Supplementary Information

FOR

From Plant to Probe: Semi-Synthesis of Labelled Undecaprenol Analogues Allows Rapid Access to Probes for Antibiotic Targets

Rachel V. K. Cochrane,^[a] Francesca M. Alexander,^[a] Coilín Boland,^[b] Susan K. Fetics,^[b] Martin Caffrey,^[b] and Stephen A. Cochrane*^[a]

^a School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Queen's University Belfast, Belfast, UK, BT9 5AG; ^b School of Medicine and School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland

*To whom correspondence should be addressed.

Email: s.cochrane@qub.ac.uk

TABLE OF CONTENTS

Supplemental Figures	S3
Figure S1: Equipment used in large-scale Soxhlet extraction	S3
Figure S2: ¹ H-NMR analysis after Soxhlet extraction	S4
Figure S3: 2D-NMR analysis of ω -epoxide	S4
Figure S4: Structure of activated phosphate 21	S4
General Experimental Information	S5
Solvents and Reagents	S5
Chromatography	S5
Spectroscopy	S5
Experimental Procedures and Characterization of Products	S6
Large Scale Extraction of Undecaprenol from Bay Leaves	S6
Und-OAc (2)	S7
Und-OH (1)	S7
Undecaprenyl α-aldehyde (3)	S8
<i>d</i> ₁-Und-OH (4)	S9
Und-OAc (ω-epoxide) (5)	S9
Und-OAc (ω-aldehyde) (6)	S10
Und-OH (ω-2-aminobenzamide) (7)	S11
Und-OH (ω-4-nitroaniline) (8)	S12
Representative procedure for synthesis of compounds 9 – 14 via reductive amination	S13

Und-OH (ω-1-pyrenemethylamine) (9)	S13
Und-OH (ω-3-[3-(trifluoromethyl)-3 <i>H</i> -diazirin-3-yl]-benzylamine) (10)	S14
Und-OH (ω-(4-amino-TEMPO)) (11)	S14
Und-OH (ω-(4-azidoaniline)) (12)	S15
Und-OH (ω-(3-ethynylaniline)) (13)	S16
Und-OH (ω-propargylamine) (14)	S16
Und-OH (ω-epoxide) (15)	S17
Undecaprenyl α-THP ether (ω-alcohol) (16)	S18
Und-OH (ω-thioacetate) (17)	S19
Und-OH (ω-azide) (18)	
<i>d</i> ₁ -Und-P (20)	S20
<i>d</i> 1-Lipid II (19)	S22
Expression and purification of UdpK	S23
UdpK Activity Assay	S24
References	S24
NMR Spectra	S25

Supplemental Figures

Α

Figure S1: Equipment used in large-scale Soxhlet extraction. **A)** Large-scale Soxhlet extraction of bay leaves into a 5L roundbottomed flask. **B)** Partial purification of undecaprenol by flash column-chromatography. Column diameter is 10 cm and height is 45 cm.

Figure S2: ¹H-NMR analysis after Soxhlet extraction. **Top:** ¹H-NMR of partially purified undecaprenol. **Bottom:** ¹H-NMR of purified undecaprenyl acetate.

Figure S3: 2D-NMR analysis confirms that epoxidation occurs selectively on the ω -isoprene unit.

General Experimental Information

Solvents and Reagents

Reactions were performed under an inert atmosphere (Ar) in flame-dried glassware unless otherwise stated. Appropriate measures were taken to ensure that all air- and moisture-sensitive reagents were added under an inert atmosphere. All dry solvents were prepared from HPLC grade solvents by addition of 20% w/v freshly activated 3 Å molecular sieves (MS) under an inert atmosphere and standing for 24 h. All other solvents and reagents were used directly as received from commercial suppliers.

Chromatography

Reactions were monitored using thin-layer chromatography (TLC), which was performed using Merck Kieselgel 60 F254 (230-400 mesh) fluorescent treated silica plates, with visualization by UV light (254 and/or 365 nm) or staining with aqueous potassium permanganate or phosphomolybdic acid solutions. Flash column chromatography was performed using Fluorochem 60 40-63 micron silica gel.

