Supporting Information

But-3-ene-1,3-disulfonyl Difluoride (BDF): A Highly Selective SuFEx Clickable Hub for Quick Assembly of Sultam-Containing Aliphatic Sulfonyl Fluorides

Chen Li, † Yujie Zheng, † K. P. Rakesh, † and Hua-Li Qin*,†

[†]State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan, Hubei Province, 430070, P. R. China

Email: <u>qinhuali@whut.edu.cn</u>

Table of content

1. General considerations	2
2. Screening the optimized reaction conditions	2
3. Procedures for the synthesis of 2	6
4. Procedures for the synthesis of 4	6
5. Procedures for the synthesis of 7 , 8	14
6. Procedures for the synthesis of 11	16
7. Procedures for the synthesis of 14	19
8. NMR spectra	21
9. Data of crystal structures for 4e	144
10. Data of crystal structures for 8f	156
11. Data of crystal structures for 14.	
12. References	176

1. General considerations

All reactions were carried out under air atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl₃ or DMSO-d₆ on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), and 126 MHz (for ¹³C) spectrometer. All chemical shifts were reported in ppm relative to TMS (¹H NMR, 0 ppm) as internal standards. Ethenesulfonyl fluorides ^[1] were prepared according to literature. Melting points of the products were measured on a micro melting point apparatus (SGW X-4) and uncorrected. HRMS experiments were performed on a TOF-Q ESI or CI/EI instrument. Reagents used in the reactions were purchased from commercial sources and used without further purification.

10/ \

SO₂F

2. Screening the optimized reaction conditions

SO ₂ F	<u>catalyst (20 mol%)</u> CH ₃ CN (0.5 M), 80 °C, 1h	SO ₂ F SO ₂ F 2
Entry	Catalyst (20 mol%)	Yield (2, %) ^b
1	NaOH	trace
2	Na ₂ CO ₃	trace
3	NaHCO ₃	trace
4	K ₂ CO ₃	5
5	Et ₃ N	77
6	DIPEA	12
7	DABCO	79
8	DBU	80
9	DMAP	31

Table 1. The reaction in the presence of different catalysts.^a

^a Reaction conditions: A mixture of 1 (2 mmol, 0.165 mL), catalyst (20 mol %) and CH₃CN (0.5 M) was allowed to stir at 80 °C for 1 h under air atmosphere. ^b The yield was determined by HPLC using 2 as the external standard ($t_R = 3.741 \text{ min}$, $\lambda_{max} =$ 209.9 nm, methonal/water = 80 : 20 (v / v)).

SO ₂ F	DBU (X mol %) CH ₃ CN (0.5 M), 80 °C, 1h	SO ₂ F SO ₂ F 2
Entry	DBU (X mol %)	Yield (2 , %) ^b
1	2	14
2	5	28
3	10	55
4	20	80
5	50	43
6	100	trace

Table 2. The reaction in the presence of different DBU loading.^a

^a Reaction conditions: A mixture of **1** (2 mmol, 0.165 mL), DBU (X mol %) and CH₃CN (0.5 M) was allowed to stir at 80 °C for 1 h under air atmosphere. ^b The yield was determined by HPLC using **2** as the external standard ($t_R = 3.741 \text{ min}$, $\lambda_{max} = 209.9 \text{ nm}$, methonal/water = 80 : 20 (v / v)).

SO ₂ F	DBU (20 mol %)	SO ₂ F SO ₂ F 2
Entry	solvent (0.5 M)	Yield (2, %) ^b
1	DCM	42
2	THF	49
3	DMSO	6
4	DCE	27
5	DMF	trace
6	CHCl ₃	52
7	CH ₃ CN	80
8	CH ₃ OH	38
9	Acetone	30
10	EA	55

Table 3. The reaction under different solvents. ^a

^a Reaction conditions: A mixture of **1** (2 mmol, 0.165 mL), DBU (20 mol %) and solvent (0.5 M) was allowed to stir at 80 °C for 1 h under air atmosphere. ^b The yield was determined by HPLC using **2** as the external standard ($t_R = 3.741 \text{ min}$, $\lambda_{max} = 209.9 \text{ nm}$, methonal/water = 80 : 20 (v / v)).

SO ₂ F	DBU (20 mol%) CH ₃ CN (X M), 80 °C, 1h	SO ₂ F SO ₂ F 2
Entry	CH ₃ CN (X M)	Yield (2, %) ^b
1	0.5	80
2	0.8	79
3	1.0	75
4	1.5	79
5	2.0	72

Table 4. The reaction in the presence of different concentration of solvents. ^a

^a Reaction conditions: A mixture of **1** (2 mmol, 0.165 mL), DBU (20 mol %) and CH₃CN (X M) was allowed to stir at 80 °C for 1 h under air atmosphere. ^b The yield was determined by HPLC using **2** as the external standard ($t_R = 3.741 \text{ min}$, $\lambda_{max} = 209.9 \text{ nm}$, methonal/water = 80 : 20 (v / v)).

SO ₂ F	DBU (20 mol%) CH ₃ CN (0.5 M), T ^o C, 1h	SO ₂ F SO ₂ F 2
Entry	T °C	Yield (2 , %) ^b
1	r.t.	29
2	50	42
3	60	54
4	80	80

Table 5. The reaction under different temperatures. ^a

^a Reaction conditions: A mixture of **1** (2 mmol, 0.165 mL), DBU (20 mol %) and CH₃CN (0.5 M) was allowed to stir at different temperature for 1 h under air atmosphere. ^b The yield was determined by HPLC using **2** as the external standard ($t_R = 3.741 \text{ min}, \lambda_{max} = 209.9 \text{ nm}$, methonal/water = 80 : 20 (v / v)).

SO ₂ F	DBU (20 mol%) CH ₃ CN (0.5 M), 80 °C, time	SO ₂ F SO ₂ F 2
Entry	Time (h)	Yield (2, %) ^b
1	0.5	50
2	1	80
3	2	56
4	6	30
5	12	22

Table 6. The reaction under different times. ^a

^a Reaction conditions: A mixture of **1** (2 mmol, 0.165 mL), DBU (20 mol %) and CH₃CN (0.5 M) was allowed to stir at 80 °C for different time under air atmosphere. ^b The yield was determined by HPLC using **2** as the external standard ($t_R = 3.741$ min, $\lambda_{max} = 209.9$ nm, methonal/water = 80 : 20 (v / v)).

3. Procedures for the synthesis of 2

A 250 mL round-bottomed flask was charged with ethenesulfonyl fluoride (ESF) (40 mmol, 3.30 mL), DBU (8 mmol, 20 mmol %, 1.21g), and 80 mL of CH₃CN. The reaction mixture was stirred at 80 °C for 1 hour and upon completion, the reaction mixture was concentrated and purified by flash chromatography on silica gel to provide **2** as a slight yellow oil (16 mmol, 80%, 3.52g).

but-3-ene-1,3-disulfonyl difluoride (2)

Petroleum ether / ethyl acetate = 5 : 1 (v / v) as eluent for column chromatography. Light yellow oil, 3.52 g, 80% yield. ¹H NMR (CDCl₃, 500 MHz) δ 6.66 (s, 1H), 6.28 (d, *J* = 5.5 Hz, 1H), 3.76-3.72 (m, 2H), 3.18 (t, *J* = 7.3 Hz, 2H).¹⁹F NMR (471 MHz, CDCl₃) δ 55.71 (s, 1F), 54.58-54.57 (m, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 138.1 (d, *J* = 21.8 Hz), 134.1 (d, *J* = 1.9 Hz), 47.6 (d, *J* = 15.4 Hz), 23.9 (s). HRMS ESI (m/z): [M+Na] ⁺ calcd for C₄H₆F₂NaO₄S₂: 242.9568, found: 242.9564.

4. Procedures for the synthesis of 4

A 10 mL reaction tube was charged with but-3-ene-1,3-disulfonyl difluoride (2) (1 mmol, 1 equiv., 220.20 mg) and primary amine (3, 2 mmol, 2 equiv.) were dissolved

in 2 mL CH₃CN. The reaction mixture was stirred at room temperature for 5-20 minutes and upon completion, the reaction mixture was concentrated and purified by flash chromatography on silica gel to provide the product 4.^[2]

2-(2-methyl-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4a)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 120 mg, 52% yield. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 4.74-4.68 (m, 1H), 3.80-3.76 (m, 2H), 3.42-3.32 (m, 2H), 2.85 (s, 3H), 2.64-2.60 (m, 1H), 2.46-2.38 (m, 1H).¹⁹F NMR (471 MHz, DMSO-*d*₆) δ 47.7 (s, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 51.7 (d, *J* = 12.7 Hz), 50.2 (s), 42.7 (s), 35.5 (s), 24.8 (s). Mp 72.6-73.8 °C. HRMS ESI (m/z): [M+Na] + calcd for C₅H₁₀FNNaO₄S₂: 253.9927, found: 253.9924.

2-(2-isopropyl-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4b)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 257 mg, 99% yield. ¹H NMR (CDCl₃, 500 MHz) δ 4.38-4.32 (m, 1H), 3.69-3.55 (m, 2H), 3.44-3.37 (m, 2H), 2.83 (t, *J* = 5.1 Hz, 1H), 2.71-2.63 (m, 1H), 2.55-2.48 (m, 1H), 1.23-1.21 (m, 6H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.5 (s, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 66.0 (s), 48.4 (s), 47.1 (d, *J* = 15.4 Hz), 22.6 (s), 20.5 (s), 20.3 (s). Mp 99.5-101.8 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₇H₁₄FNNaO₄S₂: 282.0240, found: 282.0238.

2-(2-butyl-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4c)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 197 mg, 72% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 4.53-4.48 (m, 1H), 4.14-4.06 (m, 1H), 4.02-3.95 (m, 1H), 3.33 (dd, J = 7.9 Hz, J = 6.2 Hz, 1H), 2.96-2.89 (m, 3H), 2.70-2.63 (m, 1H), 2.48-2.42 (m, 1H), 2.37-2.29 (m, 1H), 1.48-1.42 (m, 2H), 1.36-1.29 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H).¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.45-53.43 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 52.6 (s), 47.8 (d, J = 14.6 Hz), 47.2 (s), 47.0 (s), 27.2 (s), 22.9 (s), 19.2 (s), 13.4 (s). Mp 138.6-139.4 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₈H₁₆FNNaO₄S₂: 296.0397, found: 296.0395.

2-(2-(sec-butyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4d)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 219 mg, 80% yield. ¹H NMR (CDCl₃, 500 MHz) δ 4.47-4.41 (m, 1H), 3.66-3.56 (m, 2H), 3.40 (t, *J* = 6.8 Hz, 1H), 2.87 (t, *J* = 5.0 Hz, 1H), 2.82 (d, *J* = 6.9 Hz, 2H), 2.70-2.63 (m, 1H), 2.55-2.48 (m, 1H), 1.82-1.76 (m, 1H), 0.95 (d, *J* = 6.5 Hz, 6H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.4 (s, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 67.1 (s), 53.6 (s), 47.1 (d, *J* = 15.4 Hz), 42.8 (s), 26.9 (s), 22.8 (s), 20.2 (s). Mp 82.4-83.8 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₈H₁₆FNNaO₄S₂: 296.0397, found: 296.0395.

