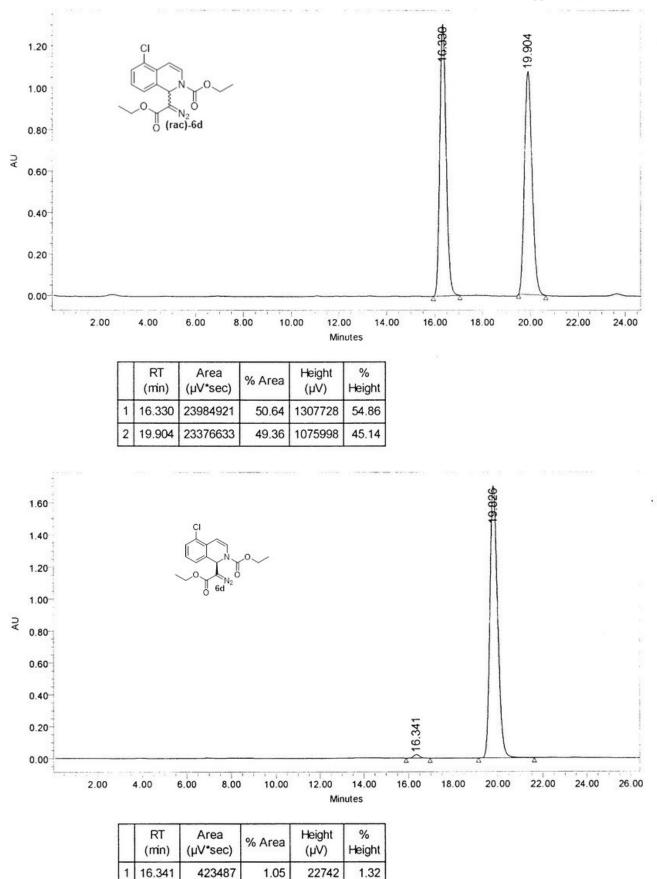
	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	12.273	46513641	98.56	2072708	98.56
2	13.385	681511	1.44	30384	1.44



	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	13.286	493901	1.08	24392	1.45
2	15.992	45137226	98.92	1656874	98.55



and a second	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	11.331	9727330	49.37	551205	54.62
2	13.301	9974435	50.63	457866	45.38

