Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Terminal-oxidant-free Photocatalytic C-H Alkylation of

Heteroarenes with Alkylsilicates as Alkyl Radical Precursors

Gun Ikarashi,^{†,‡} Tatsuya Morofuji*,[†] and Naokazu Kano*,[†]

†Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

[‡]Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

*tatsuya.morofuji@gakushuin.ac.jp
*naokazu.kano@gakushuin.ac.jp

1.	General	S2-S3
2.	General procedure for silicate synthesis	S4-S8
3.	Optimization of the C–H alkylation of heteroaromatic compounds	S9
4.	Procedure of the C–H alkylation of heteroaromatic compounds	S9-S16
5.	Procedure of gram scale photocatalytic alkylation	S16
6.	Stern–Volmer quenching experiment	S17-S19
7.	A radical clock experiment	S20
8.	Observation of an intermediate	S20
9.	Dehydrogenation reaction	S21
10.	Computational study of photocatalytic dehydrogenation	S22-S26
11.	Detection of hydrogen gas	S27
12.	Electrochemical property of alkylsilicates	S28-S38
13.	NMR spectra	S39-S135

1. General

Mes-Acr⁺, TFA, 4CzIPN, (NH₄)₂S₂O₈, Et₃N, Et₄NBr, 4-methylquinoline (4), 2-methylquinoline, quinoline, 2phenylquinoline, 4-chloroquinoline, 4-bromoquinoline, methyl isoquinoline-3-carboxylate, 5-bromoisoquinoline, 5nitroisoquinoline, phenanthridine, benzothiazole, benzimidazole, 4-hydroxyquinazoline, 3,6-dichloropyridazine, 4-(trifluoromethyl)pyridine, 5,7-dichloro-4-(4-fluorophenoxy)quinoline, fasudil hydrochloride and quinine were commercially available and used without further purification. 4-Methoxyquinoline,¹ potassium [18-crown-6] bis(catecholato)cyclohexylsilicate $(1a)^{-2}$ and 3,3,3',3'-tetrakis(trifluoromethyl)-1,1'(3H,3'H)-spirobi-[2,1benzoxasilole] (3)³ were synthesized according to the reported literature. Distilled water, dehydrated CH₃CN, CH₂Cl₂, THF and diethyl ether were used for solvent. Unless otherwise noted, all materials were obtained from commercial suppliers and used without further purification. Flash chromatography was carried out on a silica gel (Kanto Chem. Co., Silica Gel N, spherical, neutral, 40-100 µm). Preparative gel permeation chromatography (GPC) was carried out on Japan Analytical Industry LC-918 equipped with JAIGEL-1H and 2H using CHCl₃ as an eluent. Photocatalytic alkylation was carried out in a Schlenk tube (30 mL) with photoirradiation using blue LED (Kessil, A 160WE TUNA Blue) and a cooling fan was used to avoid heating the reaction mixture (Figure S1). Gram scale photocatalytic alkylation was carried out in a round-bottom flask with a septum (300 mL) (Figure S2). All NMR spectra were measured on Unity Inova-400 instrument (Varian Inc., 400 MHz for ¹H, 100 MHz for ¹³C) or AVANCE III HD Nano Bay (Bruker Co., 400 MHz for ¹H, 100 MHz for ¹³C) at 22 °C using CDCl₃ as a solvent unless otherwise noted. Tetramethylsilane (TMS) ($\delta = 0$), CHCl₃ ($\delta = 7.26$) and acetone ($\delta = 2.05$) served as an internal standard for ¹H NMR spectra, and acetone was used as an internal standard ($\delta = 206.26$) for ¹³C NMR spectra. CF₃COOH (δ =76.55) was as used as an external standard for ¹⁹F NMR spectra. Tetramethylsilane (TMS) ($\delta = 0$) was used as an external standard for ²⁹Si NMR spectra. The redox potential of alkylsilicate 2 was determined by differential pulse voltammetry (DPV) analysis using the ALS electrochemical analyzer (ALS612E). Stern-Volmer fluorescence quenching experiments were run using the Jasco's spectrofluorometer (FP-6500).

¹ X. Huang, J. Brubaker, W. Zhou, P. J. Biju, L. Xiao, N. Shao, Y. Huang, L. Dong, Z. Liu, R. Bitar, A. Buevich, J. Jung, S. L. Peterson, J. W. Butcher, J. Close, M. Martinez, R. N. MacCoss, H. Zhang, S. Crawford, K. D. McCormick, R. Aslanian, R. Nargund, C. Correll, F. Gervais, H. Qiu, X. Yang, C. Garlisi, D. Rindgen, K. M. Maloney, P. Siliphaivanh, A. Palani, *ACS Med. Chem. Lett.*, 2018, **9**, 679–684.

² V. Corcé, L.-M. Chamoreau, E. Derat, J.-P. Goddard, C. Ollivier, L. Fensterbank, Angew. Chem. Int. Ed., 2015, 54, 11414–11418.

³ H. Lenormand, J.-P. Goddard, L. Fensterbank, Org. Lett., 2013, 15, 748-751.

2. General procedure for silicate synthesis

Procedure A:

Magnesium turnings (4.0 equiv) were activated by addition of single chip of I₂ (20–30 mg) and heating under vacuum for 5 min in double neck round bottom flask. Then dry THF (5.0 mL/1 mmol of **3**) was added to the reaction flask under inert atmosphere. Alkyl bromide (3.0 equiv) was added and reaction mixture was heated at 60 °C for 15-20 min. 3,3,3',3'-Tetrakis(trifluoromethyl)-1,1'(3H,3'H)-spirobi-[2,1-benzoxasilole] (**3**) (1.0 eq.) in dry THF (5 mL/mmol of **3**) was added to the solution of the Grignard reagent in double neck round bottom flask under inert atmosphere and the reaction mixture was refluxed overnight. Subsequent hydrolysis was achieved by the cautious addition of EtOH (10 mL) at 0 °C. The solution was filtered and evaporated under reduced pressure to give a colorless oil. CH₂Cl₂ (20 mL) and Et₄NBr (3.0-5.0 eq.) were added to the oil and the mixture was stirred for 1 hour. The reaction mixture was washed with water (20 mL × 3), dried over Na₂SO₄ and evaporated to get crude product. Recrystallization of the crude product with CH₂Cl₂/hexane afforded alkylsilicate (**2**).

Scheme S1.

Procedure B:⁴

In a 100 mL flask, 3,3,3',3'-tetrakis(trifluoromethyl)-1,1'(3H,3'H)-spirobi-[2,1-benzoxasilole] (**3**) (1.0 equiv) was dissolved in Et₂O (5 mL/mmol of **3**). The solution was stirred and alkyllithium reagent (1.1-3.0 equiv) was added at -78 °C. After 15 min at -78 °C, the mixture was stirred for 3 hours at room temperature. The mixture was quenched with EtOH (10 mL) at 0 °C and evaporated under reduced pressure to give a colorless oil. CH₂Cl₂ (20 mL) and Et₄NBr (3.0-5.0 equiv) were added to the oil and the mixture was stirred for 1 hour. The reaction mixture was washed with water (20 mL × 3), dried over Na₂SO₄ and evaporated to get crude product. Recrystallization of the crude product with CH₂Cl₂/hexane afforded alkylsilicate (**2**).

Scheme S2.

⁴ This procedure is based on the following paper. W. H. Stevenson, S. Wilson, J. C. Martin, W. B. Farnham, J. Am. Chem. Soc., 1985, 107, 6340–6352.

tetraethylammonium bis[α,α-bis(trifluoromethyl)-

benzenemethanolate(2-)- C^2 ,O]-2-(4-fluorophenyl)ethylsilicate (2e)

Following the general procedure A, reaction of 3 (0.513 g, 1.00 mmol) gave the title compound (0.611 g, 80%, colorless solid).

1-(2-bromoethyl)-4-fluorobenzene (0.420 mL, 3.00 mmol), magnesium turnings (0.0926 g, 3.81 mmol), Et₄NBr (0.630 g, 3.00 mmol), LiCl (0.153 g, 3.61 mmol) ¹H NMR (400 MHz, acetone- d_6): δ 8.22 (d, J = 6.8 Hz, 2H), 7.58 (d, J = 6.4 Hz, 2H), 7.45-7.35 (m, 4H), 7.10-7.02 (m, 2H), 6.91 (t, J = 8.8 Hz, 2H), 3.19-3.00 (m, 8H), 2.91 (dt, J = 4.4, 13.6 Hz, 1H) 2.34-2.23 (t, J = 13.8 Hz, 1H), 1.39-0.88 (m, 14H); ¹³C NMR (100 MHz, acetone- d_6): δ 162.5, 161.3 (d, J = 237.8 Hz), 145.9, 145.4 (d, J = 2.9 Hz), 142.0, 138.5, 129.9 (d, J = 7.5 Hz), 128.8, 125.9 (q, J = 290.9 Hz), 125.6 (q, J = 286.4 Hz), 124.1, 115.1 (d, J = 20.8 Hz), 82.7 (sept, J =27.9 Hz), 52.9, 31.9, 27.5, 7.6; ¹⁹F NMR (376 MHz, CD₃CN): δ –75.3 (q, J = 10.2 Hz), -75.7 (q, J = 9.0 Hz), -121.1; ²⁹Si NMR (79 MHz, acetone- d_6): $\delta -65.5$; HRMS (ESI, negative) m/z calcd for C₂₆H₁₆F₁₃O₂Si [M–Et₄N]⁻: 635.0701, found: 635.0717; mp: 167-170 °C.

tetraethylammonium bis[α,α-bis(trifluoromethyl)benzenemethanolate(2-)- C^2 ,O]-sec-butylsilicate (2f)

