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1. General 

 Mes-Acr+, TFA, 4CzIPN, (NH4)2S2O8, Et3N, Et4NBr, 4-methylquinoline (4), 2-methylquinoline, quinoline, 2-

phenylquinoline, 4-chloroquinoline, 4-bromoquinoline, methyl isoquinoline-3-carboxylate, 5-bromoisoquinoline, 5-

nitroisoquinoline, phenanthridine, benzothiazole, benzimidazole, 4-hydroxyquinazoline, 3,6-dichloropyridazine, 4-

(trifluoromethyl)pyridine, 5,7-dichloro-4-(4-fluorophenoxy)quinoline, fasudil hydrochloride and quinine were 

commercially available and used without further purification. 4-Methoxyquinoline, 1  potassium [18-crown-6] 

bis(catecholato)cyclohexylsilicate (1a) 2  and 3,3,3',3'-tetrakis(trifluoromethyl)-1,1'(3H,3'H)-spirobi-[2,l-

benzoxasilole] (3)3  were synthesized according to the reported literature. Distilled water, dehydrated CH3CN, 

CH2Cl2, THF and diethyl ether were used for solvent. Unless otherwise noted, all materials were obtained from 

commercial suppliers and used without further purification. Flash chromatography was carried out on a silica gel 

(Kanto Chem. Co., Silica Gel N, spherical, neutral, 40-100 μm). Preparative gel permeation chromatography (GPC) 

was carried out on Japan Analytical Industry LC-918 equipped with JAIGEL-1H and 2H using CHCl3 as an eluent. 

Photocatalytic alkylation was carried out in a Schlenk tube (30 mL) with photoirradiation using blue LED (Kessil, A 

160WE TUNA Blue) and a cooling fan was used to avoid heating the reaction mixture (Figure S1). Gram scale 

photocatalytic alkylation was carried out in a round-bottom flask with a septum (300 mL) (Figure S2). All NMR 

spectra were measured on Unity Inova-400 instrument (Varian Inc., 400 MHz for 1H, 100 MHz for 13C) or AVANCE 

III HD Nano Bay (Bruker Co., 400 MHz for 1H, 100 MHz for 13C) at 22 °C using CDCl3 as a solvent unless otherwise 

noted. Tetramethylsilane (TMS) (δ = 0), CHCl3 (δ = 7.26) and acetone (δ = 2.05) served as an internal standard for 

1H NMR spectra, and acetone was used as an internal standard (δ = 206.26) for 13C NMR spectra. CF3COOH (δ 

=76.55) was as used as an external standard for 19F NMR spectra. Tetramethylsilane (TMS) (δ = 0) was used as an 

external standard for 29Si NMR spectra. The redox potential of alkylsilicate 2 was determined by differential pulse 

voltammetry (DPV) analysis using the ALS electrochemical analyzer (ALS612E). Stern-Volmer fluorescence 

quenching experiments were run using the Jasco’s spectrofluorometer (FP-6500). 
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Figure S1. Reaction set up (0.1 mmol or 0.2 mmol scale) 

 

Figure S2. Reaction set up (gram scale). 
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2. General procedure for silicate synthesis 

Procedure A: 

Magnesium turnings (4.0 equiv) were activated by addition of single chip of I2 (20–30 mg) and heating under 

vacuum for 5 min in double neck round bottom flask. Then dry THF (5.0 mL/1 mmol of 3) was added to the reaction 

flask under inert atmosphere. Alkyl bromide (3.0 equiv) was added and reaction mixture was heated at 60 °C for 15-

20 min. 3,3,3',3'-Tetrakis(trifluoromethyl)-1,1'(3H,3'H)-spirobi-[2,l-benzoxasilole] (3) (1.0 eq.) in dry THF (5 

mL/mmol of 3) was added to the solution of the Grignard reagent in double neck round bottom flask under inert 

atmosphere and the reaction mixture was refluxed overnight. Subsequent hydrolysis was achieved by the cautious 

addition of EtOH (10 mL) at 0 °C. The solution was filtered and evaporated under reduced pressure to give a colorless 

oil. CH2Cl2 (20 mL) and Et4NBr (3.0-5.0 eq.) were added to the oil and the mixture was stirred for 1 hour. The 

reaction mixture was washed with water (20 mL × 3), dried over Na2SO4 and evaporated to get crude product. 

Recrystallization of the crude product with CH2Cl2/hexane afforded alkylsilicate (2). 

 

Scheme S1. 

 

Procedure B:4 

 In a 100 mL flask, 3,3,3',3'-tetrakis(trifluoromethyl)-1,1'(3H,3'H)-spirobi-[2,l-benzoxasilole] (3) (1.0 equiv) was 

dissolved in Et2O (5 mL/mmol of 3). The solution was stirred and alkyllithium reagent (1.1-3.0 equiv) was added at 

–78 °C. After 15 min at –78 °C, the mixture was stirred for 3 hours at room temperature. The mixture was quenched 

with EtOH (10 mL) at 0 °C and evaporated under reduced pressure to give a colorless oil. CH2Cl2 (20 mL) and 

Et4NBr (3.0-5.0 equiv) were added to the oil and the mixture was stirred for 1 hour. The reaction mixture was washed 

with water (20 mL × 3), dried over Na2SO4 and evaporated to get crude product. Recrystallization of the crude product 

with CH2Cl2/hexane afforded alkylsilicate (2). 

 

Scheme S2. 

 

4 This procedure is based on the following paper. W. H. Stevenson, S. Wilson, J. C. Martin, W. B. Farnham, J. Am. Chem. Soc., 1985, 107, 6340–6352. 
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2a 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]cyclohexylsilicate (2a) 

Following the general procedure A, reaction of 3 (2.06 g, 4.02 mmol) gave the 

title compound (2.22 g, 76%, colorless solid). 

Cyclohexyl bromide (1.47 mL, 12.0 mmol), magnesium turnings (0.414 g, 17.0 

mmol), Et4NBr (4.22 g, 20.1 mmol). 

1H NMR (400 MHz, acetone-d6): δ 8.24 (d, J = 6.8 Hz, 2H), 7.44 (d, J = 6.8 Hz, 

2H), 7.29-7.21 (m, 4H), 3.51 (q, J = 7.2 Hz, 8H), 1.80-1.79 (m, 1H), 1.60-1.46 (m, 

4H), 1.42-1.38 (m, 12H), 1.08-0.84 (m, 6H); 13C NMR (100 MHz, acetone-d6): δ 

146.5, 142.0, 138.7, 128.4, 128.3, 126.0 (q, J = 286.9 Hz), 125.7 (q, J = 287.8 Hz), 

123.8, 82.7 (sept, J = 27.8 Hz), 53.0, 34.1, 30.1, 29.4, 28.4, 7.6; 19F NMR (376 

MHz, acetone-d6): δ –74.3 (q, J = 9.8 Hz), –75.6 (q, J = 9.8 Hz); 29Si NMR (79 

MHz, acetone-d6): δ –63.9; HRMS (ESI, negative) m/z calcd for C24H19F12O2Si 

[M–Et4N]–: 595.0968, found: 595.0940; mp: 195-200 °C.. 

 

2c 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]butylsilicate (2c) 

Following the general procedure B, reaction of 3 (1.02 g, 1.99 mmol) gave the 

title compound (1.25 g, 90%, colorless solid).  

1.55 M nBuLi in hexane (1.42 mL, 2.20 mmol), Et4NBr (0.868 g, 4.13 mmol). 

1H NMR (400 MHz, acetone-d6): δ 8.25 (d, J = 6.8 Hz, 2H), 7.45 (d, J = 6.0 Hz, 

2H), 7.30-7.22 (m, 4H), 3.51 (q, J = 7.2 Hz, 8H), 1.58-1.55 (m, 1H), 1.44-1.38 (m, 

12H), 1.14-1.13 (m, 3H), 0.75-0.71 (m, 5H); 13C NMR (100 MHz, acetone-d6): δ 

146.7, 142.0, 138.5, 128.6, 128.5, 125.9 (q, J = 289.6 Hz), 125.7 (q, J = 286.5 Hz), 

124.0, 82.7 (sept, J = 27.9 Hz), 53.0, 28.2, 27.7, 23.8, 14.4, 7.6; 19F NMR (376 

MHz, acetone-d6): δ –75.2 (q, J = 9.8 Hz), –75.6 (q, J = 9.4 Hz); 29Si NMR (79 

MHz, acetone-d6): δ –64.2; HRMS (ESI, negative) m/z calcd for C22H17F12O2Si 

[M–Et4N]–: 569.0812, found: 569.0812; mp: 181-184 ℃. 

 

2d 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]butenylsilicate (2d) 

Following the general procedure A, reaction of 3 (0.512 g, 0.998 mmol) gave the 

title compound (0.618 g, 89%, colorless solid).  

Cyclopropylmethyl bromide (0.291 mL, 3.00 mmol), magnesium turnings (0.140 

g, 5.77 mmol), Et4NBr (1.06 g, 5.05 mmol). 

1H NMR (400 MHz, acetone-d6): δ 8.25 (d, J = 6.8 Hz, 2H), 7.47 (d, J = 6.4 Hz, 

2H), 7.32-7.24 (m, 4H), 5.82-5.73 (m, 1H), 4.74 (d, J = 17.2 Hz, 1H), 4.59 (d, J = 

10.0 Hz, 1H), 3.50 (q, J = 6.8 Hz, 8H), 2.37-2.31 (m, 1H), 1.89-1.81 (m, 1H), 

1.41-1.38 (m, 12H), 0.89-0.76 (m, 2H); 13C NMR (100 MHz, acetone-d6): δ 146.2, 

145.6, 142.0, 138.4, 128.7, 128.6, 125.9 (q, J = 288.9 Hz), 125.7 (q, J = 285.9 Hz), 

124.0, 110.8, 82.7 (sept, J = 27.9 Hz), 53.0, 30.7, 23.4, 7.6; 19F NMR (376 MHz, 

acetone-d6): δ –75.3 (q, J = 9.4 Hz), –75.7 (q, J = 9.4 Hz); 29Si NMR (79 MHz, 

acetone-d6): δ –64.8; HRMS (ESI, negative) m/z calcd for C22H15F12O2Si [M–

Et4N]–: 567.0661, found: 567.0655; mp: 160-163 °C. 
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2e 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]-2-(4-fluorophenyl)ethylsilicate (2e) 

Following the general procedure A, reaction of 3 (0.513 g, 1.00 mmol) gave the 

title compound (0.611 g, 80%, colorless solid). 