2-(2-(tert-butyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4e)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 191 mg, 70% yield. ¹H NMR (CDCl₃, 500 MHz) δ 4.34-4.29 (m, 1H), 3.68-3.54 (m, 2H), 3.42 (dd, J = 7.0 Hz, J = 5.4 Hz, 1H), 2.86 (t, J = 4.8 Hz, 1H), 2.68-2.61 (m, 1H), 2.53-2.46 (m, 1H), 1.30 (s, 9H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.4 (s, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 65.7 (s), 54.5 (s), 47.1 (d, J = 15.4 Hz), 36.6 (s), 26.7 (s), 22.7 (s). Mp 134.2-135.8 °C. HRMS ESI (m/z): [M+Na] + calcd for C₈H₁₆FNNaO₄S₂: 296.0397, found: 296.0396.

2-(2-(3-chloropropyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4f)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. White solid, 232 mg, 79% yield. ¹H NMR (CDCl₃, 500 MHz) δ 4.46-4.40 (m, 1H), 3.66-3.55 (m, 4H), 3.39 (dd, J = 6.1 Hz, J = 7.6 Hz, 1H), 3.16 (t, J = 6.7 Hz, 2H), 2.86 (t, J = 5.4 Hz, 1H), 2.66-2.58 (m, 1H), 2.51-2.43 (m, 1H), 2.02-1.95 (m, 2H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.2 (s, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 57.3 (s), 47.6 (d, J = 18.1 Hz), 43.4 (s), 42.5 (s), 42.0 (s), 30.2 (s), 23.1 (s). Mp 118.7-119.5 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₇H₁₃ClFNNaO₄S₂: 315.9851, found: 315.9849.

2-(2-decyl-1,1-dioxido-1,2-thiazetidin-4-yl) ethane-1-sulfonyl fluoride (4g)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 236 mg, 66% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 4.53-4.48 (m, 1H), 4.14-4.06 (m, 1H), 4.0-3.95 (m, 1H), 2.94-2.89 (m, 3H), 2.48-2.42 (m, 1H), 2.36-2.29 (m, 1H), 1.48-1.43 (m, 2H), 1.29-1.18 (m, 15H), 0.86 (t, J = 6.8 Hz, 3H).¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.39-53.37 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 66.9

(s), 52.5 (s), 47.2 (d, J = 7.3 Hz), 45.9 (s), 31.3 (s), 28.9 (s), 28.8 (s), 28.7 (s), 28.5 (s), 25.8 (s), 25.1 (s), 22.9 (s), 22.1 (s), 13.9 (s). Mp 72.9-74.6 °C. HRMS ESI (m/z): [M+Na] + calcd for C₁₄H₂₈FNNaO₄S₂: 380.1336, found: 380.1334.

2-(2-cyclopentyl-1,1-dioxido-1,2-thiazetidin-4-yl) ethane-1-sulfonyl fluoride (4h)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 205 mg, 72% yield. ¹H NMR (CDCl₃, 500 MHz) δ 4.38-4.33 (m, 1H), 3.68-3.54 (m, 3H), 3.37 (t, *J* = 6.9 Hz, 1H), 2.82 (t, *J* = 5.4 Hz, 1H), 2.70-2.61 (m, 1H), 2.54-2.47 (m, 1H), 1.84-1.63 (m, 8H).¹⁹F NMR (471 MHz, CDCl₃) δ 53.5 (s, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 66.1 (s), 58.0 (s), 47.1 (d, *J* = 15.4 Hz), 40.7 (s), 30.3 (s), 30.2 (s), 23.14 (s), 23.10 (s), 22.6 (s). Mp 158.6-159.8 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₉H₁₆FNNaO₄S₂: 308.0397, found: 308.0395.

2-(2-cyclohexyl-1,1-dioxido-1,2-thiazetidin-4-yl) ethane-1-sulfonyl fluoride (4i)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 186 mg, 62% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 4.47-4.41 (m, 1H), 4.13-4.06 (m, 1H), 4.02-3.95 (m, 1H), 3.05 (s, 1H), 2.92 (t, J = 5.5 Hz, 1H), 2.47-2.41 (m, 1H), 2.35-2.30 (m, 1H), 1.76 (s, 2H), 1.66 (s, 2H), 1.51-1.50 (m, 1H), 1.33-1.17 (m, 5H).¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.44-53.43 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 66.0 (s), 55.2 (s), 47.1 (d, J = 5.5 Hz), 30.2 (s), 29.9 (s), 25.1 (s), 23.0 (s), 22.6 (s). Mp 172.1-173.7 °C. HRMS ESI (m/z): [M+Na] + calcd for C₁₀H₁₈FNNaO₄S₂: 322.0553, found: 322.0550.

2-(2-(cyclohexylmethyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4j)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 291 mg, 93% yield. ¹H NMR (CDCl₃, 500 MHz) δ 4.36-4.31 (m, 1H), 3.68-3.55 (m, 2H), 3.38-3.35 (m, 1H), 3.15-3.12 (m, 1H), 2.81 (t, *J* = 5.2 Hz, 1H), 2.68-2.60 (m, 1H), 2.52-2.45 (m, 1H), 1.86-1.84 (m, 2H), 1.72-1.57 (m, 4H), 1.42-1.24 (m, 6H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.3 (s, 1F). ¹³C NMR (DMSO-d₆, 126 MHz) δ 137.1 (s), 128.69 (s), 128.66 (s), 126.8 (s), 52.7 (s), 48.4 (s), 47.8 (d, *J* = 14.5 Hz), 47.3 (s), 31.4 (s), 22.9 (s). Mp 110.4-112.3 °C. HRMS ESI (m/z): [M+Na] + calcd for C₁₁H₂₀FNNaO₄S₂: 336.0710, found: 336.0708.

2-(2-benzyl-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4k)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 258 mg, 84% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 7.40-7.36 (m, 5H), 4.61-4.55 (m, 1H), 4.18 (s, 2H), 4.05-3.99 (m, 2H), 3.35-3.32 (m, 1H), 2.98 (t, J = 5.5 Hz, 1H), 2.54-2.47 (m, 1H), 2.40-2.34 (m, 1H).¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.45-53.43 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 137.4 (s), 129.0 (s), 128.2 (s), 127.3 (s), 60.8 (s), 60.4 (s), 53.9 (s), 47.3 (d, J = 15.5 Hz), 22.9 (s). Mp 70.4-72.1 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₁₁H₁₄FNNaO₄S₂: 330.0240, found: 330.0238.

2-(2-(3-methylbenzyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4l)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 260 mg, 81% yield. ¹H NMR (CDCl₃, 500 MHz) δ 7.28-7.25 (m, 1H), 7.17-7.14 (m, 3H), 4.48-4.42 (m, 1H), 4.17 (s, 2H), 3.64-3.58 (m, 2H), 3.33 (t, *J* = 6.9 Hz, 1H), 2.80 (t, *J* = 5.3 Hz, 1H), 2.70-2.63 (m, 1H), 2.53-2.46 (m, 1H), 2.37 (s, 3H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.3 (s, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 138.3 (s), 134.8 (s), 131.7 (s), 130.5 (s), 129.7 (s), 127.0 (s), 52.7 (s), 50.5 (s), 48.0 (d, *J* = 14.5 Hz), 47.0 (s), 22.9 (s), 20.9 (s). Mp 89.6-90.8 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₁₂H₁₆FNNaO₄S₂: 344.0397, found: 344.0396.

2-(2-(3-methoxybenzyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4m)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 266 mg, 79% yield. ¹H NMR (CDCl₃, 500 MHz) δ 7.26 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 4.43-4.37 (m, 1H), 4.13 (s, 2H), 3.79 (s, 3H), 3.64-3.52 (m, 2H), 3.29 (t, *J* = 7.0 Hz, 1H), 2.76 (t, *J* = 5.3 Hz, 1H), 2.68-2.60 (m, 1H), 2.50-2.44 (m, 1H), .¹⁹F NMR (471 MHz, CDCl₃) δ 54.4 (s, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 159.6 (s), 130.1 (s), 125.8 (s), 114.3 (s), 67.0 (s), 55.3 (s), 49.6 (s), 47.9 (d, *J*

= 19.0 Hz), 41.9 (s), 23.4 (s). Mp 99.4-101.2 °C. HRMS ESI (m/z): $[M+Na]^+$ calcd for C₁₂H₁₆FNNaO₅S₂: 360.0346, found: 360.0344.

2-(2-(4-bromobenzyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4n)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 263 mg, 68% yield. ¹H NMR (CDCl₃, 500 MHz) δ 7.49 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.2 Hz, 2H), 4.50-4.44 (m, 1H), 4.16 (s, 2H), 3.67-3.55 (m, 2H), 3.34 (t, *J* = 7.0 Hz, 1H), 2.81 (t, *J* = 5.4 Hz, 1H), 2.73-2.65 (m, 1H), 2.55-2.48 (m, 1H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.7 (s, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 132.2 (s), 131.7 (s), 131.0 (s), 122.5 (s), 52.6 (s), 49.6 (s), 47.9 (d, *J* = 14.5 Hz), 46.9 (s), 22.9 (s). Mp 108.6-109.3 °C. HRMS ESI (m/z): [M+Na] + calcd for C₁₁H₁₃BrFNNaO₄S₂: 407.9346, found: 407.9342.

2-(2-(3,4-dichlorobenzyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (40)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 144 mg, 38% yield. ¹H NMR (CDCl₃, 500 MHz) δ 7.46-7.44 (m, 2H), 7.21 (dd, *J* = 8.3 Hz, *J* = 1.7 Hz, 1H), 4.54-4.48 (m, 1H), 4.17 (s, 2H), 3.68-3.54 (m, 2H), 3.38 (dd, *J*=7.7 Hz, *J* = 6.1 Hz, 1H), 2.84 (t, *J* = 5.5 Hz, 1H), 2.75-2.68 (m, 1H), 2.60-2.51 (m, 1H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.8 (s, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 134.4 (s), 133.1 (s), 132.6 (s), 131.0 (s), 130.5 (s), 127.9 (s), 67.6 (s), 49.4 (s), 48.0 (d, *J* = 19.1 Hz), 42.5 (s), 23.6 (s). Mp 97.9-99.9 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₁₁H₁₂Cl₂FNNaO₄S₂: 397.9461, found: 397.9458.

2-(1,1-dioxido-2-(thiophen-2-ylmethyl)-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4p)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 273 mg, 87% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 7.50 (dd, J = 5.1 Hz, J = 1.1 Hz, 1H), 7.09-7.08 (m, 1H), 7.00 (dd, J = 5.0 Hz, J = 3.4 Hz, 1H), 4.60-4.54 (m, 1H), 4.37 (d, J = 1.4 Hz, 1H), 4.15-4.07 (m, 1H), 4.03-3.96 (m, 1H), 2.98 (t, J = 5.5 Hz, 1H), 2.48-2.45 (m, 1H), 2.38-2.30 (m, 1H).¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.46-53.43 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 132.5 (s), 130.9 (s),

128.6 (s), 127.4 (s), 52.6 (s), 47.9 (d, J = 14.5 Hz), 46.6 (s), 44.6 (s), 22.9(s). Mp 79.3-80.8 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₉H₁₂FNNaO₄S₃: 335.9805, found: 335.9803.