 F_3C , CF_3

F₃C CF₃

 Et_4N^+

2e

Following the general procedure B, reaction of 3 (1.00 g, 1.96 mmol) gave the title compound (0.566 g, 41%, colorless solid) as mixture of two diastereomers. 1.00 M ^sBuLi in hexane (2.20 mL, 2.20 mmol), Et₄NBr (0.852 g, 4.05 mmol). ¹H NMR (400 MHz, acetone- d_6): δ 8.27 (d, J = 6.4 Hz, 2H), 7.43 (d, J = 6.4 Hz, 2H), 7.28-7.23 (m, 4H), 3.50-3.34 (m, 8H), 1.71-1.61 (m, 1H), 1.38 (br s, 12H), 0.91-0.74 (m, 8H); ¹³C NMR (100 MHz, acetone-d₆): δ 146.6, 142.0, 138.8, 128.4, 128.3, 125.9 (q, J = 286.9 Hz), 125.7 (q, J = 287.8 Hz), 124.0, 82.7 (sept, J = 27.9Hz), 52.9, 29.8, 29.4, 27.8, 26.6, 16.85, 16.78, 15.0, 14.7, 7.5; ¹⁹F NMR (376 MHz, acetone- d_6): δ -74.5 (q, J = 9.8 Hz), -75.4 (q, J = 9.4 Hz), -75.6 (q, J = 9.0Hz); ²⁹Si NMR (79 MHz, acetone- d_6): δ –64.5; HRMS (ESI, negative) m/z calcd for C₂₂H₁₇F₁₂O₂Si [M–Et₄N]⁻: 569.0809, found: 569.0812; mp: 139-143 °C.

tetraethylammonium bis[a,a-bis(trifluoromethyl)-

benzenemethanolate(2-)- C^2 ,O]cyclopentylsilicate (2g)

Following the general procedure A, reaction of 3 (1.03 g, 2.01 mmol) gave the title compound (0.743 g, 52%, colorless solid).

Cyclopentyl bromide (0.643 mL, 6.00 mmol), magnesium turnings (0.230 g, 9.44 mmol), Et₄NBr (1.34 g, 6.39 mmol).

¹H NMR (400 MHz, acetone- d_6): δ 8.28 (d, J = 6.8 Hz, 2H), 7.45 (d, J = 5.6 Hz, 2H), 7.32-7.23 (m, 4H), 3.52 (q, J = 7.2 Hz, 8H), 1.78-1.50 (m, 2H), 1.43-1.24 (m, 17H), 1.22-1.08 (m, 2H); 13 C NMR (100 MHz, acetone- d_6): δ 146.9, 142.0, 138.6, 128.5, 128.3, 126.0 (q, J = 286.9 Hz), 125.7 (q, J = 287.9 Hz), 123.7, 82.8 (sept, J = 27.9 Hz), 53.0, 34.2, 27.6, 27.4, 7.6; ¹⁹F NMR (376 MHz, acetone- d_6): δ –74.5 (q, J = 9.8 Hz), -75.5 (q, J = 9.8 Hz); ²⁹Si NMR (79 MHz, acetone- d_6): δ -63.3;

3. Optimization of the C-H alkylation of heteroaromatic compounds

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. 4-Methylquinoline (4) (0.1 mmol), cyclohexylsilicate (**2a**) (0.12 mmol), photocatalyst (0.005 mmol), oxidant (0.2 mmol), TFA (0.11 mmol) and solvent (4 mL) were added to the tube, and photoirradiation was carried out with stirring for 24 hours. The Schlenk tube was connected to an argon line during the reaction. The alkylated product was observed by ¹H NMR analysis. After the reaction, NaHCO₃ *sat.* (20 mL) was added. The obtained organic compounds were extracted with CH₂Cl₂ (3 × 20 mL). Evaporation of the solvents gave a crude material, and yield of **5** was determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard.

4. Procedure of the C-H alkylation of heteroaromatic compounds

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. The heteroaromatic substrate (0.2 mmol), alkylsilicate **2** (0.24 mmol), Mes-Acr⁺ (0.01 mmol), TFA (0.22 mmol) and solvent (4 mL) were added to the tube, and photoirradiation was carried out with stirring for 24 hours. The Schlenk tube was connected to an argon line during the reaction. The alkylated product was observed by ¹H NMR analysis. After the reaction, Et₃N (0.4 mmol) was added to the solution. Evaporation of the solvents gave a crude material, which was purified with flash chromatography or GPC to give desired product.

Note: The present photocatalytic alkylation stops before completion when the large-scale reactions were carried out in a sealed flask.

	2-cyclohexyl-4-methylquinoline (5) ⁵
	Reaction of 4-methylquinoline (4) (29 mg, 0.20 mmol) gave the title compound (32
Me	mg, 72%, colorless liquid).
	CH_2Cl_2 : 4 mL
N Cy	¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, $J = 6.0$ Hz, 1H), 7.96 (d, $J = 8.0$ Hz, 1H), 7.70
_	(t, J = 7.2 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.21 (s, 1H), 3.10-2.84 (m, 1H), 2.71 (s,
5	3H), 2.06-2.00 (m, 2H), 1.97-1.87 (m, 2H), 1.80-1.77 (m, 1H), 1.67-1.58 (m, 2H), 1.51-
	1.42 (m, 2H), 1.38-1.32 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 166.6, 147.7, 144.3,
	129.6, 129.0, 127.2, 125.5, 123.7, 120.3, 47.7, 32.9, 26.7, 26.2, 19.0.
	2-methyl-4-cyclohexylquinoline (6) ⁶
	Reaction of 2-methylquinoline (31 mg, 0.21 mmol) gave the title compound (48 mg,
Cv	98%, colorless oil).
	CH ₂ Cl ₂ : 4 mL
N Me	¹ H NMR (400 MHz, CDCl ₃) δ 8.10 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.67
	(t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.19 (s, 1H), 3.30 (br s, 1H), 2.75 (s, 3H),
6	2.04-1.78 (m, 5H), 1.56-1.51 (m, 4H), 1.37-1.26 (m, 1H); ¹³ C NMR (100 MHz,
	CDCl ₃): δ 158.9, 153.4, 148.2, 129.6, 128.8, 125.3, 125.2, 122.9, 118.4, 38.9, 33.6,

⁵ H. Zhao, J. Jin, Org. Lett., 2019, 21, 6179-6184.

