Supporting Information

Synthesis of Di(hetero)aryl Sulfides by Defluorinative Sulfenylation of Polyfluoroalkyl Ketones with Sodium Sulfinates or Arylsulfonyl Chlorides

Xue-Qiang Chu,* Ting Xie, Ya-Wen Wang, Xiang-Rui Li, Weidong Rao, Haiyan Xu, and Zhi-Liang Shen*

Table of Contents

1.	General information	page S2
2.	General procedures for the synthesis of α -perfluoroalkyl ketones	page S2
3.	General procedures for the synthesis of highly functionalized naphtho[1,2- b]furan derivatives by using sodium sulfinates	page S8
4.	General procedures for the synthesis of highly functionalized naphtho[1,2- b]furan/benzofuran derivatives by using arylsulfonyl chlorides	page S9
5.	Further applications for the synthesis of complex molecules	page S9
6.	Further transformations of product 4i	page S10
7.	Optimization of reaction conditions	page S12
8.	Mechanistic studies	page S13
9.	Characterization data for products	page S15
10.	References	page S35
11.	The X-ray crystal structures of product 5e	page S35
12.	¹ H, ¹⁹ F, and ¹³ C NMR spectra of products	page S37

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All reactions were carried out under N₂ atmosphere using undistilled solvent. Melting points were recorded on an Electrothermal digital melting point apparatus. IR spectra were recorded on a FT-IR spectrophotometer using KBr optics. ¹H, ¹⁹F, and ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance or Joel 400 MHz spectrometers. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. High resolution mass spectra (HRMS) were obtained using a commercial apparatus (ESI Source). Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

2. General procedures for the synthesis of α -perfluoroalkyl ketones

Various *a*-perfluoroalkyl ketones

General procedure A^[1]

According to MacMillan's reported method, a solution of enolsilane I (1.2 mmol), Ru(bpy)₃Cl₂•6H₂O (4.5 mg, 0.006 mmol, 0.5 mol%), *N*-ethyl-*N*-isopropylpropan-2-amine (424.0 μ L, 2.4 mmol), perfluoroalkyl iodide II (12 mmol), H₂O (32.0 μ L, 17.8 mmol) in THF (6.0 mL) was stirred under nitrogen atmosphere (by 3 times' vacuum evacuation/N₂ backfill cycles) by irradiation with 8 W Blue LEDs at room temperature for 24 h. Upon completion of the reaction (indicated by TLC), solvent was removed under vacuum and the residue was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (1:500) as eluent to afford the α-perfluoroalkyl ketone 1.

Representative examples:

2-(Perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1a)^[1]

¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.08 - 8.01$ (m, 1H), 7.57 - 7.49 (m, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.28 (s, 1H), 3.49 - 3.35 (m, 1H), 3.23 - 3.15 (m, 1H), 3.08 - 2.98 (m, 1H), 2.55 - 2.36 (m, 2H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -80.45 - -81.25 (m, 3F), -108.96 - -113.38 (m, 2F), -118.78 - -121.94 (m, 2F), -125.80 - -126.50 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 190.3 (m), 142.9, 134.2, 132.3 (m), 128.7, 127.9, 127.0, 49.3 (t, J = 20.3 Hz), 27.1, 22.9 (m) ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

4'-Chloro-2-methyl-4-(perfluorobutyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (1k)

¹H NMR (400 MHz, CDCl₃): δ = 7.34 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H), 3.35 – 3.20 (m, 1H), 2.83 – 2.71 (m, 1H), 2.70 – 2.58 (m, 1H), 2.46 – 2.29 (m, 2H), 1.79 (s, 3H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -80.80 – -80.92 (m, 3F), -110.28 – -114.09 (m, 2F), -119.53 – -121.96 (m, 2F), -125.96 – -126.14 (m, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 191.2, 154.9, 138.6, 134.2, 132.4, 128.6, 128.4, 47.6 (t, J = 20.6)

Hz), 30.4, 21.8, 12.9 ppm; carbons corresponding to the C_4F_9 group cannot be identified due to C-F coupling.

2,4'-Dimethyl-4-(perfluorobutyl)-5,6-dihydro-[1,1'-biphenyl]-3(4H)-one (11)

¹**H NMR** (400 MHz, CDCl₃): $\delta = 7.25 - 7.20$ (m, 2H), 7.13 - 7.08 (m, 2H), 3.36 - 3.22 (m, 1H), 2.87 - 2.75 (m, 1H), 2.72 - 2.60 (m, 1H), 2.38 (s, 3H), 1.77 (t, J = 1.9 Hz, 3H) ppm. ¹⁹**F NMR** (376 MHz, CDCl₃): $\delta = -80.77$ (t, J = 9.8 Hz, 3F), -109.70 - -114.25 (m, 2F), -119.29 - -122.06 (m, 2F), -125.98 (t, J = 15.4 Hz, 2F) ppm. ¹³**C NMR** (100 MHz, CDCl₃): $\delta = 191.7$ (t, J = 1.4 Hz), 156.6, 138.4, 137.3, 132.1, 129.1, 127.0, 47.6 (t, J = 20.2 Hz), 30.7, 22.0 (m), 21.2, 13.3 ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

2-Methyl-3-(naphthalen-1-yl)-6-(perfluorobutyl)cyclohex-2-en-1-one (1m)

¹**H NMR** (400 MHz, CDCl₃): $\delta = 7.93 - 7.86$ (m, 1H), 7.83 (d, J = 8.3 Hz, 1H), 7.69 - 7.56 (m, 1H), 7.54 - 7.46 (m, 3H), 7.24 - 7.18 (m, 1H), 3.55 - 3.31 (m, 1H), 2.96 - 2.78 (m, 1H), 2.78 - 2.58 (m, 1H), 2.50 (d, J = 5.4 Hz, 2H), 1.56 (s, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -80.80 (s, 3F), -109.50 - -113.97 (m, 2F), -119.36 - -122.12 (m, 2F), -125.92 (t, *J* = 12.4 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 191.3 (m), 156.2 (d, *J* = 18.6 Hz), 138.1 (d, *J* = 5.1 Hz), 134.2 (d, *J* = 9.4 Hz), 133.6, 129.1 (d, *J* = 9.3 Hz), 128.7 (d, *J* = 9.2 Hz), 128.2 (d, *J* = 7.5 Hz), 126.8 (d, *J* = 16.2 Hz), 126.2 (d, *J* = 5.1 Hz), 125.4 (d, *J* = 11.6 Hz), 124.3 (d, *J* = 4.8 Hz), 123.6 (d, *J* = 3.6 Hz), 47.7 (q, *J* = 20.0 Hz), 31.1 (d, *J* = 23.2 Hz), 22.3 (m), 12.9 ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

5-Methyl-2-(perfluorobutyl)-1,6-dihydro-[1,1'-biphenyl]-3(2H)-one (1n)

¹**H NMR** (400 MHz, CDCl₃): *δ* = 7.31 – 7.18 (m, 3H), 7.11 (d, *J* = 7.3 Hz, 2H), 6.12 (s, 1H), 4.00 – 3.89 (m, 1H), 3.47 – 3.26 (m, 1H), 3.03 (dd, *J* = 19.7, 5.2 Hz, 1H), 2.55 (d, *J* = 19.8 Hz, 1H), 2.03 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.81 - -81.32 (m, 3F), -110.57 - -112.97 (m, 2F), -119.91 - -

122.06 (m, 2F), -124.76 - -127.17 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 189.6 (m), 161.6, 142.0, 128.9, 128.9, 127.3 (t, *J* = 1.9 Hz), 126.8, 52.6 (t, *J* = 20.1 Hz), 37.4 (t, *J* = 1.7 Hz), 34.2, 24.1 (m) ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

6-Methyl-3-(perfluorobutyl)-4,5-dihydro-[1,1'-biphenyl]-2(3H)-one (1t)

¹**H NMR** (400 MHz, CDCl₃): δ = 7.40 – 7.32 (m, 2H), 7.31 – 7.25 (m, 1H), 7.04 (d, *J* = 7.1 Hz, 2H), 3.40 – 3.19 (m, 1H), 2.73 – 2.59 (m, 1H), 2.56 – 2.43 (m, 1H), 2.42 – 2.30 (m, 2H), 1.81 (s, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -80.91 (s, 3F), -110.17 - -113.94 (m, 2F), -119.49 - -122.08 (m, 2F), -126.06 (t, *J* = 14.9 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 189.8 (m), 157.5, 137.9 (d, *J* = 1.1 Hz), 135.1, 129.8, 128.0, 127.3, 47.7 (t, *J* = 21.0 Hz), 30.1, 22.4, 21.4 (m) ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

6'-Methyl-2'-oxo-3'-(perfluorobutyl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-4-carbonitrile (1u)
¹H NMR (400 MHz, CDCl₃): δ = 7.66 (d, J = 7.6 Hz, 2H), 7.18 (d, J = 7.5 Hz, 2H), 3.43 – 3.26 (m,
1H), 2.82 – 2.67 (m, 1H), 2.64 – 2.52 (m, 1H), 2.46 – 2.37 (m, 2H), 1.85 (s, 3H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -80.83 (t, J = 9.7 Hz, 3F), -110.32 – -113.64 (m, 2F), -119.39 – -122.20 (m, 2F), -126.01 (t, J = 15.1 Hz, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 189.2 (t, J = 2.1 Hz), 158.9, 140.1, 136.5 (d, J = 2.0 Hz), 131.9, 130.8, 118.7, 111.3, 47.5 (t, J = 21.4 Hz), 30.2, 22.4, 21.3 (m) ppm; carbons corresponding to the

C₄F₉ group cannot be identified due to C-F coupling.

