Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Catalyst- and Additive-free Synthesis of Alkoxyhydrosiloxanes from Silanols and Alkoxyhydrosilanes

Yasushi Satoh, Keita Fuchise, Takeshi Nozawa, Kazuhiko Sato and Masayasu Igarashi* *E-mail: masayasu-igarashi@aist.go.jp

National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-

8565, Japan

Table of Contents

1. General Information.	S2
Table S1-2	S3
2. Experimental Details.	S4-S14
3. NMR Spectra	S15-S50
4. References	S51

1. General Information

¹H, ¹³C{¹H}, and ²⁹Si{¹H} (¹H: 600 MHz; ¹³C: 150 MHz; ²⁹Si: 119 MHz) were recorded on a BRUKER Biospin AVANCE III HD 600 NMR spectrometer. Chemical shifts are reported in δ (ppm) and are referenced to the residual solvent signal of benzene- d_6 (¹H: δ = 7.16 ppm), to the central line of benzene- d_6 (¹³C: δ = 128.39 ppm), or to phenyltrimethylsilane (²⁹Si: δ = -4.71 ppm). GC-MS (EI) spectra were measured on a SHIMADZU GCMS-QP2010 Plus. NMR yields of the products were determined based on the ²⁹Si{¹H} NMR spectra using an inverse-gated decoupling pulse sequence in order to suppress the nuclear Overhauser effect. To ensure quantitative analysis by ²⁹Si{¹H} NMR spectroscopy, samples were dissolved in benzene- d_6 with a trace amount of Cr(acac)₃ as a relaxation agent, and a delay time of 10 s was applied. Thermogravimetric analysis (TGA) was conducted with Seiko Instruments STA7000RV for the cross-linked siloxanes polymers (**7daa**, **7dab**, and **7dac**).

Unless otherwise noted, all manipulations were performed under an argon atmosphere using either Schlenk-line or glove-box techniques. Benzene- d_6 was dried over sodium benzophenone ketyl and distilled prior to use. All reagents except for $1e^{1}$, $1g^{2}$, $1h^{3}$, and $1i^{4}$ were purchased from common commercial sources and used without further purification.

Et ₃ Si-OH +	OMe MeO- <mark>S</mark> i-OMe H	Solvent (1 mL) rt, 16 h	OMe Et ₃ SiO- <mark>S</mark> i-OMe H	O <mark>Si</mark> Et₃ Et₃ Si O- <mark>Si</mark> -OMe H		OMe + MeO- <mark>Si</mark> -O OMe	OMe eO- <mark>Si</mark> -OMe OMe
0.5 mmol 1a	1 mmol 2a		3aa		4aa	TMOS	
		Oshart	²⁹ Si NMR Yield (%)			-	
	Entry	Solvent	3aa ^a	4aa ^a	TMOS ^b	_	
	1	Benzene	90	trace	2		
	2	Toluene	82	trace	1		
	3	CH ₂ Cl ₂	94	3	4		
	4	Et ₂ O	79	trace	3		
	5	THF	91	trace	3		
	6	Dioxane	84	trace	2		
	7	CH ₃ CN	94	2	4		
	8	DMF	97	trace	7		
	9	DMAc	90	trace	9		
	10	DMSO	91	trace	5		
	a) Deced on 1 2					_	

Table S1. Solvent effect for the reaction between triethylsilanol and trimethoxysilane

a) Based on **1a** b) Based on **2a**

Table S2. Solvent effect for the reaction between triethylsilanol and triethoxysilane

Et ₃ Si-OH +	OEt EtO- <mark>Si</mark> -OEt H	Solvent (1 mL) rt. 16 h	OEt Et ₃ SiO- <mark>S</mark> i-OEt H	+ Et ₃ SiC	O <mark>Si</mark> Et₃)- <mark>S</mark> i-OEt H	OEt + EtO- <mark>Si</mark> -OEt OEt	
0.5 mmol 1a	1 mmol 2b		3ab		4ab	TEOS	
		Ochront	29	Si NMR Yie	eld (%)	_	
	Entry	Solvent	3ab	^a 4ab ^a	TEOS ^b	_	
	1	Benzene	63	trace	2		
	2	Toluene	46	trace	1		
	3	CH ₂ Cl ₂	45	trace	trace		
	4	Et ₂ O	41	trace	3		
	5	CH₃CN	12	trace	2		
	6	DMAc	45	4	4		
						_	