1-(2-bromoethyl)-4-fluorobenzene (0.420 mL, 3.00 mmol), magnesium turnings 

(0.0926 g, 3.81 mmol), Et4NBr (0.630 g, 3.00 mmol), LiCl (0.153 g, 3.61 mmol) 

1H NMR (400 MHz, acetone-d6): δ 8.22 (d, J = 6.8 Hz, 2H), 7.58 (d, J = 6.4 Hz, 

2H), 7.45-7.35 (m, 4H), 7.10-7.02 (m, 2H), 6.91 (t, J = 8.8 Hz, 2H), 3.19-3.00 (m, 

8H), 2.91 (dt, J = 4.4, 13.6 Hz, 1H) 2.34-2.23 (t, J = 13.8 Hz, 1H), 1.39-0.88 (m, 

14H); 13C NMR (100 MHz, acetone-d6): δ 162.5, 161.3 (d, J = 237.8 Hz), 145.9, 

145.4 (d, J = 2.9 Hz), 142.0, 138.5, 129.9 (d, J = 7.5 Hz), 128.8, 125.9 (q, J = 

290.9 Hz), 125.6 (q, J = 286.4 Hz), 124.1, 115.1 (d, J = 20.8 Hz), 82.7 (sept, J = 

27.9 Hz), 52.9, 31.9, 27.5, 7.6; 19F NMR (376 MHz, CD3CN): δ –75.3 (q, J = 10.2 

Hz), –75.7 (q, J = 9.0 Hz), –121.1; 29Si NMR (79 MHz, acetone-d6): δ –65.5; 

HRMS (ESI, negative) m/z calcd for C26H16F13O2Si [M–Et4N]–: 635.0701, found: 

635.0717; mp: 167-170 °C. 

 

2f 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]-sec-butylsilicate (2f) 

Following the general procedure B, reaction of 3 (1.00 g, 1.96 mmol) gave the 

title compound (0.566 g, 41%, colorless solid) as mixture of two diastereomers.  

1.00 M sBuLi in hexane (2.20 mL, 2.20 mmol), Et4NBr (0.852 g, 4.05 mmol). 

1H NMR (400 MHz, acetone-d6): δ 8.27 (d, J = 6.4 Hz, 2H), 7.43 (d, J = 6.4 Hz, 

2H), 7.28-7.23 (m, 4H), 3.50-3.34 (m, 8H), 1.71-1.61 (m, 1H), 1.38 (br s, 12H), 

0.91-0.74 (m, 8H); 13C NMR (100 MHz, acetone-d6): δ 146.6, 142.0, 138.8, 128.4, 

128.3, 125.9 (q, J = 286.9 Hz), 125.7 (q, J = 287.8 Hz), 124.0, 82.7 (sept, J = 27.9 

Hz), 52.9, 29.8, 29.4, 27.8, 26.6, 16.85, 16.78, 15.0, 14.7, 7.5; 19F NMR (376 

MHz, acetone-d6): δ –74.5 (q, J = 9.8 Hz), –75.4 (q, J = 9.4 Hz), –75.6 (q, J = 9.0 

Hz); 29Si NMR (79 MHz, acetone-d6): δ –64.5; HRMS (ESI, negative) m/z calcd 

for C22H17F12O2Si [M–Et4N]–: 569.0809, found: 569.0812; mp: 139-143 °C. 

 

2g 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]cyclopentylsilicate (2g) 

Following the general procedure A, reaction of 3 (1.03 g, 2.01 mmol) gave the 

title compound (0.743 g, 52%, colorless solid). 

Cyclopentyl bromide (0.643 mL, 6.00 mmol), magnesium turnings (0.230 g, 9.44 

mmol), Et4NBr (1.34 g, 6.39 mmol). 

1H NMR (400 MHz, acetone-d6): δ 8.28 (d, J = 6.8 Hz, 2H), 7.45 (d, J = 5.6 Hz, 

2H), 7.32-7.23 (m, 4H), 3.52 (q, J = 7.2 Hz, 8H), 1.78-1.50 (m, 2H), 1.43-1.24 (m, 

17H), 1.22-1.08 (m, 2H); 13C NMR (100 MHz, acetone-d6): δ 146.9, 142.0, 138.6, 

128.5, 128.3, 126.0 (q, J = 286.9 Hz), 125.7 (q, J = 287.9 Hz), 123.7, 82.8 (sept, 

J = 27.9 Hz), 53.0, 34.2, 27.6, 27.4, 7.6; 19F NMR (376 MHz, acetone-d6): δ –74.5 

(q, J = 9.8 Hz), –75.5 (q, J = 9.8 Hz); 29Si NMR (79 MHz, acetone-d6): δ –63.3; 
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HRMS (ESI, negative) m/z calcd for C23H17F12O2Si [M–Et4N]–: 581.0792, found: 

581.0812; mp: 135-139 °C. 

 

2h 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]cycloheptylsilicate (2h) 

Following the general procedure A, reaction of 3 (0.517 g, 1.01 mmol) gave the 

title compound (0.514 g, 69%, colorless solid). 

Cycloheptyl bromide (0.406 mL, 3.00 mmol), magnesium turnings (0.104 g, 4.29 

mmol), Et4NBr (0.741 g, 3.52 mmol). 

1H NMR (400 MHz, acetone-d6): δ 8.26 (d, J = 6.8 Hz, 2H), 7.44 (d, J = 6.4 Hz, 

2H), 7.30-7.21 (m, 4H), 3.50 (q, J = 7.2 Hz, 8H), 1.89-1.85 (m, 2H), 1.62-1.28 (m, 

20H), 1.12-1.02 (m, 1H), 0.94-0.92 (m, 2H); 13C NMR (100 MHz, acetone-d6): δ 

146.6, 142.1, 138.9, 128.5, 128.4, 126.0 (q, J = 287.1 Hz), 125.7 (q, J = 287.5 Hz), 

123.9, 82.7 (sept, J = 28.1 Hz), 53.0, 35.1, 31.6, 31.35, 31.30, 31.2, 29.4, 28.6, 

7.6; 19F NMR (376 MHz, acetone-d6): δ –74.4 (q, J = 9.4 Hz), –75.6 (q, J = 9.8 

Hz); 29Si NMR (79 MHz, acetone-d6): δ –61.9; HRMS (ESI, negative) m/z calcd 

for C25H21F12O2Si [M–Et4N]–: 609.1119, found: 609.1125; mp: 212-217 °C. 

 

2i 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]-4-tetrahydropyranylsilicate (2i) 

Following the general procedure A, reaction of 3 (1.03 g, 2.00 mmol) gave the 

title compound (1.43 g, 98%, colorless solid). 

4-bromotetrahydropyrane (0.675 mL, 6.00 mmol), magnesium turnings (0.205 g, 

8.44 mmol), Et4NBr (1.30 g, 6.18 mmol). 

1H NMR (400 MHz, acetone-d6): δ 8.23 (d, J = 6.4 Hz, 2H), 7.46 (d, J = 6.0 Hz, 

2H), 7.34-7.24 (m, 4H), 3.74-3.68 (m, 2H), 3.50 (q, J = 7.6 Hz, 8H), 3.20-3.01 (m, 

2H), 1.91-1.72 (m, 1H), 1.69-1.51 (m, 1H), 1.47-1.12 (m, 14H), 1.10-0.99 (m, 

1H); 13C NMR (100 MHz, acetone-d6): δ 145.9, 142.0, 138.6, 128.6, 128.5, 125.8 

(q, J = 286.8 Hz), 125.5 (q, J = 287.7 Hz), 123.9, 82.7 (sept, J = 28.0 Hz), 71.2, 

70.8, 53.0, 31.2, 7.6; 19F NMR (376 MHz, acetone-d6): δ –74.4 (q, J = 9.4 Hz), –

75.7 (q, J = 9.8 Hz); 29Si NMR (79 MHz, acetone-d6): δ –65.2; HRMS (ESI, 

negative) m/z calcd for C23H17F12O3Si [M–Et4N]–: 597.0760, found: 597.0761; 

mp: 140-145 °C. 

 

2j 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]-tert-butylsilicate (2j) 

Following the general procedure B, reaction of 3 (3.07 g, 6.00 mmol) gave the 

title compound (3.68 g, 88%, colorless solid) as mixture of two stereoisomers.  

1.61 M tBuLi in hexane (11.2 mL, 18.0 mmol), Et4NBr (5.04 g, 24.0 mmol). 

1H NMR (400 MHz, acetone-d6): major isomer: δ 8.26 (d, J = 7.2 Hz, 2H), 7.41 

(d, J = 6.8 Hz, 2H), 7.31-7.18 (m, 4H), 3.44 (q, J = 7.6 Hz, 8H), 1.37-1.34 (m, 

12H), 0.82 (s, 9H), minor isomer: 7.97 (d, J = 6.8 Hz, 2H), 7.46 (d, J = 6.8 Hz, 

2H), 7.31-7.18 (m, 4H), 3.44 (q, J = 7.6 Hz, 8H), 1.37-1.34 (m, 12H), 0.86 (s, 9H); 

13C NMR (100 MHz, acetone-d6): δ 152.4, 147.5, 141.9, 140.0, 138.6, 136.7, 

128.2, 127.9, 127.6, 126.9, 126.0 (q, J = 286.9 Hz), 125.8 (q, J = 290.3 Hz), 125.3 
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(q, J = 284.9 Hz), 125.2 (q, J = 287.5 Hz), 124.4, 123.3, 82.7 (sept, J = 27.9 Hz), 

81.0 (sept, J = 28.5 Hz), 52.9, 31.8, 31.1, 24.0, 22.1, 7.6; 19F NMR (376 MHz, 

acetone-d6): δ –72.8 (q, J = 9.8 Hz), –74.0 (q, J = 8.3 Hz), –75.2 (q, J = 9.8 Hz), 

–75.8 (br q, J = 9.0 Hz); 29Si NMR (79 MHz, acetone-d6): δ –60.9, –62.6; HRMS 

(ESI, negative) m/z calcd for C22H17F12O2Si [M–Et4N]–: 569.0803, found: 

569.0812; mp: 259-260 °C. 

