Electronic Supplementary Information

Heterogeneous Photocatalytic Anaerobic Oxidation of Alcohols to Ketones by Pt-Mediated Hole Oxidation

Danhui Sun,^{a,†} Peihe Li,^{a†*} Xia Wang,^aYingying Wang,^a Jinghui Wang,^a Yin Wang,^a Ye Lu,^a

Limei Duan,^{a*} Sarina Sarina,^b Huaiyong Zhu^b and Jinghai Liu^{a*}

 ^aInner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
 ^bSchool of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia.

E-mail: phli2018@foxmail.com, duanlmxie@126.com, jhliu2008@sinano.ac.cn.

SI. No.	Contents	Pg. No.
1	Characterizations	S2
2	Materials and methods	S2
3	Evaluation of photocatalytic activity	S3
4	Fig. S1 XRD and FT-IR patterns	S5
5	Fig. S2 UV-Vis DRS spectrum	S 6
6	Fig. S3 Band gap of Pt/g-C ₃ N ₄	S6
7	Fig. S4 Mott–Schottky plots	S 6
8	Fig. S5 SEM, STEM, HRTEM and the element mapping images	S7
9	Fig. S6 XPS spectra	S 8
10	Fig. S7 Pore size distribution and N_2 adsorption-desorption isotherms	S9
11	Fig. S8 The spectrum of simulated solar spectrum	S10
12	Fig. S9 XPS spectra of recovered Pt/g-C ₃ N ₄	S11
13	Fig. S10 DFT calculation for electronic structure of $g-C_3N_4$.	S12
14	Kinetic isotope effect (KIE) experiment	S13
15	Quantum efficiency calculations	S14
16	Spectroscopic data of products	S15
17	NMR Spectra	S22

1. Characterizations

All commercially available reagents were used without further purification. Unless stated otherwise, all reactions were carried out in Schlenk tube (25 mL) under nitrogen atmosphere. A 300 W Xe lamp (CEL-PE300-T8, Beijing Zhongjiao Jinyuan Technology Co., Ltd. Beijing, China. λ = 300-800 nm) was used as a light source. Column chromatography was performed on silica gel (200-400 mesh). GC analyses were performed on a Shimadzu GC-2014 equipped with a capillary column (HP-5 30 m × 0.25 µm × 0.32mm) using a flame ionization detector. Another gas chromatography (CEL-SPH2N-D9) was used for the detection of H₂. Melting points were determined using an SGWX-4 apparatus and are uncorrected. NMR spectra were taken with a Bruker 500 spectrometer at 500 MHz (¹H) and 125 MHz (¹³C) using CDCl₃ as the solvent with TMS as internal standard.

The as-prepared samples were characterized by powder X-ray diffraction (XRD) on a SmartLab 9 kW (Rigaku, Cu K α λ = 1.5406 Å). FT-IR spectra were performed on Nicolet 6700 IR spectrometer by using KBr plates. Ultraviolet–visible diffuse reflectance spectra (UV-Vis DRS) were recorded on Agilent Cary 300 with integrating sphere attachment (BaSO₄ as a reflectance standard). X-ray photoelectron spectra (XPS) were acquired on an ESCALAB Xi+ X-ray photoelectron spectrometer using Al K α as the excitation source. The morphologies of the products were examined by scanning electron microscopy (SEM) using an S4800 scanning electron microscope (Hitachi). HRTEM, HAADF-scanning transmission electron microscope (STEM) images and elemental mappings were obtained using a JEM2100F transmission electron microscope at an accelerating voltage of 200 kV (JEOL). The electrochemical analysis was carried out in a conventional three electrode cell using a Pt plate and an Ag/AgCl electrode as the counter electrode and reference electrode, respectively. The electrolyte was 0.2 M Na₂SO₄ aqueous solution without additives. The working electrode was prepared on glassy carbon electrode. 8 mg sample was dispersed in a mixture of ethanol and naphthol by sonication to get a slurry. N₂ adsorption-desorption isotherms were recorded on Quadrasorb SI Automated Surface area and Pore size analyzer (Quantachrome).