a) Based on 1a

b) Based on 2b

2. Experimental Details

2-1. Synthesis of alkoxyhydrosiloxanes 3aa-3ia

Synthesis of 3aa

A mixture of triethylsilanol (**1a**) (661 mg, 5.0 mmol), trimethoxysilane (**2a**) (1.2 g, 10.0 mmol), and benzene (10 mL) was stirred for 16 h at room temperature under Ar. Then, the solvent was removed under reduced pressure and the residue was purified by Kugelrohr distillation (8 Torr, oven temperature: 70-80 °C) to give **3aa** as a colorless liquid (834 mg, 75% yield). ¹H NMR (600 MHz, benzene- d_6): δ 4.59 (s, 1H, SiH, ¹J(Si,H) = 289.7 Hz), 3.40 (s, 6H), 1.02(t, 9H, J = 8.0 Hz), 0.61 (q, 6H, J = 8.0 Hz); ¹³C{¹H} NMR (150 MHz, benzene- d_6): δ 49.9, 7.2, 6.8; ²⁹Si{¹H} NMR (119 MHz, benzene- d_6): δ 13.9, -63.7 (SiH); GC-MS (EI) m/z (relative intensity) 222 (1) [M] ⁺, 193 (100), 191 (5), 131 (1), 107 (12), 31 (2), 29 (9); HRMS (EI) calcd for C₆H₁₇O₃Si₂ 193.0711 [M-Et]⁺, found 193.0710.

Synthesis of 3ab

Compound **3ab** was synthesized as described for **3aa** from triethylsilanol (**1a**) (397 mg, 3.0 mmol), triethoxysilane (**2b**) (986 mg, 6.0 mmol), and benzene (6 mL) in a pressure tube. Kugelrohr distillation (8 Torr, oven temperature: 75-85 °C) of the crude mixture afforded **3ab** as a colorless liquid (600 mg, 80% yield). ¹H NMR (600 MHz, benzene- d_6): δ 4.68 (s, 1H, SiH, ¹J(Si,H) = 287.5 Hz), 3.79 (q, 4H, J = 7.0 Hz), 1.15 (t, 6H, J = 7.0 Hz), 1.04 (t, 9H, J = 8.0 Hz), 0.63 (q, 6H, J = 8.0 Hz); ¹³C{¹H} NMR (150 MHz, benzene- d_6): δ 58.4, 18.8, 7.2, 6.8; ²⁹Si{¹H} NMR (119 MHz, benzene- d_6): δ 13.6, -66.5 (SiH); GC-MS (EI) m/z (relative intensity) 250 (0) [M] ⁺, 235 (3), 221 (100), 205 (4), 135 (13), 119 (16), 45 (3), 29 (24); HRMS (EI) calcd for C₈H₂₁O₃Si₂ 221.1024 [M-Et]⁺, found 221.1026.

Synthesis of 3ba

Compound **3ba** was synthesized as described for **3aa** from triphenylsilanol (**1b**) (276 mg, 1.0 mmol), trimethoxysilane (**2a**) (244 mg, 2.0 mmol), and benzene (2 mL) in a pressure tube. Then, the solvent and **2a** were removed under reduced pressure to afford **3ba** as a colorless liquid (341 mg, 93% yield). ¹H NMR (600 MHz, benzene- d_6): δ 7.77-7.78 (m, 6H), 7.17-7.19 (m, 9H), 4.74 (s, 1H, Si*H*, ¹*J*(Si,H) = 295.7 Hz), 3.30 (s, 6H); ¹³C{¹H} NMR (150 MHz, benzene- d_6): δ 136.0, 135.8, 130.7, 128.6, 50.1; ²⁹Si{¹H} NMR (119 MHz, benzene- d_6): δ -17.8, -63.5 (SiH); GC-MS (EI) *m/z* (relative intensity) 366 (40) [M]⁺, 335 (2), 289 (100), 259 (27), 107 (12), 91 (84), 77 (15), 31 (1); HRMS (ESI): *m/z* calcd for C₂₀H₂₂O₃Si₂K 405.0739 [M+K]⁺, found: 405.0745.