	2,4-dicyclohexylquinoline (7) ⁶
	Reaction of quinoline (26 mg, 0.20 mmol) gave the title compound (49 mg, 83%,
Су	yellow oil).
	CH ₂ Cl ₂ : 4 mL
N Cy	¹ H NMR (400 MHz, CDCl ₃) δ 8.09 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.65
7	(t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.21 (s, 1H), 3.30 (br s, 1H), 2.89 (t, J =
1	11.8 Hz, 1H), 2.12-1.72 (m, 10H), 1.72-1.28 (m, 10H); ¹³ C NMR (100 MHz, CDCl ₃):
	δ 166.8, 153.5, 148.2, 130.0, 128.7, 125.8, 125.3, 122.9, 115.9, 48.0, 39.1, 33.8, 33.0,
	27.1, 26.7, 26.5, 26.3.
	2-phenyl-4-cyclohexylquinoline (8)°
	Reaction of 2-phenylquinoline (39 mg, 0.19 mmol) gave the title compound (41 mg,
Cv	/6%, colorless solid).
	CH_2CH_2 : 4 IIIL 14 NMP (400 MHz, CDC1) 8 8 10 (4, $I = 7.6$ Hz, 14) 8 15 8 12 (m, 24) 8 08 (4, I
N Ph	= 8.4 Hz (H) 7.75 (s) (H) 7.71-7.67 (m) (H) 7.54-7.50 (m) (H) 7.747-7.45 (m) (H)
0	3 40-3 34 (m 1H) 2 09-2 06 (m 2H) 1 97-1 94 (m 2H) 1 89-1 85 (m 1H) 1 67-1 52
ð	(m, 4H), 1.41-1.35 (m, 1H); 13 C NMR (100 MHz, CDCl ₃); δ 157.5, 154.0, 148.7, 140.4,
	130.8, 129.2, 129.1, 128.882, 128.878, 127.7, 126.0, 123.0, 115.6, 39.2, 33.8, 27.1,
	26.4.
	4-chloro-2-cyclohexylquinoline (9) ⁶
	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg,
CI	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil).
CI	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL
CI N Cy	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73
	 4-chloro-2-cyclohexylquinoline (9)⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH₂Cl₂: 4 mL ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73 (t, <i>J</i> = 7.2 Hz, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, <i>J</i> = 12.0 Hz, 1H),
	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73 (t, <i>J</i> = 7.2 Hz, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, <i>J</i> = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41
CI NCCy 9	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73 (t, <i>J</i> = 7.2 Hz, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, <i>J</i> = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 148.8, 142.8, 130.3, 120.4, 126.7, 125.5, 124.6, 110.6, 175.5, 22.0, 26.6, 26.1
Ci NCy 9	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73 (t, <i>J</i> = 7.2 Hz, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, <i>J</i> = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 148.8, 142.8, 130.3, 129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1.
CI NCCy 9	 4-chloro-2-cyclohexylquinoline (9)⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH₂Cl₂: 4 mL ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73 (t, <i>J</i> = 7.2 Hz, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, <i>J</i> = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 148.8, 142.8, 130.3, 129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1. 4-bromo-2-cyclohexylquinoline (40 mg, 0.19 mmol) gave the title compound (36 mg. 100 mg. 10
CI V V Cy 9	 4-chloro-2-cyclohexylquinoline (9)⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH₂Cl₂: 4 mL ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.73 (t, J = 7.2 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, J = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 167.0, 148.8, 142.8, 130.3, 129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1. 4-bromo-2-cyclohexylquinoline (10)⁷ Reaction of 4-bromoquinoline (40 mg, 0.19 mmol) gave the title compound (36 mg, 64% vellow oil)
Gi Gi S S S Br	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73 (t, <i>J</i> = 7.2 Hz, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, <i>J</i> = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 148.8, 142.8, 130.3, 129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1. 4-bromo-2-cyclohexylquinoline (10) ⁷ Reaction of 4-bromoquinoline (40 mg, 0.19 mmol) gave the title compound (36 mg, 64%, yellow oil). CH ₂ Cl ₂ : 4 mL
g G G G G G G G G G G G G G G G G G G G	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73 (t, <i>J</i> = 7.2 Hz, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, <i>J</i> = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 148.8, 142.8, 130.3, 129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1. 4-bromo-2-cyclohexylquinoline (10) ⁷ Reaction of 4-bromoquinoline (40 mg, 0.19 mmol) gave the title compound (36 mg, 64%, yellow oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.13 (d, <i>J</i> = 8.0 Hz, 1H), 8.03 (d, <i>J</i> = 8.4 Hz, 1H), 7.72
g	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, $J = 8.0$ Hz, 1H), 8.05 (d, $J = 8.4$ Hz, 1H), 7.73 (t, $J = 7.2$ Hz, 1H), 7.57 (t, $J = 7.4$ Hz, 1H), 7.43 (s, 1H), 2.89 (t, $J = 12.0$ Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 148.8, 142.8, 130.3, 129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1. 4-bromo-2-cyclohexylquinoline (10) ⁷ Reaction of 4-bromoquinoline (40 mg, 0.19 mmol) gave the title compound (36 mg, 64%, yellow oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.13 (d, $J = 8.0$ Hz, 1H), 8.03 (d, $J = 8.4$ Hz, 1H), 7.72 (t, $J = 7.6$ Hz, 1H), 7.63 (s, 1H), 7.57 (t, $J = 7.4$ Hz, 1H), 2.91-2.85 (m, 1H), 2.04-2.01
$\begin{array}{c} & & \\$	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73 (t, <i>J</i> = 7.2 Hz, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, <i>J</i> = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 148.8, 142.8, 130.3, 129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1. 4-bromo-2-cyclohexylquinoline (10) ⁷ Reaction of 4-bromoquinoline (40 mg, 0.19 mmol) gave the title compound (36 mg, 64%, yellow oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.13 (d, <i>J</i> = 8.0 Hz, 1H), 8.03 (d, <i>J</i> = 8.4 Hz, 1H), 7.72 (t, <i>J</i> = 7.6 Hz, 1H), 7.63 (s, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 2.91-2.85 (m, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.68-1.57 (m, 2H), 1.51-1.41 (m, 2H),
f_{i}^{Cl}	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, <i>J</i> = 8.0 Hz, 1H), 8.05 (d, <i>J</i> = 8.4 Hz, 1H), 7.73 (t, <i>J</i> = 7.2 Hz, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, <i>J</i> = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 148.8, 142.8, 130.3, 129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1. 4-bromo-2-cyclohexylquinoline (10) ⁷ Reaction of 4-bromoquinoline (40 mg, 0.19 mmol) gave the title compound (36 mg, 64%, yellow oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.13 (d, <i>J</i> = 8.0 Hz, 1H), 8.03 (d, <i>J</i> = 8.4 Hz, 1H), 7.72 (t, <i>J</i> = 7.6 Hz, 1H), 7.63 (s, 1H), 7.57 (t, <i>J</i> = 7.4 Hz, 1H), 2.91-2.85 (m, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.68-1.57 (m, 2H), 1.51-1.41 (m, 2H), 1.37-1.31 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 166.9, 148.6, 134.3, 130.3, 129.5,
$f_{ij} = \frac{c_{ij}}{c_{ij}}$	4-chloro-2-cyclohexylquinoline (9) ⁶ Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 88%, colorless oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.18 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.73 (t, J = 7.2 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, J = 12.0 Hz, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 (m, 2H), 1.38-1.28 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 148.8, 142.8, 130.3, 129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1. 4-bromo-2-cyclohexylquinoline (10) ⁷ Reaction of 4-bromoquinoline (40 mg, 0.19 mmol) gave the title compound (36 mg, 64%, yellow oil). CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.13 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.63 (s, 1H), 7.57 (t, J = 7.4 Hz, 1H), 2.91-2.85 (m, 1H), 2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.68-1.57 (m, 2H), 1.51-1.41 (m, 2H), 1.37-1.31 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 166.9, 148.6, 134.3, 130.3, 129.5, 127.0, 126.7, 126.6, 123.8, 47.4, 32.8, 26.6, 26.1.

⁶ X.-Y. Zhang, W.-Z. Weng, H. Liang, H. Yang, B. Zhang, Org. Lett., 2018, 20, 4686–4690.

	4-methoxy-2-cyclohexylquinoline (11) ⁶
	Reaction of 4-methoxyquinoline (36 mg, 0.22 mmol) gave the title compound (28 mg,
OMe	52%, colorless oil).
Olive Children Childr	CH ₂ Cl ₂ : 4 mL
NCV	¹ H NMR (400 MHz, CDCl ₃) δ 8.13 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.65
	(t, J = 6.8 Hz, 1H), 7.42 (t, J = 6.8 Hz, 1H), 6.65 (s, 1H), 4.04 (s, 3H), 2.87 (tt, J = 8.8, 1H), 4.04 (s, 3H), 2.87 (tt, J = 8.8, 1H), 5.65 (s,
11	3.2 Hz, 1H), 2.05-2.02 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.67-1.57 (m,
	2H), 1.52-1.42 (m, 2H), 1.39-1.29 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 168.3,
	162.5, 148.8, 129.7, 128.5, 124.8, 121.6, 120.4, 98.0, 55.5, 48.4, 33.0, 26.7, 26.2.
	methyl 1-cyclohexylisoquinoline-3-carboxylate (12) ⁶
	Reaction of methyl isoquinoline-3-carboxylate (36 mg, 0.19 mmol) gave the title
CO ₂ Me	compound (37 mg, 71%, colorless solid).
N N	CH_2Cl_2 : 4 mL
Cy	¹ H NMR (400 MHz, CDCl ₃) δ 8.40 (s, 1H), 8.28-8.26 (m, 1H), 7.95-7.93 (m, 1H),
12	7.72-7.69 (m, 2H), 4.03 (s, 3H), 3.60-3.54 (m, 1H), 1.99-1.80 (m, 7H), 1.59-1.34 (m,
	3H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 166.2, 140.8, 136.1, 130.2, 129.2, 129.1,
	127.8, 125.1, 122.5, 52.8, 42.1, 32.3, 26.9, 26.2.
	5-bromo-1-cyclohexylisoquinoline (13) ⁷
	Reaction of 5-bromoisoquinoline (42 mg, 0.20 mmol) gave the title compound (39 mg,
Br	67%, yellow oil).
	CH_2Cl_2 : 4 mL
Ň	¹ H NMR (400 MHz, CDCl ₃) δ 8.58 (d, $J = 6.0$ Hz, 1H), 8.21 (d, $J = 8.4$ Hz, 1H), 7.93
Су	(d, J = 6.8 Hz, 1H), 7.86 (d, J = 5.6 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 3.54 (t, J = 11.4
13	Hz, 1H), 1.98-1.92 (m, 4H), 1.87-1.78 (m, 3H), 1.57-1.37 (m, 3H); ¹³ C NMR (100
	MHz, CDCl ₃): δ 166.2, 143.4, 135.6, 133.5, 127.6, 127.2, 124.6, 122.7, 117.8, 41.9,
	32.8, 27.0, 26.3.
	5-nitro-1-cyclohexylisoquinoline (14) ⁶
	Reaction of 5-nitroisoquinoline (34 mg, 0.19 mmol) gave the title compound (25 mg,
NO ₂	51%, colorless oil).
	CH ₂ Cl ₂ : 4 mL
N	¹ H NMR (400 MHz, CDCl ₃) δ 8.69 (d, $J = 6.0$ Hz, 1H), 8.58 (d, $J = 8.4$ Hz, 1H), 8.43
Cy	(d, J = 7.2 Hz, 1H), 8.22 (d, J = 6.0 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 3.57 (t, J = 11.4
14	Hz, 1H), 2.06-1.80 (m, 7H), 1.54-1.45 (m, 2H), 1.45-1.34 (m, 1H); ¹³ C NMR (100
	MHz, CDCl ₃): δ 166.6, 146.1, 145.4, 131.5, 129.0, 127.4, 127.0, 125.3, 113.6, 42.3,
	32.9, 26.9, 26.2.
	6-cyclohexylphenanthridine (15) ⁶
	Reaction of phenanthridine (35 mg, 0.20 mmol) gave the title compound (43 mg, 83%,
N Cy	colorless oil).
15	CH ₂ Cl ₂ : 4 mL
15	¹ H NMR (400 MHz, CDCl ₂) δ 8.64 (d, J = 8.4 Hz, 1H), 8.52 (d, J = 7.6 Hz, 1H), 8.30

⁷ X.-L. Lyu, S.-S. Huang, H.-J. Song, Y.-X. Liu, Q.-M. Wang, Org. Lett., 2019, **21**, 5728–5732.