Computational Method. All the density functional theory (DFT) calculations were performed at the B3LYP level ¹, with use of a standard 6-311++G(d, p) ² basis set (Lanl2DZ basis set for Pt) ³ with Gaussian 09.⁴ The geometry optimizations as well as HOMO and LUMO clouds of system were got by using the computer software Gauss View 05.

2. Materials and methods

2.1 Material Synthesis.

All chemicals are analytical grade and used as received without further purification.

2.2 Preparation of Pt/g-C₃N_{4.}

The graphitic carbon nitride (g-C₃N₄) was prepared using the same method that we had previously reported.⁵ Briefly, urea (20 g, AR, Sinopharm Chemical Reagent Co., Ltd) was put in a crucible with a cover under ambient pressure in air. After thermal treatment at 550 °C for 3 hours, the mixture was washed with HNO₃ (0.1 M, 10 ml \times 3), H₂O (10 ml \times 3). The obtained compound g-C₃N₄ was dried under vacuum at 80 °C overnight (yellow solid, 800 mg).

Pt/g-C₃N₄ was prepared by a modified photo-deposition method. The certain amount of $H_2PtCl_6 \cdot 6H_2O$ (10 mg/mL, 0.3 mL) and acetic acid (1 mg/mL, 2 mL) were added into 100 mL g-C₃N₄ dispersion (deionized H₂O). After bubbling N₂ for half an hour, the sample was irradiated by a 300 W Xe lamp for an hour. The mixture was filtered and washed with H₂O (5 ml × 3). The obtained compound Pt/g-C₃N₄ was dried under vacuum at 80 °C overnight (yellow solid). (The preparation method of Pd/g-C₃N₄ and Ru/g-C₃N₄ are same as Pt/g-C₃N₄ with Na₂PdCl₄ and RuCl₃, respectively.)

2.3 Preparation of Fe/g-C₃N_{4.}

For preparation of the Fe/g-C₃N₄ photocatalysts, a certain amount of Fe(NO₃)₃ (0.5 mmol, 90 mg) was dissolved in 100 ml deionized water, 100 mg g-C₃N₄ was added. After stirring for half an hour, the solution was ultrasonically dispersed for 2 hours. The mixture was filtered and washed with H₂O (5 ml × 3). The obtained compound Fe/g-C₃N₄ was dried under vacuum at 80 °C overnight (yellow solid). (The preparation method of Cu/g-C₃N₄ is same as Fe/g-C₃N₄ with Cu(NO₃)₃.)

3. Evaluation of photocatalytic activity.

The reaction was performed in a 25 mL Schlenk bottle with 3 mL CH₃CN containing 5 mg Pt/g- C_3N_4 photocatalyst and 0.2 mmol benzhydrol. The reactor was sealed, degassed with N_2 for several times and then irradiated under simulated sunlight (300W Xe lamp). The temperature of the reaction system was kept at 25-35 °C by a fan. After completion of the reaction, the generated gas was analyzed by gas chromatography immediately. The reaction mixture was centrifuged to remove the photocatalyst and the filtrate was concentrated in vacuo. The resulting residue was purified by silica gel flash chromatography (eluent: petroleum ether/ethyl acetate = 20:1) to give the product **2a** as a white solid (35 mg, 97% yield). In the recycle experiments, the catalyst was filtered after the reaction and washed with CH₃CN and dried under vacuum at 50 °C and used for the next cycle.

Fig. S1 (a) XRD patterns of prepared $g-C_3N_4$ and $Pt/g-C_3N_4$ samples. (b) FT-IR patterns of prepared $g-C_3N_4$, Fresh and Reused $Pt/g-C_3N_4$ samples.