2-(1,1-dioxido-2-(pyridin-3-ylmethyl)-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4q)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 284 mg, 92% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 8.58 (s, 1H), 8.52 (d, *J* = 3.6 Hz, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.40 (dd, *J* = 7.7 Hz, *J* = 4.9 Hz, 1H), 4.63-4.58 (m, 1H), 4.23 (s, 2H), 4.14-3.98 (m, 3H), 3.03 (t, *J* = 5.7 Hz, 1H), 2.55-2.48 (m, 1H), 2.41-2.33 (m, 1H).¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.45-53.44 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 149.5 (s), 148.8 (s), 136.6 (s), 131.3 (s), 123.8 (s), 67.6 (s), 47.2 (s), 47.16 (d, *J* = 8.1 Hz), 42.1 (s), 22.8 (s). Mp 118.7-119.5 °C. HRMS ESI (m/z): [M+Na] + calcd for C₁₀H₁₃FN₂NaO₄S₂: 331.0193, found: 331.0190.

2-(1,1-dioxido-2-(pyridin-2-ylmethyl)-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4r)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 277 mg, 90% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 8.53 (s, 1H), 7.81 (t, J = 7.0 Hz, 1H), 7.47 (d, J = 7.3 Hz, 1H), 7.33-7.32 (m, 1H), 4.63-4.61 (m, 1H), 4.28 (s, 2H), 4.15-4.13 (m, 1H), 4.04-4.01 (m, 1H), 3.46 (t, J = 6.5 Hz, 1H), 3.12-3.08 (m, 1H), 2.42-2.37 (m, 1H).¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.4 (s, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 156.2 (s), 149.3 (s), 137.3 (s), 123.0 (s), 122.3 (s), 52.7 (s), 52.4 (d, J = 12.7 Hz), 48.2 (s), 44.8 (s), 24.7 (s). Mp 122.9-123.4 °C. HRMS ESI (m/z): [M+Na] + calcd for C₁₀H₁₃FN₂NaO₄S₂: 331.0193, found: 331.0190.

2-(2-(4-bromophenethyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4s)

Petroleum ether / ethyl acetate = 2 : 1 (v / v) as eluent for column chromatography. white solid, 288 mg, 72% yield. ¹H NMR (CDCl₃, 500 MHz) δ 7.44 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 4.45-4.40 (m, 1H), 3.65-3.53 (m, 2H), 3.32-3.25 (m, 3H), 2.85 (t, *J* = 7.2 Hz, 2H), 2.76 (t, *J* = 5.2 Hz, 1H), 2.69-2.61 (m, 1H), 2.53-2.46 (m, 1H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.6 (s, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz)

δ 138.2 (s), 131.2 (s), 131.0 (s), 119.5 (s), 67.2 (s), 47.1 (d, J = 15.4 Hz), 47.0 (s), 42.0 (s), 32.6 (s), 22.7 (s). Mp 95.4-97.1 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₁₂H₁₅BrFNNaO₄S₂:421.9502, found: 421.9500.

2-(2-(3,4-dichlorophenethyl)-1,1-dioxido-1,2-thiazetidin-4-yl)ethane-1-sulfonyl fluoride (4t)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 211 mg, 54% yield. ¹H NMR (CDCl₃, 500 MHz) δ 7.39 (d, *J* = 8.1 Hz, 1H), 7.33 (s, 1H), 7.08 (d, *J* = 7.2 Hz, 1H), 4.47-4.42 (m, 1H), 3.66-3.53 (m, 2H), 3.33 (t, *J* = 6.9 Hz, 1H), 3.27 (t, *J* = 7.3 Hz, 2H), 2.86 (t, *J* = 7.3 Hz, 2H), 2.79 (t, *J* = 5.3 Hz, 1H), 2.70-2.62 (m, 1H), 2.54-2.47 (m, 1H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.7 (s, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 138.3 (s), 130.90 (s), 130.86 (s), 130.7 (s), 130.3 (s), 129.3 (s), 67.2 (s), 52.5 (s), 47.1 (d, *J* = 15.5 Hz), 46.7 (s). Mp 103.8-105.5 °C. HRMS ESI (m/z): [M+Na] + calcd for C₁₂H₁₄Cl₂FNNaO₄S₂: 411.9618, found: 411.9616.

Ethyl(2R)-2-(4-(2-(fluorosulfonyl)ethyl)-1,1-dioxido-1,2-thiazetidin-2-yl)propanoate (4u)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. white solid, 298 mg, 94% yield. ¹H NMR (CDCl₃, 500 MHz) δ 4.51-4.45 (m, 1H), 4.23-4.17 (m, 2H), 4.02-3.96 (m, 1H), 3.70-3.56 (m, 3H), 3.12 (dt, *J* = 29.2 Hz, *J* = 4.7 Hz, 1H), 2.73-2.65 (m, 1H), 2.57-2.49 (m, 1H), 1.50 (t, *J* = 6.9 Hz, 3H), 1.28 (t, *J* = 7.0 Hz, 3H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.35-54.31 (m, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 169.2 (d, *J* = 20.9 Hz), 62.1 (s), 54.9 (d, *J* = 41.8 Hz), 52.7 (d, *J* = 27.3 Hz), 47.8 (dd, *J* = 14.5 Hz, *J* = 12.7 Hz), 45.6 (d, *J* = 40.9 Hz), 22.9 (d, *J* = 9.1 Hz), 13.9 (s), 13.8 (s). Mp 188.7-190.2 °C. HRMS ESI (m/z): [M+Na] + calcd for C₉H₁₆FNNaO₆S₂: 340.0295, found: 340.0293.

methyl 2-(4-(2-(fluorosulfonyl)ethyl)-1,1-dioxido-1,2-thiazetidin-2-yl)acetate (4v)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Slight yellow solid, 130 mg, 45% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 4.66-4.60 (m, 1H), 4.15-4.07 (m, 1H), 4.03-3.97 (m, 1H), 3.93 (d, J = 1.2 Hz, 2H), 3.66 (s, 3H), 3.49 (dd, J = 8.1 Hz, J = 6.4 Hz, 1H), 3.11 (t, J = 5.8 Hz, 1H), 2.54-2.46 (m, 1H), 2.41-2.33 (m, 1H).¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.42-53.40 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 167.2 (s), 52.7 (s), 52.6 (s), 47.9 (d, J = 14.5 Hz), 47.6 (s), 47.5 (s), 22.9 (s). Mp 112.4-114.6 °C. HRMS ESI (m/z): [M+Na]⁺ calcd for C₇H₁₂FNNaO₆S₂: 311.9982, found: 311.9980.

methyl ((4-(fluorosulfonyl) but-1-en-2-yl) sulfonyl) glycinate (11v)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Slight yellow oil, 124 mg, 43% yield. ¹H NMR (DMSO-*d*₆, 500 MHz) δ 8.24 (t, *J* = 6.0 Hz, 1H), 6.02 (s, 1H), 5.89 (s, 1H), 4.22-4.18 (m, 2H), 3.73 (d, *J* = 6.1 Hz, 2H), 3.64 (s, 3H), 2.94 (t, *J* = 7.8 Hz, 2H).¹⁹F NMR (471 MHz, DMSO-*d*₆) δ 53.99-53.96 (m, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 169.8 (s), 143.7 (s), 124.0 (s), 51.9 (s), 48.3 (d, *J* = 14.6 Hz), 43.4 (s), 23.4 (s). HRMS ESI (m/z): [M+Na] + calcd for C₇H₁₂FNNaO₆S₂: 311.9982, found: 311.9979.

5. Procedures for the synthesis of 7, 8

A 10 mL reaction tube was charged with alkyl hydrazine hydrochloride (6) (1.5 mmol, 1.5 equiv.) and Et₃N (1.5 mmol, 1.5 equiv., 151.50 mg) was dissolved in 3 mL MeCN and the mixture was stirred at room temperature for 5 minutes. Then, the mixture was added dropwise in 3 minutes into but-3-ene-1,3-disulfonyl difluoride (2) (1 mmol, 1 equiv., 220.20 mg) of 2 ml MeCN, Which was allowed to stir for another 30 minutes and upon completion, the reaction mixture was concentrated and purified by flash chromatography on silica gel to provide the product **7**, **8**.^[3]

2-(3-methyl-1,1-dioxido-1,2,3-thiadiazolidin-5-yl)ethane-1-sulfonyl fluoride (7a)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. White solid, 217 mg, 88% yield. ¹H NMR (CDCl₃, 500 MHz) δ 5.67 (br s, 1H), 3.78-3.70 (m, 2H), 3.67-3.56 (m, 2H), 3.23 (dd, J = 11.3 Hz, J = 8.2 Hz, 1H), 2.77 (s, 3H), 2.53-2.46 (m, 1H), 2.34-2.27 (m, 1H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.1 (s, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 51.7 (d, J = 12.7 Hz), 50.2 (s), 42.7 (s), 35.5 (s), 24.8 (s). Mp 62.4-64.6 °C. HRMS ESI (m/z): [M+Na] + calcd for C₅H₁₁FN₂NaO₄S₂: 269.0036, found: 269.0033.

2-(3-isobutyl-1,1-dioxido-1,2,3-thiadiazolidin-5-yl)ethane-1-sulfonyl fluoride (7b)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. White solid, 190 mg, 66% yield. ¹H NMR (CDCl₃, 500 MHz) δ 5.62 (br s, 1H), 3.80 (dd, J = 11.1 Hz, J = 7.2 Hz, 1H), 3.77-3.70 (m, 1H), 3.65-3.48 (m, 3H), 3.20 (dd, J = 11.1 Hz, J = 7.8 Hz, 1H), 3.07-3.01 (m, 1H), 2.54-2.45 (m, 1H), 2.37-2.29 (m, 1H), 1.12 (d, J = 6.3 Hz, 6H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.2 (s, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 57.4 (s), 55.1 (s), 54.8 (s), 47.4 (d, J = 15.5 Hz), 22.5 (s), 20.7 (s), 20.6 (s). Mp 95.6-97.3 °C. HRMS ESI (m/z): [M+Na]⁺ calcd for C₈H₁₇FN₂NaO₄S₂: 311.0506, found: 311.0503.

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. White solid, 235 mg, 73% yield. ¹H NMR (DMSO-d₆, 500 MHz) δ 8.18(s, 1H), 7.36-7.27 (m, 5H), 4.17-4.09 (m, 1H), 4.06-3.97 (m, 3H), 3.75-3.71 (m, 1H), 3.67-3.61 (m, 1H), 3.31 (dd, *J* = 11.6 Hz, *J* = 7.0 Hz, 1H), 2.36-2.29 (m, 1H), 2.14-2.07 (m, 1H).¹⁹F NMR (471 MHz, DMSO-d₆) δ 53.16-53.13 (m, 1F). ¹³C NMR (DMSO-d₆, 126 MHz) δ 137.4 (s), 129.0 (s), 128.2 (s), 127.3 (s), 60.8 (s), 60.4 (s), 53.9 (s), 47.3 (d, *J* = 15.5 Hz), 22.9 (s). Mp 118.7-120.2 °C. HRMS ESI (m/z): [M+Na] + calcd for C₁₁H₁₅FN₂NaO₄S₂: 345.0349, found: 345.0347.