Spectroscopy

¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded using a Bruker 600 or 400 MHz spectrometer running TopSpin[™] software and are quoted in parts per million (ppm) for measurement against tetramethylsilane. Samples were prepared by dissolution of material in CDCl₃ (~ 0.7 mL) and spectra referenced relative to the residual CHCl₃ solvent peaks at 7.26 (¹H-NMR) and 77.16 (¹³C-NMR). All spectra were acquired at 298 K. iNMR was used for processing and viewing NMR data. Chemical shifts (δ) are given in ppm, and coupling constants (J) are given in Hertz (Hz). The ¹H NMR spectra are reported using the following format: δ / ppm (number of protons, multiplicity, coupling constant J / Hz (where appropriate), assignment). Multiplicity is abbreviated as follows: app. = apparent, br. = broad, s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet. The 13C NMR spectra are reported in δ / ppm. Where necessary or appropriate, two-dimensional (COSY, HSQC and HMBC) NMR experiments were used to assist the assignment of signals in the ¹H-NMR spectra. Due to the presence of multiple chemically similar isoprene units in undecaprenol and its synthetic derivatives, complete resolution of all signals was not possible. Due to the extremely hydrophobic nature of the described undecaprenol derivatives, removal of trace solvents used during purification and hydrocarbon impurities from these solvents proved very difficult, even under high vacuum for several days. Such impurities appear below 1.5 ppm and are present in most ¹H-NMR spectra. In all cases coincidental overlap of signals in ¹³C-NMR

spectra mean not all expected ¹³C-signals are visible. High resolution mass spectra (HRMS) were recorded on a Waters LCT Premier ToF mass spectrometer using the electrospray ionization (ESI) technique.

Experimental Procedures and Characterization of Products

Large Scale Extraction of Undecaprenol from Bay Leaves

The Soxhlet extraction of ground bay leaves (purchased from Buy Whole Foods Online https://www.buywholefoodsonline.co.uk/bay-leaves-ground-1kg.html) was setup as shown in Fig S1. An absorbent cotton pad (~13 cm diameter) was placed at the bottom of a large Soxhlet extractor and ~900 grams of ground bay leaves added, followed by another absorbent cotton pad on top. The Soxhlet extractor was attached to a 3-necked 5 L flask and petroleum ether (PE) added to the top of the leaves until extract started to enter the flask (~1.5 L). A further 2.5 L of PE was added through one of the flask side-necks. The solvent was heated to reflux for 48 h, during which time the contents of the flask became a deep green color. The power was turned off and the extract allowed to cool. The spent bay leaves were then removed and replaced with a fresh batch of ~900 grams and the Soxhlet extraction continued for a further 48 h. The heating was then switched off and the Soxhlet extractor disconnected from the flask. Methanol (500 mL) and anhydrous K₂CO₃ (40 g) were added and the resulting mixture stirred for 72 h at room temperature. Solids were then removed from the extract solution by filtration through glass wool and the extract concentrated to yield a sticky green tar. This crude extract was suspended in 5:95 EtOAc:PE (~400 mL) and stirred to dissolve the majority of material. This entire mixture was added on top of silica gel (1 kg) pre-wetted with 5:95 EtOAc:PE in a glass column for purification by column chromatography. Due to the large amount of material, loading required regular piercing of the top of the silica gel with a glass rod until the eluent flowed freely out of the column. Undecaprenol-containing fractions were identified by comparison with a commercial standard from American Radiolabeled Chemicals, combined and concentrated in vacuo to yield 18.8 g of crude undecaprenol $\mathbf{1}$ as an orange oil (~ 1% w/w bay leaves).

*Full numbering system used for undecaprenol derivatives is shown above. Future figures will contain simplified numbering.