3-Methyl-6-(perfluorobutyl)-2-(thiophen-2-yl)cyclohex-2-en-1-one (1v)

¹**H NMR** (400 MHz, CDCl₃): δ = 7.37 (d, *J* = 4.9 Hz, 1H), 7.04 (t, *J* = 4.1 Hz, 1H), 6.84 (d, *J* = 2.5 Hz, 1H), 3.41 – 3.25 (m, 1H), 2.80 – 2.67 (m, 1H), 2.63 – 2.50 (m, 1H), 2.43 – 2.33 (m, 2H), 2.01 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -80.09 (t, J = 9.8 Hz, 3F), -109.64 - -113.10 (m, 2F), -118.74 - -

121.25 (m, 2F), -125.28 (t, *J* = 15.1 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 189.1 (m), 160.1, 134.6, 131.1, 128.4, 126.5, 126.4, 47.8 (t, *J* = 21.3 Hz), 30.8 (t, *J* = 1.5 Hz), 23.0, 21.3 (m) ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

3-((2-Bromophenyl)thio)-5-methyl-6-(perfluorobutyl)cyclohex-2-en-1-one (1w)

¹**H** NMR (400 MHz, CDCl₃): δ = 7.74 (d, *J* = 7.6 Hz, 1H), 7.66 – 7.60 (m, 1H), 7.42 – 7.30 (m, 2H), 5.50 (d, *J* = 2.0 Hz, 1H), 3.12 – 2.80 (m, 3H), 2.27 (d, *J* = 18.4 Hz, 1H), 1.20 (d, *J* = 7.1 Hz, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -80.74 - -80.90 (m, 3F), -109.53 - -114.50 (m, 2F), -120.05 - -122.55 (m, 2F), -125.68 - -126.00 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 186.8 (m), 163.1, 137.7, 134.3, 132.1, 130.5, 128.8, 128.7, 120.1 (d, *J* = 1.7 Hz), 53.0 (t, *J* = 20.1 Hz), 33.6 (t, *J* = 2.6 Hz), 27.7 (m), 19.9 (d, *J* = 0.9 Hz) ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

(8R,9S,10R,13S,14S,17S)-13-Methyl-3-oxo-2-(perfluorobutyl)-

2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl acetate (1x)

¹**H NMR** (400 MHz, CDCl₃): $\delta = 5.96$ (s, 1H), 4.67 – 4.57 (m, 1H), 3.18 (t, J = 17.9 Hz, 1H), 2.68 – 2.47 (m, 2H), 2.35 – 2.25 (m, 2H), 2.24 – 2.13 (m, 1H), 2.05 (s, 3H), 1.91 – 1.75 (m, 4H), 1.72 – 1.60 (m, 2H), 1.58 – 1.48 (m, 1H), 1.41 – 1.24 (m, 4H), 1.14 – 1.05 (m, 2H), 0.86 (s, 3H) ppm. ¹⁹**F NMR** (376 MHz, CDCl₃): $\delta = -80.82$ (t, J = 9.5 Hz, 3F), -110.30 – -113.92 (m, 2F), -120.11 – 122.69 (m, 2F), -125.83 (t, J = 15.1 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 190.6 (m), 171.2, 167.9, 124.3 (d, *J* = 1.5 Hz), 82.4, 50.2, 49.4, 46.5 (t, *J* = 20.4 Hz), 42.6, 40.0, 39.9 (t, *J* = 1.4 Hz), 36.4, 35.5, 30.7, 27.4, 26.4 (m), 25.7, 23.3, 21.1, 12.0 ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

5-(Perfluorobutyl)-6,7-dihydrobenzo[*b*]thiophen-4(5*H*)-one (**1j**), 5-oxo-6-(perfluorobutyl)-5,6,7,8tetrahydronaphthalen-1-yl 4-methylbenzenesulfonate (**1s**), 2-(perfluorodecyl)-3,4dihydronaphthalen-1(2*H*)-one (**1o**), 2-(perfluorooctyl)-3,4-dihydronaphthalen-1(2*H*)-one (**1p**), 2-(perfluorohexyl)-3,4-dihydronaphthalen-1(2*H*)-one (**1q**), and 2-(perfluoropropyl)-3,4dihydronaphthalen-1(2*H*)-one (**1r**) were synthesized according to general procedure A.

General procedure B^[2]

Step 1: The solution of ketone III (5 mmol) in dry THF (25 mL) was cooled to -78 °C and then lithium diisopropylamide (LDA, 3.75 mL, 7.5 mmol, 2.0 mol/L in THF/hexane) was dropwise added to the reaction mixture. Nonafluorobutanesulfonyl fluoride (N_fF, 1.1 mL, 6 mmol) was added slowly by a syringe over 10 min. The reaction mixture was warmed to room temperature and stirred overnight. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) on Et₃N-treated silica gel eluting with petroleum ether to afford enol nonaflate IV.

Step 2: A solution of enol nonaflate IV (0.8 mmol), (NH₄)₂S₂O₈ (0.16 mmol, 37 mg), and AgNO₃ (0.008 mmol, 1.4 mg) in ^{*t*}BuOH (2.0 mL) and H₂O (2.0 mL) was stirred vigorously under nitrogen atmosphere (by 3 times' vacuum evacuation/N₂ backfill cycles) at 30 °C for 12 h. Upon completion of the reaction (indicated by TLC), the reaction mixture was diluted with dichloromethane. The organic layer was separated and the aqueous layer was washed with dichloromethane (3×10 mL). The combined organic layers were dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate as eluent to afford α-perfluoroalkyl ketone **1**.

Representative examples:

6-Methoxy-2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1f)

¹**H NMR** (400 MHz, CDCl₃): δ = 8.02 (d, J = 8.8 Hz, 1H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 6.70 (d,

J = 2.4 Hz, 1H), 3.87 (s, 3H), 3.44 – 3.30 (m, 1H), 3.20 – 3.10 (m, 1H), 3.00 – 2.91 (m, 1H), 2.50 – 2.34 (m, 2H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -80.45 - -81.24 (m, 3F), -108.98 - -113.48 (m, 2F), -118.81 - -121.88 (m, 2F), -125.99 - -126.55 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 188.8 (m), 164.1, 145.5, 130.3, 125.8, 113.7, 112.3, 55.4, 48.9 (t, J = 20.4 Hz), 27.3, 23.0 ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

7-Fluoro-2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1b), 7-bromo-2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1c), 7-methyl-2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)one (1d), 7-methoxy-2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1e), 5-methoxy-2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one 4-(3,4-dichlorophenyl)-2-(**1g**), (perfluorobutyl)-3,4-dihydronaphthalen-1(2H)-one (1h), 4-methyl-2-(perfluorobutyl)-3,4dihydronaphthalen-1(2H)-one 2-(perfluorobutyl)cyclohexan-1-one (**1i**), (13), and 6-(perfluorobutyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (15) were synthesized according to general procedure B.

3. General procedures for the synthesis of highly functionalized naphtho[1,2-*b*]furan derivatives by using sodium sulfinates

A solution of 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2*H*)-one (**1a**, 73 mg, 0.2 mmol), sodium sulfinates **2** (0.24 mmol), iodine (76 mg, 0.3 mmol), triphenylphosphine (157 mg, 0.6 mmol), and Cs_2CO_3 (195 mg, 0.6 mmol) in NMP (2.0 mL) was stirred under N₂ atmosphere at 70 °C for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate or dichloromethane/methanol as eluent to afford the pure products **4**.

4. General procedures for the synthesis of highly functionalized naphtho[1,2b]furan/benzofuran derivatives by using arylsulfonyl chlorides

A solution of polyfluoroalkyl ketone **1** (0.2 mmol), arylsulfonyl chloride **3** (0.24 mmol), triphenylphosphine (157 mg, 0.6 mmol), and Cs_2CO_3 (195 mg, 0.6 mmol) in DMF (2.0 mL) was stirred under N₂ atmosphere at 70 °C for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate or dichloromethane/methanol as eluent to afford the pure products **5** or **6**.

5. Further applications for the synthesis of complex molecules

1) The reaction of α -perfluoroalkyl ketone 1a with 4,4'-oxydibenzenesulfonyl chloride (7a)

A solution of 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2*H*)-one (**1a**, 146 mg, 0.4 mmol), 4,4'oxydibenzenesulfonyl chloride (**7a**, 73 mg, 0.2 mmol), triphenylphosphine (157 mg, 0.6 mmol), and Cs_2CO_3 (195 mg, 0.6 mmol) in DMF (2.0 mL) was stirred under N₂ atmosphere at 70 °C for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (500/1 ~ 200/1) as eluent to afford the pure product **8a** (88 mg, 55%).

2) The reaction of α -perfluoroalkyl ketone 1a with [1,1'-biphenyl]-4,4'-disulfonyl dichloride

(7b)

A solution of 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2*H*)-one (**1a**, 146 mg, 0.4 mmol), [1,1'biphenyl]-4,4'-disulfonyl dichloride (**7b**, 70 mg, 0.2 mmol), triphenylphosphine (157 mg, 0.6 mmol), and Cs₂CO₃ (195 mg, 0.6 mmol) in DMF (2.0 mL) was stirred under N₂ atmosphere at 70 °C for 12

h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (500/1 ~ 200/1) as eluent to afford the pure product **8b** (82 mg, 52%).

3) The reaction of α -perfluoroalkyl ketone 1a with potassium 4-(5-chloro-6'-methyl-[2,3'-

bipyridin]-3-yl)benzenesulfinate (9)

A solution of 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2*H*)-one (**1a**, 73 mg, 0.2 mmol), potassium 4-(5-chloro-6'-methyl-[2,3'-bipyridin]-3-yl)benzenesulfinate (**9**, 92 mg, 0.24 mmol), iodine (76 mg, 0.3 mmol), triphenylphosphine (157 mg, 0.6 mmol), and Cs_2CO_3 (195 mg, 0.6 mmol) in DMF (2.0 mL) was stirred under N₂ atmosphere at 70 °C for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with EtOAc (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (500/1 ~ 200/1) as eluent to afford the pure product **10** (24 mg, 20%).