2-(3-cyclohexyl-1,1-dioxido-1,2,3-thiadiazolidin-5-yl)ethane-1-sulfonyl fluoride (7d)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. White solid, 239 mg, 76% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 4.16-4.08 (m, 1H), 4.02-3.87 (m, 2H), 3.72 (dd, J = 11.5 Hz, J = 7.2 Hz, 1H), 3.51-3.46 (m, 2H), 3.23 (dd, J = 11.5 Hz, J = 7.0 Hz, 1H), 2.62-2.58 (m, 1H), 2.32-2.22 (m, 1H), 2.11-1.52 (m, 9H). ¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.08-53.05 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 62.3 (s), 57.1 (s), 54.4 (s), 47.4 (d, J = 14.5 Hz), 30.4 (s), 30.2 (s), 25.6 (s), 23.8 (s), 22.5 (s). Mp 120.3-122.5 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₁₀H₁₉FN₂NaO₄S₂: 337.0662, found: 337.0658.

tert-butyl 5-(2-(fluorosulfonyl)ethyl)-1,2,3-thiadiazolidine-2-carboxylate 1,1dioxide (8e)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. White solid, 200 mg, 60% yield. ¹H NMR (CDCl₃, 500 MHz) δ 6.40 (br s, 1H), 3.82-3.71 (m, 3H), 3.55 (dd, *J* = 13.6 Hz, *J* = 4.3 Hz, 1H), 3.18 (dd, *J* = 13.4 Hz, *J* = 8.0 Hz, 1H), 2.73-2.66 (m, 1H), 2.61-2.54 (m, 1H), 1.44 (s, 9H).¹⁹F NMR (471 MHz, CDCl₃) δ 53.7 (s, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 157.2 (s), 81.6 (s), 58.9 (d, *J* = 12.7 Hz), 50.2 (s), 28.2 (s), 22.0 (s). Mp 98.5-100.9 °C. HRMS ESI (m/z): [M+Na] + calcd for C₉H₁₇FN₂NaO₆S₂: 355.0404, found: 355.0401.

2-(1,1-dioxido-2-(2-phenylacetyl)-1,2,3-thiadiazolidin-5-yl)ethane-1-sulfonyl fluoride (8f)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. White solid, 312 mg, 89% yield. ¹H NMR (DMSO- d_6 , 500 MHz) δ 7.33 (t, J = 7.4 Hz, 2H), 7.28-7.23 (m, 3H), 4.17-4.10 (m, 1H), 4.05-3.97 (m, 1H), 3.82 (s, 2H), 3.74-3.69 (m, 1H), 3.68-3.62 (m, 1H), 3.34-3.29 (m, 1H), 2.36-2.29 (m, 1H), 2.27-2.20 (m, 1H).¹⁹F NMR (471 MHz, DMSO- d_6) δ 53.40-53.39 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 169.5 (s), 134.0 (s), 129.7 (s), 128.6 (s), 127.1 (s), 57.6 (s), 49.7 (s), 47.2 (d, J = 15.5 Hz), 40.9 (s), 21.5 (s). Mp 118.7-120.3 °C. HRMS ESI (m/z): [M+Na] + calcd for C₁₂H₁₅FN₂NaO₅S₂: 373.0299, found: 373.0296.

6. Procedures for the synthesis of 11

Method A: a 10 mL reaction tube was charged with but-3-ene-1,3-disulfonyl difluoride (2) (1 mmol, 1 equiv., 220.20 mg), phenol (**10a-10e**, 1 mmol, 1 equiv.) and Cs_2CO_3 (1 mmol, 1 equiv., 325. 32 mg) were dissolved in 5 mL CH₃CN. The reaction mixture was stirred at room temperature for 1-2 hours and upon completion, the reaction mixture was washed by Aqueous solution of sodium carbonate and concentrated and purified by flash chromatography on silica gel to provide the product **11a-11d**.^[3]

Method B: a 10 mL reaction tube was charged with but-3-ene-1,3-disulfonyl difluoride (2) (1 mmol, 1 equiv., 220.20 mg), secondary amines (**10f-10k**, 1.5 mmol, 1.5 equiv.) were dissolved in 5 mL DCM. The reaction mixture was stirred at room temperature for 1-2 hours and upon completion, the reaction mixture was concentrated and purified by flash chromatography on silica gel to provide the product **11e-11j**.^[3]

3-methoxyphenyl 4-(fluorosulfonyl)but-1-ene-2-sulfonate (11a)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Slight yellow oil, 208 mg, 64% yield (Method A). ¹H NMR (CDCl₃, 500 MHz) δ 7.39 (t, *J* = 8.2 Hz, 1H), 6.87 (dd, *J* = 8.6 Hz, *J* = 2.0 Hz, 1H), 6.79-6.76 (m, 2H), 6.34 (d, *J* = 1.2 Hz, 1H), 6.07 (d, *J* = 1.1 Hz, 1H), 3.81-3.79 (m, 5H), 3.18 (t, *J* = 7.4 Hz, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ 54.95-54.94 (m, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 160.9 (s), 150.1 (s), 140.5 (s), 131.1 (s), 130.5 (s), 113.8 (s), 113.4 (s), 108.1 (s), 55.7 (s), 49.3 (d, *J* = 18.2 Hz), 25.9 (s). HRMS ESI (m/z): [M+H] ⁺ calcd for C₉H₈O₃ClFS: 248.9783, found: 248.9779.

4-methoxyphenyl 4-(fluorosulfonyl) but-1-ene-2-sulfonate (11b)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Slight yellow oil, 220 mg, 68% yield (Method A). ¹H NMR (DMSO-*d*₆, 500 MHz) δ 7.24-7.21 (m, 2H), 7.00-6.96 (m, 2H), 6.33 (s, 1H), 6.19 (s, 1H), 4.35-4.31 (m, 2H), 3.76 (s, 3H), 3.12-3.09 (m, 2H). ¹⁹F NMR (471 MHz, DMSO-*d*₆) δ 54.47-54.46 (m, 1F). ¹³C NMR (DMSO-*d*₆, 126 MHz) δ 158.2 (s), 142.3 (s), 139.4 (s), 130.8 (s), 123.2 (s), 114.9 (s), 55.5 (s), 47.8 (d, *J* = 14.5 Hz), 24.1 (s). HRMS ESI (m/z): [M+Na] ⁺ calcd for C₁₁H₁₃FNaO₆S₂: 347.0030, found: 347.0020.

[1,1'-biphenyl]-4-yl 4-(fluorosulfonyl) but-1-ene-2-sulfonate (11c)

Petroleum ether / ethyl acetate = 5 : 1 (v / v) as eluent for column chromatography. White solid, 193 mg, 52% yield (Method A). ¹H NMR (DMSO- d_6 , 500 MHz) δ 7.76-7.74 (m, 2H), 7.68-7.66 (m, 2H), 7.50-7.46 (m, 2H), 7.40-7.38 (m, 3H), 6.38 (d, J = 1.4 Hz, 1H), 6.27 (d, J = 0.8 Hz, 1H), 4.39-4.35 (m, 2H), 3.13 (t, J = 7.5 Hz, 2H). ¹⁹F NMR (471 MHz, DMSO- d_6) δ 54.74-54.72 (m, 1F). ¹³C NMR (DMSO- d_6 , 126 MHz) δ 148.4 (s), 139.6 (s), 139.5 (s), 138.8 (s), 131.0 (s), 129.0 (s), 128.4 (s), 127.9 (s), 126.8 (s), 122.6 (s), 47.8 (d, J = 15.5 Hz), 24.1 (s). Mp 61.5-63.0 °C HRMS ESI (m/z): [M+Na] + calcd for C₁₆H₁₅FNaO₅S₂: 393.0237, found: 393.0237.

4-phenoxyphenyl 4-(fluorosulfonyl) but-1-ene-2-sulfonate (11d)

Petroleum ether / ethyl acetate = 2 : 1 (v / v) as eluent for column chromatography. Slight yellow oil, 155 mg, 40% yield (Method A). ¹H NMR (CDCl₃, 500 MHz) δ 7.41-7.38 (m, 2H), 7.20-7.16 (m, 3H), 7.05-7.01 (m, 4H), 6.35 (d, J = 1.2 Hz, 1H), 6.10 (d, J = 1.1 Hz, 1H), 3.85-3.81 (m, 2H), 3.22-3.19 (m, 2H). ¹⁹F NMR (471 MHz, CDCl₃) δ 54.99-54.97 (m, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 156.7 (s), 156.4 (s), 144.1 (s), 140.3 (s), 131.1 (s), 130.1 (s), 124.2 (s), 123.3 (s), 119.53 (s), 119.48 (s), 49.2 (d, J = 18.2 Hz), 25.8 (s). HRMS ESI (m/z): [M+Na] + calcd for C₁₆H₁₅FNaO₆S₂: 409.0186, found: 409.0183.

3-(N, N-diethylsulfamoyl) but-3-ene-1-sulfonyl fluoride (11e)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Yellow oil, 197 mg, 72% yield (Method B). ¹H NMR (CDCl₃, 500 MHz) δ 6.15 (s, 1H), 5.77 (s, 1H), 3.78-3.74 (m, 2H), 3.30 (q, *J* = 7.1 Hz, 1H), 2.94 (t, *J* = 7.9 Hz, 2H), 1.22 (t, *J* = 7.1 Hz, 1H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.03-54.02 (m, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 144.2 (s), 125.2 (s), 49.9 (d, *J* = 17.3 Hz), 41.9 (s), 25.5 (s), 14.5 (s). HRMS ESI (m/z): [M+Na] ⁺ calcd for C₈H₁₆FNNaO₄S₂: 296.0397, found: 296.0395.

3-(pyrrolidin-1-ylsulfonyl) but-3-ene-1-sulfonyl fluoride (11f)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Yellow oil, 212 mg, 78% yield (Method B). ¹H NMR (CDCl₃, 500 MHz) δ 6.15 (s, 1H), 5.81 (s, 1H), 3.79-3.75 (m, 2H), 3.36-3.33 (m, 4H), 2.97 (t, J = 7.7 Hz, 2H), 1.97-1.95 (m, 4H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.25-54.24 (m, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 143.1 (s), 125.7 (s), 140.9 (s), 49.8 (d, J = 17.3 Hz), 48.0 (s), 26.0 (s). Mp 92.4-94.6 °C. HRMS ESI (m/z): [M+Na] + calcd for C₈H₁₄FNNaO₄S₂: 294.0240, found: 294.0238.

3-(piperidin-1-ylsulfonyl) but-3-ene-1-sulfonyl fluoride (11g)

s≲0 ∫[°]0 SO₂F

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Yellow oil, 191 mg, 67% yield (Method B). ¹H NMR (CDCl₃, 500 MHz) δ 6.15 (s, 1H), 5.83 (s, 1H), 3.76-3.72 (m, 2H), 3.21-3.19 (m, 4H), 3.43-3.38 (m, 1H), 2.93 (t, *J* = 7.7 Hz, 2H), 1.64-1.58 (m, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ 54.18-54.17 (m, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 143.0 (s), 126.4 (s), 49.8 (d, *J* = 17.3 Hz), 46.5 (s), 26.0 (s), 25.7 (s), 23.8 (s). Mp 83.8-85.0 °C. HRMS ESI (m/z): $[M+Na]^+$ calcd for $C_9H_{16}FNNaO_4S_2$: 308.0397, found: 308.0394.