 

2b 

tetraethylammonium bis[α,α-bis(trifluoromethyl)- 

benzenemethanolate(2-)-C2,O]-hexenylsilicate (2b) 

Following the general procedure A, reaction of 3 (0.514 g, 1.00 mmol) gave the 

title compound (0.402 mL, 72%, colorless solid). 

6-bromo-1-hexene (0.402 mL, 3.00 mmol), magnesium turnings (0.154 g, 6.31 

mmol), Et4NBr (1.05 g, 4.98 mmol). 

1H NMR (400 MHz, acetone-d6): δ 8.25 (d, J = 6.8 Hz, 2H), 7.46 (d, J = 6.4 Hz, 

2H), 7.31-7.23 (m, 4H), 5.79-5.69 (m, 1H), 4.87 (d, J = 17.6 Hz, 1H), 4.77 (d, J = 

10.8 Hz, 1H), 3.50 (q, J = 7.2 Hz, 8H), 1.90-1.89 (m, 2H), 1.40-1.04 (m,16H), 

0.77-0.74 (m, 2H); 13C NMR (100 MHz, acetone-d6): δ 146.6, 142.1, 140.8, 138.5, 

128.6, 128.5, 126.0 (q, J = 289.3 Hz), 125.7 (q, J = 286.3 Hz), 124.0, 113.8, 82.8 

(sept, J = 28.2 Hz), 53.0, 34.6, 34.5, 25.7, 24.0, 7.6; 19F NMR (376 MHz, acetone-

d6): δ –75.2 (q, J = 9.4 Hz), –75.6 (q, J = 9.4 Hz); 29Si NMR (79 MHz, acetone-

d6): δ –64.3; HRMS (ESI, negative) m/z calcd for C24H19F12O2Si [M–Et4N]–: 

595.0968, found: 595.0968; mp: 107-108 °C. 

 

3. Optimization of the C–H alkylation of heteroaromatic compounds 

 A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. 

After cooling the tube to 23 °C, it was purged with argon gas. 4-Methylquinoline (4) (0.1 mmol), cyclohexylsilicate 

(2a) (0.12 mmol), photocatalyst (0.005 mmol), oxidant (0.2 mmol), TFA (0.11 mmol) and solvent (4 mL) were added 

to the tube, and photoirradiation was carried out with stirring for 24 hours. The Schlenk tube was connected to an 

argon line during the reaction. The alkylated product was observed by 1H NMR analysis. After the reaction, NaHCO3 

sat. (20 mL) was added. The obtained organic compounds were extracted with CH2Cl2 (3 × 20 mL). Evaporation of 

the solvents gave a crude material, and yield of 5 was determined by 1H NMR analysis using 1,1,2,2-tetrachloroethane 

as an internal standard. 
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4. Procedure of the C–H alkylation of heteroaromatic compounds 

 A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. 

After cooling the tube to 23 °C, it was purged with argon gas. The heteroaromatic substrate (0.2 mmol), alkylsilicate 

2 (0.24 mmol), Mes-Acr+ (0.01 mmol), TFA (0.22 mmol) and solvent (4 mL) were added to the tube, and 

photoirradiation was carried out with stirring for 24 hours. The Schlenk tube was connected to an argon line during 

the reaction. The alkylated product was observed by 1H NMR analysis. After the reaction, Et3N (0.4 mmol) was added 

to the solution. Evaporation of the solvents gave a crude material, which was purified with flash chromatography or 

GPC to give desired product. 

 Note: The present photocatalytic alkylation stops before completion when the large-scale reactions were carried out 

in a sealed flask. 

 

Scheme 3. 

 

 

5 

2-cyclohexyl-4-methylquinoline (5)5 

Reaction of 4-methylquinoline (4) (29 mg, 0.20 mmol) gave the title compound (32 

mg, 72%, colorless liquid). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.18 (d, J = 6.0 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.70 

(t, J = 7.2 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H), 7.21 (s, 1H), 3.10-2.84 (m, 1H), 2.71 (s, 

3H), 2.06-2.00 (m, 2H), 1.97-1.87 (m, 2H), 1.80-1.77 (m, 1H), 1.67-1.58 (m, 2H), 1.51-

1.42 (m, 2H), 1.38-1.32 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 166.6, 147.7, 144.3, 

129.6, 129.0, 127.2, 125.5, 123.7, 120.3, 47.7, 32.9, 26.7, 26.2, 19.0. 

 

6 

2-methyl-4-cyclohexylquinoline (6)6  

Reaction of 2-methylquinoline (31 mg, 0.21 mmol) gave the title compound (48 mg, 

98%, colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 8.4 Hz, 1H), 8.04 (d, J = 8.0 Hz, 1H), 7.67 

(t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.19 (s, 1H), 3.30 (br s, 1H), 2.75 (s, 3H), 

2.04-1.78 (m, 5H), 1.56-1.51 (m, 4H), 1.37-1.26 (m, 1H); 13C NMR (100 MHz, 

CDCl3): δ 158.9, 153.4, 148.2, 129.6, 128.8, 125.3, 125.2, 122.9, 118.4, 38.9, 33.6, 

27.0, 26.4, 25.6. 

 

5 H. Zhao, J. Jin, Org. Lett., 2019, 21, 6179–6184. 
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7 

2,4-dicyclohexylquinoline (7)6  

Reaction of quinoline (26 mg, 0.20 mmol) gave the title compound (49 mg, 83%, 

yellow oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.09 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.65 

(t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.21 (s, 1H), 3.30 (br s, 1H), 2.89 (t, J = 

11.8 Hz, 1H), 2.12-1.72 (m, 10H), 1.72-1.28 (m, 10H); 13C NMR (100 MHz, CDCl3): 

δ 166.8, 153.5, 148.2, 130.0, 128.7, 125.8, 125.3, 122.9, 115.9, 48.0, 39.1, 33.8, 33.0, 

27.1, 26.7, 26.5, 26.3. 

 

8 

2-phenyl-4-cyclohexylquinoline (8)6  

Reaction of 2-phenylquinoline (39 mg, 0.19 mmol) gave the title compound (41 mg, 

76%, colorless solid). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 7.6 Hz, 1H), 8.15-8.13 (m, 2H), 8.08 (d, J 

= 8.4 Hz, 1H), 7.75 (s, 1H), 7.71-7.67 (m, 1H), 7.54-7.50 (m, 3H), 7.47-7.45 (m, 1H), 

3.40-3.34 (m, 1H), 2.09-2.06 (m, 2H), 1.97-1.94 (m, 2H), 1.89-1.85 (m, 1H), 1.67-1.52 

(m, 4H), 1.41-1.35 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 157.5, 154.0, 148.7, 140.4, 

130.8, 129.2, 129.1, 128.882, 128.878, 127.7, 126.0, 123.0, 115.6, 39.2, 33.8, 27.1, 

26.4. 

 

9 

4-chloro-2-cyclohexylquinoline (9)6  

Reaction of 4-chloroquinoline (33 mg, 0.20 mmol) gave the title compound (43 mg, 

88%, colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.18 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.73 

(t, J = 7.2 Hz, 1H), 7.57 (t, J = 7.4 Hz, 1H), 7.43 (s, 1H), 2.89 (t, J = 12.0 Hz, 1H), 

2.04-2.01 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.66-1.56 (m, 2H), 1.51-1.41 

(m, 2H), 1.38-1.28 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 167.0, 148.8, 142.8, 130.3, 

129.4, 126.7, 125.3, 124.0, 119.9, 47.5, 32.8, 26.6, 26.1. 

 

10 

4-bromo-2-cyclohexylquinoline (10)7  

Reaction of 4-bromoquinoline (40 mg, 0.19 mmol) gave the title compound (36 mg, 

64%, yellow oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 8.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.72 

(t, J = 7.6 Hz, 1H), 7.63 (s, 1H), 7.57 (t, J = 7.4 Hz, 1H), 2.91-2.85 (m, 1H), 2.04-2.01 

(m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.68-1.57 (m, 2H), 1.51-1.41 (m, 2H), 

1.37-1.31 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 166.9, 148.6, 134.3, 130.3, 129.5, 

127.0, 126.7, 126.6, 123.8, 47.4, 32.8, 26.6, 26.1. 

 

 

6 X.-Y. Zhang, W.-Z. Weng, H. Liang, H. Yang, B. Zhang, Org. Lett., 2018, 20, 4686–4690. 



S11 

 

 

11 

4-methoxy-2-cyclohexylquinoline (11)6  

Reaction of 4-methoxyquinoline (36 mg, 0.22 mmol) gave the title compound (28 mg, 

52%, colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.65 

(t, J = 6.8 Hz, 1H), 7.42 (t, J = 6.8 Hz, 1H), 6.65 (s, 1H), 4.04 (s, 3H), 2.87 (tt, J = 8.8, 

3.2 Hz, 1H), 2.05-2.02 (m, 2H), 1.91-1.88 (m, 2H), 1.81-1.78 (m, 1H), 1.67-1.57 (m, 

2H), 1.52-1.42 (m, 2H), 1.39-1.29 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 168.3, 

162.5, 148.8, 129.7, 128.5, 124.8, 121.6, 120.4, 98.0, 55.5, 48.4, 33.0, 26.7, 26.2. 

 

12 

methyl 1-cyclohexylisoquinoline-3-carboxylate (12)6 

Reaction of methyl isoquinoline-3-carboxylate (36 mg, 0.19 mmol) gave the title 

compound (37 mg, 71%, colorless solid). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 8.28-8.26 (m, 1H), 7.95-7.93 (m, 1H), 

7.72-7.69 (m, 2H), 4.03 (s, 3H), 3.60-3.54 (m, 1H), 1.99-1.80 (m, 7H), 1.59-1.34 (m, 

3H); 13C NMR (100 MHz, CDCl3): δ 167.0, 166.2, 140.8, 136.1, 130.2, 129.2, 129.1, 

127.8, 125.1, 122.5, 52.8, 42.1, 32.3, 26.9, 26.2. 