6. Further transformations of product 4i

1) Synthesis of diaryl sulfone 11

A solution of 3-((2-bromophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-*b*]furan (**4i**, 142 mg, 0.3 mmol) and 3-chloroperoxybenzoic acid (*m*-CPBA, 173 mg, 0.75 mmol) in DCM (2.0 mL) was stirred at room temperature for 1 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with DCM (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether as eluent to afford the pure product 3-((2-bromophenyl)sulfonyl)-2-(perfluoroethyl)naphtho[1,2-*b*]furan (**11**, 109 mg, 72%).

2) Synthesis of fused heterocycle 12

A solution of 3-((2-bromophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-*b*]furan (**4i**, 142 mg, 0.3 mmol), PdCl₂(PPh₃)₂ (21 mg, 0.03 mmol), and CsOPiv (210 mg, 0.90 mmol) in DMA (2.0 mL) was stirred under nitrogen atmosphere at 140 °C for 24 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with DCM (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether as eluent to afford the pure product 6-(perfluoroethyl)dibenzo[3,4:6,7]isothiochromeno[8,1-*bc*]furan (**12**, 90 mg, 76%).

7. Optimization of reaction conditions

TADIE ST. ODUMIZATION OF TEACHOR CONDITIONS. ⁴	Table S1	Optimization	of reaction	conditions.[a]
--	----------	---------------------	-------------	----------------

	with 2a	promoter (x equiv.)/reductant (y	1	$-\frac{1}{2} + \frac{1}{2} + 1$
entry	or 3a	equiv.)	solvent	
1	2a	$I_{2}(1)/PPh_{3}(2)$	DMF	37
2	2a	$I_2(1)/PPh_3(2)$	DMSO	trace
3	2a	$I_{2}(1)/PPh_{3}(2)$	MeCN	<5
4	2a	$I_2(1)/PPh_3(2)$	MeNO ₂	trace
5	2a	$I_2(1)/PPh_3(2)$	^t BuOH	0
6	2a	$I_2(1)/PPh_3(2)$	DMA	35
7	2a	$I_2(1)/PPh_3(2)$	NMP	56
8	2a	$I_2(1)/PPh_3(2)$	NMP	<10 ^[c]
9	2a	$I_2(1)/P(^nBu)_3(2)$	NMP	0
10	2a	I ₂ (1)/(PhO) ₃ P(2)	NMP	21
11	2a	I ₂ (1)/(EtO) ₂ P(O)H (2)	NMP	13
12	2a	I ₂ (1)/	NMP	0
13	2a	/PPh ₃ (2)	NMP	<10
14	2a	NaI (1)/PPh ₃ (2)	NMP	trace
15	2a	NIS (1)/PPh ₃ (2)	NMP	<10
16	2a	$PhI(OAc)_{2}(1)/PPh_{3}(2)$	NMP	<5
17	2a	TBAI (1)/PPh ₃ (2)	NMP	trace
18	2a	$I_2(1.5)/PPh_3(3)$	NMP	70 (66) ^[d]
19	3 a	/PPh ₃ (3)	NMP	68
20	3 a	/PPh ₃ (3)	DMF	76 (71) ^[d]
21	3 a	/PPh ₃ (3)	DMSO	<5
22	3 a	/PPh ₃ (3)	DMA	39
23	3 a	/PPh ₃ (3)	CDCl ₃	<10
24	3 a	/PPh ₃ (3)	THF	<10
25	3 a	/PPh ₃ (3)	1,4-dioxane	<5

^[a] Reaction conditions: **1a** (0.20 mmol), **2a** or **3a** (0.24 mmol), promoter (0-0.3 mmol), reductant (0-0.6 mmol), and Cs_2CO_3 (0.60 mmol) in solvent (2.0 mL) at 70 °C for 12 h under N₂. ^[b] Yields were determined by NMR analysis with 1,4-dimethoxybenzene as an internal standard. ^[c] At 50 °C. ^[d] Isolated yield.

8. Mechanistic studies

1) Control experiment of 2-(perfluorobutyl)cyclohexan-1-one (13) with 4methylbenzenesulfonyl chloride (3a)

A solution of 2-(perfluorobutyl)cyclohexan-1-one (13, 63 mg, 0.2 mmol), 4-methylbenzenesulfonyl chloride (3a, 46 mg, 0.24 mmol), triphenylphosphine (157 mg, 0.6 mmol), and Cs_2CO_3 (195 mg, 0.6 mmol) in DMF (2.0 mL) was stirred under N₂ atmosphere at 70 °C for 12 h. No desired product 14 was obtained. This result suggested that the phenyl moiety or unsaturated C=C bond in the α -perfluoroalkyl ketone 1 was essential for the established cascade reaction.

- 2) Control experiment of 6-(perfluorobutyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one
 - (15) with 2-bromobenzenesulfonyl chloride (3e)

A solution of 6-(perfluorobutyl)-6,7,8,9-tetrahydro-5*H*-benzo[7]annulen-5-one (**15**, 76 mg, 0.2 mmol), 2-bromobenzenesulfonyl chloride (**3e**, 61 mg, 0.24 mmol), triphenylphosphine (157 mg, 0.6 mmol), and Cs_2CO_3 (195 mg, 0.6 mmol) in DMF (2.0 mL) was stirred under N₂ atmosphere at 70 °C for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with DCM (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether as eluent to afford the pure product **16** (55 mg, 56%). This result suggested that the deprotonation at the β and γ positions of the perfluoroalkyl ketone 1 might be a vital course for the successive defluorination.

3) Detection of the key intermediate 2-(perfluorobutylidene)-3,4-dihydronaphthalen-1(2H)-

one (17)

A solution of 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2*H*)-one (**1a**, 73 mg, 0.2 mmol), triphenylphosphine (157 mg, 0.6 mmol), and Cs_2CO_3 (195 mg, 0.6 mmol) in DMF (2.0 mL) was stirred under N₂ atmosphere at 70 °C for 12 h. The reaction was then quenched by saturated NH₄Cl

solution (20 mL) and diluted with DCM (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether as eluent to afford the pure 2-(perfluorobutylidene)-3,4-dihydronaphthalen-1(2H)-one (17, 23 mg, 33%). This result suggested that compound 17 was the possible reaction intermediate.

53% NMR yield of compound 17 was also obtained for the example of 5l in table 2.

NMR spectra of compound 17:

4) The reaction of 2-(perfluorobutylidene)-3,4-dihydronaphthalen-1(2*H*)-one (17) with 4methylbenzenesulfonyl chloride (3a)

A solution of 2-(perfluorobutyl)-3,4-dihydronaphthalen-1(2*H*)-one (**17**, 69 mg, 0.2 mmol), 4methylbenzenesulfonyl chloride (**3a**, 46 mg, 0.24 mmol), triphenylphosphine (157 mg, 0.6 mmol), and Cs_2CO_3 (195 mg, 0.6 mmol) in DMF (2.0 mL) was stirred under N₂ atmosphere at 70 °C for 12 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and diluted with DCM (20 mL). The organic layer was washed with saturated brine twice, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (300-400 mesh) using petroleum ether as eluent to afford the product **4a** (51 mg, 63%). **This result further suggested that compound 17 was the possible reaction intermediate.**

Scheme S1 Proposed reaction mechanism.

9. Characterization data for products

2-(Perfluoroethyl)-3-(p-tolylthio)naphtho[1,2-b]furan (4a & 5a):

Yield = 66% (4a, 54 mg). Yield = 71% (5a, 58 mg). White solid. M.p. 102.7–103.4 °C.

IR (KBr): *v* = 3072, 1594, 1564, 808, 758 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.30 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.64 – 7.49 (m, 3H), 7.29 (d, J

= 8.7 Hz, 1H), 7.21 (d, J = 8.2 Hz, 2H), 7.04 (d, J = 8.0 Hz, 2H), 2.27 (s, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): *δ* = -83.63 (t, *J* = 4.1 Hz, 3F), -112.18 - -113.16 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.5, 141.3 (t, J = 29.6 Hz), 137.0, 132.7, 130.3, 130.0, 129.8, 129.3, 128.4,

127.1, 126.9, 125.1, 124.3, 121.0, 120.3, 118.5, 21.0 ppm; carbons corresponding to the C_2F_5 group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₁H₁₄F₅OS [M+H]⁺ 409.0680, found: 409.0676.

3-((4-(*tert*-Butyl)phenyl)thio)-2-(perfluoroethyl)naphtho[1,2-*b*]furan (4b):

Yield = 68% (61 mg). Light yellow oil.

IR (KBr): *v* = 2965, 1566, 1498, 810, 758 cm⁻¹.

= 8.7 Hz, 1H), 7.27 - 7.23 (m, 4H), 1.26 (s, 9H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.51 - -83.68 (m, 3F), -112.53 - -112.76 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.5 (d, *J* = 0.9 Hz), 150.2, 141.6 (t, *J* = 29.5 Hz), 132.8, 130.5, 128.9, 128.4,

127.1, 126.9, 126.3, 125.1, 124.4, 121.0, 120.3, 118.6, 118.1 (t, J = 36.3 Hz), 34.5, 31.2 ppm; carbons corresponding

to the C_2F_5 group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{24}H_{20}F_5OS \ [M+H]^+451.1150$, found: 451.1150.

3-((4-Methoxyphenyl)thio)-2-(perfluoroethyl)naphtho[1,2-b]furan (4c & 5b):

Yield = 62% (4c, 53 mg). Yield = 68% (5b, 58 mg). Light yellow solid. M.p. 75.5–76.9 °C.

IR (KBr): *v* = 3068, 1591, 1494, 809, 750 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.33 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.67 - 7.53 (m, 3H), 7.40 - 7.33

(m, 2H), 7.30 (d, J = 8.7 Hz, 1H), 6.85 – 6.77 (m, 2H), 3.76 (s, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): *δ* = -83.63 (t, *J* = 3.4 Hz, 3F), -112.43 - -112.50 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 159.3, 151.4 (t, *J* = 1.5 Hz), 140.6 (t, *J* = 29.1 Hz), 132.7, 132.2, 128.3, 127.1,

126.9, 125.0, 124.2, 124.1, 121.0, 120.3, 119.3 (m), 118.5, 114.9, 55.3 ppm; carbons corresponding to the C_2F_5

group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{21}H_{14}F_5O_2S \ [M+H]^+ 425.0629$, found: 425.0636.