Synthesis of 3ca

Compound **3ca** was synthesized as described for **3aa** from (*N*-Boc-2-pyrrolyl)dimethylsilanol (**1d**) (241 mg, 1.0 mmol), trimethoxysilane (**2a**) (244 mg, 2.0 mmol), and benzene (2 mL). Then, the solvent and **2a** were removed under reduced pressure to afford **3ca** as a colorless liquid (298 mg, 90% yield). ¹H NMR (600 MHz, benzene-*d*₆): δ 7.34 (dd, 1H, *J* = 3.1, 1.5 Hz), 6.94-6.95 (m, 1H), 6.22 (t, 1H, *J* = 3.1 Hz), 4.69 (s, 1H, Si*H*, ¹*J*(Si,H) = 292.3 Hz), 3.44 (s, 6H), 1.25 (s, 9H), 0.65 (s, 6H); ¹³C {¹H} NMR (150 MHz, benzene-*d*₆): δ 150.7, 134.2, 125.5, 124.8, 113.2, 83.8, 49.9, 28.0, 2.1; ²⁹Si {¹H} NMR (119 MHz, benzene-*d*₆): δ -7.1, -63.8 (SiH); GC-MS (EI) *m/z* (relative intensity) 331 (11) [M]⁺, 274 (4), 258 (12), 230 (16), 166 (7), 165 (22), 56 (100), 31 (2); HRMS (ESI): *m/z* calcd for C₁₃H₂₅NO₅Si₂K 370.0903 [M+K]⁺, found 370.0909.

Synthesis of 3da

Compound **3da** was synthesized as described for **3aa** from 1, 4-bis(hydroxydimethylsilyl)benzene (**1d**) (453 mg, 2.0 mmol), trimethoxysilane (**2a**) (978 mg, 8.0 mmol), and benzene (16 mL) in a pressure tube. Then, the solvent and **2a** were removed under reduced pressure to afford **3da** as a colorless liquid (691 mg, 85% yield). ¹H NMR (600 MHz, benzene- d_6): δ 7.68 (s, 4H), 4.58 (s, 2H, Si*H*, ¹*J*(Si,H) = 292.0 Hz), 3.35 (s, 12H), 0.39 (s, 12H); ¹³C{¹H} NMR (150 MHz, benzene- d_6): δ 140.8, 133.1, 49.9, 0.9; ²⁹Si{¹H} NMR (119 MHz, benzene- d_6): δ 0.9, -63.8 (SiH); GC-MS (EI) *m/z* (relative intensity) 406 (6) [M]⁺, 391 (100), 315 (4), 299 (5), 165 (39), 91 (5), 76 (1); HRMS (ESI): *m/z* calcd for C₁₄H₃₀O₆Si₄Na 429.1012 [M+Na]⁺, found 429.1003.

Synthesis of 3db

Compound **3db** was synthesized as described for **3aa** from 1, 4-bis(hydroxydimethylsilyl)benzene (**1d**) (453 mg, 2.0 mmol), triethoxysilane (**2b**) (1.3 g, 8.0 mmol), and benzene (16 mL) in a pressure tube. Then, the solvent and **2b** were removed under reduced pressure to afford **3db** as a colorless liquid (722 mg, 78% yield). ¹H NMR (600 MHz, benzene-*d*₆): δ 7.72 (s, 4H), 4.70 (s, 2H, Si*H*, ¹*J*(Si,H) = 289.2 Hz), 3.74 (q, 8H, *J* = 7.0 Hz), 1.11 (t, 12H, *J* = 7.0 Hz), 0.42 (s, 12H); ¹³C{¹H} NMR (150 MHz, benzene-*d*₆): δ 141.0, 133.2, 58.6, 18.8, 1.0; ²⁹Si{¹H} NMR (119 MHz, benzene-*d*₆): δ 0.5, -66.6 (SiH); GC-MS (EI) *m/z* (relative intensity) 462 (5) [M]⁺, 447 (26), 343 (3), 239 (100), 192 (30), 135 (23), 76 (1), 29 (67); HRMS (ESI): *m/z* calcd for C₁₈H₃₈O₆Si₄Na 485.1638 [M+Na]⁺, found 485.1630.