 

13 

5-bromo-1-cyclohexylisoquinoline (13)7  

Reaction of 5-bromoisoquinoline (42 mg, 0.20 mmol) gave the title compound (39 mg, 

67%, yellow oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 6.0 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.93 

(d, J = 6.8 Hz, 1H), 7.86 (d, J = 5.6 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 3.54 (t, J = 11.4 

Hz, 1H), 1.98-1.92 (m, 4H), 1.87-1.78 (m, 3H), 1.57-1.37 (m, 3H); 13C NMR (100 

MHz, CDCl3): δ 166.2, 143.4, 135.6, 133.5, 127.6, 127.2, 124.6, 122.7, 117.8, 41.9, 

32.8, 27.0, 26.3. 

 

14 

5-nitro-1-cyclohexylisoquinoline (14)6 

Reaction of 5-nitroisoquinoline (34 mg, 0.19 mmol) gave the title compound (25 mg, 

51%, colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.69 (d, J = 6.0 Hz, 1H), 8.58 (d, J = 8.4 Hz, 1H), 8.43 

(d, J = 7.2 Hz, 1H), 8.22 (d, J = 6.0 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 3.57 (t, J = 11.4 

Hz, 1H), 2.06-1.80 (m, 7H), 1.54-1.45 (m, 2H), 1.45-1.34 (m, 1H); 13C NMR (100 

MHz, CDCl3): δ 166.6, 146.1, 145.4, 131.5, 129.0, 127.4, 127.0, 125.3, 113.6, 42.3, 

32.9, 26.9, 26.2. 

 

15 

6-cyclohexylphenanthridine (15)6  

Reaction of phenanthridine (35 mg, 0.20 mmol) gave the title compound (43 mg, 83%, 

colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 8.4 Hz, 1H), 8.52 (d, J = 7.6 Hz, 1H), 8.30 

 

7 X.-L. Lyu, S.-S. Huang, H.-J. Song, Y.-X. Liu, Q.-M. Wang, Org. Lett., 2019, 21, 5728–5732. 
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(d, J = 8.4 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.72-7.67 (m, 

2H), 7.59 (t, J = 7.0 Hz, 1H), 3.63-3.57 (m, 1H), 2.09-1.71 (m, 7H), 1.62-1.37 (m, 3H); 

13C NMR (100 MHz, CDCl3): δ 165.4, 144.0, 133.1, 130.05, 130.02, 128.5, 127.2, 

126.2, 125.7, 124.8, 123.4, 122.7, 121.9, 42.1, 32.4, 27.0, 26.4. 

 

16 

2-cyclohexylbenzothiazole (16)6 

Reaction of benzothiazole (31 mg, 0.23 mmol) gave the title compound (24 mg, 47%, 

colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.45 

(t, J = 7.2 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 3.15-3.08 (m, 1H), 2.21 (d, J = 12.0 Hz, 

2H), 1.89 (d, J = 12.8 Hz, 2H), 1.77 (d, J = 12.4 Hz, 1H), 1.70-1.63 (m, 2H), 1.45 (q, 

J = 12.8 Hz, 2H), 1.37-1.31 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 177.8, 153.2, 

134.7, 125.9, 124.6, 122.7, 121.7, 43.6, 33.6, 26.2, 25.9. 

 

18 

2-cyclohexyl-4-hydroxyquinazoline (18)8  

Reaction of 4-hydroxyquinazoline (29 mg, 0.20 mmol) gave the title compound (29 

mg, 64%, colorless solid). 

CH3CN/H2O: 4 mL (1/1) 

1H NMR (400 MHz, CDCl3) δ 11.8 (br s, 1H), 8.29 (d, J = 7.6 Hz, 1H), 7.79-7.71 (m, 

2H), 7.49-7.45 (m, 1H), 2.78-2.72 (m, 1H), 2.08-2.05 (m, 2H), 1.95-1.92 (m, 2H), 1.83-

1.74 (m, 3H), 1.51-1.38 (m, 3H); 13C NMR (100 MHz, CDCl3): δ 164.4, 160.4, 149.7, 

134.8, 127.5, 126.4, 126.3, 120.9, 45.0, 30.6, 26.2, 25.8. 

 

19 

2-cyclohexyl-4-hydroxyquinazoline (19)6 

Reaction of 3,6-dichloropyridazine (29 mg, 0.20 mmol) gave the title compound (15 

mg, 33%, colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 7.35 (s, 1H), 2.90-2.84 (m, 1H), 1.98-1.90 (m, 4H), 

1.84-1.81 (m, 1H), 1.51-1.41 (m, 2H), 1.37-1.26 (m, 3H); 13C NMR (100 MHz, 

CDCl3): δ 156.8, 156.4, 148.8, 127.2, 40.2, 31.9, 26.3, 25.8. 

 

20 

2,6-dicyclohexyl-4-(trifluoromethyl)pyridine (20)6 

Reaction of 4-(trifluoromethyl)pyridine (30 mg, 0.21 mmol) gave the title compound 

(27 mg, 43%, colorless oil). 

Cyclohexylsilicate (0.32 g, 0.44 mmol), CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 7.15 (s, 2H), 2.78-2.72 (m, 2H), 1.98-1.95 (m, 4H), 

1.87-1.84 (m, 4H), 1.78-1.74 (m, 2H), 1.56-1.38 (m, 8H), 1.33-1.27 (m, 2H); 13C NMR 

(100 MHz, CDCl3): δ 167.3, 138.8 (q, J = 32.1 Hz), 123.5 (q, J = 271.4 Hz), 113.6, 

46.7, 33.0, 26.6, 26.1. 

 

 

8 N. Y. Kim, C.-H. Cheon, Tetrahedron Lett., 2014, 55, 2340-2344. 
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21 

5,7-dichloro-2-cyclohexyl-4-(4-fluorophenoxy)quinoline (21)6 

Reaction of 5,7-dichloro-4-(4-fluorophenoxy)quinoline (62 mg, 0.20 mmol) gave the 

title compound (51 mg, 65%, colorless solid). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3): δ 7.95 (d, J = 2.0 Hz, 1H), 7.50 (d, J = 2.0 Hz, 1H), 7.18-

7.09 (m, 4H), 6.52 (s, 1H), 2.71-2.66 (m, 1H), 1.89-1.81 (m, 4H), 1.74-1.71 (m, 1H), 

1.49-1.23 (m, 5H); 13C NMR (100 MHz, CDCl3): δ 169.7, 162.4, 160.0 (d, J = 242.6 

Hz), 151.5, 150.4 (d, J = 2.6 Hz), 134.9, 130.0, 128.7, 127.6, 122.1 (d, J = 8.3 Hz), 

117.2 (d, J = 13.6 Hz), 117.0, 105.8, 47.4, 32.5, 26.4, 26.0. 

 

22’ 

Compound 22’ 

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried 

under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon 

gas. Fasudil (29 mg, 0.10 mmol, prepared from commercially available fasudil 

hydrochloride by washing with sodium hydroxide solution, extraction with CH2Cl2, 

and then concentration in vacuo), cyclohexylsilicate 2a (88 mg, 0.12 mmol), Mes-Acr+ 

(2.3 mg, 0.0055 mmol), TFA (24 mg, 0.21 mmol) and CH2Cl2 (4 mL) were added to 

the tube, and photoirradiation was carried out with stirring for 24 hours. To the solution 

was added K2CO3 (approximate 150 mg), and the mixture was vigorously stirred for 5 

min. After that, the mixture was filtrated through a pad of Celite and washed with 

CH2Cl2. The filtrate was concentrated in vacuo and the residue was dissolved in 

CH2Cl2 (5 mL). Alkylated compound 22 was observed by 1H NMR analysis. To the 

solution was added Boc2O (44 mg, 0.2 mmol) and Et3N (30 mg, 0.3 mmol), and then 

the mixture was stirred at room temperature for 2 h. The solvent was removed in vacuo 

and the residue was purified by flash chromatography and GPC to afford compound 

22’ (20 mg, 43% for 2 steps) as a colorless solid. 1H NMR (400 MHz, CDCl3) δ 8.62 

(d, J = 4.4 Hz, 1H), 8.48 (d, J = 8.4 Hz, 1H), 8.32–8.23 (m, 2H), 7.65 (t, J = 6.6 Hz, 

1H), 3.57–3.51 (m, 5H), 3.42–3.37 (m, 4H), 1.97–1.95 (m, 6H), 1.88–1.82 (m, 3H), 

1.61–1.49 (m, 3H), 1.43 (s, 9H); 13C NMR (100 MHz, CDCl3): δ 166.8, 155.3, 154.9, 

144.1, 135.1, 132.6, 132.3, 130.5, 127.1, 125.3, 115.4, 80.1, 80.0, 50.2, 50.0, 49.5, 

49.4, 47.8, 47.5, 46.1, 45.6, 42.2, 32.9, 28.7, 28.5, 28.3, 26.9, 26.3. Spectral data are 

consistent with those reported in the literature.9 

 

23 

 

Compound 23 

A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried 

under vacuum with heating. After cooling the tube to 23 °C, it was purged with argon 

gas. Quinine (63 mg, 0.20 mmol), cyclohexylsilicate 2a (0.18 g, 0.25 mmol), Mes-Acr+ 

(4.7 mg, 0.011 mmol), TFA (48 mg, 0.42 mmol) and 1,1,1,3,3,3-hexafluoro-2-propanol 

(4 mL) were added to the tube, and photoirradiation was carried out with stirring for 

 

9 J. Wang, G.-X. Li, G. He, G. Chen, Asian J. Org. Chem., 2018, 7, 1307–1310. 
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24 hours. The solvent was removed in vacuo and the residue was dissolved in CH2Cl2 