Crude undecaprenol obtained by Soxhlet-extraction (18.80 g) was dissolved in pyridine (10 mL) and acetic anhydride (20 mL) and stirred at ambient temperature for 5 h. The resulting mixture was diluted with 2:1 brine:water (100 mL) and extracted with EtOAc (3 x 50 mL). The organic phase was washed with 1M HCl (100 mL), saturated aqueous NaHCO₃ (100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude material was then purified by flash column chromatography (silica gel (800 g), 3:97 EtOAc:PE) to yield undecaprenyl acetate (**2**) as a light-yellow oil (10.20 g, 51.4%). δH (300 MHz, CDCl₃): 5.36 (1H, td, *J* 7.2, 1.1, H2), 5.17-5.06 (10H, m, H6, H10, H14, H18, H22, H26, H30, H34, H38 & H42), 4.56 (2H, d, *J* 7.3, H1), 2.11-1.95 (43H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40, H41 & H57), 1.76 (3H, s, H44), 1.70-1.67 (21H, m, H45, H46, H47, H48, H49, H50 & H55), 1.62-1.59 (12H, m, H51, H52, H53 & H54); δC (75 MHz, CDCl₃): 171.19, 142.74, 135.95, 135.50, 135.44, 135.36, 135.33, 135.09, 135.02, 131.38, 125.15, 125.14, 125.06, 124.53, 124.42, 124.39, 124.36, 124.26, 124.29, 119.29, 61.23, 39.91, 39.89, 39.87, 32.51, 32.37, 32.34, 32.13, 26.91, 26.81, 26.78, 26.55, 26.48, 25.85, 23.69, 23.59, 23.54, 21.21, 17.84, 16.17, 16.15; HRMS (ESI+): found 826.7435; C₅₇H₉₆NO₂, [M+NH₄]⁺ requires 826.7441.

Und-OH (1)

Und-OAc (**2**) (1.10 g, 1.36 mmol) was dissolved in 3:2 THF:MeOH (12 mL) and anhydrous K_2CO_3 (1.00 g, 7.24 mmol) was added. The resulting suspension was stirred for 18 h at ambient temperature, diluted with PE (100 mL) and washed with water (50 mL) and brine (50 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to yield undecaprenol (**1**) as a light-yellow oil (1.00 g, 96%). δH (400 MHz, CDCl₃): 5.45 (1H, td, *J* 7.3, 1.0, H2), 5.17-5.06 (10H, m, H6, H10, H14, H18, H22, H26,

H30, H34, H38 & H42), 4.09 (2H, d, *J* 7.2, H1), 2.11-1.95 (40H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40 & H41), 1.75 (3H, s, H44), 1.70-1.67 (21H, m, H45, H46, H47, H48, H49, H50 & H55), 1.62-1.59 (12H, m, H51, H52, H53 & H54); δC (75 MHz, CDCl₃): 140.04, 136.23, 135.52, 135.43, 135.40, 135.39, 135.38, 135.35, 135.12, 135.05, 131.39, 125.18, 125.17, 125.15, 125.09, 125.04, 124.68, 124.61, 124.56, 124.42, 124.39, 124.29, 59.19, 39.93, 39.89, 32.40, 32.37, 32.35, 32.16, 29.86, 26.94, 26.85, 26.81, 26.57, 26.53, 26.48, 25.85, 23.61, 23.59, 23.52, 17.84, 16.17, 16.15; HRMS (ESI+): found 784.7323; C₅₅H₉₄NO, [M+NH₄]⁺ requires 784.7335.

Undecaprenyl α-aldehyde (3)

Undecaprenol (1) (300 mg, 0.39 mmol) was dissolved in CH_2Cl_2 (9 mL) and cooled to 0 °C. MnO_2 (2.00 g, 23.00 mmol) was added and the resulting suspension warmed to ambient temperature and stirred for 48 h. The mixture was then filtered through celite, washed with CH_2Cl_2 (20 mL), concentrated *in vacuo* and purified by flash column chromatography (Silica gel, 5:95 EtOAc:PE) to yield Undecaprenyl α -aldehyde (**3**) as a light-yellow oil (238 mg, 80%). δH (400 MHz, CDCl₃): 9.90 (1H, d, *J* 8.2, H1), 5.89-5.86 (1H, m, H2), 5.17-5.06 (10H, m, H6, H10, H14, H18, H22, H26, H30, H34, H38 & H42), 2.58 (2H, t, *J* 7.5, H4), 2.24 (2H, app. qd, *J* 7.4, 0.8, H5), 2.11-1.95 (39H, m, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40, H41 & H44), 1.70-1.67 (21H, m, H45, H46, H47, H48, H49, H50 & H55), 1.62-1.59 (12H, m, H51, H52, H53 & H54); δC (75 MHz, CDCl₃): 190.87, 163.80, 137.37, 135.70, 135.52, 135.51, 135.44, 135.39, 135.38, 135.37, 135.34, 135.10, 135.03, 131.38, 128.83, 125.16, 125.14, 125.08, 124.81, 124.55, 124.41, 124.38, 124.28, 123.14, 39.92, 39.88, 33.01, 32.39, 32.36, 32.35, 32.14, 29.85, 26.97, 26.93, 26.84, 26.79, 26.56, 26.53, 26.39, 25.84, 25.68, 25.19, 23.61, 23.58, 23.48, 17.83, 16.16, 16.15; HRMS (ESI+): found 787.6724; $C_{55}H_{88}NaO$, $[M+Na]^+$ requires 787.6727.