Fig. S2 UV-Vis DRS spectrum of $g-C_3N_4$ and $Pt/g-C_3N_4$ samples.

hv(eV) Fig. S3 Band gap of $Pt/g-C_3N_4$ obtained from the UV/Vis DRS spectrum according to the Kubelka–Munk theory.

Fig. S5 (a) SEM image of $Pt/g-C_3N_4$, (b) STEM image of $Pt/g-C_3N_4$, (c) and (d) HRTEM images of $Pt/g-C_3N_4$, (e-h) the element mapping images of $Pt/g-C_3N_4$.

Fig. S6 XPS spectra of Pt/g-C₃N₄. (a) survey spectrum. High-resolution XPS spectra of (b) C 1s, (c) N 1s, (d) Pt $4f_{5/2}$ (77.6 eV, 75.6 eV), Pt $4f_{7/2}$ (74.3 eV, 72.3 eV).

The microstructure of the platinum nanocluster in Pt/g-C₃N₄ was examined by high-resolution transmission electron microscopy (HRTEM) and scanning transmission electron microscopy (STEM), where Pt nanoclusters with a size of about 2–3 nm were highly dispersed on the surface of g-C₃N₄ (Fig. S5, ESI†). The high-resolution Pt 4f XPS spectra reveal two valence states in the Pt nanocluster for the fresh Pt/g-C₃N₄ composite solid with Pt 4f_{5/2} at 77.6 eV (Pt⁴⁺) and 75.6 eV (Pt²⁺) and Pt 4f_{7/2} at 74.3 eV (Pt⁴⁺) and 72.3 eV (Pt²⁺) (Fig. S6, ESI†). The photophysical properties and the bandgap structure of Pt/g-C₃N₄ were further characterized to show its thermodynamic potential for solar-driven photocatalysis (Fig. S2–S4, ESI†).

Fig. S7 (a) N_2 adsorption-desorption isotherms for g-C₃N₄, where BET surface area: 52.535 m²/g. (b) Pore size distribution.

Fig. S8 The spectrum of simulated solar spectrum

Fig. S9 XPS spectra of recovered Pt/g-C₃N₄. (a) survey spectrum. High-resolution XPS spectra of (b) C 1s, (c) N 1s, (d) Pt 4f, Pt 4f_{5/2} (76.9 eV), Pt 4f_{7/2} (73.5 eV).

Fig. S10 DFT calculation for electronic structure of $g-C_3N_4$.

4. Kinetic isotope effect (KIE) experiment.

The reaction was performed in a 25 mL Schlenk bottle with 3 mL CH₃CN containing 5 mg Pt/g- C_3N_4 photocatalyst and 0.2 mmol cyclohexanol or cyclohexanol-D12 (CAS: 66522-78-9). The reactor was sealed, degassed with N₂ for several times and then irradiated under simulated sunlight (300W Xe lamp). The temperature of the reaction system was kept at 25-35 °C by a fan. After completion of the reaction, the mixture was analyzed by gas chromatography (X: the peak area ratio of the product to the internal standard).

$$\bigcup_{k=1}^{OH} \frac{Pt/g-C_3N_4}{hv, MeCN, N_2} \bigcup_{k=0.401}^{OD} \frac{Pt/g-C_3N_4}{hv, MeCN, N_2} \bigcup_{k=0.528}^{O} K_H/K_D = X_1/X_2 = 0.76$$

5. Quantum efficiency calculations.

The QE determination at $\lambda_0 = 420$ nm. The catalyst solution was irradiated by a 300W Xe lamp with a $\lambda_0 \pm 20$ nm band-pass filter for 15 hours. The average intensity of irradiation was determined to be 1.915 mW/cm² by an ILT 950 spectroradiometer (International Light Technologies) and the irradiation area was 6.12 cm². The number of incident photons (N) is 1.337×10^{21} as calculated by equation (1). The amount of H₂ molecules generated in 15 hours was 122.5 µmol (by GC). The quantum efficiency is calculated from equation (2).