	(d, J = 8.4 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.72-7.67 (m,
	2H), 7.59 (t, <i>J</i> = 7.0 Hz, 1H), 3.63-3.57 (m, 1H), 2.09-1.71 (m, 7H), 1.62-1.37 (m, 3H);
	¹³ C NMR (100 MHz, CDCl ₃): δ 165.4, 144.0, 133.1, 130.05, 130.02, 128.5, 127.2,
	126.2, 125.7, 124.8, 123.4, 122.7, 121.9, 42.1, 32.4, 27.0, 26.4.
	2-cyclohexylbenzothiazole (16) ⁶
	Reaction of benzothiazole (31 mg, 0.23 mmol) gave the title compound (24 mg, 47%,
	colorless oil).
N	CH_2Cl_2 : 4 mL
s	¹ H NMR (400 MHz, CDCl ₃) δ 7.97 (d, $J = 8.0$ Hz, 1H), 7.85 (d, $J = 7.6$ Hz, 1H), 7.45
16	(t, J = 7.2 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 3.15-3.08 (m, 1H), 2.21 (d, J = 12.0 Hz, 10.16 Hz)
	2H), 1.89 (d, J = 12.8 Hz, 2H), 1.77 (d, J = 12.4 Hz, 1H), 1.70-1.63 (m, 2H), 1.45 (q,
	$J = 12.8$ Hz, 2H), 1.37-1.31 (m, 1H); ¹³ C NMR (100 MHz, CDCl ₃): δ 177.8, 153.2,
	134.7, 125.9, 124.6, 122.7, 121.7, 43.6, 33.6, 26.2, 25.9.
	2-cyclohexyl-4-hydroxyquinazoline (18) ⁸
	Reaction of 4-hydroxyquinazoline (29 mg, 0.20 mmol) gave the title compound (29
ОН	mg, 64%, colorless solid).
N	CH ₃ CN/H ₂ O: 4 mL (1/1)
N Cy	¹ H NMR (400 MHz, CDCl ₃) δ 11.8 (br s, 1H), 8.29 (d, J = 7.6 Hz, 1H), 7.79-7.71 (m,
18	2H), 7.49-7.45 (m, 1H), 2.78-2.72 (m, 1H), 2.08-2.05 (m, 2H), 1.95-1.92 (m, 2H), 1.83-
	1.74 (m, 3H), 1.51-1.38 (m, 3H); ¹³ C NMR (100 MHz, CDCl ₃): δ 164.4, 160.4, 149.7,
	134.8, 127.5, 126.4, 126.3, 120.9, 45.0, 30.6, 26.2, 25.8.
	2-cyclohexyl-4-hydroxyquinazoline (19) ⁶
ÇI	Reaction of 3,6-dichloropyridazine (29 mg, 0.20 mmol) gave the title compound (15
Cy	mg, 33%, colorless oil).
Ň	CH_2Cl_2 : 4 mL
ĊI	¹ H NMR (400 MHz, CDCl ₃) δ 7.35 (s, 1H), 2.90-2.84 (m, 1H), 1.98-1.90 (m, 4H),
19	1.84-1.81 (m, 1H), 1.51-1.41 (m, 2H), 1.37-1.26 (m, 3H); ¹³ C NMR (100 MHz,
	CDCl ₃): δ 156.8, 156.4, 148.8, 127.2, 40.2, 31.9, 26.3, 25.8.
	2,6-dicyclohexyl-4-(trifluoromethyl)pyridine (20) ⁶
	Reaction of 4-(trifluoromethyl)pyridine (30 mg, 0.21 mmol) gave the title compound
CE	(27 mg, 43%, colorless oil).
	Cyclohexylsilicate (0.32 g, 0.44 mmol), CH ₂ Cl ₂ : 4 mL
	¹ H NMR (400 MHz, CDCl ₃) δ 7.15 (s, 2H), 2.78-2.72 (m, 2H), 1.98-1.95 (m, 4H),
	1.87-1.84 (m, 4H), 1.78-1.74 (m, 2H), 1.56-1.38 (m, 8H), 1.33-1.27 (m, 2H); ¹³ C NMR
20	(100 MHz, CDCl ₃): δ 167.3, 138.8 (q, J = 32.1 Hz), 123.5 (q, J = 271.4 Hz), 113.6,
	46.7, 33.0, 26.6, 26.1.

⁸ N. Y. Kim, C.-H. Cheon, *Tetrahedron Lett.*, 2014, **55**, 2340-2344.

5,7-dichloro-2-cyclohexyl-4-(4-fluorophenoxy)quinoline (21)⁶

Reaction of 5,7-dichloro-4-(4-fluorophenoxy)quinoline (62 mg, 0.20 mmol) gave the title compound (51 mg, 65%, colorless solid).

CH₂Cl₂: 4 mL

¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.18-7.09 (m, 4H), 6.52 (s, 1H), 2.71-2.66 (m, 1H), 1.89-1.81 (m, 4H), 1.74-1.71 (m, 1H), 1.49-1.23 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 169.7, 162.4, 160.0 (d, J = 242.6 Hz), 151.5, 150.4 (d, J = 2.6 Hz), 134.9, 130.0, 128.7, 127.6, 122.1 (d, J = 8.3 Hz), 117.2 (d, J = 13.6 Hz), 117.0, 105.8, 47.4, 32.5, 26.4, 26.0.

Compound 22'

21

NBoc

22'

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. Fasudil (29 mg, 0.10 mmol, prepared from commercially available fasudil hydrochloride by washing with sodium hydroxide solution, extraction with CH₂Cl₂, and then concentration in vacuo), cyclohexylsilicate 2a (88 mg, 0.12 mmol), Mes-Acr⁺ (2.3 mg, 0.0055 mmol), TFA (24 mg, 0.21 mmol) and CH₂Cl₂ (4 mL) were added to the tube, and photoirradiation was carried out with stirring for 24 hours. To the solution was added K₂CO₃ (approximate 150 mg), and the mixture was vigorously stirred for 5 min. After that, the mixture was filtrated through a pad of Celite and washed with CH₂Cl₂. The filtrate was concentrated in vacuo and the residue was dissolved in CH₂Cl₂ (5 mL). Alkylated compound 22 was observed by ¹H NMR analysis. To the solution was added Boc₂O (44 mg, 0.2 mmol) and Et₃N (30 mg, 0.3 mmol), and then the mixture was stirred at room temperature for 2 h. The solvent was removed in vacuo and the residue was purified by flash chromatography and GPC to afford compound 22' (20 mg, 43% for 2 steps) as a colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 4.4 Hz, 1H), 8.48 (d, J = 8.4 Hz, 1H), 8.32–8.23 (m, 2H), 7.65 (t, J = 6.6 Hz, 1H), 3.57-3.51 (m, 5H), 3.42-3.37 (m, 4H), 1.97-1.95 (m, 6H), 1.88-1.82 (m, 3H), 1.61–1.49 (m, 3H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 155.3, 154.9, 144.1, 135.1, 132.6, 132.3, 130.5, 127.1, 125.3, 115.4, 80.1, 80.0, 50.2, 50.0, 49.5, 49.4, 47.8, 47.5, 46.1, 45.6, 42.2, 32.9, 28.7, 28.5, 28.3, 26.9, 26.3. Spectral data are consistent with those reported in the literature.9

23

Compound 23

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. Quinine (63 mg, 0.20 mmol), cyclohexylsilicate **2a** (0.18 g, 0.25 mmol), Mes-Acr⁺ (4.7 mg, 0.011 mmol), TFA (48 mg, 0.42 mmol) and 1,1,1,3,3,3-hexafluoro-2-propanol (4 mL) were added to the tube, and photoirradiation was carried out with stirring for

⁹ J. Wang, G.-X. Li, G. He, G. Chen, Asian J. Org. Chem., 2018, 7, 1307-1310.

	24 hours. The solvent was removed in vacuo and the residue was dissolved in CH ₂ Cl ₂
	(3 mL). To the solution was added K ₂ CO ₃ (approximate 150 mg), the mixture was
	vigorously stirred for 5 min. The mixture was filtrated through a pad of Celite and
	washed with CH ₂ Cl ₂ . The filtrate was concentrated in vacuo, and the residue was
	purified by flash chromatography on silica gel to afford compound 23 (39 mg, 49%)
	as a colorless solid ¹ H NMR (400 MHz CDCL) δ 7.95 (d. $J = 9.2$ Hz 1H) 7.48 (s.
	1H) 7 30 (dd $I = 9.2, 2.8$ Hz 1H) 7 19 (d $I = 2.0$ Hz 1H) 5 77-5 69 (m 1H) 5 57
	$(1 \ I = 2.8 \ Hz \ 1H) \ 4.08 \ 4.00 \ (m \ 2H) \ 2.88 \ (n \ 2H) \ 2.40 \ (hz \ n \ 1H) \ 2.12 \ 2.08 \ (m \ 2H) \ 2.10 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ n \ 1H) \ 2.12 \ 2.08 \ (m \ n \ n \ n \ n \ n \ n \ n \ n \ n \ $
	(d, J = 2.8 HZ, 1 H), 4.98-4.90 (H, 2 H), 5.88 (8, 5 H), 5.49 (H, 8, 1 H), 5.15-5.08 (H, 2 H), 2.27 (1 - 1 H), 1.04 (1.02 (-2 H), 1.04 (-2 H)))
	2H), 2.84-2.78 (m, 1H), 2.70-2.67 (m, 2H), 2.27 (br s, 1H), 1.94-1.92 (m, 2H), 1.84-
	1.73 (m, 6H), 1.56-1.25 (m, 9H); ¹³ C NMR (100 MHz, CDCl ₃): δ 164.1, 157.3, 147.7,
	144.0, 142.0, 131.3, 125.2, 121.1, 116.8, 114.5, 101.4, 72.4, 60.0, 57.3, 55.8, 47.5, 43.5,
	40.1, 33.0, 28.1, 27.7, 26.6, 26.2, 21.5. Spectral data are consistent with those reported
	in the literature. ¹⁰
	methyl 1-butylisoquinoline-3-carboxylate (24) ¹¹
∽ ∽ ∠CO₂Me	Reaction of methyl isoquinoline-3-carboxylate (37 mg, 0.20 mmol) and "butylsilicate
	2c (0.17 g, 0.24 mmol) gave the title compound (28 mg, 58%, pale yellow solid).
	CH_2Cl_2 : 4 mL
	¹ H NMR (400 MHz, CDCl ₃) δ 8.44 (s, 1H), 8.22 (d, <i>J</i> = 7.2 Hz, 1H), 7.96-7.94 (m,
24	1H), 7.76-7.70 (m, 2H), 4.05 (s, 3H), 3.38 (t, $J = 8.0$ Hz, 2H), 1.88-1.81 (m, 2H), 1.57-
24	1.47 (m, 2H), 0.99 (t, $J = 7.2$ Hz, 3H); ¹³ C NMR (100 MHz, CDCl ₃): δ 166.8, 163.4,
	140.7, 136.0, 130.6, 129.4, 129.0, 128.5, 125.8, 123.0, 53.0, 35.8, 32.4, 23.2, 14.1.
	methyl 1-(but-3-en-1-yl)isoquinoline-3-carboxylate (25) ¹²
22.14	Reaction of methyl isoquinoline-3-carboxylate (36 mg, 0.19 mmol) and butenylsilicate
N CO ₂ ivie	2d (0.17 g, 0.24 mmol) gave the title compound (19 mg, 41%, colorless solid).
	CH_2CI_2 : 4 mL
	¹ H NMR (400 MHz, CDCl ₃) \circ 8.46 (s, 1H), 8.22 (d, $J = 7.2$ Hz, 1H), 7.98-7.96 (m, 1H) 7.76 7.72 (m, 2H) 6.04 5.04 (m, 1H) 5.12 (dd, $L = 17.2$ 1.6 Hz, 1H) 5.02 (d, L
25	(11), 7.76-7.73 (11, 211), $0.04-3.94$ (11, 111), 5.15 (ad, $3 - 17.2$, 1.0 112, 111), 5.05 (a, $3 - 10.2$, 1.0 112, 111), 5.05 (a, $3 - 10.2$, 1.0 112, 111), 5.05 (a, $3 - 10.2$, 1.0 112, 1.0 113, 1.
25	$(100 \text{ MHz} \text{ CDCb}) \cdot \delta 166.8 \ 162.3 \ 140.7 \ 137.8 \ 136.0 \ 130.7 \ 129.5 \ 129.1 \ 128.5$
	125.6 123.1 115.3 53.0 35.0 33.9
CO ₂ Me	methyl 1-(2-(4-fluorophenyl))ethylisoquinoline-3-carboxylate (26)
N	Reaction of methyl isoquinoline-3-carboxylate (37 mg, 0.19 mmol) and 2-(4-
	fluorophenyl)ethyl silicate 2e (0.19 g, 0.24 mmol) gave the title compound (40 mg,
	67%, yellow solid).
	CH ₂ Cl ₂ : 4 mL
F	¹ H NMR (400 MHz, CDCl ₃) δ 8.47 (s, 1H), 8.16 (d, <i>J</i> = 8.0 Hz, 1H), 7.97 (d, <i>J</i> = 7.2
26	