(3 mL). To the solution was added K2CO3 (approximate 150 mg), the mixture was 

vigorously stirred for 5 min. The mixture was filtrated through a pad of Celite and 

washed with CH2Cl2. The filtrate was concentrated in vacuo, and the residue was 

purified by flash chromatography on silica gel to afford compound 23 (39 mg, 49%) 

as a colorless solid. 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 9.2 Hz, 1H), 7.48 (s, 

1H), 7.30 (dd, J = 9.2, 2.8 Hz, 1H), 7.19 (d, J = 2.0 Hz, 1H), 5.77-5.69 (m, 1H), 5.57 

(d, J = 2.8 Hz, 1H), 4.98-4.90 (m, 2H), 3.88 (s, 3H), 3.49 (br s, 1H), 3.13- 3.08 (m, 

2H), 2.84-2.78 (m, 1H), 2.70-2.67 (m, 2H), 2.27 (br s, 1H), 1.94-1.92 (m, 2H), 1.84-

1.73 (m, 6H), 1.56-1.25 (m, 9H); 13C NMR (100 MHz, CDCl3): δ 164.1, 157.3, 147.7, 

144.0, 142.0, 131.3, 125.2, 121.1, 116.8, 114.5, 101.4, 72.4, 60.0, 57.3, 55.8, 47.5, 43.5, 

40.1, 33.0, 28.1, 27.7, 26.6, 26.2, 21.5. Spectral data are consistent with those reported 

in the literature.10 

 

24 

methyl 1-butylisoquinoline-3-carboxylate (24)11 

Reaction of methyl isoquinoline-3-carboxylate (37 mg, 0.20 mmol) and nbutylsilicate 

2c (0.17 g, 0.24 mmol) gave the title compound (28 mg, 58%, pale yellow solid). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.44 (s, 1H), 8.22 (d, J = 7.2 Hz, 1H), 7.96-7.94 (m, 

1H), 7.76-7.70 (m, 2H), 4.05 (s, 3H), 3.38 (t, J = 8.0 Hz, 2H), 1.88-1.81 (m, 2H), 1.57-

1.47 (m, 2H), 0.99 (t, J = 7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 166.8, 163.4, 

140.7, 136.0, 130.6, 129.4, 129.0, 128.5, 125.8, 123.0, 53.0, 35.8, 32.4, 23.2, 14.1. 

 

25 

methyl 1-(but-3-en-1-yl)isoquinoline-3-carboxylate (25)12 

Reaction of methyl isoquinoline-3-carboxylate (36 mg, 0.19 mmol) and butenylsilicate 

2d (0.17 g, 0.24 mmol) gave the title compound (19 mg, 41%, colorless solid). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 8.22 (d, J = 7.2 Hz, 1H), 7.98-7.96 (m, 

1H), 7.76-7.73 (m, 2H), 6.04-5.94 (m, 1H), 5.13 (dd, J = 17.2, 1.6 Hz, 1H), 5.03 (d, J 

= 10.4 Hz, 1H), 4.05 (s, 3H), 3.48 (t, J = 8.0 Hz, 2H), 2.67-2.63 (m, 2H); 13C NMR 

(100 MHz, CDCl3): δ 166.8, 162.3, 140.7, 137.8, 136.0, 130.7, 129.5, 129.1, 128.5, 

125.6, 123.1, 115.3, 53.0, 35.0, 33.9. 

 

26 

methyl 1-(2-(4-fluorophenyl))ethylisoquinoline-3-carboxylate (26) 

Reaction of methyl isoquinoline-3-carboxylate (37 mg, 0.19 mmol) and 2-(4-

fluorophenyl)ethyl silicate 2e (0.19 g, 0.24 mmol) gave the title compound (40 mg, 

67%, yellow solid). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.47 (s, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 7.2 

 

10 G.-X. Li, C. A. Morales-Rivera, Y. Wang, F. Gao, G. He, P. Liu, G. Chen, Chem. Sci., 2016, 7, 6407–6412 

11 C. D. Gilmore, K. M. Allan, B. M. Stoltz, J. Am. Chem. Soc., 2008, 130, 1558–1559. 

12 J. K. Matsui, D. N. Primer, G. A. Molander, Chem. Sci., 2017, 8, 3512–3522. 
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Hz, 1H), 7.77-7.68 (m, 2H), 7.27-7.23 (m, 2H), 6.97 (t, J = 8.8 Hz, 2H), 4.06 (s, 3H), 

3.68-3.64 (m, 2H), 3.20 (t, J = 8.2 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ 166.7, 

161.6, 161.5 (d, J = 242.2 Hz), 140.7, 137.3 (d, J = 3.3 Hz), 136.0, 130.7, 130.0 (d, J 

= 7.9 Hz), 129.6, 129.1, 128.5, 125.3, 123.2, 115.3 (d, J = 21.0 Hz), 53.0, 37.3, 34.7; 

19F NMR (376 MHz, CDCl3): δ –117.3; HRMS (ESI, positive) m/z calcd for 

C19H17FNO2 [M+H]+: 310.1238, found: 310.1237; mp: 108-110 ℃; IR (KBr): 1713, 

1509, 1450, 1329, 1297, 1249, 1218, 987, 837, 747 cm-1. 

 

27 

methyl 1-(sec-butyl)isoquinoline-3-carboxylate (27)13 

Reaction of methyl isoquinoline-3-carboxylate (36 mg, 0.19 mmol) and sbutylsilicate 

2f (0.17 g, 0.24 mmol) gave the title compound (33 mg, 71%, colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 8.28 (d, J = 6.8 Hz, 1H), 7.95 (d, J = 7.6 

Hz, 1H), 7.74-7.69 (m, 2H), 4.03 (s, 3H), 3.76-3.68 (m, 1H), 2.12-2.05 (m, 1H), 1.85-

1.78 (m, 1H), 1.46 (d, J = 6.8 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H); 13C NMR (100 MHz, 

CDCl3): δ 167.0, 166.5, 140.8, 136.1, 130.2, 129.1, 128.4, 125.1, 122.5, 52.8, 38.7, 

29.5, 19.9, 12.6. (One peak is missing.) 

 

28 

methyl 1-cyclopentylisoquinoline-3-carboxylate (28)14 

Reaction of methyl isoquinoline-3-carboxylate (37 mg, 0.20 mmol) and 

cyclopentylsilicate 2g (0.17 g, 0.24 mmol) gave the title compound (41 mg, 81%, 

colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 8.30-8.28 (m, 1H), 7.95-7.93 (m, 1H), 

7.74-7.68 (m, 2H), 4.02-3.99 (m, 4H), 2.20-2.18 (m, 4H), 1.95-1.94 (m, 2H), 1.80-1.77 

(m, 2H); 13C NMR (100 MHz, CDCl3): δ 167.0, 165.1, 140.5, 136.0, 130.3, 129.1, 

129.0, 128.7, 125.6, 122.6, 52.8, 43.9, 32.6, 26.0. 

 

29 

methyl 1-cycloheptylisoquinoline-3-carboxylate (29)14 

Reaction of methyl isoquinoline-3-carboxylate (36 mg, 0.19 mmol) and 

cycloheptylsilicate 2h (0.18 g, 0.24 mmol) gave the title compound (35 mg, 63%, 

colorless oil). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.39 (s, 1H), 8.28-8.24 (m, 1H) 7.96-7.92 (m, 1H), 7.74-

7.68 (m, 2H), 4.02 (s, 3H), 3.76-3.72 (m, 1H), 2.12-2.07 (m, 4H), 1.94-1.91 (m, 2H), 

1.79-1.69 (m, 6H); 13C NMR (100 MHz, CDCl3): δ 167.7, 167.0, 140.6, 136.2, 130.2, 

129.2, 129.1, 127.6, 125.3, 122.5, 52.8, 44.2, 34.3, 28.2, 27.7. 

 

30 

methyl 1-(4-tetrahydropyranyl)isoquinoline-3-carboxylate (29)13  

Reaction of methyl isoquinoline-3-carboxylate (37 mg, 0.20 mmol) and 4-

tetrahydropyranylsilicate 2i (0.17 g, 0.24 mmol) gave the title compound (35 mg, 66%, 

colorless solid). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.44 (s, 1H), 8.30-8.25 (m, 1H), 8.00-7.95 (m, 1H), 

 

13 G.-X. Li, X. Hu, G. He, G. Chen, ACS Catal., 2018, 8, 11847–11853. 
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7.78-7.70 (m, 2H), 4.19 (dd, J = 11.2, 2.4 Hz, 2H), 4.03 (s, 3H), 3.89-3.78 (m, 1H), 

3.77-3.65 (m, 2H), 2.42-2.28 (m, 2H), 1.90 (d, J = 13.6 Hz, 2H); 13C NMR (100 MHz, 

CDCl3): δ 166.8, 163.9, 140.8, 136.2, 130.4, 129.4, 129.3, 127.7, 124.6, 122.9, 68.2, 

52.8, 39.3, 32.0 

 

 

31 

methyl 1-(tert-butyl)isoquinoline-3-carboxylate (31)13 

Reaction of methyl isoquinoline-3-carboxylate (37 mg, 0.20 mmol) and tbutylsilicate 

2j (0.17 g, 0.24 mmol) gave the title compound (29 mg, 60%, colorless solid). 

CH2Cl2: 4 mL 

1H NMR (400 MHz, CDCl3) δ 8.59 (d, J = 6.8 Hz, 1H), 8.41 (s, 1H), 7.98-7.96 (m, 

1H), 7.72-7.66 (m, 2H), 4.03 (s, 3H), 1.70 (s, 9H); 13C NMR (100 MHz, CDCl3): δ 

167.9, 167.0, 139.4, 137.3, 129.9, 129.6, 128.1, 127.8, 127.5, 123.3, 52.7, 40.4, 31.2. 