$$N = \frac{E\lambda}{hc} = \frac{1.915 \times 10^{-3} \times 6.12 \times 15 \times 3600 \times 420 \times 10}{6.626 \times 10^{-34} \times 3 \times 10^8} {}^{-9} \left(\frac{W/cm^2 \times cm^2 \times s \times m}{J \cdot s \times m/s}\right) = 1.337 \times 10^{21}$$
(1)

$$QE = \frac{2 \times \text{the number of evolved } H_2 \text{ molecules}}{\text{the number of incident photons}} \times 100\%$$

$$= \frac{2 \times 6.02 \times 10^{23} \times 122.5 \times 10^{-6}}{1.337 \times 10^{21}} \times 100\% = 11.03\%$$
(2)

Spectroscopic data of products

Table 2, entry 1

Benzophenone (2a). Oil (35 mg, 97% yield); $R_f = 0.35$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 5.2 Hz, 4H), 7.59 (t, J = 7.4 Hz, 2H), 7.49 (t, J = 7.7 Hz, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 197.2, 138.0, 132.8, 130.5, 128.7.

(1) S. Li, B. Zhu, R. Lee, B. Qiao, Z. Jiang, Org. Chem. Front., 2018, 5, 380–385.

Table 2, entry 2

2b

Benzaldehyde (2b). Oil (19 mg, 89% yield); $R_f = 0.35$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 10.05 (s, 1H), 7.91 (d, J = 7.0 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 192.5, 136.4, 134.5, 130.2, 129.8, 129.0, 128.5.

S. Verma, R. B. N. Baig, M. N. Nadagouda, R. S. Varma, *ACS Sustainable Chem. Eng.*, 2016, 4, 2333–2336.

Table 2, entry 3

2c

Acetophenone (2c). Oil (18 mg, 75% yield); $R_f = 0.4$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 2.61 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.9, 136.9, 132.9, 128.4, 128.1, 26.4.

(1) S. Li, B. Zhu, R. Lee, B. Qiao, Z. Jiang, Org. Chem. Front., 2018, 5, 380–385.

Propiophenone (2d). Oil (18 mg, 67% yield); $R_f = 0.35$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 8.0 Hz, 2H), 7.57 (t, J = 7.9 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 3.02 (q, J = 7.2 Hz, 2H), 1.25 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 136.9, 132.9, 128.6, 127.9, 31.8, 26.5, 8.2.

(1) H. Peng, A. Lin, Y. Zhang, H. Jiang, J. Zhou, Y. Cheng, C. Zhu, H. Hu, ACS Catal., 2012, 2, 163–167.

Table 2, entry 5

1-(4-Fluoropheny)ethanone (2e). Oil (18 mg, 65% yield); $R_f = 0.4$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.01 (dd, J = 7.4, 5.4 Hz, 2H), 7.16 (t, J = 8.0 Hz, 2H), 2.61 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 196.5, 165.8 (d, ¹ $J_{C-F} = 254.6$ Hz), 133.6 (d, ⁴ $J_{C-F} = 2.9$ Hz), 130.9 (d, ³ $J_{C-F} = 9.3$ Hz), 115.66 (d, ² $J_{C-F} = 21.9$ Hz), 26.5.

(1) F. Li, N. Wang, L. Lu, G. Zhu, J. Org. Chem., 2015, 80, 3538–3546.

Table 2, entry 6

1-(4-Chloropheny)ethanone (2f). Oil (24 mg, 76% yield); $R_f = 0.4$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 2.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.9, 139.7, 135.6, 129.9, 129.0, 26.7.

(1) S. Li, B. Zhu, R. Lee, B. Qiao, Z. Jiang, Org. Chem. Front., 2018, 5, 380-385.

1-(4-Bromopheny)ethanone (2g). Oil (32 mg, 80% yield); $R_f = 0.33$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 2.57 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.0, 135.8, 131.9, 129.9, 128.3, 26.6.