*d*₁-Und-OH (4)

Undecaprenyl α -aldehyde (**3**) (220 mg, 0.29 mmol) was dissolved in THF (1.5 mL) and MeOH (1.5 mL) and cooled to 0 °C under argon. CeCl₃.7H₂O (118 mg, 0.32 mmol) was added, followed by NaBD₄ (14 mg, 0.34 mmol). The resulting mixture was stirred for 10 min, quenched with water (2 mL) and warmed to ambient temperature. The mixture was then extracted with Et₂O (3 x 3 mL), which was then washed with brine (3 mL), dried over anhydrous sodium sulfate and concentrated *in vacuo* to yield *d*₁- undecaprenol (**4**) as a light-yellow oil (193 mg, 88%). δH (400 MHz, CDCl₃): 5.44 (1H, d, *J* 7.2, H2), 5.17- 5.06 (10H, m, H6, H10, H14, H18, H22, H26, H30, H34, H38 & H42), 4.10-4.06 (1H, m, H1), 2.11-1.95 (40H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40 & H41), 1.75-1.74 (3H, m, H44), 1.70-1.67 (21H, m, H45, H46, H47, H48, H49, H50 & H55), 1.62-1.59 (12H, m, H51, H52, H53 & H54); δC (75 MHz, CDCl₃): 140.08, 136.22, 135.51, 135.42, 135.39, 135.34, 135.10, 135.04, 131.39, 125.16, 125.14, 125.07, 125.02, 124.66, 124.54, 124.41, 124.38, 124.28, 39.91, 39.88, 34.27, 32.36, 32.14, 26.91, 26.83, 26.79, 26.55, 26.52, 26.46, 25.84, 23.61, 23.58, 23.52, 22.49, 17.83, 16.14, 14.21; HRMS (ESI+): found 790.6947; Cs5H₈₉DNaO, [M+Na]⁺ requires 790.6952.

Und-OAc (ω-epoxide) (5)

Und-OAc (2) (2.85 g, 3.53 mmol) was dissolved in 9:1 THF:water (175 mL) and cooled to 0 °C. *N*-Bromosuccinimide (0.67 g, 3.79 mmol) was added in parts over 15 minutes and the resulting solution stirred at 0 °C for 5 h. The reaction mixture was concentrated *in vacuo* to remove THF, followed by the addition of brine (10 mL). The resulting mixture was extracted with CH_2Cl_2 (3 x 20 mL) and the combined organic layers dried over anhydrous Na_2SO_4 and concentrated *in vacuo*. The resulting material was then dissolved in 3:2 THF:MeOH (50 mL) and anhydrous K_2CO_3 (3.43 g, 24.80 mmol) was added. The resulting