Synthesis of 3ea

Compound **3ea** was synthesized as described for **3aa** from methyl(phenyl)(3,3,3-trifluoropropyl)silanol (**1e**) (703 mg, 3.0 mmol), trimethoxysilane (**2a**) (733 mg, 6.0 mmol), and benzene (6 mL). Then, the solvent and **2a** were removed under reduced pressure to afford **3ea** as a colorless liquid (837 mg, 86% yield). ¹H NMR (600 MHz, benzene-*d*₆): δ 7.45-7.47 (m, 2H), 7.18-7.19 (m, 3H), 4.51 (s, 1H, Si*H*, ¹*J*(Si,H) = 293.9 Hz), 3.29 (s, 6H), 1.97-2.06 (m, 2H), 0.93-1.02 (m, 2H), 0.23 (s, 3H); ¹³C {¹H} NMR (150 MHz, benzene-*d*₆): δ 136.8, 133.7, 130.7, 128.727 (CH₂CF₃, q, ¹*J*_{C-F} = 274.7 Hz), 128.725, 49.9, 28.6 (CH₂CF₃, q, ²*J*_{C-F} = 29.9 Hz), 9.6, -1.3; ²⁹Si {¹H} NMR (119 MHz, benzene-*d*₆): δ 0.4, - 63.2 (SiH); GC-MS (EI) *m/z* (relative intensity) 323 (0) [M]⁺, 247 (1), 245 (4), 227(100), 107 (7), 77 (9), 31 (1); HRMS (ESI): *m/z* calcd for C₁₂H₁₉F₃O₃Si₂Na 347.0717 [M+Na]⁺, found 347.0724.

Synthesis of 3eb

Compound **3eb** was synthesized as described for **3aa** from methyl(phenyl)(3,3,3-trifluoropropyl)silanol (**1e**) (703 mg, 3.0 mmol), triethoxysilane (**2b**) (986 mg, 6.0 mmol), and benzene (6 mL). Then, the solvent and **2b** were removed under reduced pressure to afford **3eb** as a colorless liquid (941 mg, 89% yield). ¹H NMR (600 MHz, benzene-*d*₆): δ 7.48-7.50 (m, 2H), 7.18-7.19 (m, 3H), 4.62 (s, 1H, Si*H*, ¹*J*(Si,H) = 290.7 Hz), 3.68 (q, 4H, *J* = 7.0 Hz), 2.04-2.09 (m, 2H), 1.07 (t, 6H, *J* = 7.0 Hz), 0.99- 1.03 (m, 2H), 0.26 (s, 3H); ¹³C {¹H} NMR (150 MHz, benzene-*d*₆): δ 136.9, 133.8, 131.5, 128.8 (CH₂CF₃, q, ¹*J*_{C-F} = 274.0 Hz), 128.7, 58.6, 28.7 (CH₂CF₃, q, ²*J*_{C-F} = 29.7 Hz), 18.7, 9.7, -1.2; ²⁹Si {¹H} NMR (119 MHz, benzene-*d*₆): δ 0.1, -65.9 (SiH); GC-MS (EI) *m/z* (relative intensity) 352 (0) [M]⁺, 255 (100), 135 (2), 77 (15), 45 (6), 29 (28); HRMS (ESI): *m/z* calcd for C₁₄H₂₃F₃O₃Si₂Na 375.1030 [M+Na]⁺, found 375.1038.

Synthesis of 3fa

Compound **3fa** was synthesized as described for **3aa** from dimethylsilanediol (**1f**) (461 mg, 5.0 mmol), trimethoxysilane (**2a**) (4.9 g, 40.0 mmol), and benzene (20 mL). Then, the solvent and **2a** were removed under reduced pressure to afford **3fa** as a colorless liquid (1.1 g, 80% yield). ¹H NMR (600 MHz, benzene- d_6): δ 4.55 (s, 2H, SiH, ¹J(Si,H) = 293.9 Hz), 3.40 (s, 12H), 0.22 (s, 6H); ¹³C {¹H} NMR (150 MHz, benzene- d_6): δ 49.9, 1.0; ²⁹Si {¹H} NMR (119 MHz, benzene- d_6): δ -17.1, -64.4 (SiH); GC-MS (EI) *m*/*z* (relative intensity) 272(5) [M]⁺, 271 (22), 257 (100), 241 (26), 107 (3), 91 (7), 90 (2), 31 (3); HRMS (EI) *m*/*z* calcd for C₅H₁₇O₅Si₃ 241.0378 [M-OMe]⁺, found 241.0384.