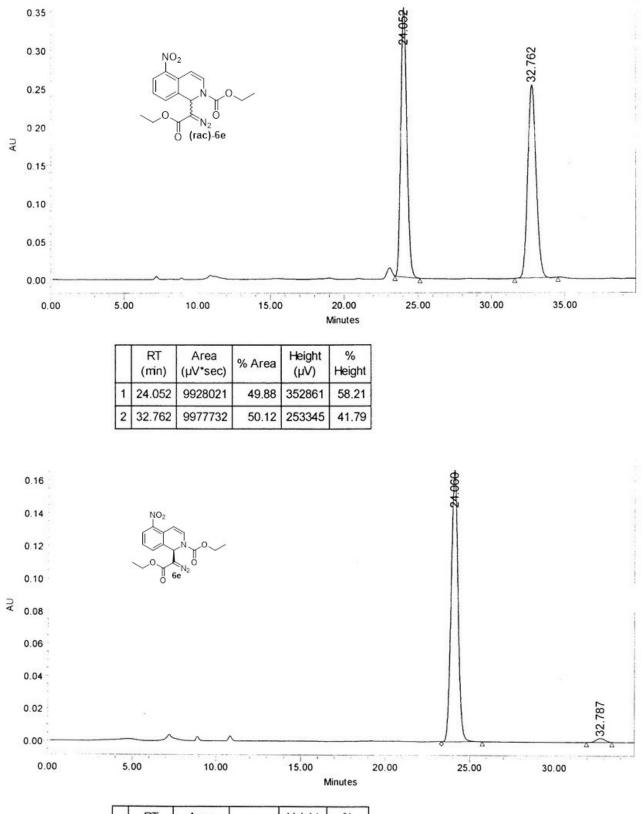

				•
11.378	101717	1.05	5688	1.23
13.381	9620576	98.95	456375	98.77

1 2

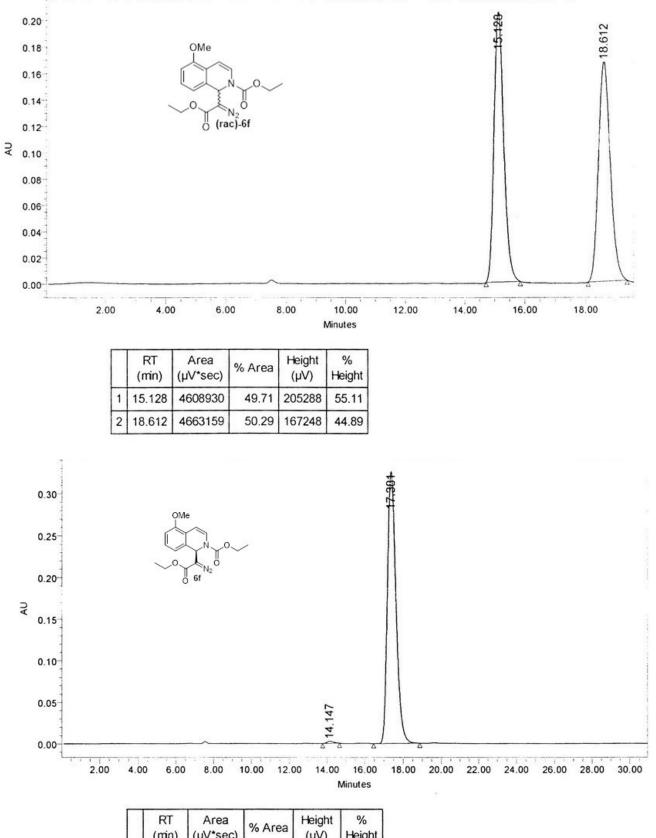
	RT (min)	Area (µV⁺sec)	% Area	Height (µV)	% Height
1	16.897	201393	1.16	11088	1.52
2	21.258	17198209	98.84	720149	98.48