suspension was stirred for 16 h at ambient temperature. Brine (11 mL) and water (22 mL) were then added, followed by extraction of the aqueous layer with CH_2Cl_2 (3 x 25 mL). The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to yield crude epoxide. This crude product was then re-dissolved in CH₂Cl₂ (47 mL), followed by the addition of DIPEA (1.63 mL, 9.38 mmol), acetic anhydride (0.81 mL, 8.53 mmol) and DMAP (52 mg, 0.426 mmol) and stirred for 16 h at ambient temperature. Brine (30 mL) was then added and the aqueous layer extracted with CH_2Cl_2 (3 x 30 mL). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. This crude material was purified by flash column chromatography (silica gel (150 g), 1:9 EtOAc:PE) to afford epoxide **5** as a clear oil (1.22 g, 42% over 3 steps). δH (400 MHz, CDCl₃): 5.35 (1H, td, J 7.3, 1.3, H2), 5.18-5.08 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.55 (2H, d, J 7.0, H1), 2.69 (1H, t, J 6.2, H42), 2.15-1.95 (43H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40, H41 & H57), 1.75 (3H, d, J 0.9, H44), 1.70-1.65 (18H, m, H45, H46, H47, H48, H49 & H50), 1.62-1.59 (9H, m, H51, H52 & H53), 1.29 (3H, s, CH₃), 1.25 (3H, s, CH₃); δC (75 MHz, CDCl₃): 171.12, 142.67, 135.92, 135.45, 135.41, 135.33, 135.32, 135.27, 134.92, 134.09, 125.15, 125.13, 125.07, 125.06, 125.04, 125.01, 124.45, 124.42, 124.28, 119.32, 64.30, 61.20, 58.40, 39.88, 39.87, 39.78, 36.44, 32.51, 32.36, 32.34, 32.12, 29.82, 27.61, 26.82, 26.77, 26.54, 26.50, 26.47, 25.02, 23.65, 23.59, 23.56, 23.51, 21.16, 18.86, 16.12; HRMS (ESI+): found 847.6934; C₅₇H₉₂O₃Na, [M+Na]⁺ requires 847.6944.

Und-OAc (ω-aldehyde) (6)

Epoxide **5** (320 mg, 0.39 mmol) was dissolved in 9:1 THF:water (5 mL) and cooled to 0 °C. Periodic acid (30 mg, 0.133 mmol) was then added slowly, and the reaction allowed to warm to room temperature. When all starting material was consumed (~5 h as indicated by TLC), the reaction mixture was diluted with water (10 mL) and EtOAc (10 mL). The organic and aqueous layers were separated, and the aqueous phase extracted with EtOAc (2 x 10 mL). The combined organic extracts were washed with aqueous saturated NaHCO₃ (50 mL), dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The resulting crude aldehyde **6** was used in subsequent steps without further purification. δH (600 MHz,

CDCl₃): 9.75 (1H, td, *J* 1.9, H42), 5.36 (1H, td, *J* 7.1, 1.3, H2), 5.18-5.08 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.55 (2H, dd, *J* 7.3, 0.8, H1), 2.52-2.48 (2H, m, H41), 2.31 (2H, t, *J* 7.44, H40), 2.11-1.95 (39H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37 & H54), 1.76 (3H, q, *J* 1.2, H43), 1.70-1.65 (18H, m, H44, H45, H46, H47, H48 & H49), 1.62-1.58 (9H, m, H50, H51 & H52); δ_C (75 MHz, CDCl₃): 202.67, 171.12, 142.67, 135.92, 135.45, 135.41, 135.34, 135.32, 135.26, 134.75, 132.97, 125.55, 125.16, 125.15, 125.14, 125.08, 125.06, 124.59, 124.42, 124.29, 119.32, 61.20, 42.28, 39.87, 39.63, 32.51, 32.36, 32.34, 32.33, 32.32, 32.11, 31.99, 26.80, 26.77, 26.71, 26.54, 26.47, 23.66, 23.59, 23.56, 23.55, 23.51, 21.16, 16.21, 16.12, 16.09; HRMS (ESI+): found 805.6469; C₅₄H₈₆O₃Na, [M+Na]⁺ requires 805.6475.