¹⁰ G.-X. Li, C. A. Morales-Rivera, Y. Wang, F. Gao, G. He, P. Liu, G. Chen, *Chem. Sci.*, 2016, 7, 6407–6412

¹¹ C. D. Gilmore, K. M. Allan, B. M. Stoltz, J. Am. Chem. Soc., 2008, 130, 1558–1559.

¹² J. K. Matsui, D. N. Primer, G. A. Molander, *Chem. Sci.*, 2017, **8**, 3512–3522.

	Hz, 1H), 7.77-7.68 (m, 2H), 7.27-7.23 (m, 2H), 6.97 (t, $J = 8.8$ Hz, 2H), 4.06 (s, 3H), 3.68-3.64 (m, 2H), 3.20 (t, $J = 8.2$ Hz, 2H); ¹³ C NMR (100 MHz, CDCl ₃): δ 166.7, 161.6, 161.5 (d, $J = 242.2$ Hz), 140.7, 137.3 (d, $J = 3.3$ Hz), 136.0, 130.7, 130.0 (d, $J = 7.9$ Hz), 129.6, 129.1, 128.5, 125.3, 123.2, 115.3 (d, $J = 21.0$ Hz), 53.0, 37.3, 34.7; ¹⁹ F NMR (376 MHz, CDCl ₃): δ -117.3; HRMS (ESI, positive) <i>m/z</i> calcd for C ₁₉ H ₁₇ FNO ₂ [M+H] ⁺ : 310.1238, found: 310.1237; mp: 108-110 °C; IR (KBr): 1713, 1509, 1450, 1329, 1297, 1249, 1218, 987, 837, 747 cm ⁻¹ .
	methyl 1-(<i>sec</i> -butyl)isoquinoline-3-carboxylate (27) ¹³
CO ₂ Me	Reaction of methyl isoquinoline-3-carboxylate (36 mg, 0.19 mmol) and ^s butylsilicate 2f (0.17 g, 0.24 mmol) gave the title compound (33 mg, 71%, colorless oil). CH ₂ Cl ₂ : 4 mL
N N	¹ H NMR (400 MHz, CDCl ₃) δ 8.40 (s, 1H), 8.28 (d, <i>J</i> = 6.8 Hz, 1H), 7.95 (d, <i>J</i> = 7.6
27	Hz, 1H), 7.74-7.69 (m, 2H), 4.03 (s, 3H), 3.76-3.68 (m, 1H), 2.12-2.05 (m, 1H), 1.85- 1.78 (m, 1H), 1.46 (d, $J = 6.8$ Hz, 3H), 0.93 (t, $J = 7.4$ Hz, 3H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 166.5, 140.8, 136.1, 130.2, 129.1, 128.4, 125.1, 122.5, 52.8, 38.7, 29.5, 19.9, 12.6. (One peak is missing.)
	methyl 1-cyclopentylisoquinoline-3-carboxylate (28) ¹⁴
CO ₂ Me	Reaction of methyl isoquinoline-3-carboxylate (37 mg, 0.20 mmol) and cyclopentylsilicate $2g$ (0.17 g, 0.24 mmol) gave the title compound (41 mg, 81%, colorless oil).
28	¹ H NMR (400 MHz, CDCl ₃) δ 8.40 (s, 1H), 8.30-8.28 (m, 1H), 7.95-7.93 (m, 1H), 7.74-7.68 (m, 2H), 4.02-3.99 (m, 4H), 2.20-2.18 (m, 4H), 1.95-1.94 (m, 2H), 1.80-1.77 (m, 2H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.0, 165.1, 140.5, 136.0, 130.3, 129.1, 129.0, 128.7, 125.6, 122.6, 52.8, 43.9, 32.6, 26.0.
	methyl 1-cycloheptylisoquinoline-3-carboxylate (29) ¹⁴
CO ₂ Me	Reaction of methyl isoquinoline-3-carboxylate (36 mg, 0.19 mmol) and cycloheptylsilicate 2h (0.18 g, 0.24 mmol) gave the title compound (35 mg, 63%, colorless oil).
	CH ₂ Cl ₂ : 4 mL ¹ H NMR (400 MHz, CDCl ₃) δ 8.39 (s, 1H), 8.28-8.24 (m, 1H) 7.96-7.92 (m, 1H), 7.74-
29	7.68 (m, 2H), 4.02 (s, 3H), 3.76-3.72 (m, 1H), 2.12-2.07 (m, 4H), 1.94-1.91 (m, 2H), 1.79-1.69 (m, 6H); ¹³ C NMR (100 MHz, CDCl ₃): δ 167.7, 167.0, 140.6, 136.2, 130.2,
	129.2, 129.1, 127.6, 125.3, 122.5, 52.8, 44.2, 34.3, 28.2, 27.7.
CO ₂ Me	methyl 1-(4-tetrahydropyranyl)isoquinoline-3-carboxylate (29) ¹³
Ň	tetrahydropyranylsilicate 2i (0.17 g, 0.24 mmol) gave the title compound (35 mg, 66%).
	colorless solid).
20	CH ₂ Cl ₂ : 4 mL
50	¹ H NMR (400 MHz, CDCl ₃) δ 8.44 (s, 1H), 8.30-8.25 (m, 1H), 8.00-7.95 (m, 1H),

¹³ G.-X. Li, X. Hu, G. He, G. Chen, ACS Catal., 2018, 8, 11847–11853.

	7.78-7.70 (m, 2H), 4.19 (dd, $J = 11.2$, 2.4 Hz, 2H), 4.03 (s, 3H), 3.89-3.78 (m, 1H), 3.77-3.65 (m, 2H), 2.42-2.28 (m, 2H), 1.90 (d, $I = 13.6$ Hz, 2H); ¹³ C NMR (100 MHz
	CDCl ₃): δ 166.8, 163.9, 140.8, 136.2, 130.4, 129.4, 129.3, 127.7, 124.6, 122.9, 68.2,
	52.8, 39.3, 32.0
	methyl 1-(<i>tert</i> -butyl)isoquinoline-3-carboxylate (31) ¹³
CO ₂ Me	Reaction of methyl isoquinoline-3-carboxylate (37 mg, 0.20 mmol) and 'butylsilicate
	2j (0.17 g, 0.24 mmol) gave the title compound (29 mg, 60%, colorless solid).
	CH ₂ Cl ₂ : 4 mL
	¹ H NMR (400 MHz, CDCl ₃) δ 8.59 (d, $J = 6.8$ Hz, 1H), 8.41 (s, 1H), 7.98-7.96 (m,
31	1H), 7.72-7.66 (m, 2H), 4.03 (s, 3H), 1.70 (s, 9H); ¹³ C NMR (100 MHz, CDCl ₃): δ
	167.9, 167.0, 139.4, 137.3, 129.9, 129.6, 128.1, 127.8, 127.5, 123.3, 52.7, 40.4, 31.2.