Supporting Information

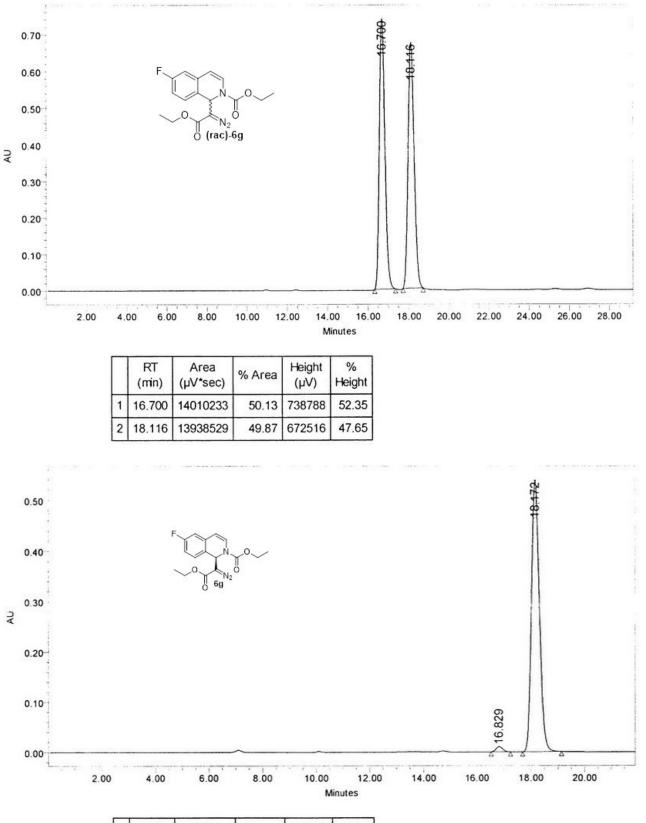
1702831

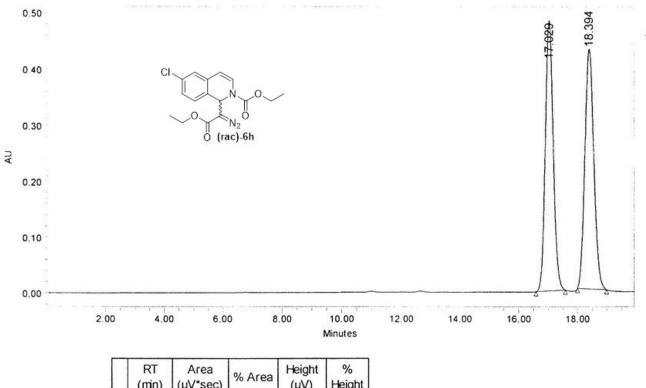

98.68

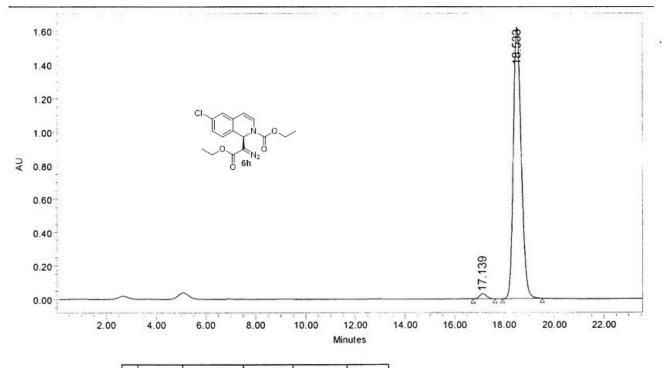
2

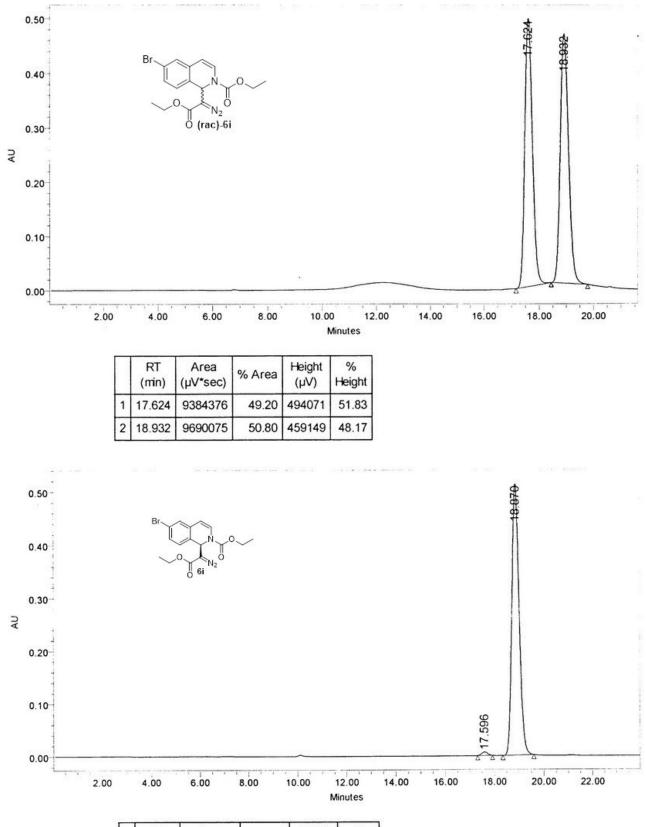

19.826

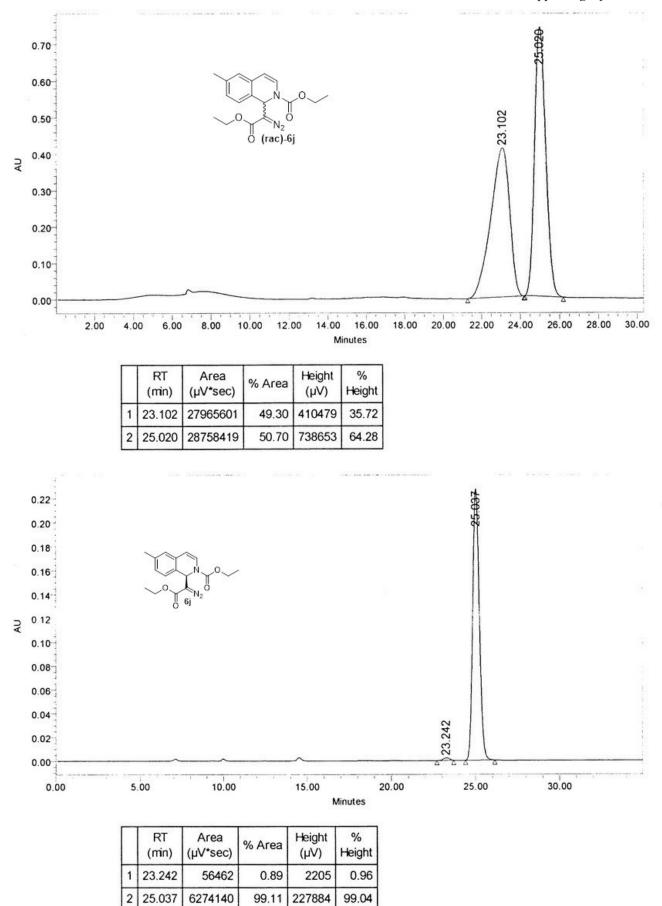
40018345

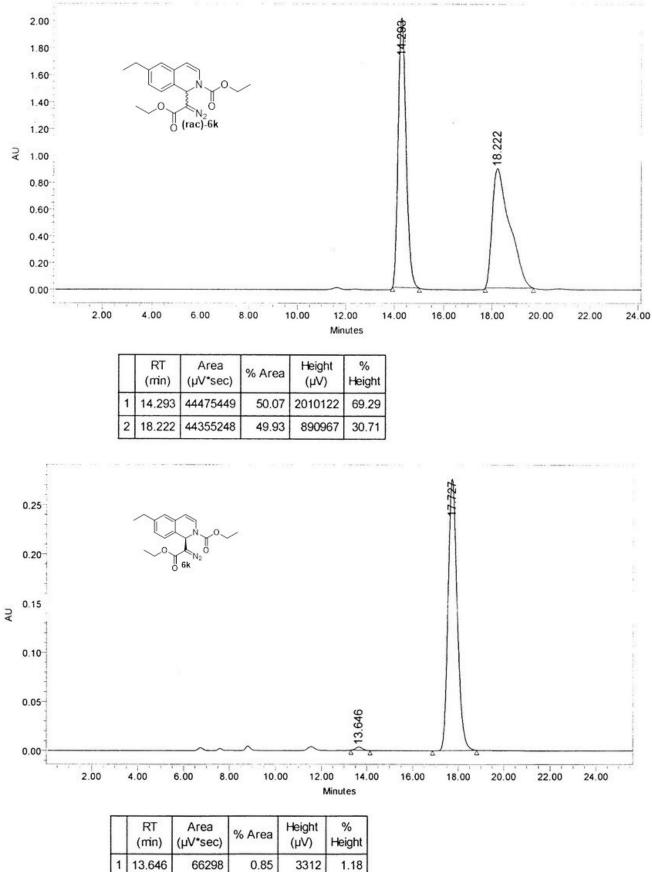

98.95


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	24.060	4761808	98.10	167443	98.56
2	32.787	92329	1.90	2446	1.44

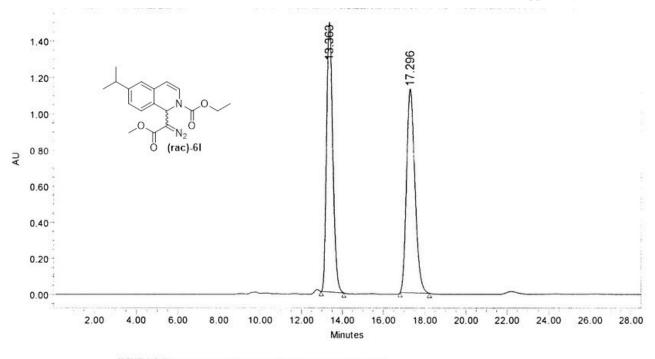

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	14.147	63189	0.63	2581	0.78
2	17.381	9997091	99.37	326318	99.22


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	16.829	178371	1.62	10351	1.88
2	18.172	10864583	98.38	540093	98.12