2-(Perfluoroethyl)-3-(phenylthio)naphtho[1,2-b]furan (4d):

Yield = 48% (38 mg). White solid. M.p. 44.1–45.2 °C.

IR (KBr): v = 3069, 1576, 1513, 809, 740 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): *δ* = 8.34 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.68 – 7.56 (m, 3H), 7.35 – 7.27

(m, 3H), 7.25 – 7.15 (m, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.73 (s, 3F), -112.80 – -112.92 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.5, 141.8 (t, *J* = 29.7 Hz), 134.2, 132.8, 129.2, 128.7, 128.4, 127.2, 127.0,

126.8, 125.2, 124.2, 121.0, 120.3, 118.5, 117.5 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₂F₅OS [M+H]⁺ 395.0524, found: 395.0522.

3-((2-Fluorophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-b]furan (4e):

Yield = 62% (51 mg). Light yellow solid. M.p. 84.2–85.6 °C.

IR (KBr): *v* = 3064, 1640, 1589, 810, 775 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): *δ* = 8.32 (d, *J* = 8.2 Hz, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.67 – 7.53 (m, 3H), 7.35 – 7.26

(m, 3H), 7.00 - 6.89 (m, 2H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.62 (t, *J* = 3.0 Hz, 3F), -112.54 - -112.77 (m, 2F), -114.18 - -114.25 (m, 1F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 162.0$ (m), 151.6, 141.5 (t, J = 29.9 Hz), 132.8, 131.3 (m), 129.1 (m), 128.4, 127.2,

127.1, 125.3, 124.0, 121.0, 120.3, 118.2, 116.5, 116.3 ppm; carbons corresponding to the C_2F_5 group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{20}H_{11}F_6OS \ [M+H]^+413.0429$, found: 413.0424.

3-((4-Chlorophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-*b*]furan (4f):

Yield = 54% (46 mg). Yellow solid. M.p. 88.8–90.0 °C.

IR (KBr): $v = 3057, 1571, 1474, 812, 744 \text{ cm}^{-1}$.

¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.36 - 8.31$ (m, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.31 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.31 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.31 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.31 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.31 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.31 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.67 - 7.54 (m, 3H), 7.51 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 8.0

8.7 Hz, 1H), 7.23 – 7.18 (m, 4H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.62 (t, *J* = 3.5 Hz, 3F), -112.74 - -112.76 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.6 (t, J = 1.3 Hz), 142.1 (t, J = 29.7 Hz), 132.8, 132.8, 129.8, 129.4, 129.3,

128.5, 127.3, 127.1, 125.5, 124.0, 121.0, 120.3, 118.2, 116.9 (t, J = 1.0 Hz) ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₁ClF₅OS [M+H]⁺429.0134, found: 429.0137.

3-((3-Chlorophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-b]furan (4g & 5c):

Yield = 58% (4g, 50 mg). Yield = 70% (5c, 60 mg). White solid. M.p. 84.7–86.3 °C.

IR (KBr): $v = 3061, 1576, 1465, 812, 778 \text{ cm}^{-1}$.

¹**H** NMR (400 MHz, CDCl₃): δ = 8.35 (d, *J* = 8.2 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.66 (ddd, *J* = 8.2, 4.6, 2.3 Hz, 2H), 7.59 (ddd, *J* = 8.2, 7.0, 1.3 Hz, 1H), 7.35 (d, *J* = 8.7 Hz, 1H), 7.26 (q, *J* = 1.1 Hz, 1H), 7.17 – 7.14 (m, 2H), 7.12 – 7.08 (m, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.62 (t, *J* = 3.5 Hz, 3F), -112.74 - -112.76 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.6 (t, *J* = 1.1 Hz), 142.4 (t, *J* = 30.0 Hz), 136.4, 135.0, 132.9, 130.2, 128.5,

127.9, 127.3, 127.1, 126.9, 126.3, 125.6, 124.0, 121.0, 120.3, 118.1, 116.3 (d, J = 1.7 Hz) ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{20}H_{11}ClF_5OS [M+H]^+ 429.0134$, found: 429.0133.

3-((4-Bromophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-*b*]furan (4h):

Yield = 58% (55 mg). Yellow solid. M.p. 90.6–92.4 °C.

IR (KBr): *v* = 3056, 1571, 1557, 810, 743 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.37 - 8.31$ (m, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.68 - 7.62 (m, 2H), 7.61 - 7.55 (m, 2H), 7.55 (

1H), 7.37 – 7.32 (m, 2H), 7.31 (d, *J* = 8.7 Hz, 1H), 7.14 – 7.09 (m, 2H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.62 (t, *J* = 3.8 Hz, 3F), -112.82 (q, *J* = 3.8 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.6 (t, J = 1.3 Hz), 142.1 (t, J = 29.4 Hz), 133.5, 132.8, 132.2, 129.8, 128.4,

127.3, 127.1, 125.5, 123.9, 121.0, 120.6, 120.3, 118.1, 116.6 (m) ppm; carbons corresponding to the C_2F_5 group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{20}H_{11}BrF_5OS [M+H]^+ 472.9629$, found: 472.9635.

3-((2-Bromophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-*b*]furan (4i & 5e):

Yield = 55% (4i, 52 mg). Yield = 79% (5e, 75 mg). Yellow solid. M.p. 79.0–80.4 °C.

IR (KBr): $v = 3057, 1639, 1576, 811, 747 \text{ cm}^{-1}$.

¹H NMR (400 MHz, CDCl₃): δ = 8.39 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.74 – 7.67 (m, 2H), 7.66 – 7.57

(m, 2H), 7.37 (d, *J* = 8.7 Hz, 1H), 7.12 – 7.00 (m, 2H), 6.87 – 6.78 (m, 1H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -83.51 (t, *J* = 3.4 Hz, 3F), -113.03 (q, *J* = 3.3 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 151.7$ (t, J = 0.9 Hz), 143.0 (t, J = 29.6 Hz), 136.2, 133.0, 133.0, 128.5, 127.9,

127.9, 127.3, 127.2, 127.1, 125.6, 124.0, 121.4, 121.0, 120.3, 118.2, 116.3 (t, *J* = 1.6 Hz) ppm; carbons corresponding

to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₁BrF₅OS [M+H]⁺472.9629, found: 472.9633.

4-((2-(Perfluoroethyl)naphtho[1,2-*b*]furan-3-yl)thio)benzonitrile (4j & 5f): Yield = 55% (3j, 46 mg). Yield = 55% (5f, 46 mg). Yellow solid. M.p. 110.2–110.3 °C. IR (KBr): *ν* = 3052, 2226, 1592, 1560, 808, 787 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): *δ* = 8.41 – 8.34 (m, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.74 – 7.67 (m, 2H), 7.66 – 7.60 (m, 1H), 7.51 – 7.46 (m, 2H), 7.35 (d, *J* = 8.7 Hz, 1H), 7.24 – 7.20 (m, 2H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): *δ* = -83.62 (t, *J* = 4.2 Hz, 3F), -113.10 (q, *J* = 3.2 Hz, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): *δ* = 151.8, 143.3 (t, *J* = 29.3 Hz), 141.8, 133.0, 132.6, 128.5, 127.5, 127.4, 127.0, 126.0, 123.7, 121.0, 120.3, 118.4, 117.7, 114.4 (t, *J* = 2.9 Hz), 109.6 ppm; carbons corresponding to the C₂Fs group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₂₁H₁₁F₅NOS [M+H]⁺420.0476, found: 420.0474.

3-(Naphthalen-1-ylthio)-2-(perfluoroethyl)naphtho[1,2-b]furan (4k & 5h):

Yield = 43% (4k, 38 mg). Yield = 67% (5h, 60 mg). Yellow solid. M.p. 88.0–89.5 °C.

IR (KBr): v = 3053, 1564, 1504, 810, 787 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.52 - 8.46$ (m, 1H), 8.37 - 8.32 (m, 1H), 7.89 - 7.82 (m, 2H), 7.72 (dd, J = 7.3,

1.8 Hz, 1H), 7.66 – 7.58 (m, 2H), 7.57 – 7.53 (m, 2H), 7.47 (d, *J* = 8.7 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.07 (d, *J* = 8.7 Hz, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.50 (t, J = 4.0 Hz, 3F), -112.45 - -113.34 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ =151.6 (m), 141.7 (t, *J* = 29.9 Hz), 133.9, 132.8, 131.9, 131.1 (t, *J* = 1.1 Hz), 128.7,

128.4, 127.6, 127.5, 127.1, 127.0, 126.8, 126.6, 125.7, 125.1, 124.3, 124.1, 121.0, 120.3, 118.4, 117.8 (m) ppm;

carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{24}H_{14}F_5OS [M+H]^+ 445.0680$, found: 445.0681.

3-((1-Iodonaphthalen-2-yl)thio)-2-(perfluoroethyl)naphtho[1,2-*b***]furan (41): Yield = 46% (52 mg). White solid. M.p. 124.2–125.7 °C. IR** (KBr): ν = 3066, 1594, 1566, 808, 776 cm⁻¹. ¹**H** NMR (400 MHz, CDCl₃): δ = 9.03 (dd, J = 4.3, 1.7 Hz, 1H), 8.44 – 8.38 (m, 1H), 8.18 (dd, J = 8.3, 1.7 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.73 – 7.64 (m, 2H), 7.63 – 7.55 (m, 2H), 7.51 (dd, J = 8.3, 4.3 Hz, 1H), 7.44 (d, J = 8.7 Hz, 1H), 7.27 – 7.20 (m, 1H), 6.97 (dd, J = 7.5, 1.1 Hz, 1H) ppm. ¹⁹**F** NMR (376 MHz, CDCl₃): δ = -83.05 – -84.10 (m, 3F), -113.28 (q, J = 3.8 Hz, 2F) ppm. ¹³**C** NMR (100 MHz, CDCl₃): δ = 151.8 (t, J = 1.1 Hz), 149.6, 144.8 (t, J = 29.3 Hz), 136.3, 136.3, 133.0, 128.5, 128.3, 127.3, 127.0, 126.7, 125.4, 124.9, 124.7, 124.5, 122.0, 121.1, 120.3, 118.6, 116.0 (t, J = 2.1 Hz), 110.1, 109.7 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling. HRMS (m/z): calcd for C₂₄H₁₃F₅IOS [M+H]⁺ 570.9646, found: 570.9648.