(1) S. Li, B. Zhu, R. Lee, B. Qiao, Z. Jiang, Org. Chem. Front., 2018, 5, 380-385.

Table 2, entry 8

2h

4-(Trifluoromethyl) acetophenone (2h). Oil (31 mg, 82% yield); Rf = 0.4 (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.2 Hz, 2H), 2.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.0, 139.7, 134.5 (q, ² J_{C-F} = 32.5 Hz), 128.6, 125.7 (q, ³ J_{C-F} = 3.75 Hz), 124.0 (q, ¹ J_{C-F} = 235 Hz), 26.8.

(1) F. Li, N. Wang, L. Lu, G. Zhu, J. Org. Chem., 2015, 80, 3538-3546.

Table 2, entry 9

2i

1-(*p***-tolyl)ethanone (2i).** Oil (18 mg, 68% yield); $R_f = 0.33$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 2.59 (s, 3H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.9, 143.9, 134.8, 129.3, 128.5, 26.6, 21.7.

(1) H. Peng, A. Lin, Y. Zhang, H. Jiang, J. Zhou, Y. Cheng, C. Zhu, H. Hu, ACS Catal., 2012, 2, 163–167.

1,1'-(1,4-phenylene)diethanone (2j). White solid (25 mg, 82% yield); mp:114-115 °C; $R_f = 0.33$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 8.7 Hz, 2H), 6.93 (d, J = 8.7 Hz, 2H), 3.87 (s, 3H), 2.55 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.8, 163.4, 130.5, 130.3, 113.6, 55.4, 26.3.

(1) H. Peng, A. Lin, Y. Zhang, H. Jiang, J. Zhou, Y. Cheng, C. Zhu, H. Hu, ACS Catal., 2012, 2, 163–167.

Table 2, entry 11

1,1'-(1,3-phenylene)diethanone (2k). Oil (21 mg, 69% yield); $R_f = 0.33$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.57–7.55 (m, 1H), 7.51 (dd, J = 2.5, 1.6 Hz, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.14 (ddd, J = 8.2, 2.7, 0.8 Hz, 1H), 3.88 (s, 3H), 2.62 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.7, 159.5, 138.2, 129.3, 120.9, 119.4, 112.1, 55.2, 26.4.

(1) G. Zhang, S. K. Hanson, Org. Lett., 2013, 15, 650-653.

Table 2, entry 12

1,1'-(1,2-phenylene)diethanone (2l). Oil (18 mg, 61% yield); $R_f = 0.33$ (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.75 (dd, J = 7.7, 1.8 Hz, 1H), 7.49 (ddd, J = 8.5, 7.4, 1.8 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.99 (d, J = 8.4 Hz, 1H), 3.94 (s, 3H), 2.64 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 199.9, 158.9, 133.7, 130.4, 128.3, 120.6, 111.6, 55.5, 31.8.

(1) G. Urgoitia, R. SanMartin, , M. T. Herrero E. Dominguez, Green Chem., 2011, 13, 2161-2166.

3,4-dihydronaphthalen-1(2*H***)-one (2m).** Oil (21 mg, 72% yield); R_f= 0.31 (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 7.8 Hz, 1H), 7.48 (t, *J* = 8.1 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 7.7 Hz, 1H), 2.99 (t, *J* = 6.1 Hz, 2H), 2.78–2.60 (m, 2H), 2.23–2.06 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 198.8, 144.8, 133.7, 133.0, 129.1, 127.5, 127.0, 39.5, 30.1, 23.6. (1) G. Urgoitia, R. SanMartin, , M. T. Herrero E. Dominguez, *Green Chem.*, 2011, **13**, 2161–2166. **Table 2, entry 14**

9H-Fluoren-9-one (2n). Yellow solid (31 mg, 86% yield); mp: 81-82 °C; R_f = 0.30 (hexane: EtOAc = 20:1); ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 7.3 Hz, 2H), 7.46 (t, J = 7.0 Hz, 4H), 7.26 (dd, J = 9.6, 4.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 193.9, 144.4, 134.7, 134.1, 129.1, 124.3, 120.4.
(1) H. Peng, A. Lin, Y. Zhang, H. Jiang, J. Zhou, Y. Cheng, C. Zhu, H. Hu, ACS Catal., 2012, 2, 163–167.