5. Procedure of gram scale photocatalytic alkylation.

A 300 mL flask equipped with a magnetic stirring bar and a septum, was dried under vacuum with heating. After the flask was cooled to room temperature, it was purged with argon. 4-Methylquinoline (4) (1.02 g, 7.13 mmol), cyclohexylsilicate **2a** (6.08 g, 8.38 mmol), Mes-Acr⁺ (0.145 g, 0.353 mmol), TFA (0.867 g, 7.61 mmol) and CH₂Cl₂ (80 mL) were added to the flask, and photoirradiation was carried out with stirring for 48 hours. The flask was connected to an argon line during the reaction. After the reaction, Et₃N (1.95 mL, 14.0 mmol) was added to the solution. Evaporation of the solvents gave a crude material, which was purified with flash chromatography to give desired product **5** (1.15 g, 72%).

Scheme S4. Gram scale synthesis of 5.

6. Stern-Volmer quenching experiment

Stern-Volmer fluorescence quenching experiments were run with freshly prepared 5.0×10^{-5} M solutions of Mes-Acr⁺ in CH₂Cl₂ under an argon atmosphere using Jasco's spectrofluorometer (FP-6500). Concentration of an additive (**Q**: silicate **2a**, 2-cyclohexyl-2,3-dihydrobenzo[*d*]thiazole (**16**'), spirosilane **3**, benzothiazole+TFA, benzothiazole, TFA) was between 0 M and 0.025 M. The solution was irradiated at 429 nm, and fluorescence was measured at 510 nm. The fluorescence intensity was measured three times in the presence and absence of the additives (Tables S1-S6), and their ratio was plotted based on the Stern–Volmer expression as shown in eq S1 (Figure S3).

	Ic				
Run 1	Run 2	Run 3	average	$I_0/I_{\rm obs}$	silicate 2a (M)
545	542	544	544	1	0
126	124	127	126	4.30	0.005
80.8	81.3	82.3	81.4	6.68	0.01
63.5	64.1	64.5	64.0	8.49	0.015
55.4	55.0	55.4	55.2	9.84	0.02
46.2	47.0	47.3	46.8	11.6	0.025

 Table S1. Luminescence quenching data for Mes-Acr⁺ and silicate 2a.

Table S2. Luminescence quenching data for Mes-Acr⁺ and 16'.

I _{obs}					
Run 1	Run 2	Run 3	average	$I_0/I_{\rm obs}$	16' (M)
555	550	561	555	1	0
342	342	344	343	1.62	0.005
246	246	247	246	2.25	0.01
191	191	192	191	2.89	0.015
156	155	156	155	3.56	0.02
128	128	128	128	4.32	0.025

Run 1	Run 2	Run 3	average	$I_0/I_{ m obs}$	benzothiazole+TFA
566	565	565	565	1	0
545	547	547	546	1.03	0.005
548	549	551	549	1.02	0.01
527	528	529	528	1.07	0.015
544	547	545	545	1.03	0.02
533	535	537	535	1.05	0.025

Table S3. Luminescence quenching data for Mes-Acr⁺ and benzothiazole+TFA.

 Table S4. Luminescence quenching data for Mes-Acr⁺ and spirosilane (3).

	Ic				
Run 1	Run 2	Run 3	average	$I_0/I_{\rm obs}$	spirosilane 3
					(M)
551	553	551	552	1	0
562	561	563	562	0.98	0.005
559	561	561	560	0.98	0.01
560	560	560	560	0.98	0.015
567	569	568	568	0.97	0.02
585	583	582	583	0.94	0.025

Table S5. Luminescence quenching data for Mes-Acr⁺ and benzothiazole.

$I_{\rm obs}$					
Run 1	Run 2	Run 3	average	$I_0/I_{\rm obs}$	benzothiazole
					(M)
569	571	565	568	1	0
518	518	519	518	1.09	0.005
514	512	513	513	1.10	0.01
502	502	500	501	1.13	0.015
484	485	483	484	1.17	0.02
469	468	469	469	1.21	0.025

	Ic				
Run 1	Run 2	Run 3	average	$I_0/I_{\rm obs}$	TFA (M)
573	571	570	571	1	0
569	569	569	569	1.00	0.005
589	587	587	588	0.97	0.01
571	572	572	572	0.99	0.015
573	571	571	572	0.99	0.02
572	574	573	573	0.99	0.025

Table S6. Luminescence quenching data for Mes-Acr⁺ and TFA.

 $\frac{I_0}{I_{\rm obs}} = 1 + t_0 \, k_{\rm q} \, [\rm Q] \qquad (S1)$

 I_0 : the intensity of fluorescence without the additive

 I_{obs} : the intensity of fluorescence in the presence of the additive

 t_0 : the lifetime of the excited state of Ru(II) without the additive

 k_q : the quencher rate coefficient

[Q]: the concentration of the additive

Figure S3.

7. A radical clock experiment

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. 4-Methylquinoline (4) (28 mg, 0.20 mmol), alkylsilicate **2b** (0.18 g, 0.24 mmol), Mes-Acr⁺ (5.8 mg, 0.013 mmol), TFA (26 mg, 0.23 mmol) and CH₂Cl₂ (4 mL) were added to the tube, and photoirradiation was carried out with stirring for 24 hours. The Schlenk tube was connected to an argon line during the reaction. After the reaction, Et₃N (40 mg, 0.40 mmol) was added to the solution. Evaporation of the solvents gave a crude material, which was purified with flash chromatography to give desired product **32** (18 mg, 41%) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.69-7.65 (m, 1H), 7.52-7.48 (m, 1H), 7.14 (s, 1H), 2.93 (d, *J* = 7.2 Hz, 2H), 2.68 (s, 3H), 2.36 (quin, *J* = 7.6 Hz, 1H), 1.75-1.66 (m, 4H), 1.55-1.52 (m, 2H), 1.32-1.25 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 162.4, 147.9, 144.0, 129.5, 129.1, 126.9, 125.5, 123.7, 122.6, 45.3, 40.9, 32.7, 25.1, 18.9. Spectral data are consistent with those reported in the literature.¹⁴

8. Observation of an intermediate

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon gas. Benzothiazole (13 mg, 0.095 mmol), cyclohexylsilicate (**2a**) (91 mg, 0.13 mmol), Mes-Acr⁺ (2.7 mg, 0.0066 mmol), TFA (13 mg, 0.11 mmol) and CH₂Cl₂/H₂O (1/1, 4 mL) were added to the tube, and photoirradiation was carried out with stirring for 24 hours. The obtained organic compounds were extracted with CH₂Cl₂ (3 × 20 mL). Evaporation of the solvents gave a crude material, and yields of **16** and **16'** were determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard.

Scheme S6. Observation of the intermediate.

¹⁴ J. Dong, X. Lyu, Z. Wang, X. Wang, H. Song, Y. Liu, Q. Wang, *Chem. Sci.*, 2019, **10**, 976–982.

9. Dehydrogenation reaction

Synthesis of 2-cyclohexyl-2,3-dihydrobenzo[d]thiazole (16'):

To a stirred solution of cyclohexanecarboxaldehyde (2.52 g, 22.5 mmol) in dichloromethane (22.5 ml) was added 4Å molecular sieves (15.0 g). 2-Aminothiophenol (1.88 g, 15.0 mmol) was added dropwise to the mixture and stirred at room temperature for 2 h. After completion of the reaction, the reaction mixture was filtered to remove the molecular sieves. The solvent was evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel to give the desired product **16'** (2.53 g, 77%) as colorless solid. ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, *J* = 6.8 Hz, 1H), 6.85 (t, *J* = 7.6 Hz, 1H), 6.67 (t, *J* = 6.4 Hz, 1H), 6.56 (d, *J* = 7.6 Hz, 1H), 5.06 (d, *J* = 6.8 Hz, 1H), 4.11 (br s, 1H), 1.85-1.82 (m, 1H), 1.77-1.74 (m, 3H), 1.68-1.64 (m, 2H), 1.24-0.94 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 147.1, 127.1, 125.0, 121.6, 120.2, 109.9, 74.1, 45.3, 29.3, 29.1, 26.3, 25.80, 25.79; HRMS (ESI, positive) *m*/*z* calcd for C₁₃H₁₈NS [M+H]⁺: 220.1154, found: 220.1153; mp: 83-85 °C; IR (KBr): 3362, 2925, 2850, 1579, 1475, 1405, 1305, 1232, 1205, 734 cm⁻¹.

Dehydrogenation reaction:

2-Cyclohexyl-2,3-dihydrobenzo[*d*]thiazole **16'** (0.02 mmol), an additive (silicate **2a**, spirosilane **3**, TFA, Mes-Acr⁺) (0.02 mmol) and CD_2Cl_2 (0.7 mL) were added to an NMR tube. It was purged with argon gas. Yield of **16** was determined by ¹H NMR analysis.

	$ \begin{array}{c} $	—Су
entry	additive	yield of 16^a
1	cyclohexylsilicate 2a (1.0 eq.)	0
2	spirosilane 3 (1.0 eq.)	0
3	TFA (1.0 eq.)	0
4	Mes-Acr (5 mol%)	0
5^b	Mes-Acr (5 mol%)	38
6^b	Mes-Acr (5 mol%), TFA (1.0 eq.)	100

Table 7.

^a Yields are determined by ¹H NMR spectroscopy. ^b Blue light was irradiated.