8-((2-(Perfluoroethyl)naphtho[1,2-b]furan-3-yl)thio)quinoline (4m & 5j):

Yield = 42% (4m, 37 mg). Yield = 71% (5j, 63 mg). Yellow solid. M.p. 85.1–85.5 °C.

IR (KBr): v = 3053, 1590, 1564, 810, 787 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.49$ (d, J = 8.5 Hz, 1H), 8.34 (d, J = 8.2 Hz, 1H), 7.90 – 7.82 (m, 2H), 7.72 (dd, J = 7.3, 1.8 Hz, 1H), 7.62 (qd, J = 8.2, 1.3 Hz, 2H), 7.54 (d, J = 7.1 Hz, 2H), 7.47 (d, J = 8.7 Hz, 1H), 7.29 – 7.22

(m, 1H), 7.07 (d, *J* = 8.7 Hz, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.51 (t, *J* = 4.1 Hz, 3F), -112.19 - -113.65 (m, 2F) ppm.

¹³**C NMR** (100 MHz, CDCl₃): δ = 151.6 (t, *J* = 1.1 Hz), 144.7 (t, *J* = 30.8 Hz), 133.9, 132.8, 131.9, 131.1, 128.7, 128.4, 127.6, 127.5, 127.1, 127.0, 126.8, 126.6, 125.7, 125.1, 124.3, 124.1, 121.0, 120.3, 118.4 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling. **HRMS** (m/z): calcd for C₂₃H₁₃F₅NOS [M+H]⁺ 446.0633, found: 446.0630.

$\label{eq:linear} \ensuremath{\texttt{2-}(Perfluoroethyl)-3-(thiophen-2-ylthio)naphtho[1,2-b]furan~(4n~\&~5k):}$

Yield = 61% (**3n**, 49 mg). Yield = 36% (**5k**, 29 mg). Yellow solid. M.p. 99.7–100.4 °C.

IR (KBr): v = 3101, 1566, 1522, 758, 710 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.28 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.66 (d, *J* = 8.7 Hz, 1H), 7.61 (ddd, *J* = 8.2, 7.0, 1.3 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.33 (d, *J* = 4.8 Hz, 2H), 7.00 – 6.93 (m, 1H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -83.54 (s, 3F), -112.37 (s, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 151.3 (t, *J* = 1.0 Hz), 140.3 (t, *J* = 29.4 Hz), 134.3, 132.7, 131.0, 130.2, 128.3, 127.5, 127.1, 127.0, 125.2, 124.0, 120.9, 120.3, 119.5, 118.1 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₈H₁₀F₅OS₂ [M+H]⁺401.0088, found: 401.0088.

3-((2-Chlorophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-b]furan (5d):

Yield = 61% (52 mg). Yellow solid. M.p. 112.0–112.3 °C.

IR (KBr): $v = 3062, 1593, 1572, 805, 756 \text{ cm}^{-1}$.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.37 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.70 – 7.64 (m, 2H), 7.60 (ddd, 7.61 Hz), 7.61 (ddd), 7.61 Hz

J = 8.2, 7.0, 1.3 Hz, 1H), 7.40 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.35 (d, *J* = 8.7 Hz, 1H), 7.10 (td, *J* = 7.7, 1.5 Hz, 1H), 7.00

(td, *J* = 7.7, 1.4 Hz, 1H), 6.82 (dd, *J* = 8.0, 1.5 Hz, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.56 (t, *J* = 4.1 Hz, 3F), -113.12 (q, *J* = 4.0 Hz, 2F) ppm.

¹³**C NMR** (100 MHz, CDCl₃): $\delta = 165.9, 151.7$ (m), 143.1 (t, J = 29.6 Hz), 134.1, 133.0, 131.9, 129.8, 128.5, 128.1,

127.3, 127.2, 127.1, 125.6, 124.1, 121.0, 120.3, 118.2, 115.8 (t, J = 2.1 Hz) ppm; carbons corresponding to the C₂F₅

group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{20}H_{11}ClF_5OS [M+H]^+ 429.0134$, found: 429.0137.

3-((2-Nitrophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-b]furan (5g):

Yield = 84% (74 mg). Yellow solid. M.p. 136.6–137.8 °C.

IR (KBr): *v* = 3055, 1592, 1567, 818, 781 cm⁻¹.

J = 8.3, 3.9 Hz, 2H), 7.67 – 7.60 (m, 1H), 7.38 – 7.26 (m, 3H), 6.95 (d, *J* = 7.5 Hz, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.50 (s, 3F), -113.12 - -113.25 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 151.9$ (t, J = 0.9 Hz), 145.2, 144.2 (t, J = 29.3 Hz), 135.4, 133.9, 133.1, 128.6,

128.0, 127.5, 127.4, 126.2, 126.0, 125.8, 123.8, 121.0, 120.3, 117.7, 115.4 (t, J = 1.6 Hz) ppm; carbons corresponding

to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₁F₅NO₃S [M+H]⁺440.0374, found: 440.0378.

3-(Naphthalen-2-ylthio)-2-(perfluoroethyl)naphtho[1,2-b]furan (5i):

Yield = 70% (62 mg). White solid. M.p. 135.1–135.8 °C.

IR (KBr): v = 3366, 1771, 1579, 1501, 810, 747 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): *δ* = 8.36 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.77 – 7.74 (m, 2H), 7.70 – 7.62

(m, 3H), 7.58 - 7.53 (m, 2H), 7.45 - 7.40 (m, 2H), 7.34 - 7.29 (m, 2H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.55 (t, *J* = 3.8 Hz, 3F), -117.70 (q, *J* = 3.8 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 151.6$ (t, J = 1.2 Hz), 141.8 (t, J = 29.4 Hz), 133.6, 132.8, 132.0, 131.5, 129.0,

128.4, 127.8, 127.2, 127.2, 127.1, 127.0, 126.8, 126.3, 126.1, 125.3, 124.3, 121.0, 120.3, 118.5, 117.4 ppm; carbons

corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{24}H_{14}F_5OS [M+H]^+ 445.0680$, found: 445.0685.

3-((2-Bromophenyl)thio)-8-fluoro-2-(perfluoroethyl)naphtho[1,2-b]furan (6a):

Yield = 74% (73 mg). White solid. M.p. 102.1–102.5 °C.

IR (KBr): v = 2973, 1647, 1600, 828, 749 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): *δ* = 7.97 – 7.88 (m, 2H), 7.64 (d, *J* = 8.7 Hz, 1H), 7.60 – 7.54 (m, 1H), 7.38 – 7.31 (m, 1H), 7.29 (d, *J* = 8.7 Hz, 1H), 7.11 – 6.98 (m, 2H), 6.83 – 6.74 (m, 1H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -83.54 (s, 1.5F), -86.81 (s, 1.0F), -89.26 (s, 0.5F), -110.74 (s, 0.5F), -113.19 (s, 1.0F), -116.46 (s, 1.5F) ppm.

¹³**C NMR** (100 MHz, CDCl₃): $\delta = 161.4$ (d, J = 47.9 Hz), 151.2 (m), 143.5 (t, J = 29.4 Hz), 135.9, 133.1, 131.1 (d, J = 9.2 Hz), 129.8 (d, J = 1.4 Hz), 128.1, 128.0, 127.3, 125.3 (d, J = 1.0 Hz), 124.9, 121.8 (d, J = 9.9 Hz), 121.5, 117.5 (d, J = 2.6 Hz), 117.2, 117.0, 104.9 (d, J = 23.2 Hz) ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₀BrF₆OS [M+H]⁺ 490.9534, found: 490.9540.

8-Bromo-3-((2-bromophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-b]furan (6b):

Yield = 83% (92 mg). White solid. M.p. 85.6–87.3 °C.

IR (KBr): v = 3063, 1738, 1585, 794, 747 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.49$ (d, J = 1.8 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.61 (d, J = 8.7 Hz, 1H),

= 8.7 Hz, 1H), 7.60 – 7.57 (m, 1H), 7.35 (d, *J* = 8.7 Hz, 1H), 7.10 – 6.98 (m, 2H), 6.82 – 6.75 (m, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.51 (t, *J* = 4.1 Hz, 3F), -113.20 (q, *J* = 3.7 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 150.4$ (t, J = 0.9 Hz), 143.5 (t, J = 29.7 Hz), 135.9, 133.1, 131.3, 130.5, 130.1,

128.1, 128.0, 127.4, 125.3, 124.9, 122.8, 122.0, 121.6, 121.6, 118.7, 106.5 (d, J = 1.5 Hz) ppm; carbons

corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₀Br₂F₅OS [M+H]⁺ 550.8734, found: 550.8740.

3-((2-Bromophenyl)thio)-8-methyl-2-(perfluoroethyl)naphtho[1,2-b]furan (6c):
Yield = 72% (70 mg). Yellow solid. M.p. 98.5–99.8 °C.
IR (KBr): v = 3057, 1601, 1566, 828, 745 cm⁻¹.
¹H NMR (400 MHz, CDCl₃): δ = 8.13 (s, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.64 – 7.52 (m, 2H), 7.42 (d, J = 8.4 Hz, 1H), 7.28 – 7.23 (m, 1H), 7.06 – 6.96 (m, 2H), 6.80 – 6.73 (m, 1H), 2.60 (s, 3H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -83.48 – -83.63 (m, 3F), -113.04 – -113.23 (m, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 151.4 (t, J = 1.0 Hz), 142.9 (t, J = 29.9 Hz), 137.5, 136.3, 133.0, 131.2, 129.3, 128.3, 127.9, 127.9, 127.1, 125.4, 124.1, 121.3, 121.1, 119.4, 117.2, 116.1 (t, J = 1.8 Hz), 21.9 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₁H₁₃BrF₅OS [M+H]⁺486.9785, found: 486.9787.