3-(thiomorpholinosulfonyl) but-3-ene-1-sulfonyl fluoride (11h)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Slight yellow oil, 209 mg, 69% yield (Method B). ¹H NMR (CDCl₃, 500 MHz) δ 6.16 (s, 1H), 5.85 (d, *J* = 0.9 Hz, 1H), 3.75-3.71 (m, 2H), 3.55-3.53 (m, 4H), 2.93-2.90 (m, 2H), 2.71-2.69 (m, 4H). ¹⁹F NMR (471 MHz, CDCl₃) δ 54.47-54.46 (m, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 142.9 (s), 126.5 (s), 49.5 (d, *J* = 17.2 Hz), 47.6 (s), 27.6 (s), 25.6 (s). HRMS ESI (m/z): [M+Na] + calcd for C₈H₁₄FNNaO₄S₃: 325.9961, found: 325.9958.

3-((4-bromopiperidin-1-yl)sulfonyl)but-3-ene-1-sulfonyl fluoride (11i)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Slight yellow oil, 269 mg, 74% yield (Method B). ¹H NMR (CDCl₃, 500 MHz) δ 6.15 (s, 1H), 5.86 (d, *J* = 0.9 Hz, 1H), 4.42-4.38 (m, 1H), 3.75-3.71 (m, 2H), 3.43-3.38 (m, 2H), 3.32-3.27 (m, 2H), 2.94-2.90 (m, 2H), 2.20-2.14 (m, 2H), 2.06-2.00 (m, 2H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.44-54.43 (m, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 142.6 (s), 126.8 (s), 49.5 (d, *J* = 17.3 Hz), 47.9 (s), 43.1 (s), 34.9 (s), 25.7 (s). HRMS ESI (m/z): [M+H] ⁺ calcd for C₉H₈O₃CIFS: 248.9783, found: 248.9779.

3-(azepan-1-ylsulfonyl) but-3-ene-1-sulfonyl fluoride (11j)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. Yellow oil, 135 mg, 45% yield (Method B). ¹H NMR (CDCl₃, 500 MHz) δ 6.08 (s, 1H), 5.76 (s, 1H), 3.78-3.74 (m, 2H), 3.33 (t, *J* = 6.0 Hz, 4H), 2.93 (t, *J* = 7.9 Hz, 2H), 1.82-1.72 (m, 4H), 1.66-1.65 (m, 4H).¹⁹F NMR (471 MHz, CDCl₃) δ 54.13-54.12 (m, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 133.5 (s), 124.9 (s), 48.8 (d, *J* = 18.2 Hz), 29.7 (s), 26.9 (s), 25.6 (s). HRMS ESI (m/z): [M+Na] $^+$ calcd for C₁₀H₁₈FNNaO₄S₂: 322.0553, found: 322.0555.

7. Procedures for the synthesis of 14

A 10 mL reaction tube was charged with but-3-ene-1,3-disulfonyl difluoride (2) (1 mmol, 1 equiv., 220.20 mg), azetidine hydrochloride (10k, 1 mmol, 1 equiv., 93.55 mg) and Cs_2CO_3 (1 mmol, 1 equiv., 325. 32 mg) were dissolved in 5 mL CH₃CN. The reaction mixture was stirred at room temperature for 1-2 hours and upon completion, the reaction mixture was washed by Aqueous solution of sodium carbonate and concentrated and purified by flash chromatography on silica gel to provide the product 14.^[3]

2-(3-chloropropyl)-1,2-thiazinane-4-sulfonyl fluoride 1,1-dioxide (14)

Petroleum ether / ethyl acetate = 3 : 1 (v / v) as eluent for column chromatography. White solid, 163 mg, 63% yield(Method A). ¹H NMR (CDCl₃, 500 MHz) δ 4.03 (dd, J = 14.3 Hz, J = 8.5 Hz, 1H), 3.85-3.82 (m, 1H), 3.68-3.59 (m, 3H), 3.54-3.50 (m, 1H), 3.43-3.38 (m, 1H), 3.32-3.27 (m, 1H), 3.13-3.08 (m, 1H), 2.81-2.77 (m, 2H), 2.10-2.05 (m, 2H).¹⁹F NMR (471 MHz, CDCl₃) δ 49.2 (s, 1F). ¹³C NMR (CDCl₃, 126 MHz) δ 54.6 (d, J = 14.5 Hz), 49.5 (s), 46.3 (s), 45.6 (s), 41.6 (s), 31.9 (s), 24.8 (s). Mp 120.3-122.5 °C. HRMS ESI (m/z): [M+Na] ⁺ calcd for C₇H₁₃ClFNNaO₄S₂: 315.9851, found: 315.9849.

Т

n

0 0 N S HN SO_2F **8e** ¹³C NMR in CDCl₃

n

Ó

9. Data of crystal structures for 4e (hide hydrogens)

The purified compound **4e** about 100 mg is dissolved in diethyl ether and placed in a dark cabinet to slowly evaporate. After several days, a colorless bulk crystal is obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart-1000 CDCC diffractometer (graphite-monochromated Mo K α radiation, λ =0.71073 nm) at 298(2) K. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1953896).

The ellipsoid contour probability level in the caption is 50 %.

Table 7.	Crystal da	ata and structur	e refinement	for	190914d.
----------	------------	------------------	--------------	-----	----------

Identification code	190914d
Empirical formula	C8 H16 F N O4 S2
Formula weight	273.34
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 12.6609(11) A alpha = 90 deg.
	b = 10.4865(9) A beta = 97.188(2) deg.
	c = 9.8417(8) A gamma = 90 deg.
Volume	1296.40(19) A^3
---------------------------------	---
Z, Calculated density	4, 1.400 Mg/m^3
Absorption coefficient	0.422 mm^-1
F(000)	576
Crystal size	0.45 x 0.40 x 0.32 mm
Theta range for data collection	2.53 to 25.02 deg.
Limiting indices	-13<=h<=15, -12<=k<=12, -9<=l<=11
Reflections collected / unique	6247 / 2287 [R(int) = 0.0347]
Completeness to theta = 25.02	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8768 and 0.8329
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2287 / 24 / 155
Goodness-of-fit on F^2	1.071
Final R indices [I>2sigma(I)]	R1 = 0.0483, wR2 = 0.1216
R indices (all data)	R1 = 0.0774, $wR2 = 0.1404$
Largest diff. peak and hole	0.427 and -0.199 e.A^-3

Table 8. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 190914d.
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
 F(1)	2906(3)	3103(3)	4377(3)	108(1)
N(1)	7515(2)	3653(3)	2132(3)	61(1)

O(1)	6238(2)	4237(2)	31(2)	67(1)
O(2)	6197(2)	5530(2)	2045(3)	70(1)
O(3)	2001(2)	4187(4)	2483(3)	105(1)
O(4)	3329(3)	5255(3)	3991(3)	89(1)
S (1)	6408(1)	4326(1)	1481(1)	45(1)
S(2)	2984(1)	4108(1)	3324(1)	65(1)
C(1)	7027(3)	2860(3)	3121(4)	53(1)
C(2)	5878(3)	3028(3)	2397(3)	49(1)
C(3)	5018(3)	3353(3)	3256(3)	52(1)
C(4)	3954(2)	3521(3)	2379(3)	50(1)
C(5)	8608(3)	4148(4)	2305(4)	63(1)
C(6)	9339(5)	3006(7)	2497(9)	116(2)
C(7)	8776(5)	4883(7)	1019(6)	93(2)
C(8)	8742(5)	5054(7)	3521(6)	100(2)
C(6')	9010(30)	3140(40)	1320(50)	116(2)
C(7')	8710(30)	5470(40)	1580(40)	93(2)
C(8')	9240(30)	4000(40)	3720(30)	100(2)

Table 9. Bond lengths [A] and angles [deg] for 190914d.

F(1)-S(2)	1.490(3)
N(1)-C(5)	1.468(4)
N(1)-C(1)	1.474(4)
N(1)-S(1)	1.627(3)
O(1)-S(1)	1.419(2)
O(2)-S(1)	1.418(2)
O(3)-S(2)	1.408(3)

O(4)-S(2)	1.413(3)
S(1)-C(2)	1.808(3)
S(2)-C(4)	1.743(3)
C(1)-C(2)	1.548(4)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(2)-C(3)	1.498(5)
C(2)-H(2)	0.9800
C(3)-C(4)	1.517(4)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-C(6)	1.511(7)
C(5)-C(7)	1.519(7)
C(5)-C(8)	1.521(7)
C(5)-C(8')	1.53(3)
C(5)-C(6')	1.56(4)
C(5)-C(7')	1.58(4)
C(6)-H(6A)	0.9600
C(6)-H(6B)	0.9600
C(6)-H(6C)	0.9600
C(7)-H(7A)	0.9600
C(7)-H(7B)	0.9600
C(7)-H(7C)	0.9600
C(8)-H(8A)	0.9600
C(8)-H(8B)	0.9600
C(8)-H(8C)	0.9600

C(6')-H(6'1)	0.9600
C(6')-H(6'2)	0.9600
C(6')-H(6'3)	0.9600
C(7')-H(7'1)	0.9600
C(7')-H(7'2)	0.9600
C(7')-H(7'3)	0.9600
C(8')-H(8'1)	0.9600
C(8')-H(8'2)	0.9600
C(8')-H(8'3)	0.9600
C(5)-N(1)-C(1)	126.2(3)
C(5)-N(1)-S(1)	130.2(3)
C(1)-N(1)-S(1)	95.4(2)
O(2)-S(1)-O(1)	116.09(16)
O(2)-S(1)-N(1)	115.27(17)
O(1)-S(1)-N(1)	112.47(16)
O(2)-S(1)-C(2)	112.08(16)
O(1)-S(1)-C(2)	115.65(15)
N(1)-S(1)-C(2)	80.34(15)
O(3)-S(2)-O(4)	115.0(2)
O(3)-S(2)-F(1)	108.7(2)
O(4)-S(2)-F(1)	108.82(18)
O(3)-S(2)-C(4)	109.68(18)
O(4)-S(2)-C(4)	110.53(18)
F(1)-S(2)-C(4)	103.50(16)
N(1)-C(1)-C(2)	94.5(2)
N(1)-C(1)-H(1A)	112.8
C(2)-C(1)-H(1A)	112.8
N(1)-C(1)-H(1B)	112.8

C(2)-C(1)-H(1B)	112.8
H(1A)-C(1)-H(1B)	110.3
C(3)-C(2)-C(1)	118.3(3)
C(3)-C(2)-S(1)	116.8(2)
C(1)-C(2)-S(1)	85.96(19)
C(3)-C(2)-H(2)	111.2
C(1)-C(2)-H(2)	111.2
S(1)-C(2)-H(2)	111.2
C(2)-C(3)-C(4)	111.2(3)
C(2)-C(3)-H(3A)	109.4
C(4)-C(3)-H(3A)	109.4
C(2)-C(3)-H(3B)	109.4
C(4)-C(3)-H(3B)	109.4
H(3A)-C(3)-H(3B)	108.0
C(3)-C(4)-S(2)	111.9(2)
C(3)-C(4)-H(4A)	109.2
S(2)-C(4)-H(4A)	109.2
C(3)-C(4)-H(4B)	109.2
S(2)-C(4)-H(4B)	109.2
H(4A)-C(4)-H(4B)	107.9
N(1)-C(5)-C(6)	106.8(4)
N(1)-C(5)-C(7)	108.1(3)
C(6)-C(5)-C(7)	111.0(5)
N(1)-C(5)-C(8)	108.8(4)
C(6)-C(5)-C(8)	113.0(5)
C(7)-C(5)-C(8)	109.0(4)
N(1)-C(5)-C(8')	116.5(13)
C(6)-C(5)-C(8')	64.3(17)