10. Computational study of photocatalytic dehydrogenation

Density functional theory (DFT) calculations were conducted at the (U)B3LYP/6-311G+(d,p) level to gain insight into the reaction mechanism of photocatalytic dehydrogenation of intermediate II as solvated molecules using the PCM method considering solvation by CH₂Cl₂ using the Gaussian 09 program.¹⁵ The natural population analysis (NPA) analysis was conducted using the Gaussian 16 program.¹⁶ We chose 2-methylbenzothiazoline S1 as a model intermediate. Stern-Volmer experiments indicate that the radical cation of S1 could be generated by the excited state of the photocatalyst (Figure S3). The NPA analysis revealed that S1 has more negative hydrogen atom and radical cation of **S1** has more positive hydrogen atom than that in methane (Figure S4). These observations are consistent with previous reports that hydrogen atom in S1 reacts as hydride¹⁷ and radical cation of a nitrogen-containing compound easily deprotonates the alpha position of the nitrogen atom.¹⁸ Based on such the reactivity and DFT calculations, an energy profile of a plausible reaction mechanism for dehydrogenation of S1 to give S4 is shown in Figure S5a. In the proposed reaction mechanism, hydrogen molecule is formed together with protonated 2methylbenzothiazole S2 and radical S3 from S1 and its radical cation. Sum of calculated Gibbs free energy of hydrogen molecule, protonated 2-methylbenzothiazole S2 and radical S3 is only 5.7 kcal/mol higher than that of S1 and its radical cation. Proton transfer from S2 to S3, which is thermodynamically favored by 12.0 kcal/mol, gives desired product S4 and radical cation of S1. Resulting radical cation of S1 would be quenched by reduced photocatalyst or react with other S1 again. TFA would facilitate protonation of S3 and S4, which makes the dehydrogenation process irreversible (Figure S5b).

¹⁵ Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

¹⁶ Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

¹⁷ C. Zhu, T. Akiyama, Org. Lett., 2009, **11**, 4180–4183.

¹⁸ G. W. Dombrowski, J. P. Dinnocenzo, J. Org. Chem., 2005, **70**, 3791–3800.

Cartesian Coordinates:

S1			
С	-2.86572400	-0.58209500	0.01946500
С	-1.67803400	-1.32556000	0.00493600
С	-0.46509500	-0.65326500	-0.00066000
С	-0.41033600	0.75169800	0.01502000
С	-1.59364400	1.48822100	0.02282000
С	-2.81796400	0.81095800	0.02539100

Н	-3.81980900	-1.09572500	0.01840100
Н	-1.70778600	-2.40892100	-0.00706000
Н	-1.56248800	2.57227300	0.03296400
Н	-3.73898800	1.38277600	0.02842900
Ν	0.88904700	1.26140400	0.08615900
Н	1.01093700	2.20363500	-0.26501100
S	1.17549600	-1.35059200	0.02839300
С	1.89842900	0.31324100	-0.40030800
С	3.26344900	0.53001500	0.22876500
Н	3.20400700	0.46164600	1.31641200
Н	1.97751500	0.35052100	-1.49429900
Н	3.63830600	1.52183200	-0.04104600
Н	3.98055800	-0.20767500	-0.13876000

E = -763.34109432 a.u.

Radical cation of S1

С	-2.79042200	-0.59989000	0.19711700
С	-1.62910000	-1.34934600	0.12081800
С	-0.41733800	-0.67467600	-0.04283200
С	-0.38824800	0.75669700	-0.12985600
С	-1.58456400	1.50511800	-0.04550200
С	-2.76346400	0.81831300	0.11496900
Н	-3.74138600	-1.10218700	0.32199100
Н	-1.65611400	-2.42913400	0.18363300
Н	-1.55634200	2.58552900	-0.10692100
Н	-3.69542400	1.36551600	0.18011300
Ν	0.84862400	1.24740600	-0.28517000
Н	1.02657400	2.24158600	-0.37265700
S	1.16871200	-1.35905800	-0.15644900
С	1.95514700	0.30716400	-0.36887600
С	3.05536800	0.58156100	0.65344300
Н	2.66074100	0.55558400	1.66942900
Н	2.36196200	0.32565500	-1.38503600
Н	3.84520900	-0.16370900	0.55357300
Н	3.49074400	1.56459300	0.45956900

E = -763.14697163 a.u.

S2

С	-2.82258900	-0.57246400	0.00702500
С	-1.66277600	-1.33654200	0.00638300
С	-0.44457700	-0.65762100	0.00266700
С	-0.39915900	0.74294400	-0.00194700
С	-1.56380600	1.51097000	-0.00223500
С	-2.77341200	0.83192000	0.00282000
Н	-3.78390700	-1.07094900	0.01036100
Н	-1.70269100	-2.41797500	0.00888200
Н	-1.52043300	2.59294600	-0.00599800
Н	-3.69737300	1.39630900	0.00327700
Ν	0.91898600	1.19844300	-0.01126500
Н	1.15315100	2.18681500	-0.01401100
S	1.18771900	-1.31305100	-0.00875900
С	1.85922400	0.26650100	-0.01253600
С	3.31593200	0.55554200	0.01663800
Н	3.66296900	0.57773700	1.05431000
Н	3.52434300	1.52387700	-0.43955800
Н	3.87451400	-0.21653600	-0.51115800

E = -762.57739220 a.u.

S3

С	-2.84016000	-0.57720000	0.06050700
С	-1.65653100	-1.32472700	0.03484600
С	-0.44246500	-0.65337500	-0.00941600
С	-0.38948200	0.75468600	-0.02469200
С	-1.57345000	1.49826600	-0.01016100
С	-2.79171800	0.81840900	0.03588200
Н	-3.79515200	-1.08766400	0.09422500
Н	-1.68830100	-2.40777700	0.04749000
Н	-1.54173500	2.58163700	-0.03173300
Н	-3.71380900	1.38824400	0.04890100
Ν	0.90311100	1.23493400	-0.04355100
Н	1.09505300	2.21688100	-0.18067600
S	1.19570000	-1.33983600	-0.03773800
С	1.91373600	0.28413600	-0.27517400
С	3.30653600	0.56291700	0.19036600
Н	3.38746900	0.58857400	1.28913400
Н	3.64654700	1.53052800	-0.19116000

E = -762.69717794 a.u.

H ₂			
Н	0.00000000	0.00000000	0.37225700
Н	0.00000000	0.00000000	-0.37225700
E = -1.17970042 a.u.			

S4			
С	-2.80995400	-0.55685500	0.00001700
С	-1.64707000	-1.32098700	0.00002700
С	-0.42245900	-0.65184800	-0.00000100
С	-0.35130500	0.75913900	-0.00002700
С	-1.53317000	1.51034300	-0.00002700
С	-2.75313800	0.84624700	-0.00000200
Н	-3.77279500	-1.05444400	0.00002800
Н	-1.69502800	-2.40307700	0.00002800
Н	-1.47958500	2.59260800	-0.00003800
Н	-3.67430400	1.41721600	-0.00000700
Ν	0.93391500	1.28698800	0.00003200
S	1.20396700	-1.30503000	-0.00002300
С	1.83520200	0.36096300	0.00002200
С	3.30956100	0.60507600	0.00001800
Н	3.78056800	0.16349100	0.88217200
Н	3.49383600	1.67914000	0.00037400
Н	3.78041700	0.16417100	-0.88257000

E = -762.14638788 a.u.

11. Detection of hydrogen gas

Formation of H₂ from **16'** was confirmed by the following experiment of Ru-catalyzed hydrogenation of 1-decene. An H-type flask was used, in which two test tubes were connected with a glass tube. In a left tube, under argon atmosphere, Mes-Acr⁺ (5.0 mol %), **16'** (0.50 mmol), TFA (0.50 mmol) and dichloromethane (3.5 mL) were placed. In a right flask, under argon atmosphere, RhCl(PPh₃)₃ (2.0 mol %), 1-decene (1.0 mmol), and benzene (3 mL) were placed. The H-type flask was sealed. The mixture in the left flask was stirred and irradiated at room temperature for 24 h, while the mixture in the right flask was stirred at 50 °C. Formation of 0.11 mmol of dehydrogenated product **16** and recovery of 0.37 mmol of **16'** was observed by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. The yield of decane was determined by GC analysis using dodecane as an internal standard. In the right flask, 0.06 mmol of decane was produced, which means at least 0.06 mmol of H₂ was evolved from 0.11 mmol of **16'** in the left flask and transferred to the right flask.

Scheme S8.

Formation of H₂ in the photocatalytic alkylation of lepidine (4) and cyclohexylsilicate **2a** was confirmed by the following experiment of Ru-catalyzed hydrogenation of 1-decene. An H-type flask was used, in which two test tubes were connected with a glass tube. In a left tube, under argon atmosphere, Mes-Acr⁺ (5.0 mol %), 4 (0.50 mmol), **2a** (0.60 mmol), TFA (0.55 mmol) and dichloromethane (3.5 mL) were placed. In a right flask, under argon atmosphere, RhCl(PPh₃)₃ (2.0 mol %), 1-decene (1.0 mmol), and benzene (3 mL) were placed. The H-type flask was sealed. The mixture in the left flask was stirred and irradiated at room temperature for 24 h, while the mixture in the right flask was stirred at 50 °C. Formation of 0.27 mmol of alkylated product **5** was observed by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. The yield of decane was determined by GC analysis using dodecane as an internal standard. In the right flask, 0.22 mmol of decane was produced, which means at least 0.22 mmol of H₂ was evolved in the left flask and transferred to the right flask.

12. Electrochemical property of alkylsilicates

The redox potentials of alkylsilicate **2** were determined by differential pulse voltammetry (DPV) analysis, which are summarized in Table S8. Substrate concentration was 1 mM, and 50 mM solution of Bu₄NBF₄ in CH₃CN was used for solvent. A glassy carbon working electrode, a platinum counter electrode, an Ag/AgNO₃ reference electrode were used. We measured the redox potential with respect to the [FeCp₂]/[FeCp₂]⁺ couple, which was converted to saturated calomel electrode (SCE) by adding 0.469 V.¹⁹ Voltammograms of DPV and cyclic voltammetry (CV) are shown in Figures S6-S15.

Table S8.

	alkylsilicate	oxidation potential (V vs. SCE)		alkyl	silicate	oxidation potential (V vs. SCE)
2a	$R = \frac{\xi}{\xi}$	+1.47	2f	R =	<u></u>	+1.33
2b	R =	+1.51	2g	R =	*	+1.42
2c	R =/	+1.64	2h	R =	2	+1.28
2d	R =/	+1.53	2i	R =	<u></u>	D +1.32
2e	$R = \frac{1}{2}$	}—F +1.48	2j	R =	- <u></u>	+1.04 +1.28

¹⁹ D. Bao, B. Millare, W. Xia, B. G. Steyer, A. A. Gerasimenko, A. Ferreira, A. Contreras, V. I. Vullev, J. Phys. Chem. A., 2009, 113, 1259–1267.