Table 2, entry 15

20

1-(pyridin-2-yl)ethanone (20). Oil (15 mg, 61%); $R_f = 0.31$ (hexane:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 4.7 Hz, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.81 (t, J = 7.7 Hz, 1H), 7.45–7.43 (m, 1H), 2.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 200.1, 153.5, 148.9, 136.8, 127.1, 121.6, 25.8. (1) M. B. Lauber, S. S. Stahl, *ACS Catal.*, 2013, **3**, 2612–2616.

4-methylbenzaldehyde (2p). Oil (22 mg, 93%); $R_f = 0.61$ (hexane:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 9.94 (s, 1H), 7.75 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 191.9, 145.5, 134.1, 129.8, 129.7, 21.8.

(1) X.-J. Yang, Y.-W. Zheng, L.-Q. Zheng, L.-Z. Wu, C.-H. Tung and B. Chen, *Green Chem.*, 2019, **21**, 1401–1405.

Table 2, entry 17

4-methoxybenzaldehyde (2q). Oil (24 mg, 90%); $R_f = 0.51$ (hexane:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 9.88 (s, 1H), 7.84 (d, J = 8.6 Hz, 2H), 7.00 (d, J = 8.7 Hz, 2H), 3.89 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 190.8, 164.6, 131.9, 129.9, 114.3, 55.5.

(1) X.-J. Yang, Y.-W. Zheng, L.-Q. Zheng, L.-Z. Wu, C.-H. Tung and B. Chen, *Green Chem.*, 2019, **21**, 1401–1405.

Table 2, entry 18

 $\hat{\mathbf{O}}$

4-chlorobenzaldehyde (2r). Oil (27 mg, 96%); $R_f = 0.60$ (hexane:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 9.98 (s, 1H), 7.82 (d, J = 7.6 Hz, 2H), 7.51 (d, J = 7.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 190.8, 140.9, 134.7, 130.9, 129.4.

(1) X.-J. Yang, Y.-W. Zheng, L.-Q. Zheng, L.-Z. Wu, C.-H. Tung and B. Chen, *Green Chem.*, 2019, **21**, 1401–1405.

Table 2, entry 19

4-bromobenzaldehyde (2s). White solid (35 mg, 95%); mp: 57-59 °C; $R_f = 0.55$ (hexane:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 9.99 (s, 1H), 7.76 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 191.1, 135.0, 132.4, 130.9, 129.8.

(1) Z.Wei, S.Ru, Q. Zhao, H. Yu, G. Zhang, Y. Wei, Green Chem., 2019, 21, 4069-4075.

O₂N 2+

4-nitrobenzaldehyde (2t). yellow solid (27 mg, 89%); mp: 105-106 °C; $R_f = 0.4$ (hexane:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 10.17 (s, 1H), 8.40 (dd, J = 8.5, 1.3 Hz, 2H), 8.09 (dd, J = 8.6, 1.5 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 190.3, 151.1, 140.0, 130.5, 124.3.

(1) Z.Wei, S.Ru, Q. Zhao, H. Yu, G. Zhang, Y. Wei, Green Chem., 2019, 21, 4069-4075.

Table 2, entry 21

[1,1'-biphenyl]-4-carbaldehyde (2u). White solid (29 mg, 80%); mp: 57-59 °C; $R_f = 0.55$ (hexane:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 10.08 (s, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.77 (d, J = 8.2 Hz, 2H), 7.70–7.64 (m, 2H), 7.51 (dd, J = 10.3, 4.7 Hz, 2H), 7.45 (dd, J = 8.4, 6.3 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 191.9, 147.2, 139.7, 135.2, 130.3, 129.0, 128.5, 127.7, 127.4.