Synthesis of 3ga

Compound **3ga** was synthesized as described for **3aa** from methylphenylsilanediol (**1g**) (77 mg, 0.5 mmol), trimethoxysilane (**2a**) (489 mg, 4.0 mmol), and benzene (2 mL). Then, the solvent and **2a** were removed under reduced pressure to afford **3ga** as a colorless liquid (162 mg, 97% yield). ¹H NMR (600 MHz, benzene- d_6): δ 7.76-7.79 (m, 2H), 7.18-7.22 (m, 3H), 4.62 (s, 2H, Si*H*, ¹*J*(Si,H) = 295.7 Hz), 3.37 (d, 12H), 0.47 (s, 3H); ¹³C{¹H} NMR (150 MHz, benzene- d_6): δ 136.8, 134.0, 130.8, 128.6, 50.0, -0.1; ²⁹Si{¹H} NMR (119 MHz, benzene- d_6): δ -30.7, -64.3; GC-MS (EI) *m/z* (relative intensity) 334 (22) [M]⁺, 332 (64), 319 (100), 227 (13), 107 (6), 91 (90), 77 (6), 31 (2); HRMS (ESI): *m/z* calcd for C₁₁H₂₂O₆Si₃Na 357.0616 [M+Na]⁺, found 357.0618.

Synthesis of 3ha

Compound **3ha** was synthesized as described for **3aa** from diphenylsilanediol (**1h**) (216 mg, 1.0 mmol), trimethoxysilane (**2a**) (978 mg, 8.0 mmol), and benzene (4 mL) in a pressure tube. Then, the solvent and **2a** were removed under reduced pressure to afford **3ha** as a colorless liquid (385 mg, 97% yield). ¹H NMR (600 MHz, benzene- d_6): δ 7.87-7.89 (m, 4H), 7.18-7.19 (m, 6H), 4.70 (s, 2H, Si*H*, ¹*J*(Si,H) = 276.2 Hz), 3.36 (s, 12H); ¹³C{¹H} NMR (150 MHz, benzene- d_6): δ 135.1, 134.9, 131.1, 128.6, 50.1; ²⁹Si{¹H} NMR (119 MHz, benzene- d_6): δ -44.4, -64.3 (SiH); GC-MS (EI) *m/z* (relative intensity) 396 (25) [M]⁺, 395 (68), 319 (37), 107 (5), 91 (100), 77 (2); HRMS (ESI): *m/z* calcd for C₁₆H₂₄O₆Si₃Na 419.0773 [M+Na]⁺, found 419.0783.

Synthesis of [Si₈O₁₂][OSi(OEt)₂H]₈ (3ib).

In a vial equipped with a magnetic stirring bar, $[Si_8O_{12}][OH]_8 \cdot 10.92DMAc$ (37.6 mg, 0.0250 mmol) was dissolved in *N*,*N*-dimethylformamide (DMF) (1 mL) and cooled to -30 °C. To the cooled solution, a solution of (EtO)₃HSi (329 mg, 2.00 mmol) in DMF (1 mL) was added dropwise. Then, the reaction mixture was allowed to warm to ambient temperature, where stirring was continued for 2 h, before the weight of the resulting mixture was moderately reduced to 1.02 g weight under reduced pressure in order to remove any unreacted (EtO)₃HSi while concomitantly suppressing the condensation of generated [Si₈O₁₂][OSi(OEt)₂H]₈. Thus, a DMF solution (3.1wt%) of [Si₈O₁₂][OSi(OEt)₂H]₈ (0.0208 mmol, 83.2% yield; based on the ²⁹Si NMR spectrum) was obtained. ¹H NMR (600 MHz, DMF-*d*₇): 4.46 (s, 8H, Si*H*), 4.07 (m, 32H, *CH*₂CH₃), 1.42 (m, 48H, CH₂*CH*₃); ¹³C{¹H}NMR (150 MHz, DMF-*d*₇): 59.1, 18.6; ²⁹Si {¹H} NMR (119 MHz, DMF-*d*₇): -67.9 (SiO*Si*H),

-110.2 (*Si*OSiH); HRMS (ESI): *m*/*z* calcd for C₃₂H₉₂NO₃₆Si₁₆ 1514.1702 [M+NH₄]⁺, found 1514.1705.