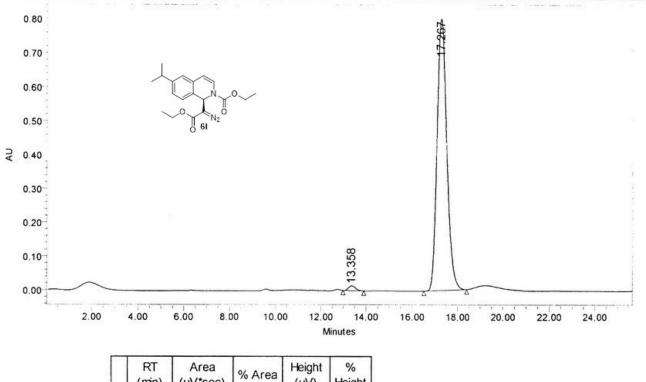

	(min)	(µV*sec)	% Area	(µV)	Height
1	17.029	9034135	49.75	483158	52.95
2	18.394	9126318	50.25	429396	47.05


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	17.139	607700	1.69	31077	1.88
2	18.533	35306742	98.31	1622149	98.12

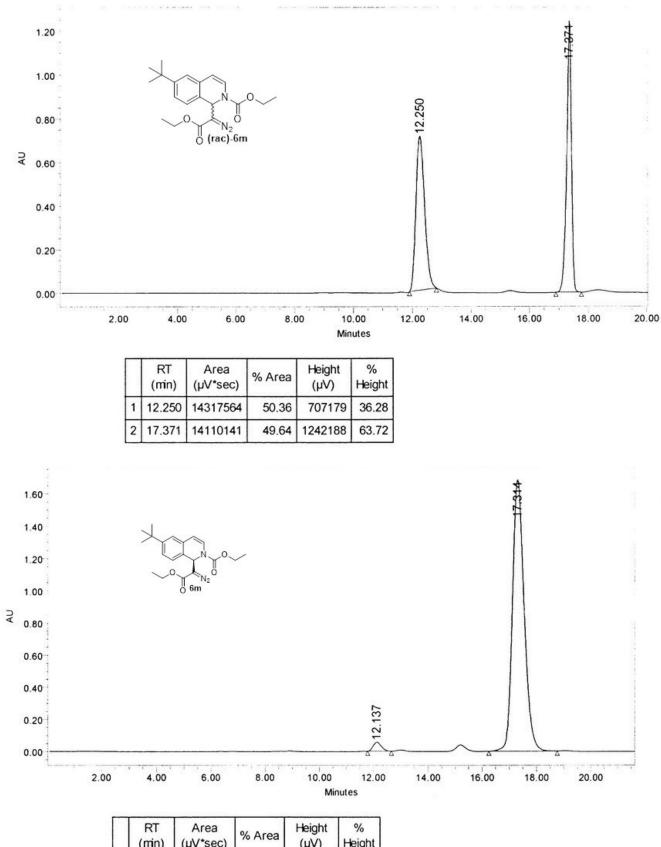
	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	17.596	113604	1.07	6613	1.27
2	18.870	10517923	98.93	513970	98.73



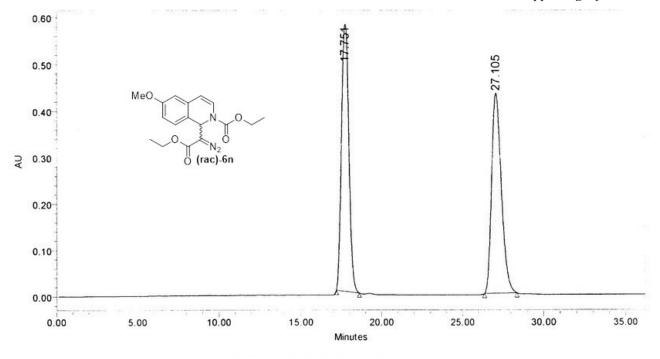
S83



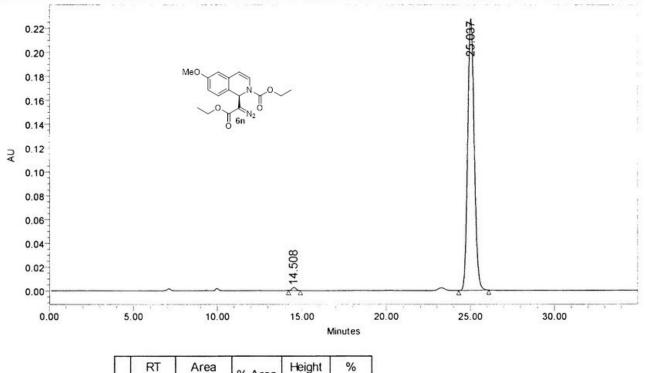
RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
13.646	66298	0.85	3312	1.18
17.727	7727879	99.15	276517	98.82