 

5. Procedure of gram scale photocatalytic alkylation. 

 A 300 mL flask equipped with a magnetic stirring bar and a septum, was dried under vacuum with heating. After 

the flask was cooled to room temperature, it was purged with argon. 4-Methylquinoline (4) (1.02 g, 7.13 mmol), 

cyclohexylsilicate 2a (6.08 g, 8.38 mmol), Mes-Acr+ (0.145 g, 0.353 mmol), TFA (0.867 g, 7.61 mmol) and CH2Cl2 

(80 mL) were added to the flask, and photoirradiation was carried out with stirring for 48 hours. The flask was 

connected to an argon line during the reaction. After the reaction, Et3N (1.95 mL, 14.0 mmol) was added to the 

solution. Evaporation of the solvents gave a crude material, which was purified with flash chromatography to give 

desired product 5 (1.15 g, 72%). 

 

Scheme S4. Gram scale synthesis of 5. 
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6. Stern-Volmer quenching experiment 

Stern-Volmer fluorescence quenching experiments were run with freshly prepared 5.0 × 10–5 M solutions of Mes-

Acr+ in CH2Cl2 under an argon atmosphere using Jasco’s spectrofluorometer (FP-6500). Concentration of an additive 

(Q: silicate 2a, 2-cyclohexyl-2,3-dihydrobenzo[d]thiazole (16’), spirosilane 3, benzothiazole+TFA, benzothiazole, 

TFA) was between 0 M and 0.025 M. The solution was irradiated at 429 nm, and fluorescence was measured at 510 

nm. The fluorescence intensity was measured three times in the presence and absence of the additives (Tables S1-

S6), and their ratio was plotted based on the Stern–Volmer expression as shown in eq S1 (Figure S3). 

 

Table S1. Luminescence quenching data for Mes-Acr+ and silicate 2a. 

Iobs 

Run 1 Run 2 Run 3 average I0/Iobs silicate 2a (M) 

545 542 544 544 1 0 

126 124 127 126 4.30 0.005 

80.8 81.3 82.3 81.4 6.68 0.01 

63.5 64.1 64.5 64.0 8.49 0.015 

55.4 55.0 55.4 55.2 9.84 0.02 

46.2 47.0 47.3 46.8 11.6 0.025 

 

Table S2. Luminescence quenching data for Mes-Acr+ and 16’. 

Iobs 

Run 1 Run 2 Run 3 average I0/Iobs 16’ (M) 

555 550 561 555 1 0 

342 342 344 343 1.62 0.005 

246 246 247 246 2.25 0.01 

191 191 192 191 2.89 0.015 

156 155 156 155 3.56 0.02 

128 128 128 128 4.32 0.025 
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Table S3. Luminescence quenching data for Mes-Acr+ and benzothiazole+TFA. 

Iobs 

Run 1 Run 2 Run 3 average I0/Iobs benzothiazole+TFA 

(M) 

566 565 565 565 1 0 

545 547 547 546 1.03 0.005 

548 549 551 549 1.02 0.01 

527 528 529 528 1.07 0.015 

544 547 545 545 1.03 0.02 

533 535 537 535 1.05 0.025 

 

Table S4. Luminescence quenching data for Mes-Acr+ and spirosilane (3). 

Iobs 

Run 1 Run 2 Run 3 average I0/Iobs spirosilane 3 

(M) 

551 553 551 552 1 0 

562 561 563 562 0.98 0.005 

559 561 561 560 0.98 0.01 

560 560 560 560 0.98 0.015 

567 569 568 568 0.97 0.02 

585 583 582 583 0.94 0.025 

 

Table S5. Luminescence quenching data for Mes-Acr+ and benzothiazole. 

Iobs 

Run 1 Run 2 Run 3 average I0/Iobs benzothiazole 

(M) 

569 571 565 568 1 0 

518 518 519 518 1.09 0.005 

514 512 513 513 1.10 0.01 

502 502 500 501 1.13 0.015 

484 485 483 484 1.17 0.02 

469 468 469 469 1.21 0.025 
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Table S6. Luminescence quenching data for Mes-Acr+ and TFA. 

Iobs 

Run 1 Run 2 Run 3 average I0/Iobs TFA (M) 

573 571 570 571 1 0 

569 569 569 569 1.00 0.005 

589 587 587 588 0.97 0.01 

571 572 572 572 0.99 0.015 

573 571 571 572 0.99 0.02 

572 574 573 573 0.99 0.025 

 

 

I0: the intensity of fluorescence without the additive 

Iobs: the intensity of fluorescence in the presence of the additive 

t0: the lifetime of the excited state of Ru(II) without the additive 

kq: the quencher rate coefficient 

[Q]: the concentration of the additive 

 

 

Figure S3. 
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7. A radical clock experiment 

 A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. 

After cooling the tube to 23 °C, it was purged with argon gas. 4-Methylquinoline (4) (28 mg, 0.20 mmol), alkylsilicate 

2b (0.18 g, 0.24 mmol), Mes-Acr+ (5.8 mg, 0.013 mmol), TFA (26 mg, 0.23 mmol) and CH2Cl2 (4 mL) were added 

to the tube, and photoirradiation was carried out with stirring for 24 hours. The Schlenk tube was connected to an 

argon line during the reaction. After the reaction, Et3N (40 mg, 0.40 mmol) was added to the solution. Evaporation 

of the solvents gave a crude material, which was purified with flash chromatography to give desired product 32 (18 

mg, 41%) as yellow oil. 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.69-7.65 

(m, 1H), 7.52-7.48 (m, 1H), 7.14 (s, 1H), 2.93 (d, J = 7.2 Hz, 2H), 2.68 (s, 3H), 2.36 (quin, J = 7.6 Hz, 1H), 1.75-

1.66 (m, 4H), 1.55-1.52 (m, 2H), 1.32-1.25 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 162.4, 147.9, 144.0, 129.5, 

129.1, 126.9, 125.5, 123.7, 122.6, 45.3, 40.9, 32.7, 25.1, 18.9. Spectral data are consistent with those reported in the 

literature.14 

 

Scheme S5.  

 

8. Observation of an intermediate 

 A 30 mL Schlenk tube equipped with a magnetic stirring bar and a septum was dried under vacuum with heating. 

After cooling the tube to 23 °C, it was purged with argon gas. Benzothiazole (13 mg, 0.095 mmol), cyclohexylsilicate 

(2a) (91 mg, 0.13 mmol), Mes-Acr+ (2.7 mg, 0.0066 mmol), TFA (13 mg, 0.11 mmol) and CH2Cl2/H2O (1/1, 4 mL) 

were added to the tube, and photoirradiation was carried out with stirring for 24 hours. The obtained organic 

compounds were extracted with CH2Cl2 (3 × 20 mL). Evaporation of the solvents gave a crude material, and yields 

of 16 and 16’ were determined by 1H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. 

 

 

Scheme S6. Observation of the intermediate. 

 

  

 

14 J. Dong, X. Lyu, Z. Wang, X. Wang, H. Song, Y. Liu, Q. Wang, Chem. Sci., 2019, 10, 976–982. 
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9. Dehydrogenation reaction 

Synthesis of 2-cyclohexyl-2,3-dihydrobenzo[d]thiazole (16’):  

 To a stirred solution of cyclohexanecarboxaldehyde (2.52 g, 22.5 mmol) in dichloromethane (22.5 ml) was added 

4Å molecular sieves (15.0 g). 2-Aminothiophenol (1.88 g, 15.0 mmol) was added dropwise to the mixture and stirred 

at room temperature for 2 h. After completion of the reaction, the reaction mixture was filtered to remove the 

molecular sieves. The solvent was evaporated under reduced pressure. The residue was purified by flash 

chromatography on silica gel to give the desired product 16’ (2.53 g, 77%) as colorless solid. 1H NMR (400 MHz, 

CDCl3) δ 7.01 (d, J = 6.8 Hz, 1H), 6.85 (t, J = 7.6 Hz, 1H), 6.67 (t, J = 6.4 Hz, 1H), 6.56 (d, J = 7.6 Hz, 1H), 5.06 (d, 

J = 6.8 Hz, 1H), 4.11 (br s, 1H), 1.85-1.82 (m, 1H), 1.77-1.74 (m, 3H), 1.68-1.64 (m, 2H), 1.24-0.94 (m, 5H); 13C 

NMR (100 MHz, CDCl3): δ 147.1, 127.1, 125.0, 121.6, 120.2, 109.9, 74.1, 45.3, 29.3, 29.1, 26.3, 25.80, 25.79; 

HRMS (ESI, positive) m/z calcd for C13H18NS [M+H]+: 220.1154, found: 220.1153; mp: 83-85 ℃; IR (KBr): 3362, 

2925, 2850, 1579, 1475, 1405, 1305, 1232, 1205, 734 cm-1. 

 

Scheme S7.  

 

Dehydrogenation reaction: 

 2-Cyclohexyl-2,3-dihydrobenzo[d]thiazole 16’ (0.02 mmol), an additive (silicate 2a, spirosilane 3, TFA, Mes-Acr+) 

(0.02 mmol) and CD2Cl2 (0.7 mL) were added to an NMR tube. It was purged with argon gas. Yield of 16 was 

determined by 1H NMR analysis. 

 

Table 7.  

 

entry additive yield of 16a 

1 cyclohexylsilicate 2a (1.0 eq.) 0 

2 spirosilane 3 (1.0 eq.) 0 

3 TFA (1.0 eq.) 0 

4 Mes-Acr (5 mol%) 0 

 5b Mes-Acr (5 mol%) 38 

 6b Mes-Acr (5 mol%), TFA (1.0 eq.) 100 

a Yields are determined by 1H NMR spectroscopy. b Blue light was irradiated. 