C(7)-C(5)-C(8')	134.5(13)
C(8)-C(5)-C(8')	49.3(17)
N(1)-C(5)-C(6')	93.8(14)
C(6)-C(5)-C(6')	45.3(16)
C(7)-C(5)-C(6')	74.9(16)
C(8)-C(5)-C(6')	153.8(15)
C(8')-C(5)-C(6')	109(2)
N(1)-C(5)-C(7')	113.0(15)
C(6)-C(5)-C(7')	132.1(15)
C(7)-C(5)-C(7')	31.3(14)
C(8)-C(5)-C(7')	78.4(15)
C(8')-C(5)-C(7')	116(2)
C(6')-C(5)-C(7')	105(2)
C(5)-C(6)-H(6A)	109.5
C(5)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(5)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(5)-C(7)-H(7A)	109.5
C(5)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(5)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(5)-C(8)-H(8A)	109.5
C(5)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5

C(5)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(5)-C(6')-H(6'1)	109.5
C(5)-C(6')-H(6'2)	109.5
H(6'1)-C(6')-H(6'2)	109.5
C(5)-C(6')-H(6'3)	109.5
H(6'1)-C(6')-H(6'3)	109.5
H(6'2)-C(6')-H(6'3)	109.5
C(5)-C(7')-H(7'1)	109.5
C(5)-C(7')-H(7'2)	109.5
H(7'1)-C(7')-H(7'2)	109.5
C(5)-C(7')-H(7'3)	109.5
H(7'1)-C(7')-H(7'3)	109.5
H(7'2)-C(7')-H(7'3)	109.5
C(5)-C(8')-H(8'1)	109.5
C(5)-C(8')-H(8'2)	109.5
H(8'1)-C(8')-H(8'2)	109.5
C(5)-C(8')-H(8'3)	109.5
H(8'1)-C(8')-H(8'3)	109.5
H(8'2)-C(8')-H(8'3)	109.5

Table 10. Anisotropic displacement parameters (A² x 10³) for 190914d.
The anisotropic displacement factor exponent takes the form:
-2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

U1	1	U22	U33	U23	U13	U12
 F(1)	140(3)	90(2)	106(2)	26(2)	60(2)	6(2)
N(1)	41(2)	73(2)	69(2)	23(2)	5(1)	1(1)
O(1)	72(2)	81(2)	48(1)	3(1)	5(1)	-7(1)
O(2)	72(2)	47(1)	92(2)	-7(1)	13(2)	1(1)
O(3)	51(2)	160(3)	102(2)	-4(2)	3(2)	12(2)
O(4)	105(2)	62(2)	102(2)	-17(2)	24(2)	0(2)
S(1)	44(1)	43(1)	46(1)	3(1)	5(1)	1(1)
S(2)	59(1)	70(1)	67(1)	-2(1)	13(1)	-2(1)
C(1)	48(2)	53(2)	57(2)	12(2)	4(2)	7(2)
C(2)	54(2)	40(2)	51(2)	4(1)	4(2)	0(2)
C(3)	49(2)	59(2)	47(2)	6(2)	5(2)	-3(2)
C(4)	48(2)	53(2)	48(2)	7(2)	3(2)	-6(2)
C(5)	41(2)	79(3)	67(2)	2(2)	5(2)	-9(2)
C(6)	51(3)	131(5)	167(7)	20(5)	15(4)	19(3)
C(7)	74(3)	124(5)	85(4)	7(3)	25(3)	-29(4)
C(8)	84(4)	130(5)	84(4)	-14(4)	-1(3)	-45(4)
C(6')	51(3)	131(5)	167(7)	20(5)	15(4)	19(3)
C(7')	74(3)	124(5)	85(4)	7(3)	25(3)	-29(4)
C(8')	84(4)	130(5)	84(4)	-14(4)	-1(3)	-45(4)

Table 11. Hydrogen coordinates (x 10^4) and isotropic

displacement parameters (A 2 x 10 3) for 190914d.

x	у	Z	U(eq)

H(1A)	7124	3210	4041	64
H(1B)	7266	1981	3133	64
H(2)	5669	2309	1786	59
H(3A)	5204	4135	3756	62
H(3B)	4962	2679	3917	62
H(4A)	3723	2706	1981	60
H(4B)	4037	4105	1636	60
H(6A)	10066	3289	2625	175
H(6B)	9224	2471	1701	175
H(6C)	9192	2533	3287	175
H(7A)	8259	5555	872	140
H(7B)	8697	4317	247	140
H(7C)	9479	5244	1126	140
H(8A)	8615	4602	4334	150
H(8B)	8242	5742	3360	150
H(8C)	9453	5390	3637	150
H(6'1)	9776	3153	1417	175
H(6'2)	8733	3333	395	175
H(6'3)	8775	2305	1557	175
H(7'1)	8489	6144	2141	140
H(7'2)	8273	5477	708	140
H(7'3)	9441	5611	1436	140
H(8'1)	8819	4318	4401	150
H(8'2)	9886	4482	3765	150
H(8'3)	9399	3120	3895	150

C(5)-N(1)-S(1)-O(2)	-53.1(4)
C(1)-N(1)-S(1)-O(2)	95.7(2)
C(5)-N(1)-S(1)-O(1)	83.1(4)
C(1)-N(1)-S(1)-O(1)	-128.1(2)
C(5)-N(1)-S(1)-C(2)	-163.0(4)
C(1)-N(1)-S(1)-C(2)	-14.2(2)
C(5)-N(1)-C(1)-C(2)	167.2(3)
S(1)-N(1)-C(1)-C(2)	16.5(2)
N(1)-C(1)-C(2)-C(3)	-133.1(3)
N(1)-C(1)-C(2)-S(1)	-14.8(2)
O(2)-S(1)-C(2)-C(3)	19.8(3)
O(1)-S(1)-C(2)-C(3)	-116.4(3)
N(1)-S(1)-C(2)-C(3)	133.3(3)
O(2)-S(1)-C(2)-C(1)	-100.0(2)
O(1)-S(1)-C(2)-C(1)	123.9(2)
N(1)-S(1)-C(2)-C(1)	13.5(2)
C(1)-C(2)-C(3)-C(4)	178.3(3)
S(1)-C(2)-C(3)-C(4)	77.8(3)
C(2)-C(3)-C(4)-S(2)	-171.9(2)
O(3)-S(2)-C(4)-C(3)	-177.1(3)
O(4)-S(2)-C(4)-C(3)	55.1(3)
F(1)-S(2)-C(4)-C(3)	-61.3(3)
C(1)-N(1)-C(5)-C(6)	58.9(6)
S(1)-N(1)-C(5)-C(6)	-160.8(4)
C(1)-N(1)-C(5)-C(7)	178.4(4)
S(1)-N(1)-C(5)-C(7)	-41.3(5)

C(1)-N(1)-C(5)-C(8)	-63.4(5)
S(1)-N(1)-C(5)-C(8)	77.0(5)
C(1)-N(1)-C(5)-C(8')	-10(2)
S(1)-N(1)-C(5)-C(8')	130(2)
C(1)-N(1)-C(5)-C(6')	103.1(17)
S(1)-N(1)-C(5)-C(6') -	116.6(17)
C(1)-N(1)-C(5)-C(7')	148.5(17)
S(1)-N(1)-C(5)-C(7')	-8.1(17)

Table 13. Hydrogen bonds for 190914d [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

10. Data of crystal structures for 8f (hide hydrogens)

The purified compound **8f** about 100 mg is dissolved in diethyl ether and placed in a dark cabinet to slowly evaporate. After several days, a colorless bulk crystal is obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart-1000 CDCC diffractometer (graphite-monochromated Mo K α radiation, λ =0.71073 nm) at 298(2) K. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1951376).

The ellipsoid contour probability level in the caption is 50 %.

Identification code	190831a		
Empirical formula	C12 H15 F N2 O5 S2		
Formula weight	350.38	350.38	
Temperature	298(2) K		
Wavelength	ngth 0.71073 A		
Crystal system, space group	Monoclinic, P2(1)/c		
Unit cell dimensions	a = 14.0641(12) A	alpha = 90 deg.	
	b = 9.2583(8) A	beta = $102.973(3)$ deg.	
	c = 12.1126(11) A	gamma = 90 deg.	
Volume	1536.9(2) A^3		

 Table 14.
 Crystal data and structure refinement for 190831a.

Z, Calculated density	4, 1.514 Mg/m^3
Absorption coefficient	0.381 mm^-1
F(000)	728
Crystal size	0.48 x 0.40 x 0.11 mm
Theta range for data collection	2.65 to 25.02 deg.
Limiting indices	-16<=h<=16, -11<=k<=10, -14<=l<=13
Reflections collected / unique	7407 / 2694 [R(int) = 0.0511]
Completeness to theta = 25.02	99.4 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9593 and 0.8382
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2694 / 0 / 199
Goodness-of-fit on F^2	1.095
Final R indices [I>2sigma(I)]	R1 = 0.0561, wR2 = 0.1493
R indices (all data)	R1 = 0.0954, wR2 = 0.1842
Largest diff. peak and hole	0.488 and -0.426 e.A^-3

Table 15. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 190831a.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	у	Z	U(eq)	
I	F(1)	1199(2)	7361(4)	4309(3)	110(1)
1	N(1)	5793(2)	6596(3)	3582(3)	43(1)
1	N(2)	5926(2)	7442(4)	4581(3)	47(1)

O(1)	6289(2)	5941(3)	2024(3)	50(1)
O(2)	4245(2)	6345(3)	2005(2)	56(1)
O(3)	4579(2)	4516(3)	3476(3)	59(1)
O(4)	1824(3)	8647(5)	6008(4)	109(2)
O(5)	2565(3)	6377(4)	5596(4)	101(1)
S(1)	4633(1)	5986(1)	3149(1)	37(1)
S(2)	2121(1)	7720(2)	5236(1)	71(1)
C(1)	6449(3)	6619(4)	2893(3)	41(1)
C(2)	7361(3)	7508(5)	3335(4)	57(1)
C(3)	8096(3)	7354(5)	2631(4)	50(1)
C(4)	8693(4)	6158(6)	2715(5)	74(2)
C(5)	9370(4)	6047(9)	2040(7)	101(2)
C(6)	9439(5)	7124(12)	1292(7)	112(3)
C(7)	8868(5)	8296(9)	1216(6)	102(2)
C(8)	8201(4)	8425(6)	1872(5)	73(1)
C(9)	5010(3)	8196(4)	4521(4)	45(1)
C(10)	4180(3)	7122(4)	4135(4)	46(1)
C(11)	3200(3)	7727(5)	3603(4)	54(1)
C(12)	2787(3)	8651(5)	4430(4)	53(1)

Table 16.Bond lengths [A] and angles [deg] for 190831a.