2

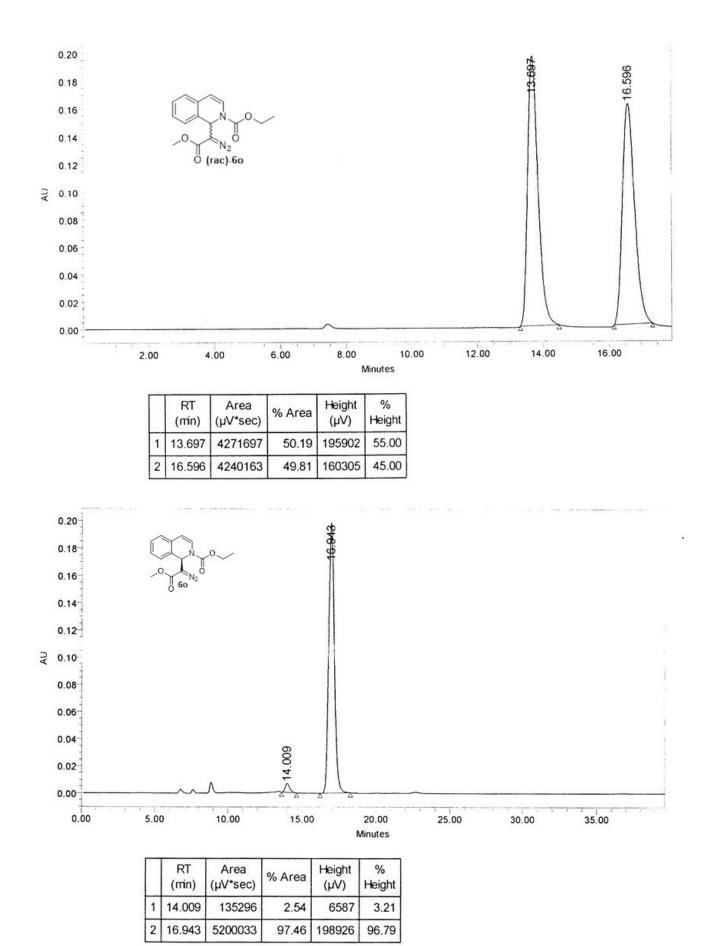
	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	13.363	31382016	49.87	1492045	56.89
2	17.296	31551354	50.13	1130418	43.11

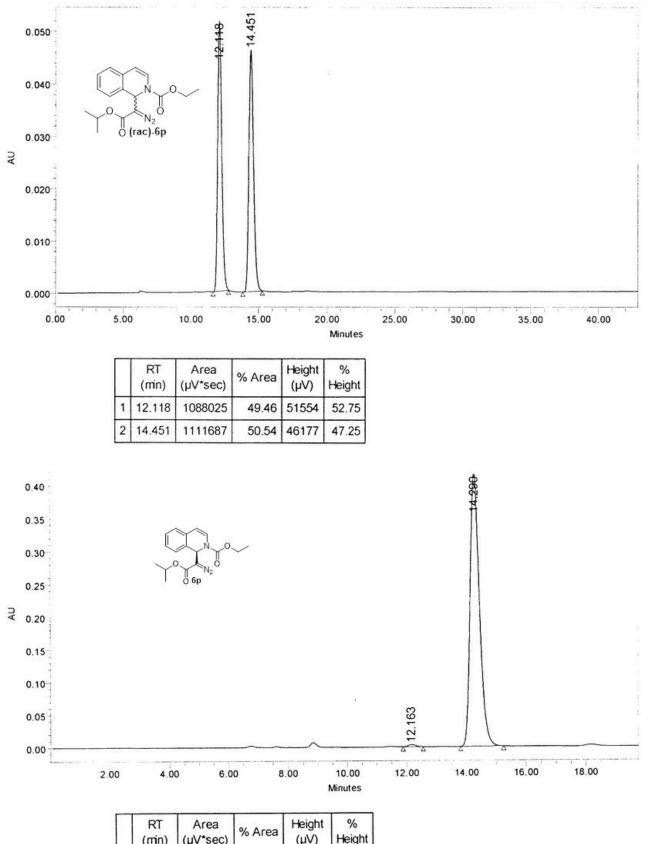


	(min)	(µV*sec)	% Area	(µV)	Height
1	13.358	310268	1.28	14643	1.79
2	17.267	23877777	98.72	801696	98.21