  



S22 

 

10. Computational study of photocatalytic dehydrogenation 

Density functional theory (DFT) calculations were conducted at the (U)B3LYP/6-311G+(d,p) level to gain insight 

into the reaction mechanism of photocatalytic dehydrogenation of intermediate II as solvated molecules using the 

PCM method considering solvation by CH2Cl2 using the Gaussian 09 program.15 The natural population analysis 

(NPA) analysis was conducted using the Gaussian 16 program.16 We chose 2-methylbenzothiazoline S1 as a model 

intermediate. Stern-Volmer experiments indicate that the radical cation of S1 could be generated by the excited state 

of the photocatalyst (Figure S3). The NPA analysis revealed that S1 has more negative hydrogen atom and radical 

cation of S1 has more positive hydrogen atom than that in methane (Figure S4). These observations are consistent 

with previous reports that hydrogen atom in S1 reacts as hydride17  and radical cation of a nitrogen-containing 

compound easily deprotonates the alpha position of the nitrogen atom.18  Based on such the reactivity and DFT 

calculations, an energy profile of a plausible reaction mechanism for dehydrogenation of S1 to give S4 is shown in 

Figure S5a. In the proposed reaction mechanism, hydrogen molecule is formed together with protonated 2-

methylbenzothiazole S2 and radical S3 from S1 and its radical cation. Sum of calculated Gibbs free energy of 

hydrogen molecule, protonated 2-methylbenzothiazole S2 and radical S3 is only 5.7 kcal/mol higher than that of S1 

and its radical cation. Proton transfer from S2 to S3, which is thermodynamically favored by 12.0 kcal/mol, gives 

desired product S4 and radical cation of S1. Resulting radical cation of S1 would be quenched by reduced 

photocatalyst or react with other S1 again. TFA would facilitate protonation of S3 and S4, which makes the 

dehydrogenation process irreversible (Figure S5b). 

 

 

 

 
15 Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. 

Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, 

J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. 

Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. 

Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. 

Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. 

W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. 
16 Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. 

Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. 

Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. 

Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, 

H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, 

T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. 

Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. 
17 C. Zhu, T. Akiyama, Org. Lett., 2009, 11, 4180–4183. 
18 G. W. Dombrowski, J. P. Dinnocenzo, J. Org. Chem., 2005, 70, 3791–3800.  
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Figure S4. 

 

 

Figure S5 

 

Cartesian Coordinates: 

S1 

C                 -2.86572400   -0.58209500    0.01946500 

 C                 -1.67803400   -1.32556000    0.00493600 

 C                 -0.46509500   -0.65326500   -0.00066000 

 C                 -0.41033600    0.75169800    0.01502000 

 C                 -1.59364400    1.48822100    0.02282000 

 C                 -2.81796400    0.81095800    0.02539100 



S24 

 

 H                 -3.81980900   -1.09572500    0.01840100 

 H                 -1.70778600   -2.40892100   -0.00706000 

 H                 -1.56248800    2.57227300    0.03296400 

 H                 -3.73898800    1.38277600    0.02842900 

 N                  0.88904700    1.26140400    0.08615900 

 H                  1.01093700    2.20363500   -0.26501100 

 S                  1.17549600   -1.35059200    0.02839300 

 C                  1.89842900    0.31324100   -0.40030800 

 C                  3.26344900    0.53001500    0.22876500 

 H                  3.20400700    0.46164600    1.31641200 

 H                  1.97751500    0.35052100   -1.49429900 

 H                  3.63830600    1.52183200   -0.04104600 

 H                  3.98055800   -0.20767500   -0.13876000 

E = -763.34109432 a.u. 

 

Radical cation of S1 

C                 -2.79042200   -0.59989000    0.19711700 

 C                 -1.62910000   -1.34934600    0.12081800 

 C                 -0.41733800   -0.67467600   -0.04283200 

 C                 -0.38824800    0.75669700   -0.12985600 

 C                 -1.58456400    1.50511800   -0.04550200 

 C                 -2.76346400    0.81831300    0.11496900 

 H                 -3.74138600   -1.10218700    0.32199100 

 H                 -1.65611400   -2.42913400    0.18363300 

 H                 -1.55634200    2.58552900   -0.10692100 

 H                 -3.69542400    1.36551600    0.18011300 

 N                  0.84862400    1.24740600   -0.28517000 

 H                  1.02657400    2.24158600   -0.37265700 

 S                  1.16871200   -1.35905800   -0.15644900 

 C                  1.95514700    0.30716400   -0.36887600 

 C                  3.05536800    0.58156100    0.65344300 

 H                  2.66074100    0.55558400    1.66942900 

 H                  2.36196200    0.32565500   -1.38503600 

 H                  3.84520900   -0.16370900    0.55357300 

 H                  3.49074400    1.56459300    0.45956900 

E = -763.14697163 a.u. 

 

S2 
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C                 -2.82258900   -0.57246400    0.00702500 

 C                 -1.66277600   -1.33654200    0.00638300 

 C                 -0.44457700   -0.65762100    0.00266700 

 C                 -0.39915900    0.74294400   -0.00194700 

 C                 -1.56380600    1.51097000   -0.00223500 

 C                 -2.77341200    0.83192000    0.00282000 

 H                 -3.78390700   -1.07094900    0.01036100 

 H                 -1.70269100   -2.41797500    0.00888200 

 H                 -1.52043300    2.59294600   -0.00599800 

 H                 -3.69737300    1.39630900    0.00327700 

 N                  0.91898600    1.19844300   -0.01126500 

 H                  1.15315100    2.18681500   -0.01401100 

 S                  1.18771900   -1.31305100   -0.00875900 

 C                  1.85922400    0.26650100   -0.01253600 

 C                  3.31593200    0.55554200    0.01663800 

 H                  3.66296900    0.57773700    1.05431000 

 H                  3.52434300    1.52387700   -0.43955800 

 H                  3.87451400   -0.21653600   -0.51115800 

E = -762.57739220 a.u. 

 

S3 

C                 -2.84016000   -0.57720000    0.06050700 

 C                 -1.65653100   -1.32472700    0.03484600 

 C                 -0.44246500   -0.65337500   -0.00941600 

 C                 -0.38948200    0.75468600   -0.02469200 

 C                 -1.57345000    1.49826600   -0.01016100 

 C                 -2.79171800    0.81840900    0.03588200 

 H                 -3.79515200   -1.08766400    0.09422500 

 H                 -1.68830100   -2.40777700    0.04749000 

 H                 -1.54173500    2.58163700   -0.03173300 

 H                 -3.71380900    1.38824400    0.04890100 

 N                  0.90311100    1.23493400   -0.04355100 

 H                  1.09505300    2.21688100   -0.18067600 

 S                  1.19570000   -1.33983600   -0.03773800 

 C                  1.91373600    0.28413600   -0.27517400 

 C                  3.30653600    0.56291700    0.19036600 

 H                  3.38746900    0.58857400    1.28913400 

 H                  3.64654700    1.53052800   -0.19116000 
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 H                  3.99816000   -0.19626400   -0.18044200 

E = -762.69717794 a.u. 

 

H2 

H                  0.00000000    0.00000000    0.37225700 

 H                  0.00000000    0.00000000   -0.37225700 

E = -1.17970042 a.u. 

 

S4 

C                 -2.80995400   -0.55685500    0.00001700 

 C                 -1.64707000   -1.32098700    0.00002700 

 C                 -0.42245900   -0.65184800   -0.00000100 

 C                 -0.35130500    0.75913900   -0.00002700 

 C                 -1.53317000    1.51034300   -0.00002700 

 C                 -2.75313800    0.84624700   -0.00000200 

 H                 -3.77279500   -1.05444400    0.00002800 

 H                 -1.69502800   -2.40307700    0.00002800 

 H                 -1.47958500    2.59260800   -0.00003800 

 H                 -3.67430400    1.41721600   -0.00000700 

 N                  0.93391500    1.28698800    0.00003200 

 S                  1.20396700   -1.30503000   -0.00002300 

 C                  1.83520200    0.36096300    0.00002200 

 C                  3.30956100    0.60507600    0.00001800 

 H                  3.78056800    0.16349100    0.88217200 

 H                  3.49383600    1.67914000    0.00037400 

 H                  3.78041700    0.16417100   -0.88257000 

E = -762.14638788 a.u. 

 

  



S27 

 

11. Detection of hydrogen gas 

Formation of H2 from 16’ was confirmed by the following experiment of Ru-catalyzed hydrogenation of 1-decene. 

An H-type flask was used, in which two test tubes were connected with a glass tube. In a left tube, under argon 

atmosphere, Mes-Acr+ (5.0 mol %), 16’ (0.50 mmol), TFA (0.50 mmol) and dichloromethane (3.5 mL) were placed. 

In a right flask, under argon atmosphere, RhCl(PPh3)3 (2.0 mol %), 1-decene (1.0 mmol), and benzene (3 mL) were 

placed. The H-type flask was sealed. The mixture in the left flask was stirred and irradiated at room temperature for 

24 h, while the mixture in the right flask was stirred at 50 °C. Formation of 0.11 mmol of dehydrogenated product 

16 and recovery of 0.37 mmol of 16’ was observed by 1H NMR analysis using 1,1,2,2-tetrachloroethane as an internal 

standard. The yield of decane was determined by GC analysis using dodecane as an internal standard. In the right 

flask, 0.06 mmol of decane was produced, which means at least 0.06 mmol of H2 was evolved from 0.11 mmol of 

16’ in the left flask and transferred to the right flask.  

 

Scheme S8. 
 

Formation of H2 in the photocatalytic alkylation of lepidine (4) and cyclohexylsilicate 2a was confirmed by the 

following experiment of Ru-catalyzed hydrogenation of 1-decene. An H-type flask was used, in which two test 

tubes were connected with a glass tube. In a left tube, under argon atmosphere, Mes-Acr+ (5.0 mol %), 4 (0.50 

mmol), 2a (0.60 mmol), TFA (0.55 mmol) and dichloromethane (3.5 mL) were placed. In a right flask, under 

argon atmosphere, RhCl(PPh3)3 (2.0 mol %), 1-decene (1.0 mmol), and benzene (3 mL) were placed. The H-type 

flask was sealed. The mixture in the left flask was stirred and irradiated at room temperature for 24 h, while the 

mixture in the right flask was stirred at 50 °C. Formation of 0.27 mmol of alkylated product 5 was observed by 

1H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. The yield of decane was determined by 

GC analysis using dodecane as an internal standard. In the right flask, 0.22 mmol of decane was produced, which 

means at least 0.22 mmol of H2 was evolved in the left flask and transferred to the right flask.  

 
Scheme 9.  