3-((2-Bromophenyl)thio)-8-methoxy-2-(perfluoroethyl)naphtho[1,2-b]furan (6d):

Yield = 74% (74 mg). White solid. M.p. 133.2–134.4 °C.

IR (KBr): *v* = 2974, 1642, 1603, 834, 753 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 7.82 (d, J = 9.0 Hz, 1H), 7.64 - 7.54 (m, 3H), 7.25 - 7.18 (m, 2H), 7.07 - 6.98 (m,

2H), 6.81 - 7.75 (m, 1H), 4.02 (s, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.55 (t, *J* = 4.0 Hz, 3F), -113.18 (q, *J* = 3.7 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): *δ* = 158.9, 151.2 (t, *J* = 1.4 Hz), 143.0 (t, *J* = 29.4 Hz), 142.7, 136.2, 133.0, 130.1,

128.2, 127.9, 127.9, 127.1, 125.3, 124.5, 122.1, 121.3, 119.4, 115.6, 99.0, 55.7 ppm; carbons corresponding to the

C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{21}H_{13}BrF_5O_2S [M+H]^+ 502.9734$, found: 502.9734.

3-((2-Bromophenyl)thio)-7-methoxy-2-(perfluoroethyl)naphtho[1,2-*b*]furan (6e):
Yield = 74% (74 mg). Yellow solid. M.p. 82.0–83.4 °C.
IR (KBr): ν = 3057, 1643, 1601, 820, 745 cm⁻¹.
¹H NMR (400 MHz, CDCl₃): δ = 8.25 (d, J = 9.0 Hz, 1H), 7.60 – 7.50 (m, 2H), 7.34 – 7.28 (m, 2H), 7.26 – 7.20 (m, 1H), 7.07 – 6.96 (m, 2H), 6.82 – 6.75 (m, 1H), 3.93 (s, 3H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -83.56 (t, J = 4.1 Hz, 3F), -112.99 (q, J = 3.3 Hz, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 158.7, 152.0 (t, J = 0.9 Hz), 142.3 (t, J = 29.6 Hz), 136.3, 134.7, 133.0, 127.9, 127.9, 127.1, 124.6, 122.2, 121.9, 121.3, 119.4, 118.8, 116.2 (t, J = 1.9 Hz), 116.0, 107.3, 55.4 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.
HRMS (m/z): calcd for C₂₁H₁₃BrF₅O₂S [M+H]⁺ 502.9734, found: 502.9731.

3-((2-Bromophenyl)thio)-6-methoxy-2-(perfluoroethyl)naphtho[1,2-b]furan (6f):

Yield = 77% (78 mg). White solid. M.p. 107.5–109.0 °C.

IR (KBr): *v* = 2965, 1591, 1574, 800, 751 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.10 (d, J = 8.9 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.64 – 7.51 (m, 2H), 7.31 (d, J

= 8.9 Hz, 1H), 7.06 – 6.97 (m, 2H), 6.95 (d, J = 7.8 Hz, 1H), 6.82 – 6.72 (m, 1H), 4.00 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -83.44 - -83.62 (m, 3F), -113.10 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 155.9, 151.6 (t, *J* = 0.9 Hz), 143.1 (t, *J* = 29.6 Hz), 136.2, 133.0, 127.9

127.8, 127.1, 124.6, 124.5, 122.0, 121.3, 119.6, 117.2, 116.1 (t, J = 1.5 Hz), 112.4, 105.6, 55.6 ppm; carbons

corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₁H₁₃BrF₅O₂S [M+H]⁺ 502.9734, found: 502.9735.

3-((2-Bromophenyl)thio)-5-(3,4-dichlorophenyl)-2-(perfluoroethyl)naphtho[1,2-b]furan (6g):

Yield = 56% (69 mg). White solid. M.p. 136.2–137.4 °C.
IR (KBr): *ν* = 3078, 2566, 1577, 821, 753 cm⁻¹.
¹H NMR (400 MHz, CDCl₃): δ = 8.47 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 8.5 Hz, 1H), 7.76 – 7.68 (m, 1H), 7.62 – 7.54 (m, 2H), 7.52 (d, *J* = 8.2 Hz, 1H), 7.44 (d, *J* = 2.0 Hz, 1H), 7.26 (s, 1H), 7.22 – 7.17 (m, 1H), 7.12 – 6.99 (m, 2H), 6.86 – 6.79 (m, 1H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -83.49 (t, *J* = 3.7 Hz, 3F), -113.21 (q, *J* = 3.6 Hz, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 151.6 (t, *J* = 0.9 Hz), 143.5 (t, *J* = 29.5 Hz), 139.8, 135.9, 135.7, 133.2, 132.5, 132.0, 131.9, 131.1, 130.3, 129.5, 127.9, 127.9, 127.6, 127.5, 127.3, 126.6, 123.4, 121.5, 121.3, 120.8, 119.0, 116.3 (t, *J* = 1.4 Hz) ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₆H₁₃BrCl₂F₅OS [M+H]⁺ 616.9162, found: 616.9163.

3-((2-Bromophenyl)thio)-5-methyl-2-(perfluoroethyl)naphtho[1,2-b]furan (6h):

Yield = 84% (82 mg). Light yellow solid. M.p. 102.7–103.9 °C.

IR (KBr): v = 2940, 1559, 1450, 863, 756 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.42 - 8.34$ (m, 1H), 8.07 - 7.99 (m, 1H), 7.72 - 7.60 (m, 2H), 7.59 - 7.53 (m, 2H), 7.59 - 7

1H), 7.22 – 7.17 (m, 1H), 7.07 – 6.96 (m, 2H), 6.78 – 6.71 (m, 1H), 2.63 (s, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.53 (t, *J* = 3.7 Hz, 3F), -113.04 (q, *J* = 3.7 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 150.9 (t, J = 0.9 Hz), 143.1 (t, J = 28.6 Hz), 136.4, 133.0, 132.3, 132.2, 127.9,

127.5, 127.0, 127.0, 126.9, 125.1, 123.6, 121.0, 121.0, 120.7, 117.8, 115.5 (t, J = 1.5 Hz), 19.8 ppm; carbons

corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₁H₁₃BrF₅OS [M+H]⁺ 486.9785, found: 486.9789.

3-((2-Bromophenyl)thio)-2-(perfluoroethyl)thieno[2,3-g]benzofuran (6i): Yield = 68% (65 mg). Yellow solid. M.p. 73.8–75.4 °C. IR (KBr): ν = 3060, 1629, 1575, 791, 720 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.76 – 7.69 (m, 2H), 7.62 (d, J = 5.5 Hz, 1H), 7.58 – 7.54 (m, 1H), 7.29 (d, J = 8.5 Hz, 1H), 7.07 – 6.97 (m, 2H), 6.79 – 6.74 (m, 1H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -83.56 (s, 3F), -113.22 (d, J = 3.1 Hz, 2F) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 150.1 (t, J = 0.8 Hz), 142.4 (t, J = 29.7 Hz), 140.8, 136.0, 133.0, 128.4, 128.0, 127.9, 127.2, 125.5, 123.9, 121.4, 119.4, 118.8, 117.0, 116.1 (t, J = 1.7 Hz) ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₁₈H₉BrF₅OS₂ [M+H]⁺478.9193, found: 478.9192.

3-((2-Bromophenyl)thio)-6-(4-chlorophenyl)-7-methyl-2-(perfluoroethyl)benzofurans (6j):

Yield = 49% (54 mg). Light yellow solid. M.p. 97.0–97.3 °C.

IR (KBr): v = 3066, 1574, 1477, 816, 754 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): δ = 7.57 (dd, J = 7.8, 1.4 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.29 – 7.26 (m, 2H), 7.24 (d, J = 7.4 Hz, 1H), 7.17 (d, J = 8.1 Hz, 1H), 7.12 – 7.07 (m, 1H), 7.06 – 7.00 (m, 1H), 6.86 – 6.81 (m, 1H), 2.48 (s, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.54 (t, *J* = 3.9 Hz, 3F), -113.69 (q, *J* = 3.9 Hz, 2F) ppm.

¹³**C NMR** (100 MHz, CDCl₃): $\delta = 154.7$ (t, J = 0.9 Hz), 144.2 (t, J = 29.2 Hz), 140.3, 138.6, 135.9, 133.5, 133.0, 130.7, 128.5, 128.1, 127.9, 127.2, 126.7, 126.5, 121.5, 120.6, 118.6, 115.4 (t, J = 1.5 Hz), 12.6 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₃H₁₄BrClF₅OS [M+H]⁺ 546.9552, found: 546.9556.

3-((2-Bromophenyl)thio)-7-methyl-2-(perfluoroethyl)-6-(*p*-tolyl)benzofuran (6k):
Yield = 63% (66 mg). Yellow solid. M.p. 66.3–67.2 °C.
IR (KBr): ν = 2968, 1625, 1574, 811, 755 cm⁻¹.
¹H NMR (400 MHz, CDCl₃): δ = 7.59 – 7.54 (m, 1H), 7.25 – 7.16 (m, 6H), 7.12 – 7.06 (m, 1H), 7.05 – 6.99 (m, 1H), 6.83 (dd, *J* = 7.9, 1.6 Hz, 1H), 2.49 (s, 3H), 2.41 (s, 3H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -83.55 (t, *J* = 4.0 Hz, 3F), -113.66 (q, *J* = 3.3 Hz, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 154.8 (t, *J* = 0.7 Hz), 144.0 (t, *J* = 29.3 Hz), 141.7, 137.3, 137.1, 136.1, 133.0, 129.3, 129.0, 128.0, 127.9, 127.1, 127.0, 126.1, 121.3, 120.6, 118.3, 115.3 (t, *J* = 1.8 Hz), 21.2, 12.7 ppm; carbons corresponding to the C₂Fs group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{24}H_{17}BrF_5OS [M+H]^+ 527.0098$, found: 527.0096.