Table 3, entry 6

2aa

2-phenylacetaldehyde (2aa). Oil (21 mg, 89%); $R_f = 0.65$ (hexane:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 9.77 (t, J = 2.4 Hz, 1H), 7.41 (t, J = 7.4 Hz, 2H), 7.35 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 7.2 Hz, 2H), 3.72 (d, J = 2.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 199.5, 131.9, 129.6, 129.0, 127.4, 50.5.

Table 3, entry 7

2ab

Cinnamaldehyde (2ab). Oil (14 mg, 52%); $R_f = 0.60$ (hexane:EtOAc = 10:1); ¹H NMR (500 MHz, CDCl₃) δ 9.71 (d, J = 7.7 Hz, 1H), 7.60–7.54 (m, 2H), 7.52–7.40 (m, 4H), 6.73 (dd, J = 16.0, 7.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 193.7, 152.8, 134.0, 131.3, 129.1, 128.5, 128.5.

 W. Huang, B. C. Ma, H. Lu, R. Li, L. Wang, K. Landfester and K. A. I. Zhang, ACS Catal., 2017, 7, 5438–5442

¹H NMR and ¹³C NMR Spectrum of **2a**

7.82 7.61 7.59 7.58 7.58 7.58 7.49

Table 2, entry 2

Table 2, entry 2

S23

F 2e 1.99<u>-</u> 3.00H 1.99 8.0 2.5 5.5 5.0 f1 (ppm) 3.5 3.0 1.5 9.5 9.0 8.5 7.5 7.0 6.5 6.0 4.5 4.0 2.0 1.0 0.5 ~166.78 ~164.76 L133.59 L133.57 T130.99 T130.92 -196.51 $<^{115.75}_{115.57}$ -26.55

Table 2, entry 5

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 50 40 30 20 10

¹H NMR and ¹³C NMR Spectrum of **2g**

— 2.67

110 100 fl (ppm)

¹H NMR and ¹³C NMR Spectrum of **2j**

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 2k

S32

¹H NMR and ¹³C NMR Spectrum of **2m**

806 804 7734 7734 7733 7733 7733 7733 7728 7728 2.13 2.13 2.16 2.16 2.15 2.15 2.15 2.15 2.15 2.13

S33

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 2n

7.25 7.64 7.62 7.46 7.45 7.28 7.27 7.25

f1 (ppm)

¹H NMR and ¹³C NMR Spectrum of **20**

^{110 100} f1 (ppm)

110 100 f1 (ppm)

$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of $\mathbf{2q}$

S37

$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 2r

-9.98< 7.83< 7.52< 7.50

Table 2, entry 18

2r

CI

¹H NMR and ¹³C NMR Spectrum of **2s**

Table 2, entry 19

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 2t

- 10.17	- 8.41 - 8.39 - 8.39 - 8.39 - 8.39 - 8.39 - 8.39 - 8.39 - 8.39 - 8.30 - 8.08 - 8.08 - 8.08 - 8.08

Table 2, entry 20

 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR Spectrum of 2u

¹H NMR and ¹³C NMR Spectrum of **2aa**

¹H NMR and ¹³C NMR Spectrum of **2ab**

110 100 fl (ppm)

References:

1. (a) A. D. Becke, Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phy., 1993, 98, 5648–5652; (b) C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phy. Rev. B, 1988, 37, 785–789.

2. W. J. Hehre, R. Ditchfield, J. A. Pople, Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys., 1972, 56, 2257–2261.

3. P. J. Hay, W. R. Wadt, Ab initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phy., 1985, 82, 270–283.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A., Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, In Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009.

5. J. H. Liu, Y. W. Zhang, L. L. Lu, G Wu and W. Chen, Chem. Commun., 2012, 48, 8826–8828.