S28 

 

12. Electrochemical property of alkylsilicates 

The redox potentials of alkylsilicate 2 were determined by differential pulse voltammetry (DPV) analysis, which 

are summarized in Table S8. Substrate concentration was 1 mM, and 50 mM solution of Bu4NBF4 in CH3CN was 

used for solvent. A glassy carbon working electrode, a platinum counter electrode, an Ag/AgNO3 reference electrode 

were used. We measured the redox potential with respect to the [FeCp2]/[FeCp2]+ couple, which was converted to 

saturated calomel electrode (SCE) by adding 0.469 V.19 Voltammograms of DPV and cyclic voltammetry (CV) are 

shown in Figures S6-S15.  

 

Table S8. 

 

 

  

 

19 D. Bao, B. Millare, W. Xia, B. G. Steyer, A. A. Gerasimenko, A. Ferreira, A. Contreras, V. I. Vullev, J. Phys. Chem. A., 2009, 113, 1259–1267. 
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Figure S6 
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Figure S7 
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S35 

 

 

2h 

DPV 

 

CV 

 

Figure S12 
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Figure S14 
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Figure S15 
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13. NMR spectra 

 

2a 

 

 

Figure S16. 1H NMR (400 MHz) spectrum of 2a in acetone-d6. 
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Figure S17. 13C NMR (100 MHz) spectrum of 2a in acetone-d6. 
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Figure S18. 19F NMR (376 MHz) spectrum of 2a in acetone-d6. 
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Figure S19. 29Si NMR (79 MHz) spectrum of 2a in acetone-d6. 

  



S43 

 

 

2c 

 

 

Figure S20. 1H NMR (400 MHz) spectrum of 2c in acetone-d6. 
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Figure S21. 13C NMR (100 MHz) spectrum of 2c in acetone-d6. 
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Figure S22. 19F NMR (376 MHz) spectrum of 2c in acetone-d6. 
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Figure S23. 29Si NMR (79 MHz) spectrum of 2c in acetone-d6. 
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Figure S24. 1H NMR (400 MHz) spectrum of 2d in acetone-d6. 
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Figure S25. 13C NMR (100 MHz) spectrum of 2d in acetone-d6. 
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Figure S26. 19F NMR (376 MHz) spectrum of 2d in acetone-d6. 
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Figure S27. 29Si NMR (79 MHz) spectrum of 2d in acetone-d6. 
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Figure S28. 1H NMR (400 MHz) spectrum of 2e in acetone-d6. 
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Figure S29. 13C NMR (100 MHz) spectrum of 2e in acetone-d6. 
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Figure S30. 19F NMR (376 MHz) spectrum of 2e in CD3CN. 
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Figure S31. 29Si NMR (79 MHz) spectrum of 2e in acetone-d6. 
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Figure S32. 1H NMR (400 MHz) spectrum of 2f in acetone-d6. 
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Figure S33. 13C NMR (100 MHz) spectrum of 2f in acetone-d6. 
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Figure S34. 19F NMR (376 MHz) spectrum of 2f in acetone-d6. 
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Figure S35. 29Si NMR (79 MHz) spectrum of 2f in acetone-d6. 
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Figure S36. 1H NMR (400 MHz) spectrum of 2g in acetone-d6. 
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Figure S37. 13C NMR (100 MHz) spectrum of 2g in acetone-d6. 
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Figure S38. 19F NMR (376 MHz) spectrum of 2g in acetone-d6. 
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Figure S39. 29Si NMR (79 MHz) spectrum of 2g in acetone-d6. 
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Figure S40. 1H NMR (400 MHz) spectrum of 2h in acetone-d6. 
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Figure S41. 13C NMR (100 MHz) spectrum of 2h in acetone-d6. 
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Figure S42. 19F NMR (376 MHz) spectrum of 2h in acetone-d6. 
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Figure S43. 29Si NMR (79 MHz) spectrum of 2h in acetone-d6. 
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Figure S44. 1H NMR (400 MHz) spectrum of 2i in acetone-d6. 
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Figure S45. 13C NMR (100 MHz) spectrum of 2i in acetone-d6. 
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Figure S46. 19F NMR (376 MHz) spectrum of 2i in acetone-d6. 
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Figure S47. 29Si NMR (79 MHz) spectrum of 2i in acetone-d6. 
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Figure S48. 1H NMR (400 MHz) spectrum of 2j in acetone-d6. 
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Figure S49. 13C NMR (100 MHz) spectrum of 2j in acetone-d6. 
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Figure S50. 19F NMR (376 MHz) spectrum of 2j in acetone-d6. 
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Figure S51. 29Si NMR (79 MHz) spectrum of 2j in acetone-d6. 
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Figure S52. 1H NMR (400 MHz) spectrum of 2b in acetone-d6. 
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Figure S53. 13C NMR (100 MHz) spectrum of 2b in acetone-d6. 
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Figure S54. 19F NMR (376 MHz) spectrum of 2b in acetone-d6. 
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Figure S55. 29Si NMR (79 MHz) spectrum of 2b in acetone-d6. 
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Figure S56. 1H NMR (400 MHz) spectrum of 5 in CDCl3. 
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Figure S57. 13C NMR (100 MHz) spectrum of 5 in CDCl3. 
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Figure S58. 1H NMR (400 MHz) spectrum of 6 in CDCl3. 
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Figure S59. 13C NMR (100 MHz) spectrum of 6 in CDCl3. 
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Figure S60. 1H NMR (400 MHz) spectrum of 7 in CDCl3. 
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Figure S61. 13C NMR (100 MHz) spectrum of 7 in CDCl3. 
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Figure S62. 1H NMR (400 MHz) spectrum of 8 in CDCl3. 
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Figure S63. 13C NMR (100 MHz) spectrum of 8 in CDCl3. 
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Figure S64. 1H NMR (400 MHz) spectrum of 9 in CDCl3. 
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Figure S65. 13C NMR (100 MHz) spectrum of 9 in CDCl3. 
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Figure S66. 1H NMR (400 MHz) spectrum of 10 in CDCl3. 
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Figure S67. 13C NMR (100 MHz) spectrum of 10 in CDCl3. 
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Figure S68. 1H NMR (400 MHz) spectrum of 11 in CDCl3. 
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Figure S69. 13C NMR (100 MHz) spectrum of 11 in CDCl3. 
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Figure S70. 1H NMR (400 MHz) spectrum of 12 in CDCl3. 
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Figure S71. 13C NMR (100 MHz) spectrum of 12 in CDCl3. 
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Figure S72. 1H NMR (400 MHz) spectrum of 13 in CDCl3. 
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Figure S73. 13C NMR (100 MHz) spectrum of 13 in CDCl3. 
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Figure S74. 1H NMR (400 MHz) spectrum of 14 in CDCl3. 
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Figure S75. 13C NMR (100 MHz) spectrum of 14 in CDCl3. 
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Figure S76. 1H NMR (400 MHz) spectrum of 15 in CDCl3. 
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Figure S77. 13C NMR (100 MHz) spectrum of 15 in CDCl3. 
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Figure S78. 1H NMR (400 MHz) spectrum of 16 in CDCl3. 
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Figure S79. 13C NMR (100 MHz) spectrum of 16 in CDCl3. 
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Figure S80. 1H NMR (400 MHz) spectrum of 18 in CDCl3. 

 

  



S104 

 

 

18 

 

 

Figure S81. 13C NMR (100 MHz) spectrum of 18 in CDCl3. 
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Figure S82. 1H NMR (400 MHz) spectrum of 19 in CDCl3. 
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Figure S83. 13C NMR (100 MHz) spectrum of 19 in CDCl3. 
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Figure S84. 1H NMR (400 MHz) spectrum of 20 in CDCl3. 
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Figure S85. 13C NMR (100 MHz) spectrum of 20 in CDCl3. 
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Figure S86. 1H NMR (400 MHz) spectrum of 21 in CDCl3. 
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Figure S87. 13C NMR (100 MHz) spectrum of 21 in CDCl3. 
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Figure S88. 1H NMR (400 MHz) spectrum of 22’ in CDCl3. 

 

  



S112 

 

 

22’ 

 

 

Figure S89. 13C NMR (100 MHz) spectrum of 22’ in CDCl3. 
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Figure S90. 1H NMR (400 MHz) spectrum of 23 in CDCl3. 
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Figure S91. 13C NMR (100 MHz) spectrum of 23 in CDCl3. 
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Figure S92. 1H NMR (400 MHz) spectrum of 24 in CDCl3. 
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Figure S93. 13C NMR (100 MHz) spectrum of 24 in CDCl3. 
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Figure S94. 1H NMR (400 MHz) spectrum of 25 in CDCl3. 
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Figure S95. 13C NMR (100 MHz) spectrum of 25 in CDCl3. 
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Figure S96. 1H NMR (400 MHz) spectrum of 26 in CDCl3. 
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Figure S97. 13C NMR (100 MHz) spectrum of 26 in CDCl3. 
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Figure S98. 19F NMR (376 MHz) spectrum of 26 in CDCl3. 
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Figure S99. 1H NMR (400 MHz) spectrum of 27 in CDCl3. 
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Figure S100. 13C NMR (100 MHz) spectrum of 27 in CDCl3. 
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Figure S101. 1H NMR (400 MHz) spectrum of 28 in CDCl3. 
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Figure S102. 13C NMR (100 MHz) spectrum of 28 in CDCl3. 
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Figure S103. 1H NMR (400 MHz) spectrum of 29 in CDCl3. 
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Figure S104. 13C NMR (100 MHz) spectrum of 29 in CDCl3. 
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Figure S105. 1H NMR (400 MHz) spectrum of 30 in CDCl3. 
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Figure S106. 13C NMR (100 MHz) spectrum of 30 in CDCl3. 
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Figure S107. 1H NMR (400 MHz) spectrum of 31 in CDCl3. 
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Figure S108. 13C NMR (100 MHz) spectrum of 31 in CDCl3. 
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Figure S109. 1H NMR (400 MHz) spectrum of 32 in CDCl3. 
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Figure S110. 13C NMR (100 MHz) spectrum of 32 in CDCl3. 
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Figure S111. 1H NMR (400 MHz) spectrum of 16’ in CDCl3. 
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Figure S112. 13C NMR (100 MHz) spectrum of 16’ in CDCl3. 

 