3-((2-Bromophenyl)thio)-7-methyl-6-(naphthalen-1-yl)-2-(perfluoroethyl)benzofuran (6l):

Yield = 59% (66 mg). Yellow oil.

IR (KBr): v = 3058, 1574, 1508, 801, 746 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): δ = 7.91 (t, *J* = 7.9 Hz, 2H), 7.61 – 7.57 (m, 1H), 7.56 – 7.51 (m, 1H), 7.50 – 7.46 (m, 1H), 7.45 – 7.35 (m, 2H), 7.34 – 7.31 (m, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.17 – 7.11 (m, 1H), 7.45 – 7.35 (m, 2H), 7.34 – 7.31 (m, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.17 – 7.11 (m, 1H), 7.45 – 7.35 (m, 2H), 7.34 – 7.31 (m, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.17 – 7.11 (m, 1H), 7.45 – 7.35 (m, 2H), 7.34 – 7.31 (m, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 1H), 7.17 – 7.11 (m, 1H), 7.45 – 7.35 (m, 2H), 7.34 – 7.31 (m, 1H), 7.30 (m, 2H), 7.34 – 7.31 (m, 2H), 7.34 – 7.31 (m, 2H), 7.30 (m, 2H), 7.35 (m, 2H), 7.35 (m, 2H), 7.34 – 7.31 (m, 2H), 7.30 (m, 2H), 7.30 (m, 2H), 7.35 (m, 2H), 7.35 (m, 2H), 7.34 – 7.31 (m, 2H), 7.30 (m, 2H), 7.30 (m, 2H), 7.35 (m, 2H),

1H), $7.07-7.01~(m,\,1H),\,6.94-6.90~(m,\,1H),\,2.25~(s,\,3H)$ ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.46 (t, *J* = 3.0 Hz, 3F), -113.53 - -113.57 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 154.6, 144.1 (t, J = 29.3 Hz), 140.1, 137.8, 136.0, 133.5, 133.0, 131.9, 128.4,

128.1, 128.0, 127.9, 127.6, 127.2, 127.1, 126.6, 126.3, 125.9, 125.8, 125.3, 122.1, 121.4, 118.2, 115.5 (t, *J* = 1.6 Hz),

12.5 ppm; carbons corresponding to the C_2F_5 group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₇H₁₇BrF₅OS [M+H]⁺ 563.0098, found: 563.0104.

3-((2-Bromophenyl)thio)-6-methyl-2-(perfluoroethyl)-4-phenylbenzofuran (6m):

Yield = 25% (26 mg). Light yellow solid. M.p. 144.7–145.3 °C.

IR (KBr): v = 3026, 1618, 1576, 838, 772 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ = 7.46 (s, 1H), 7.19 – 7.12 (m, 2H), 7.08 (t, *J* = 7.5 Hz, 2H), 7.03 – 6.96 (m, 3H),

6.91 (td, *J* = 7.6, 1.3 Hz, 1H), 6.82 (td, *J* = 7.6, 1.5 Hz, 1H), 6.33 (dd, *J* = 7.9, 1.5 Hz, 1H), 2.51 (s, 3H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -82.95 - -84.36 (m, 3F), -113.06 (q, *J* = 4.0 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): *δ* = 156.1 (m), 144.7 (t, *J* = 32.2 Hz), 138.4, 138.2, 137.0, 136.6, 132.3, 128.8, 128.3,

127.3, 127.2, 126.9, 126.2, 125.9, 121.1, 120.0, 114.2 (t, J = 2.9 Hz), 111.4, 21.7 ppm; carbons corresponding to the

 C_2F_5 group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₃H₁₅BrF₅OS [M+H]⁺ 512.9942, found: 512.9944.

3-((2-Bromophenyl)thio)-2-(perfluorooctyl)naphtho[1,2-b]furan (6n):

Yield = 74% (114 mg). Light yellow solid. M.p. 106.7–108.2 °C.

IR (KBr): *v* = 3072, 1566, 1523, 804, 744 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.39 - 8.33$ (m, 1H), 7.95 - 7.89 (m, 1H), 7.69 - 7.62 (m, 2H), 7.61 - 7.55 (m, 2H), 7.55 (

2H), 7.32 (d, J = 8.7 Hz, 1H), 7.05 - 6.97 (m, 2H), 6.82 - 6.76 (m, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -80.69 - -80.81 (m, 3F), -109.74 (t, *J* = 12.7 Hz, 2F), -121.44 (s, 2F), -121.56 - -

122.04 (m, 6F), -122.65 (s, 2F), -126.08 (s, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.8, 143.1 (t, *J* = 29.7 Hz), 136.2, 133.1, 133.0, 128.5, 128.0, 127.9, 127.3,

127.2, 127.2, 125.6, 124.0, 121.4, 121.1, 120.3, 118.3, 116.8 (t, J = 1.7 Hz) ppm; carbons corresponding to the C₈F₁₇

group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{26}H_{11}BrF_{17}OS [M+H]^+ 772.9437$, found: 772.9441.

3-((2-Bromophenyl)thio)-2-(perfluorohexyl)naphtho[1,2-*b*]furan (60):

Yield = 86% (116 mg). Yellow solid. M.p. 110.9–112.0 °C.

IR (KBr): v = 3061, 1558, 1449, 806, 747 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.36$ (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.69 – 7.63 (m, 2H), 7.62 – 7.55 (m, 2H), 7.32 (d, J = 8.7 Hz, 1H), 7.07 – 6.97 (m, 2H), 6.83 – 6.77 (m, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -80.51 - -81.01 (m, 3F), -109.58 - -109.98 (m, 2F), -121.46 - -121.95 (m, 4F), -

122.44 - -122.75 (m, 2F), -125.89 - -126.14 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.8, 143.0 (t, J = 29.7 Hz), 136.2, 133.1, 133.0, 128.5, 128.1, 127.9, 127.3, 127.2, 127.2, 125.6, 124.0, 121.4, 121.1, 120.3, 118.3, 116.8 (t, J = 1.6 Hz) ppm; carbons corresponding to the C₆F₁₃ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{24}H_{11}BrF_{13}OS [M+H]^+ 672.9501$, found: 672.9504.

3-((2-Bromophenyl)thio)-2-(perfluorobutyl)naphtho[1,2-b]furan (6p):

Yield = 71% (81 mg). White solid. M.p. 109.6–110.1 °C.

IR (KBr): *v* = 3058, 1593, 1573, 805, 746 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): *δ* = 8.40 – 8.32 (m, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.69 – 7.62 (m, 2H), 7.62 – 7.54 (m,

2H), 7.31 (d, J = 8.7 Hz, 1H), 7.05 – 6.97 (m, 2H), 6.82 – 6.76 (m, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -80.33 - -81.34 (m, 3F), -109.20 - -110.96 (m, 2F), -121.82 - -123.63 (m, 2F), -125.07 - -126.71 (m, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 151.8 (t, J = 0.7 Hz), 142.9 (t, J = 29.9 Hz), 136.2, 133.0, 133.0, 128.5, 128.0, 127.9, 127.3, 127.2, 127.2, 125.6, 124.0, 121.4, 121.0, 120.3, 118.3, 116.8 (t, J = 2.0 Hz) ppm; carbons corresponding to the C₄F₉ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₂H₁₁BrF₉OS [M+H]⁺ 572.9565, found: 572.9570.

3-((2-Bromophenyl)thio)-2-(trifluoromethyl)naphtho[1,2-b]furan (6q):

Yield = 79% (67 mg). Yellow solid. M.p. 110.2–111.9 °C.

IR (KBr): *v* = 3055, 1571, 1520, 809, 745 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.35 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.69 – 7.63 (m, 2H), 7.62 – 7.53

(m, 2H), 7.38 (d, *J* = 8.7 Hz, 1H), 7.07 – 6.96 (m, 2H), 6.83 – 6.77 (m, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -61.03 (s, 3F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 150.8 (m), 144.4 (q, *J* = 39.5 Hz), 136.1, 133.1, 133.0, 128.5, 127.9, 127.3, 127.2,

127.0, 125.6, 123.8, 121.5, 121.1, 120.7, 120.2, 118.2, 118.0, 113.5 (q, *J* = 2.7 Hz) ppm.

HRMS (m/z): calcd for C₁₉H₁₁BrF₃OS [M+H]⁺ 422.9661, found: 422.9667.

3,3'-((Oxybis(4,1-phenylene))bis(sulfanediyl))bis(2-(perfluoroethyl)naphtho[1,2-b]furan) (8a):

Yield = 55% (88 mg). White solid. M.p. 187.1–187.9 °C.

IR (KBr): v = 3052, 1583, 1563, 809, 757 cm⁻¹.

¹**H NMR** (400 MHz, CDCl₃): δ = 8.32 (d, J = 7.9 Hz, 2H), 7.89 (d, J = 7.9 Hz, 2H), 7.69 - 7.53 (m, 6H), 7.41 - 7.25

(m, 6H), 6.86 (d, *J* = 8.3 Hz, 4H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -82.43 - -84.39 (m, 6F), -111.63 - -113.49 (m, 4F) ppm.

¹³**C NMR** (100 MHz, CDCl₃): δ = 156.1, 151.5 (m), 141.4 (t, *J* = 30.1 Hz), 132.8, 131.3, 128.4, 128.2, 127.2, 127.0,

125.2, 124.1, 121.0, 120.3, 119.7, 118.3, 118.1 (m) ppm; carbons corresponding to the C_2F_5 group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{40}H_{21}F_{10}O_3S_2$ [M+H]⁺ 803.0767, found: 803.0765.