Synthesis of 3ec

Compound **3ec** was synthesized as described for **3aa** from methyl(phenyl)(3,3,3-trifluoropropyl)silanol (**1e**) (703 mg, 3.0 mmol), dimethoxymethylsilane (**2c**) (637mg, 6.0 mmol), and benzene (6 mL) in a pressure tube. Then, the solvent and **2b** were removed under reduced pressure to afford **3eb** as a colorless liquid (805 mg, 87% yield). ¹H NMR (600 MHz, benzene-*d*₆): δ 7.42-7.43 (m, 2H), 7.18- 7.19 (m, 3H), 4.83 (q, 1H, Si*H*, *J* = 2.9 Hz, ¹*J*(Si,H) = 233.8 Hz), 3.27 (s, 3H), 1.94- 1.99 (m, 2H), 0.93-0.97 (m, 2H), 0.19 (s, 3H), 0.06 (d, 3H); ¹³C {¹H} NMR (150 MHz, benzene-*d*₆): δ 137.0, 133.7, 130.6, 128.712 (CH₂CF₃, q, ¹*J*_{C-F} = 275.3 Hz), 128.710, 50.9, 28.7 (CH₂CF₃, q, ²*J*_{C-F} = 29.8 Hz), 9.6, -0.8, -1.3; ²⁹Si {¹H} NMR (119 MHz, benzene-*d*₆): δ -0.7, -22.5 (SiH); GC-MS (EI) *m/z* (relative intensity) 308 (0) [M]⁺, 211 (100), 91 (72), 77 (12), 69 (1), 31 (1); HRMS (ESI): *m/z* calcd for C₁₂H₁₉F₃O₂Si₂Na 331.0768 [M+Na]⁺, found 331.0772.

Synthesis of 3ed

Compound **3ed** was synthesized as described for **3aa** from methyl(phenyl)(3,3,3-trifluoropropyl)silanol (**1e**) (703 mg, 3.0 mmol), diethoxymethylsilane (**2d**) (806 mg, 6.0 mmol), and benzene (6 mL) in a pressure tube. Then, the solvent and **2b** were removed under reduced pressure to afford **3eb** as a colorless liquid (888 mg, 89% yield). ¹H NMR (600 MHz, benzene-*d*₆): δ 7.43-7.44 (m, 2H), 7.18- 7.19 (m, 3H), 4.89 (q, 1H, Si*H*, *J* = 2.9 Hz, ¹*J*(Si,H) = 234.7 Hz), 3.59(m, 2H), 1.96-2.01 (m, 2H), 1.06 (t, 3H), 0.94-0.98 (m, 2H), 0.21 (d, 3H), 0.09 (t, 3H); ¹³C{¹H} NMR (150 MHz,

benzene- d_6): δ 137.1, 133.7, 130.6, 128.73 (CH₂CF₃, q, ${}^1J_{C-F}$ = 275.3 Hz), 128.69, 59.5, 28.7 (CH₂CF₃, q, ${}^2J_{C-F}$ = 29.8 Hz), 18.7, 9.6, -0.4, -1.29; ${}^{29}Si\{{}^{1}H\}$ NMR (119 MHz, benzene- d_6): δ -0.9, -25.0 (SiH); GC-MS (EI) *m*/*z* (relative intensity) 322 (0) [M]⁺, 225 (100), 217 (2), 105 (27), 89 (6), 77 (19), 45 (5), 29 (19); HRMS (ESI): *m*/*z* calcd for C₁₃H₂₁F₃O₂Si₂Na 345.0924 [M+Na]⁺, found 345.0921.