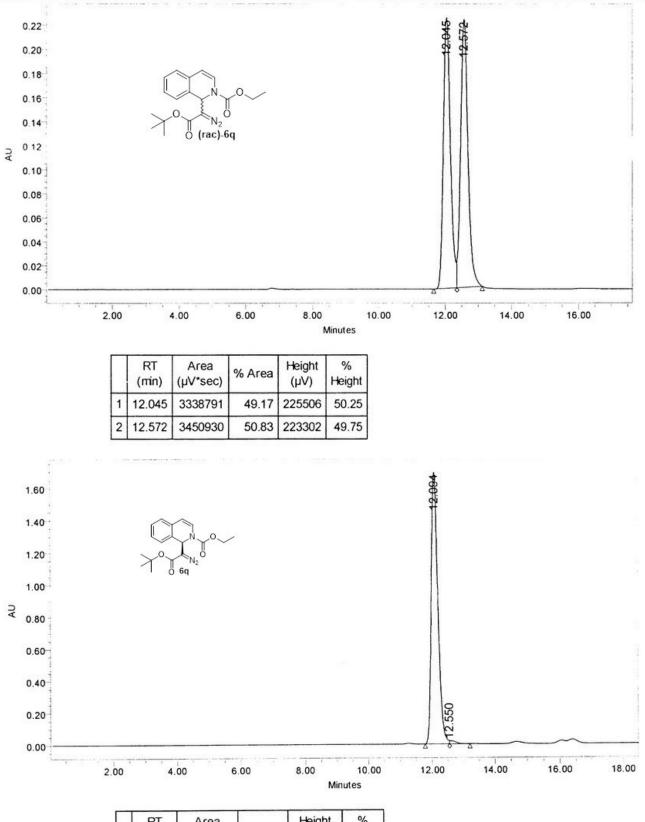


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	12.137	1150303	2.24	55697	3.20
2	17.314	50094114	97.76	1686883	96.80