Yield = 52% (82 mg). White solid. M.p. 203.1–204.3 °C.
IR (KBr): v = 3026, 1592, 1562, 810, 758 cm⁻¹.
¹H NMR (400 MHz, CDCl₃): δ = 8.40 – 8.33 (m, 2H), 7.92 (d, J = 8.1 Hz, 2H), 7.71 – 7.56 (m, 6H), 7.44 – 7.39 (m, 4H), 7.36 (d, J = 8.7 Hz, 2H), 7.33 – 7.28 (m, 4H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -83.63 (t, J = 4.2 Hz, 6F), -112.81 (q, J = 4.0 Hz, 4F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 151.6, 142.0 (t, J = 29.4 Hz), 138.4, 133.7, 132.8, 128.9, 128.4, 127.5, 127.2, 127.0, 125.3, 124.2, 121.0, 120.3, 118.4, 117.2 (m) ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{40}H_{21}F_{10}O_2S_2$ [M+H]⁺ 787.0818, found: 787.0815.

4,4'-Bis((2-(perfluoroethyl)naphtho[1,2-*b*]furan-3-yl)thio)-1,1'-biphenyl (8b):

5-Chloro-6'-methyl-3-(4-((2-(perfluoroethyl)naphtho[1,2-*b*]furan-3-yl)thio)phenyl)-2,3'-bipyridine (10): Yield = 20% (24 mg). White solid. M.p. 143.4–144.0 °C. IR (KBr): ν = 3031, 1596, 1567, 811, 745 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃): δ = 8.63 (d, *J* = 2.4 Hz, 1H), 8.43 (d, *J* = 1.8 Hz, 1H), 8.37 (d, *J* = 8.1 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.74 – 7.60 (m, 4H), 7.48 (dd, *J* = 8.0, 2.3 Hz, 1H), 7.34 (d, *J* = 8.7 Hz, 1H), 7.23 – 7.18 (m, 2H), 7.08 – 6.98 (m, 3H), 2.51 (s, 3H) ppm. ¹⁹**F** NMR (376 MHz, CDCl₃): δ = -83.61 (t, *J* = 4.0 Hz, 3F), -112.31 – -113.40 (m, 2F) ppm. ¹³**C** NMR (100 MHz, CDCl₃): δ = 158.0, 152.3, 151.6 (d, *J* = 1.4 Hz), 149.8, 147.5, 142.1, 137.8, 137.2, 136.4, 136.3, 134.9, 132.8, 131.7, 130.9, 130.1, 128.6, 128.4, 127.3, 127.2, 125.4, 124.0, 122.4, 121.0, 120.3, 118.3, 116.7

(m), 24.2 ppm; carbons corresponding to the C_2F_5 group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{31}H_{19}ClF_5N_2OS \ [M+H]^+ 597.0821$, found: 597.0821.

3-((2-Bromophenyl)sulfonyl)-2-(perfluoroethyl)naphtho[1,2-*b*]furan (11):

Yield = 72% (109 mg). Yellow solid. M.p. 129.3–129.7 °C.

IR (KBr): *v* = 3081, 1565, 1519, 805, 758 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 8.43 (dd, J = 7.9, 1.6 Hz, 1H), 8.27 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.76 - 7.69 (m, 1H), 7.65 - 7.59 (m, 1H), 7.58 - 7.50 (m, 3H), 7.46 - 7.41 (m, 1H), 7.21 (d, J = 8.9 Hz, 1H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): δ = -82.64 (t, J = 3.5 Hz, 3F), -110.87 - -114.02 (m, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): δ = 151.8 (t, J = 1.0 Hz), 142.8 (m), 140.8 (t, J = 2.2 Hz), 133.9, 133.0, 132.5, 128.2, 128.1, 128.0, 127.5, 127.4, 126.6, 125.9, 120.6, 120.2, 119.5, 119.0, 117.7 ppm; carbons corresponding to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for $C_{20}H_{11}BrF_5O_3S\ [M+H]^+\ 504.9527,\ found:\ 504.9533.$

6-(Perfluoroethyl)dibenzo[3,4:6,7]isothiochromeno[8,1-bc]furan 7,7-dioxide (12):

Yield = 76% (97 mg). Yellow solid. M.p. 172.7–173.0 °C.

IR (KBr): $v = 3060, 1641, 1560, 805, 754 \text{ cm}^{-1}$.

¹**H NMR** (400 MHz, CDCl₃): $\delta = 8.11 - 8.05$ (m, 1H), 8.04 - 8.00 (m, 1H), 7.89 - 7.83 (m, 2H), 7.53 - 7.47 (m, m, 2H), 7.53 - 7.47 (m, 2H), 7.53 - 7.47

2H), 7.26 - 7.24 (m, 1H), 7.23 - 7.19 (m, 1H), 7.18 - 7.14 (m, 1H) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃): δ = -83.75 (t, *J* = 4.4 Hz, 3F), -113.95 (q, *J* = 4.1 Hz, 2F) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 150.8 (t, J = 0.9 Hz), 134.2, 129.7 (t, J = 1.3 Hz), 129.0, 128.9, 127.2, 127.1,

126.8, 126.7, 124.8, 124.6, 123.0, 121.8, 120.6, 120.4, 118.1, 117.8 (t, J=2.0 Hz), 115.1 ppm; carbons corresponding

to the C₂F₅ group cannot be identified due to C-F coupling.

HRMS (m/z): calcd for C₂₀H₁₀F₅OS [M+H]⁺ 393.0367, found: 393.0368.

3-((2-Bromophenyl)thio)-2-(perfluoroethyl)-6*H*-benzo[6,7]eyclohepta[1,2-*b*]furan (16):
Yield = 56% (55 mg). Yellow solid. M.p. 79.0–80.4 °C.
IR (KBr): *ν* = 3062, 1570, 1551, 803, 772 cm⁻¹.
¹H NMR (400 MHz, CDCl₃): *δ* = 7.80 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.53 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.50 – 7.36 (m, 2H), 7.30 – 7.23 (m, 1H), 7.16 – 7.09 (m, 1H), 7.01 (td, *J* = 7.7, 1.6 Hz, 1H), 6.81 (dd, *J* = 8.0, 1.5 Hz, 1H), 6.26 (d, *J* = 9.9 Hz, 1H), 5.78 (dt, *J* = 9.9, 6.7 Hz, 1H), 3.21 – 3.14 (m, 2H) ppm.
¹⁹F NMR (376 MHz, CDCl₃): *δ* = -83.67 (t, *J* = 4.0 Hz, 3F), -113.43 (q, *J* = 4.0 Hz, 2F) ppm.
¹³C NMR (100 MHz, CDCl₃): *δ* = 155.0 (t, *J* = 1.5 Hz), 141.4 (t, *J* = 30.0 Hz), 136.6, 135.1, 132.9, 130.8, 128.7, 127.9, 127.7, 127.0, 126.9, 126.7, 126.3, 125.0, 124.8, 120.8, 119.4, 118.5 (m), 34.0 ppm; carbons corresponding to the C₂Fs group cannot be identified due to C-F coupling.
HRMS (m/z): calcd for C₂₁H₁₃BrF₃OS [M+H]⁺ 486.9785, found: 486.9788.

10. References

[1] P. V. Pham, D. A. Nagib, D. W. C. MacMillan, Angew. Chem. Int. Ed. 2011, 50, 6119–6122.

[2] (a) X. Su, H. Huang, Y. Yuan, Y. Li, Angew. Chem., Int. Ed. 2017, 56, 1338–1341. (b) T. Xie, Y.-W. Zhang, L.-L.

Liu, Z.-L. Shen, T.-P. Loh, X.-Q. Chu, Chem. Commun. 2018, 54, 12722-12725.

11. The X-ray crystal structures of product 5e

Compound: 3-((2-bromophenyl)thio)-2-(perfluoroethyl)naphtho[1,2-b]furan

Crystal Number: CCDC 2008323

Chemical Formula: C20H10BrF5OS

Formula weight: 473.2550

Space Group: I 41/a

Cell: a=31.0847(14) b=31.0847(14) c=7.6891(5)

alpha=90 beta=90 gamma=90
12. ¹H , ¹⁹F, and ¹³C spectra of products

 $12.5 \ 12.0 \ 11.5 \ 11.0 \ 10.5 \ 10.0 \ 9.5 \ 9.0 \ 8.5 \ 8.0 \ 7.5 \ 7.0 \ 6.5 \ 6.0 \ 5.5 \ 5.0 \ 4.5 \ 4.0 \ 3.5 \ 3.0 \ 2.5 \ 2.0 \ 1.5 \ 1.0 \ 0.5 \ 0.0 \ -0.5 \ 0.0 \ -0.5 \ 0.0 \ -0.5 \ 0.0 \ 0.5 \ 0.0 \ 0.5 \ 0.0 \ 0.5 \ 0$

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

 $12.0 \ 11.5 \ 11.0 \ 10.5 \ 10.0 \ 9.5 \ 9.0 \ 8.5 \ 8.0 \ 7.5 \ 7.0 \ 6.5 \ 6.0 \ 5.5 \ 5.0 \ 4.5 \ 4.0 \ 3.5 \ 3.0 \ 2.5 \ 2.0 \ 1.5 \ 1.0 \ 0.5 \ 0.0 \ -0.5 \ -1.0 \ -1.5 \ -1.5 \$

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.(

 $12.0 \hspace{0.1cm} 11.5 \hspace{0.1cm} 11.0 \hspace{0.1cm} 10.5 \hspace{0.1cm} 10.0 \hspace{0.1cm} 9.5 \hspace{0.1cm} 9.0 \hspace{0.1cm} 8.5 \hspace{0.1cm} 8.0 \hspace{0.1cm} 7.5 \hspace{0.1cm} 7.0 \hspace{0.1cm} 6.5 \hspace{0.1cm} 6.0 \hspace{0.1cm} 5.5 \hspace{0.1cm} 5.0 \hspace{0.1cm} 4.5 \hspace{0.1cm} 4.0 \hspace{0.1cm} 3.5 \hspace{0.1cm} 3.0 \hspace{0.1cm} 2.5 \hspace{0.1cm} 2.0 \hspace{0.1cm} 1.5 \hspace{0.1cm} 1.0 \hspace{0.1cm} 0.5 \hspace{0.1cm$

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