Synthesis of 3je

Compound **3je** was synthesized as described for **3aa** from *tert*-butyldimethylsilanol (**1j**) (132 mg, 1.0 mmol), diethoxyphenylsilane (**2e**) (196 mg, 1.0 mmol), and benzene (2 mL) in a pressure tube. Then, the solvent was removed under reduced pressure to afford **3je** as a colorless liquid (223 mg, 79% yield). ¹H NMR (600 MHz, benzene-*d*₆): δ 7.73-7.75 (m, 2H), 7.19-7.22 (m, 3H), 5.31 (s, 1H, Si*H*, ¹*J*(Si,H) = 242.6 Hz), 3.77 (qd, 2H, *J* = 7.0, 2.0 Hz), 1.14 (t, 3H, *J* = 7.0 Hz), 0.96 (s, 9H), 0.12 (d, 3H, *J* = 4.8 Hz); ¹³C{¹H} NMR (150 MHz, benzene-*d*₆): δ 135.9, 134.3, 131.0, 128.6, 59.5, 26.2, 18.82, 18.76, -2.6; ²⁹Si{¹H} NMR (119 MHz, benzene-*d*₆): δ 14.3, -39.1 (SiH); GC-MS (EI) *m/z* (relative intensity) 282(0) [M]⁺, 267 (2), 225 (100), 167 (2), 119 (74), 77 (2), 57 (2), 45 (3); HRMS (ESI): *m/z* calcd for C₁₄H₂₆O₂Si₂Na 305.1364 [M+Na]⁺, found 305.1355.

Synthesis of 3df

Compound **3df** was synthesized as described for **3aa** from 1, 4-bis(hydroxydimethylsilyl)benzene (**1d**) (340 mg, 1.5 mmol), ethoxy(dimethyl)silane (**2f**) (625 mg, 6.0 mmol), and CH₃CN (6 mL) in a pressure tube. After the reaction, the mixture was cooled to room temperature, and the organic phase was extracted with hexane. The hexane phase was isolated and all volatiles were removed under reduced pressure before the thus obtained residue was purified by flash column chromatography on silica gel (eluent: hexane) to give the desired product as a colorless liquid (283 mg, 55% yield). ¹H

NMR (600 MHz, benzene- d_6): δ 7.66 (s, 4H), 5.05 (sept, 2H, SiH, ¹J(Si,H) = 204.2 Hz), 0.36 (s, 12H), 0.15 (d, 12H, J = 2.8 Hz); ¹³C{¹H} NMR (150 MHz, benzene- d_6): δ 141.3, 133.1, 1.3, 1.0; ²⁹Si{¹H} NMR (119 MHz, benzene- d_6): δ 0.1, -5.0 (SiH); HRMS (ESI): m/z calcd for C₁₄H₃₁O₂Si₄ 343.1396 [M+H]⁺, found 343.1387.

2-5. Synthesis of 4aa

A mixture of triethylsilanol (**1a**) (397 mg, 3.0 mmol), trimethoxysilane (**2a**) (183 mg, 1.5 mmol), and benzene (3 mL) was stirred for 16 h at 100 °C under Ar in a pressure tube. Then, the solvent was evaporated and the residue was purified by Kugelrohr distillation (8 Torr, oven temperature 120-130 °C) to give 4**aa** as a colorless liquid (295 mg, 61% yield). ¹H NMR (600 MHz, benzene-*d*₆): δ 4.67 (s, 1H, Si*H*, ¹*J*(Si,H) = 290.0 Hz), 3.42 (s, 3H), 1.04 (t, 18H, *J* = 8.0 Hz), 0.63 (q, 12H, *J* = 8.0 Hz); ¹³C{¹H} NMR (150 MHz, benzene-*d*₆): δ 49.6, 7.2, 6.8; ²⁹Si{¹H} NMR (119 MHz, benzene-*d*₆): δ 13.2, -73.2 (SiH); GC-MS (EI) *m/z* (relative intensity) 322 (0) [M]⁺, 321 (1), 293 (100), 132 (4), 115 (3), 90 (2), 60 (1); HRMS (ESI): *m/z* calcd for C₁₃H₃₄O₃Si₃K 361.1447 [M+K]⁺, found 361.1452.

2-6. Large-scale synthesis of 3da

A mixture of 1,4-bis(hydroxydimethylsilyl)benzene (1d) (18.6 g, 82 mmol), trimethoxysilane (2a) (40.0 g, 327 mmol), and toluene (500 mL) was stirred for 16 h at 100 °C under ambient atmosphere. Then, the solvent and 2a were removed under reduced pressure to afford 3da as a colorless liquid (33.2 g, 99% yield).