F(1)-S(2)	1.549(4)
N(1)-C(1)	1.376(5)
N(1)-N(2)	1.418(4)
N(1)-S(1)	1.695(3)
N(2)-C(9)	1.453(5)

N(2)-H(2)	0.9000
O(1)-C(1)	1.203(4)
O(2)-S(1)	1.410(3)
O(3)-S(1)	1.424(3)
O(4)-S(2)	1.401(4)
O(5)-S(2)	1.416(4)
S(1)-C(10)	1.811(4)
S(2)-C(12)	1.728(4)
C(1)-C(2)	1.517(6)
C(2)-C(3)	1.488(6)
C(2)-H(2C)	0.9700
C(2)-H(2D)	0.9700
C(3)-C(4)	1.379(6)
C(3)-C(8)	1.383(7)
C(4)-C(5)	1.391(9)
C(4)-H(4)	0.9300
C(5)-C(6)	1.365(10)
C(5)-H(5)	0.9300
C(6)-C(7)	1.341(11)
C(6)-H(6)	0.9300
C(7)-C(8)	1.363(8)
С(7)-Н(7)	0.9300
C(8)-H(8)	0.9300
C(9)-C(10)	1.525(5)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-C(11)	1.493(6)
C(10)-H(10)	0.9800

C(11)-C(12)	1.527(6)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(1)-N(1)-N(2)	122.1(3)
C(1)-N(1)-S(1)	123.2(3)
N(2)-N(1)-S(1)	112.4(2)
N(1)-N(2)-C(9)	106.1(3)
N(1)-N(2)-H(2)	110.1
C(9)-N(2)-H(2)	110.1
O(2)-S(1)-O(3)	117.75(19)
O(2)-S(1)-N(1)	111.04(16)
O(3)-S(1)-N(1)	109.86(18)
O(2)-S(1)-C(10)	113.26(19)
O(3)-S(1)-C(10)	108.86(19)
N(1)-S(1)-C(10)	93.39(17)
O(4)-S(2)-O(5)	120.6(3)
O(4)-S(2)-F(1)	106.8(2)
O(5)-S(2)-F(1)	105.9(3)
O(4)-S(2)-C(12)	110.7(2)
O(5)-S(2)-C(12)	110.7(2)
F(1)-S(2)-C(12)	99.8(2)
O(1)-C(1)-N(1)	120.2(3)
O(1)-C(1)-C(2)	124.7(4)
N(1)-C(1)-C(2)	115.0(3)
C(3)-C(2)-C(1)	112.7(4)
C(3)-C(2)-H(2C)	109.0

C(1)-C(2)-H(2C)	109.0
C(3)-C(2)-H(2D)	109.0
C(1)-C(2)-H(2D)	109.0
H(2C)-C(2)-H(2D)	107.8
C(4)-C(3)-C(8)	118.1(5)
C(4)-C(3)-C(2)	121.6(4)
C(8)-C(3)-C(2)	120.3(4)
C(3)-C(4)-C(5)	120.1(6)
C(3)-C(4)-H(4)	120.0
C(5)-C(4)-H(4)	120.0
C(6)-C(5)-C(4)	119.8(6)
C(6)-C(5)-H(5)	120.1
C(4)-C(5)-H(5)	120.1
C(7)-C(6)-C(5)	120.4(6)
C(7)-C(6)-H(6)	119.8
C(5)-C(6)-H(6)	119.8
C(6)-C(7)-C(8)	120.7(7)
C(6)-C(7)-H(7)	119.6
C(8)-C(7)-H(7)	119.6
C(7)-C(8)-C(3)	121.0(6)
C(7)-C(8)-H(8)	119.5
C(3)-C(8)-H(8)	119.5
N(2)-C(9)-C(10)	108.1(3)
N(2)-C(9)-H(9A)	110.1
С(10)-С(9)-Н(9А)	110.1
N(2)-C(9)-H(9B)	110.1
С(10)-С(9)-Н(9В)	110.1
H(9A)-C(9)-H(9B)	108.4

C(11)-C(10)-C(9)	117.2(3)
C(11)-C(10)-S(1)	111.1(3)
C(9)-C(10)-S(1)	102.9(3)
С(11)-С(10)-Н(10)	108.4
C(9)-C(10)-H(10)	108.4
S(1)-C(10)-H(10)	108.4
C(10)-C(11)-C(12)	112.1(4)
C(10)-C(11)-H(11A)	109.2
C(12)-C(11)-H(11A)	109.2
C(10)-C(11)-H(11B)	109.2
C(12)-C(11)-H(11B)	109.2
H(11A)-C(11)-H(11B)	107.9
C(11)-C(12)-S(2)	115.2(3)
С(11)-С(12)-Н(12А)	108.5
S(2)-C(12)-H(12A)	108.5
C(11)-C(12)-H(12B)	108.5
S(2)-C(12)-H(12B)	108.5
H(12A)-C(12)-H(12B)	107.5

Table 17. Anisotropic displacement parameters ($A^2 \times 10^3$) for 190831a.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

 U11		U22	U33	U23	U13	U12
 F(1)	62(2)	171(4)	95(3)	-21(2)	10(2)	-32(2)

N(1)	43(2)	50(2)	36(2)	-12(2)	12(1)	-6(1)
N(2)	50(2)	64(2)	27(2)	-6(2)	11(2)	-4(2)
O(1)	49(2)	56(2)	47(2)	-17(2)	16(1)	-4(1)
O(2)	52(2)	77(2)	36(2)	3(2)	6(1)	-2(1)
O(3)	75(2)	37(2)	64(2)	2(1)	19(2)	-9(1)
O(4)	84(3)	175(4)	84(3)	-28(3)	55(2)	-5(3)
O(5)	122(3)	91(3)	97(3)	30(2)	38(3)	-22(3)
S(1)	45(1)	34(1)	35(1)	-4(1)	12(1)	-3(1)
S(2)	60(1)	103(1)	55(1)	-3(1)	23(1)	-16(1)
C(1)	45(2)	41(2)	37(2)	-2(2)	11(2)	1(2)
C(2)	51(3)	70(3)	52(3)	-19(2)	15(2)	-14(2)
C(3)	38(2)	65(3)	45(3)	-8(2)	8(2)	-7(2)
C(4)	60(3)	84(4)	74(4)	-1(3)	6(3)	7(3)
C(5)	51(3)	144(6)	107(6)	-40(5)	16(3)	19(3)
C(6)	63(4)	201(9)	83(5)	-43(6)	38(4)	-32(5)
C(7)	87(4)	152(6)	77(5)	-5(4)	39(4)	-43(5)
C(8)	65(3)	83(3)	73(4)	3(3)	18(3)	-10(3)
C(9)	54(2)	42(2)	41(2)	-12(2)	15(2)	-3(2)
C(10)	54(2)	46(2)	38(2)	-7(2)	9(2)	3(2)
C(11)	57(3)	61(3)	44(3)	-8(2)	14(2)	-2(2)
C(12)	50(2)	56(2)	56(3)	-3(2)	20(2)	7(2)

Table 18. Hydrogen coordinates ($x \ 10^4$) and isotropic

displacement parameters (A 2 x 10 3) for 190831a.

X	у	Z	U(eq)

H(2)	6060	6869	5196	56
H(2C)	7180	8517	3355	68
H(2D)	7652	7210	4105	68
H(4)	8643	5424	3224	89
H(5)	9774	5242	2097	121
H(6)	9885	7045	833	135
H(7)	8927	9028	710	123
H(8)	7812	9246	1808	88
H(9A)	4948	8991	3989	54
H(9B)	4988	8583	5259	54
H(10)	4118	6533	4787	55
H(11A)	2753	6939	3334	64
H(11B)	3252	8310	2954	64
H(12A)	2373	9391	4003	63
H(12B)	3325	9135	4937	63

Table 19.Torsion angles [deg] for 190831a.

C(1)-N(1)-N(2)-C(9)	130.0(4)
S(1)-N(1)-N(2)-C(9)	-33.3(4)
C(1)-N(1)-S(1)-O(2)	-36.1(4)
N(2)-N(1)-S(1)-O(2)	127.0(3)
C(1)-N(1)-S(1)-O(3)	96.0(3)
N(2)-N(1)-S(1)-O(3)	-101.0(3)
C(1)-N(1)-S(1)-C(10)	-152.6(3)
N(2)-N(1)-S(1)-C(10)	10.5(3)
N(2)-N(1)-C(1)-O(1)	-176.4(4)

S(1)-N(1)-C(1)-O(1)	-15.0(5)
N(2)-N(1)-C(1)-C(2)	5.1(5)
S(1)-N(1)-C(1)-C(2)	166.6(3)
O(1)-C(1)-C(2)-C(3)	-5.3(6)
N(1)-C(1)-C(2)-C(3)	173.1(4)
C(1)-C(2)-C(3)-C(4)	-78.2(6)
C(1)-C(2)-C(3)-C(8)	102.1(5)
C(8)-C(3)-C(4)-C(5)	-0.6(8)
C(2)-C(3)-C(4)-C(5)	179.7(5)
C(3)-C(4)-C(5)-C(6)	-0.2(9)
C(4)-C(5)-C(6)-C(7)	0.9(11)
C(5)-C(6)-C(7)-C(8)	-0.8(11)
C(6)-C(7)-C(8)-C(3)	-0.1(10)
C(4)-C(3)-C(8)-C(7)	0.7(8)
C(2)-C(3)-C(8)-C(7)	-179.6(5)
N(1)-N(2)-C(9)-C(10)	44.3(4)
N(2)-C(9)-C(10)-C(11)	-157.7(4)
N(2)-C(9)-C(10)-S(1)	-35.4(4)
O(2)-S(1)-C(10)-C(11)	25.9(4)
O(3)-S(1)-C(10)-C(11)	-107.2(3)
N(1)-S(1)-C(10)-C(11)	140.5(3)
O(2)-S(1)-C(10)-C(9)	-100.3(3)
O(3)-S(1)-C(10)-C(9)	126.6(3)
N(1)-S(1)-C(10)-C(9)	14.3(3)
C(9)-C(10)-C(11)-C(12)	-64.0(5)
S(1)-C(10)-C(11)-C(12)	178.2(3)
C(10)-C(11)-C(12)-S(2)	-88.2(4)
O(4)-S(2)-C(12)-C(11)	176.6(3)

Table 20. Hydrogen bonds for 190831a [A and deg.].

D-H	d(D-H)	d(HA)	<dha< th=""><th>d(DA)</th><th>А</th></dha<>	d(DA)	А
N2-H2	0.900	2.384	146.57	3.174	O3 [-x+1, -y+1, -z+1]

11. Data of crystal structures for 14 ((hide hydrogens)

The purified compound **14** about 100 mg is dissolved in diethyl ether and placed in a dark cabinet to slowly evaporate. After several days, a colorless bulk crystal is obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart-1000 CDCC diffractometer (graphite-monochromated Mo K α radiation, λ =0.71073 nm) at 298(2) K. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1940975).

The ellipsoid contour probability level in the caption is 50 %.