13. NMR spectra

Figure S16. ¹H NMR (400 MHz) spectrum of 2a in acetone- d_6 .

Figure S17. ¹³C NMR (100 MHz) spectrum of 2a in acetone- d_6 .

Figure S18. ¹⁹F NMR (376 MHz) spectrum of 2a in acetone- d_6 .

Figure S19. ²⁹Si NMR (79 MHz) spectrum of 2a in acetone- d_6 .

Figure S20. ¹H NMR (400 MHz) spectrum of 2c in acetone-*d*₆.

Figure S21. ¹³C NMR (100 MHz) spectrum of 2c in acetone- d_6 .

Figure S22. ¹⁹F NMR (376 MHz) spectrum of 2c in acetone- d_6 .

Figure S23. ²⁹Si NMR (79 MHz) spectrum of 2c in acetone- d_6 .

Figure S24. ¹H NMR (400 MHz) spectrum of 2d in acetone- d_6 .

Figure S25. ¹³C NMR (100 MHz) spectrum of 2d in acetone- d_6 .

 $F_3C_1C_7$

Figure S26. ¹⁹F NMR (376 MHz) spectrum of 2d in acetone- d_6 .

Figure S27. ²⁹Si NMR (79 MHz) spectrum of 2d in acetone- d_6 .

Figure S28. ¹H NMR (400 MHz) spectrum of 2e in acetone-*d*₆.

Figure S29. ¹³C NMR (100 MHz) spectrum of 2e in acetone- d_6 .

Figure S30. ¹⁹F NMR (376 MHz) spectrum of 2e in CD₃CN.

Figure S31. ²⁹Si NMR (79 MHz) spectrum of 2e in acetone- d_6 .

Figure S32. ¹H NMR (400 MHz) spectrum of 2f in acetone- d_6 .

Figure S33. ¹³C NMR (100 MHz) spectrum of 2f in acetone- d_6 .

GI_341_recryst

Figure S34. ¹⁹F NMR (376 MHz) spectrum of 2f in acetone- d_6 .

Figure S35. ²⁹Si NMR (79 MHz) spectrum of 2f in acetone- d_6 .

Figure S36. ¹H NMR (400 MHz) spectrum of 2g in acetone- d_6 .

Figure S37. ¹³C NMR (100 MHz) spectrum of 2g in acetone- d_6 .

Figure S38. ¹⁹F NMR (376 MHz) spectrum of 2g in acetone- d_6 .

Figure S39. ²⁹Si NMR (79 MHz) spectrum of 2g in acetone- d_6 .

Figure S40. ¹H NMR (400 MHz) spectrum of 2h in acetone-*d*₆.

Figure S41. ¹³C NMR (100 MHz) spectrum of 2h in acetone-*d*₆.

Figure S42. ¹⁹F NMR (376 MHz) spectrum of 2h in acetone- d_6 .

Figure S43. ²⁹Si NMR (79 MHz) spectrum of 2h in acetone- d_6 .

Figure S44. ¹H NMR (400 MHz) spectrum of 2i in acetone- d_6 .

Figure S45. ¹³C NMR (100 MHz) spectrum of 2i in acetone-*d*₆.

Figure S46. ¹⁹F NMR (376 MHz) spectrum of 2i in acetone- d_6 .

Figure S47. ²⁹Si NMR (79 MHz) spectrum of 2i in acetone- d_6 .

Figure S48. ¹H NMR (400 MHz) spectrum of 2j in acetone-*d*₆.

F₃C^{CF₃}

Figure S49. ¹³C NMR (100 MHz) spectrum of 2j in acetone- d_6 .

 $F_3C_1CF_3$

Figure S50. ¹⁹F NMR (376 MHz) spectrum of 2j in acetone- d_6 .

Figure S51. ²⁹Si NMR (79 MHz) spectrum of 2j in acetone- d_6 .

Figure S52. ¹H NMR (400 MHz) spectrum of 2b in acetone- d_6 .

GI_355_Si

Figure S53. ¹³C NMR (100 MHz) spectrum of 2b in acetone-*d*₆.

Figure S54. ¹⁹F NMR (376 MHz) spectrum of 2b in acetone- d_6 .

Figure S55. ²⁹Si NMR (79 MHz) spectrum of 2b in acetone- d_6 .

Figure S56. ¹H NMR (400 MHz) spectrum of 5 in CDCl₃.

Figure S57. ¹³C NMR (100 MHz) spectrum of 5 in CDCl₃.

Figure S58. ¹H NMR (400 MHz) spectrum of 6 in CDCl₃.

Figure S59. ¹³C NMR (100 MHz) spectrum of 6 in CDCl₃.

Figure S60. ¹H NMR (400 MHz) spectrum of 7 in CDCl₃.

Figure S61. ¹³C NMR (100 MHz) spectrum of 7 in CDCl₃.

Figure S62. ¹H NMR (400 MHz) spectrum of 8 in CDCl₃.

Figure S63. ¹³C NMR (100 MHz) spectrum of 8 in CDCl₃.

Figure S64. ¹H NMR (400 MHz) spectrum of 9 in CDCl₃.

Figure S65. ¹³C NMR (100 MHz) spectrum of 9 in CDCl₃.

Figure S66. ¹H NMR (400 MHz) spectrum of 10 in CDCl₃.

Figure S67. ¹³C NMR (100 MHz) spectrum of 10 in CDCl₃.

Figure S68. ¹H NMR (400 MHz) spectrum of 11 in CDCl₃.

Figure S69. ¹³C NMR (100 MHz) spectrum of 11 in CDCl₃.

Figure S70. ¹H NMR (400 MHz) spectrum of 12 in CDCl₃.

Figure S71. ¹³C NMR (100 MHz) spectrum of 12 in CDCl₃.

Figure S72. ¹H NMR (400 MHz) spectrum of 13 in CDCl₃.

Figure S73. ¹³C NMR (100 MHz) spectrum of 13 in CDCl₃.

Figure S74. ¹H NMR (400 MHz) spectrum of 14 in CDCl₃.

Figure S75. ¹³C NMR (100 MHz) spectrum of 14 in CDCl₃.

Figure S76. ¹H NMR (400 MHz) spectrum of 15 in CDCl₃.

Figure S77. ¹³C NMR (100 MHz) spectrum of 15 in CDCl₃.

Figure S78. ¹H NMR (400 MHz) spectrum of 16 in CDCl₃.

Figure S79. ¹³C NMR (100 MHz) spectrum of 16 in CDCl₃.

Figure S80. ¹H NMR (400 MHz) spectrum of 18 in CDCl₃.

Figure S81. ¹³C NMR (100 MHz) spectrum of 18 in CDCl₃.

Figure S82. ¹H NMR (400 MHz) spectrum of 19 in CDCl₃.

Figure S83. ¹³C NMR (100 MHz) spectrum of 19 in CDCl₃.

Figure S84. ¹H NMR (400 MHz) spectrum of 20 in CDCl₃.

Figure S85. ¹³C NMR (100 MHz) spectrum of 20 in CDCl₃.

Figure S86. ¹H NMR (400 MHz) spectrum of 21 in CDCl₃.

Figure S87. ¹³C NMR (100 MHz) spectrum of 21 in CDCl₃.

Figure S88. ¹H NMR (400 MHz) spectrum of 22' in CDCl₃.

Figure S89. ¹³C NMR (100 MHz) spectrum of 22' in CDCl₃.

Figure S90. ¹H NMR (400 MHz) spectrum of 23 in CDCl₃.

Figure S91. ¹³C NMR (100 MHz) spectrum of 23 in CDCl₃.

Figure S92. ¹H NMR (400 MHz) spectrum of 24 in CDCl₃.

Figure S93. ¹³C NMR (100 MHz) spectrum of 24 in CDCl₃.

Figure S94. ¹H NMR (400 MHz) spectrum of 25 in CDCl₃.

Figure S95. ¹³C NMR (100 MHz) spectrum of 25 in CDCl₃.

GI__511_13C

Figure S96. ¹H NMR (400 MHz) spectrum of 26 in CDCl₃.

Figure S97. ¹³C NMR (100 MHz) spectrum of 26 in CDCl₃.

Figure S98. ¹⁹F NMR (376 MHz) spectrum of 26 in CDCl₃.

Figure S99. ¹H NMR (400 MHz) spectrum of 27 in CDCl₃.

Figure S100. ¹³C NMR (100 MHz) spectrum of 27 in CDCl₃.

Figure S101. ¹H NMR (400 MHz) spectrum of 28 in CDCl₃.

Figure S102. ¹³C NMR (100 MHz) spectrum of 28 in CDCl₃.

Figure S103. ¹H NMR (400 MHz) spectrum of 29 in CDCl₃.

Figure S104. ¹³C NMR (100 MHz) spectrum of 29 in CDCl₃.

Figure S105. ¹H NMR (400 MHz) spectrum of 30 in CDCl₃.

Figure S106. ¹³C NMR (100 MHz) spectrum of **30** in CDCl₃.

Figure S107. ¹H NMR (400 MHz) spectrum of 31 in CDCl₃.

Figure S108. ¹³C NMR (100 MHz) spectrum of 31 in CDCl₃.

Figure S109. ¹H NMR (400 MHz) spectrum of 32 in CDCl₃.

Figure S110. ¹³C NMR (100 MHz) spectrum of 32 in CDCl₃.

Figure S111. ¹H NMR (400 MHz) spectrum of 16' in CDCl₃.

Figure S112. ¹³C NMR (100 MHz) spectrum of 16' in CDCl₃.