2-7. Synthesis 5 from methoxylation of 3da

A mixture of **3da** (1.2 g, 3.0 mmol), Zn(OAc)₂ (28 mg, 0.15 mmol), and THF/MeOH (6/1.2 mL) was stirred for 16 h at 40 °C under Ar in a pressure tube. After the reaction, the mixture was diluted with hexane (6 mL) and filtered through a filter paper. The filtrate was concentrated under reduced pressure to afford **5** as a colorless liquid (1.17 g, 81% yield). ¹H NMR (600 MHz, benzene- d_6): δ 7.74 (s, 4H), 3.45 (s, 18H), 0.44 (s, 12H); ¹³C{¹H} NMR (150 MHz, benzene- d_6): δ 141.0, 133.2, 51.3, 0.9; ²⁹Si{¹H} NMR (119 MHz, benzene- d_6): δ 1.1, -83.6; GC-MS (EI) *m/z* (relative intensity) 466 (0) [M]⁺, 451 (100), 435 (1), 271 (2), 195 (93), 77 (1), 31 (2); HRMS (ESI): *m/z* calcd for C₁₆H₃₄O₈Si₄Na 489.1223 [M+Na]⁺, found 489.1210.

2-8. Synthesis of 7daa-7dfa

Synthesis of 7daa

A mixture of **3da** (2.0 g, 5 mmol), **6a** (932 mg, 5 mmol), and Pt(DVDS) (20 μ L, 2% Pt in xylene, Gelest) was stirred for 60 min at 80 °C under Ar to afford **7daa** as a colorless elastomer that is insoluble in common solvents.

Synthesis of 7dab

A mixture of **3da** (2.4 g, 6 mmol), **6b** (1.0 g, 4 mmol), and Pt(DVDS) (20 μ L, 2% Pt in xylene, Gelest) was stirred for 5 min at 80 °C under Ar to afford **7dab** as a colorless elastomer that is insoluble in common solvents.

Synthesis of 7dac

A mixture of **3da** (2.0 g, 5 mmol), **6c** (862 mg, 2.5 mmol), and Pt(DVDS) (20 μ L, 2% Pt in xylene, Gelest) was stirred for 10 min at 80 °C under Ar to afford **7dac** as a colorless elastomer that is insoluble in common solvents.

Synthesis of 7dfa

A mixture of **3dfa** (1.7 g, 5 mmol), **6a** (932 mg, 5 mmol), and Pt(DVDS) (20 μ L, 2% Pt in xylene, Gelest) was stirred for 16 h at 80 °C under Ar to afford **7dfa** as a brown sticky gum-like elastomer that is insoluble in common solvents.

3. NMR Spectra

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3aa.

```
<sup>1</sup>H NMR (benzene-d_6)
```


²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3ab.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3ba.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3ca.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3da.

¹H NMR (benzene- d_6)

¹³C{¹H} NMR (benzene- d_6)

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3db.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3ea.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3eb.

¹H NMR (benzene- d_6)

¹³C{¹H} NMR (benzene- d_6)

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3fa.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3ga.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3ha.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{1H} NMR spectra of compound 3ib.

¹H NMR (DMF- d_7)

¹³C{¹H} NMR (DMF- d_7)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3ec.

¹H NMR (benzene- d_6)

¹³C{¹H} NMR (benzene- d_6)

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3ed.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3je.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 3df.

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 4aa.

²⁹Si{¹H} NMR (benzene- d_6)

¹H, ¹³C{¹H}, and ²⁹Si{¹H} NMR spectra of compound 5.

150

¹H NMR (benzene- d_6)

100

50

[ppm]

²⁹Si{¹H} NMR (*d*-benzene)

4. References

1. A. Mori, F. Toriyama, H. Kajiro, K. Hirabayashi, Y. Nishihara and T. Hiyama, *Chem. Lett.*, 1999, **28**, 549.

2. J. A. Cella and J. C. Carpenter, J. Organomet. Chem., 1994, 480, 23.

3. K. Hirabayashi, A. Mori, J. Kawashima, M. Suguro, Y. Nishihara and T. Hiyama, *J. Org. Chem.*, 2000, **65**, 5342.

4. T. Nozawa, T. Matsumoto, F. Yagihashi, T. Beppu, K. Sato, and M. Igarashi, *Chem. Lett.*, 2018, 47, 1530.