Table 21. Crystal data and structure refinement for 19061

190612f	Identification code
C7 H13 Cl F N O4 S2	Empirical formula
293.75	Formula weight
293(2) K	Temperature
0.71073 A	Wavelength
Monoclinic, P2(1)/c	Crystal system, space group
a = 14.829(12) A alpha = 90 deg.	Unit cell dimensions
b = 5.526(5) A beta = 127.47(4) c	
293.75 293(2) K 0.71073 A Monoclinic, P2(1)/c a = 14.829(12) A alpha = 90 deg. b = 5.526(5) A beta = 127.47(4) c	Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions

	c = 18.143(11) A gamma = 90 deg.
Volume	1180.0(16) A^3
Z, Calculated density	4, 1.654 Mg/m^3
Absorption coefficient	0.689 mm^-1
F(000)	608
Crystal size	0.23 x 0.11 x 0.04 mm
Theta range for data collection	2.25 to 25.02 deg.
Limiting indices	-17<=h<=14, -6<=k<=6, 0<=l<=21
Reflections collected / unique	2082 / 2082 [R(int) = 0.0000]
Completeness to theta $= 25.02$	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9730 and 0.8577
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2082 / 0 / 146
Goodness-of-fit on F^2	1.089
Final R indices [I>2sigma(I)]	R1 = 0.0779, wR2 = 0.1805
R indices (all data)	R1 = 0.1001, wR2 = 0.1930
Largest diff. peak and hole	0.737 and -0.476 e.A^-3

Table 22. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for 190612f.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	у	Z	U(eq)
Cl(1)	1403(2	2) 6549	9(4) 119	6(2) 88(1)
F(1)	5556(4	4) 3662	2(12) 689	02(4) 125(2)

N(1)	2380(4)	4236(9)	4004(3)	47(1)
O(1)	2158(4)	7439(7)	4799(3)	67(1)
O(2)	486(4)	5288(9)	3548(4)	74(2)
O(3)	5285(6)	-464(15)	6862(5)	129(3)
O(4)	5796(5)	1317(12)	5958(4)	96(2)
S(1)	1646(2)	5249(2)	4330(1)	51(1)
S(2)	5191(2)	1457(4)	6318(1)	69(1)
C(1)	1881(6)	3128(12)	5139(5)	57(2)
C(2)	3170(6)	2753(14)	5889(5)	62(2)
C(3)	3737(5)	2045(11)	5454(4)	50(2)
C(4)	3582(5)	3908(12)	4763(4)	50(2)
C(5)	1862(6)	2425(11)	3257(4)	53(2)
C(6)	1941(6)	3236(11)	2500(5)	57(2)
C(7)	1250(8)	5446(13)	2027(6)	74(2)

Table 23. Bond lengths [A] and angles [deg] for 190612f.

Cl(1)-C(7)	1.764(7)
F(1)-S(2)	1.476(6)
N(1)-C(4)	1.455(8)
N(1)-C(5)	1.470(8)
N(1)-S(1)	1.622(5)
O(1)-S(1)	1.407(5)
O(2)-S(1)	1.414(5)
O(3)-S(2)	1.398(6)
O(4)-S(2)	1.396(6)
S(1)-C(1)	1.740(6)
S(2)-C(3)	1.761(7)

C(1)-C(2)	1.544(9)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(2)-C(3)	1.513(9)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(4)	1.527(8)
C(3)-H(3)	0.9800
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-C(6)	1.516(9)
C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700
C(6)-C(7)	1.486(9)
C(6)-H(6A)	0.9700
C(6)-H(6B)	0.9700
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(4)-N(1)-C(5)	116.1(5)
C(4)-N(1)-S(1)	113.9(4)
C(5)-N(1)-S(1)	118.7(4)
O(1)-S(1)-O(2)	118.3(3)
O(1)-S(1)-N(1)	106.4(3)
O(2)-S(1)-N(1)	108.5(3)
O(1)-S(1)-C(1)	108.1(3)
O(2)-S(1)-C(1)	110.7(3)
N(1)-S(1)-C(1)	103.9(3)
O(4)-S(2)-O(3)	118.2(5)

O(4)-S(2)-F(1)	108.2(4)
O(3)-S(2)-F(1)	107.0(5)
O(4)-S(2)-C(3)	112.4(4)
O(3)-S(2)-C(3)	108.1(4)
F(1)-S(2)-C(3)	101.6(3)
C(2)-C(1)-S(1)	109.8(4)
C(2)-C(1)-H(1A)	109.7
S(1)-C(1)-H(1A)	109.7
C(2)-C(1)-H(1B)	109.7
S(1)-C(1)-H(1B)	109.7
H(1A)-C(1)-H(1B)	108.2
C(3)-C(2)-C(1)	111.0(5)
C(3)-C(2)-H(2A)	109.4
C(1)-C(2)-H(2A)	109.4
C(3)-C(2)-H(2B)	109.4
C(1)-C(2)-H(2B)	109.4
H(2A)-C(2)-H(2B)	108.0
C(2)-C(3)-C(4)	113.5(5)
C(2)-C(3)-S(2)	110.6(4)
C(4)-C(3)-S(2)	110.3(4)
C(2)-C(3)-H(3)	107.4
C(4)-C(3)-H(3)	107.4
S(2)-C(3)-H(3)	107.4
N(1)-C(4)-C(3)	110.3(5)
N(1)-C(4)-H(4A)	109.6
C(3)-C(4)-H(4A)	109.6
N(1)-C(4)-H(4B)	109.6
C(3)-C(4)-H(4B)	109.6

H(4A)-C(4)-H(4B)	108.1
N(1)-C(5)-C(6)	110.4(5)
N(1)-C(5)-H(5A)	109.6
C(6)-C(5)-H(5A)	109.6
N(1)-C(5)-H(5B)	109.6
C(6)-C(5)-H(5B)	109.6
H(5A)-C(5)-H(5B)	108.1
C(7)-C(6)-C(5)	111.1(5)
C(7)-C(6)-H(6A)	109.4
C(5)-C(6)-H(6A)	109.4
C(7)-C(6)-H(6B)	109.4
C(5)-C(6)-H(6B)	109.4
H(6A)-C(6)-H(6B)	108.0
C(6)-C(7)-Cl(1)	112.1(5)
C(6)-C(7)-H(7A)	109.2
Cl(1)-C(7)-H(7A)	109.2
C(6)-C(7)-H(7B)	109.2
Cl(1)-C(7)-H(7B)	109.2
H(7A)-C(7)-H(7B)	107.9

-2 pi[^]2 [h[^]2 a^{*}² U11 + ... + 2 h k a^{*} b^{*} U12] U12 U11 U22 U33 U23 U13 Cl(1)127(2) 85(1) 83(2) 17(1)79(2) 18(1) 60(3) 101(4) -50(4)F(1) 165(5) 24(3) -10(3)N(1) 50(3) 51(3) 41(3) -2(3)28(3) -3(3)O(1) 80(3) 41(2) 93(4) -10(2)61(3) -9(2) O(2) 54(3) 83(3) 79(4) 20(3) 39(3) 21(3) O(3) 71(5) 158(6) 112(5) 85(5) 15(4) 32(4) O(4) 66(4) 127(5) 89(4) 24(4)45(3) 27(4)S(1) 52(1) 44(1) 64(1) 3(1) 37(1) 3(1) S(2) 49(1) 80(1) 64(1) 13(1)27(1)5(1) C(1) 59(4) 56(4) 64(4) 7(3) 42(4)-1(3)C(2) 62(5) 73(5) 53(4) 2(4)36(4) -9(4)

45(3)

51(4)

52(4)

54(4)

78(5)

3(3)

-1(3)

-6(3)

-10(3)

16(4)

21(3)

30(3)

30(3)

33(3)

60(5)

-6(3)

1(3)

-6(3)

-2(3)

20(5)

Table 24. Anisotropic displacement parameters (A^2 x 10^3) for 190612f.The anisotropic displacement factor exponent takes the form:

173

C(3)

C(4)

C(5)

C(6)

C(7)

46(4)

46(4)

52(4)

52(4)

89(6)

47(3)

54(4)

52(3)

64(4)

74(4)

х	у	Z	U(eq)	
 H(1A)	1543	3687	5428	68
H(1B)	1527	1604	4830	68
H(2A)	3508	4237	6240	75
H(2B)	3296	1496	6315	75
H(3)	3385	534	5112	60
H(4A)	3910	5440	5077	60
H(4B)	3974	3368	4518	60
H(5A)	1070	2200	2997	64
H(5B)	2248	887	3508	64
H(6A)	2729	3566	2770	68
H(6B)	1676	1947	2049	68
H(7A)	1480	6694	2486	88
H(7B)	456	5080	1723	88

Table 25. Hydrogen coordinates (x 10^4) and isotropic

displacement parameters (A 2 x 10 3) for 190612f.

Table 26. Torsion angles [deg] for 19061	2t.
---	-----

C(4)-N(1)-S(1)-O(1)	56.8(5)
C(5)-N(1)-S(1)-O(1)	-160.8(4)
C(4)-N(1)-S(1)-O(2)	-175.0(4)
C(5)-N(1)-S(1)-O(2)	-32.6(5)
C(4)-N(1)-S(1)-C(1)	-57.2(5)
C(5)-N(1)-S(1)-C(1)	85.2(5)
O(1)-S(1)-C(1)-C(2)	-60.0(5)
O(2)-S(1)-C(1)-C(2)	169.0(5)
N(1)-S(1)-C(1)-C(2)	52.7(6)
S(1)-C(1)-C(2)-C(3)	-55.5(7)
C(1)-C(2)-C(3)-C(4)	58.8(7)
C(1)-C(2)-C(3)-S(2)	-176.7(5)
O(4)-S(2)-C(3)-C(2)	-166.9(5)
O(3)-S(2)-C(3)-C(2)	60.9(6)
F(1)-S(2)-C(3)-C(2)	-51.5(6)
O(4)-S(2)-C(3)-C(4)	-40.5(6)
O(3)-S(2)-C(3)-C(4)	-172.7(5)
F(1)-S(2)-C(3)-C(4)	74.9(5)
C(5)-N(1)-C(4)-C(3)	-81.7(6)
S(1)-N(1)-C(4)-C(3)	61.7(6)
C(2)-C(3)-C(4)-N(1)	-60.3(7)
S(2)-C(3)-C(4)-N(1)	175.0(4)
C(4)-N(1)-C(5)-C(6)	-91.0(6)
S(1)-N(1)-C(5)-C(6)	127.4(5)
N(1)-C(5)-C(6)-C(7)	-65.6(7)
C(5)-C(6)-C(7)-Cl(1)	176.0(5)

Table 27. Hydrogen bonds for 190612f [A and deg.].

D-HA	(D-H)	d(HA)	d(DA)	<(DHA)
------	-------	-------	-------	--------

12. Reference

[1] Q. H. Zheng, J. Dong and K. B. Sharpless, J. Org. Chem., 2016, 81, 11360-11362.

[2] P. K. Chinthakindi, K. B. Govender, A. S. Kumar, H. G. Kruger, T. Govender, T.

Naicker and P. I. Arvidsson, Org. Lett., 2017, 19, 480-483.

[3] H.-L. Qin, Q. Zheng, G. A. L. Bare, P. Wu and K. B. Sharpless, *Angew. Chem., Int. Ed.*, 2016, **128**, 14361-14364.