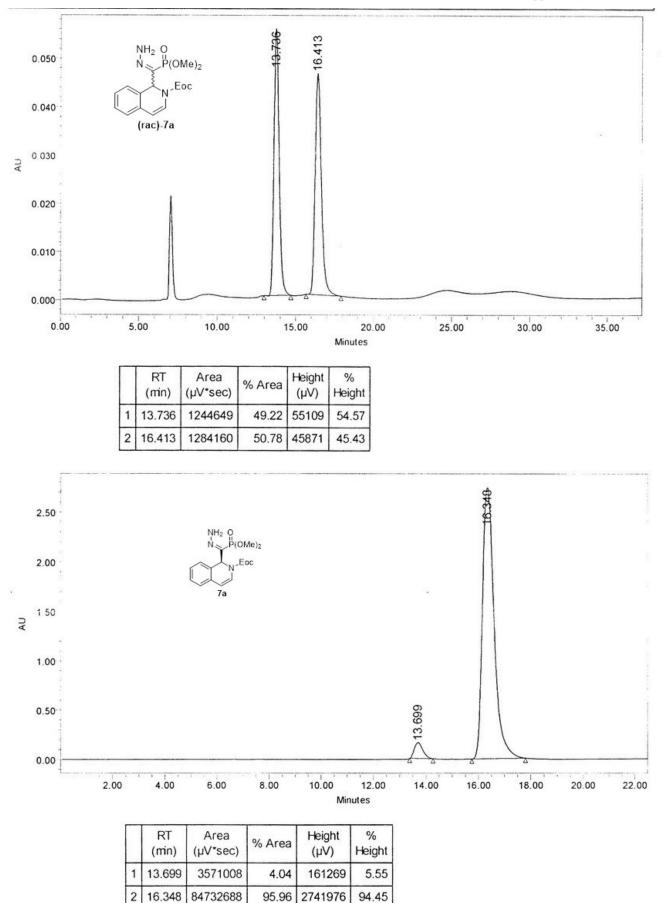

Supporting Information

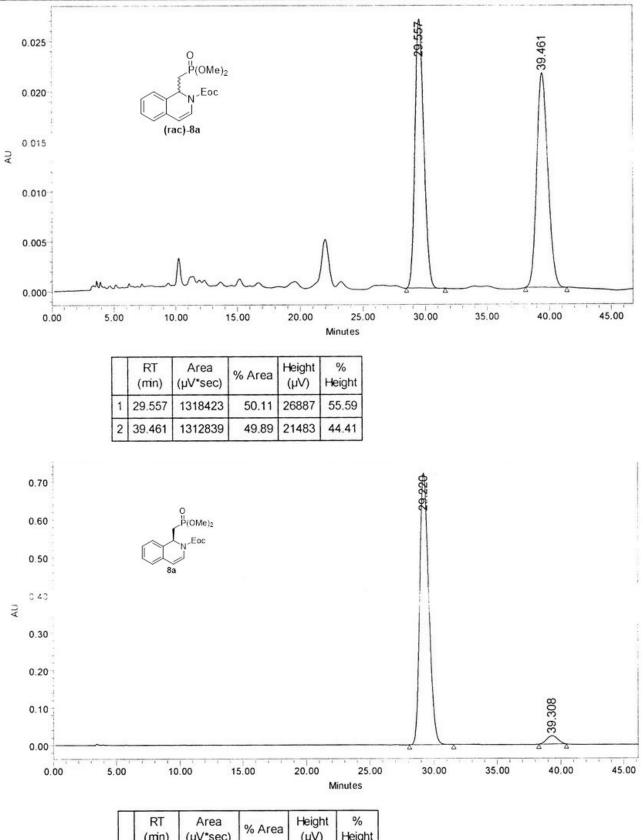


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	17.751	18442260	50.51	574738	57.12
2	27.105	18073143	49.49	431443	42.88

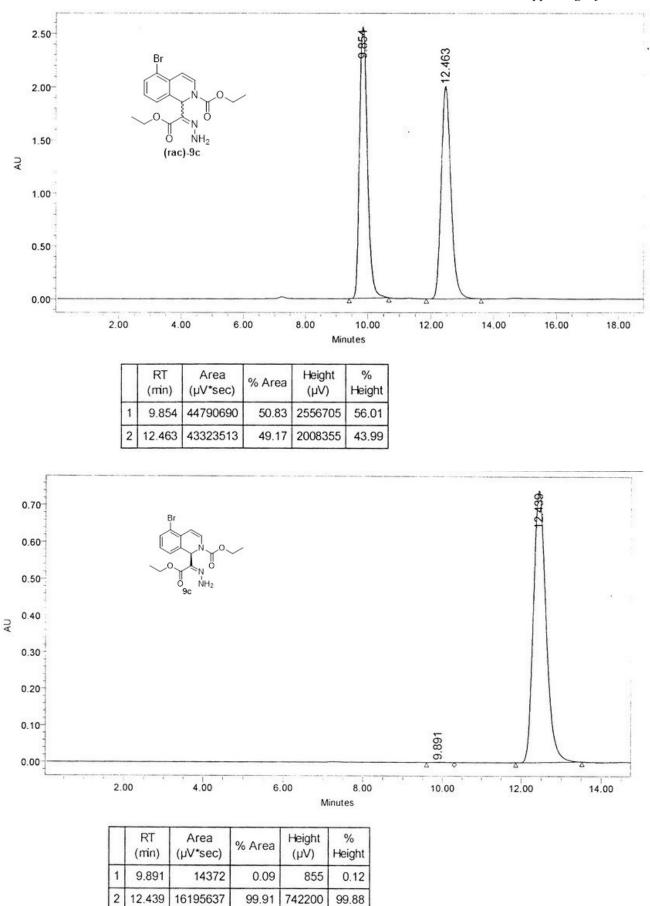


	(min)	(µV*sec)	% Area	(µV)	Height
1	14.508	45554	0.72	2681	1.16
2	25.037	6280013	99.28	227961	98.84





	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	12.163	57432	0.63	3253	0.78
2	14.290	9078872	99.37	415437	99.22


	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	12.094	24603527	98.94	1693988	98.90
2	12.550	262911	1.06	18839	1.10

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	29.220	35266490	96.30	722292	97.01
2	39.308	1354715	3.70	22248	2.99

Supporting Information