Und-OH (ω-2-aminobenzamide) (7)

Anthranilamide (20 mg, 0.146 mmol) was dissolved in dichloroethane (DCE) (0.5 mL) and acetic acid (10.6 μ L, 0.186 mmol). To this mixture was added a solution of aldehyde **6** (104 mg, 0.133 mmol) in DCE (1 mL), followed by sodium triacetoxyborohydride (42 mg, 0.199 mmol). The reaction was left to stir at ambient temperature for 16 h. Upon completion, aqueous saturated NaHCO₃ (50 mL) was added and the resulting mixture extracted with Et₂O (3 x 10 mL). Combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The resulting crude yellow solid was then dissolved in 1:2.5 THF:methanol (3.5 mL) and anhydrous K₂CO₃ (100 mg, 0.724 mmol) was added. After stirring at ambient temperature for 16 h, water (5 mL) was added and the reaction mixture extracted with Et₂O (3 x 10 mL). Combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The resulting crude yellow solid was then dissolved in 1:2.5 THF:methanol (3.5 mL) and anhydrous K₂CO₃ (100 mg, 0.724 mmol) was added. After stirring at ambient temperature for 16 h, water (5 mL) was added and the reaction mixture extracted with Et₂O (3 x 10 mL). Combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude product was then purified by flash column chromatography (Silica gel, 1:2 EtOAc:PE + 0.1% NEt₃) to afford amine **7** as a yellow oil (53 mg, 46%). δH (600 MHz, CDCl₃): 7.80 (1H, s, NH), 7.36 (1H, dd, *J* 7.9, 1.5, H55), 7.30 (1H, ddd, *J* 8.5, 7.1, 1.5, H57), 6.68 (1H, dd, *J* 8.4, 0.7, H58), 6.54 (1H, ddd, *J* 7.9, 7.1, 1.0, H56), 5.44 (1H, td, *J* 7.1, 1.2, H1), 5.18-5.10 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.09 (2H, d, *J* 7.2, H2), 3.12 (2H, q, *J* 5.8, H42), 2.11-1.95 (38H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40), 1.78-1.74 (5H, m, H41 & H43), 1.70-1.65

(18H, m, H44, H45, H46, H47, H48 & H49), 1.62-1.58 (9H, m, H50, H51 & H52); *δC* (75 MHz, CDCl₃): 172.32, 150.62, 139.92, 136.17, 135.49, 135.48, 135.40, 135.36, 135.34, 135.04, 134.15, 133.62, 128.42, 125.15, 125.15, 125.13, 125.07, 125.02, 124.67, 124.62, 124.39, 124.24, 114.16, 112.73, 111.88, 59.13, 42.56, 39.89, 39.82, 37.21, 32.37, 32.36, 32.35, 32.32, 32.13, 29.83, 27.43, 26.85, 26.84, 26.78, 26.54, 26.51, 26.46, 23.60, 23.59, 23.57, 23.50, 16.15, 16.13, 16.04; HRMS (ESI+): found 861.7258; C₅₉H₉₃N₂O₂, [M+H]⁺ requires 861.7237.

Und-OH (ω-4-nitroaniline) (8)

4-Nitroaniline (15 mg, 0.11 mmol) was dissolved in dichloroethane (DCE) (0.5 mL) and acetic acid (8.0 μL, 0.14 mmol). To this mixture was added a solution of aldehyde 6 (78 mg, 0.10 mmol) in DCE (1 mL), followed by sodium triacetoxyborohydride (32 mg, 0.15 mmol). The reaction was left to stir at ambient temperature for 16 h. Upon completion, aqueous saturated NaHCO₃ (50 mL) was added and the resulting mixture extracted with Et₂O (3 x 10 mL). Combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting crude yellow solid was then dissolved in 1:2.5 THF:methanol (3.5 mL) and anhydrous K_2CO_3 (100 mg, 0.724 mmol) was added. After stirring at ambient temperature for 16 h, water (5 mL) was added and the reaction mixture extracted with Et₂O (3 x 10 mL). Combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude product was then purified by flash column chromatography (Silica gel, 1:2 EtOAc:PE + 0.1% NEt₃) to afford amine **8** as a yellow oil (59 mg, 68%). δH (600 MHz, CDCl₃): 8.09-8.06 (2H, m, H55), 6.51-6.48 (2H, m, H54), 5.44 (1H, td, J 7.2, 1.2, H2), 5.18-5.09 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.53-4.47 (1H, m, NH), 4.09 (2H, d, J 6.6, H1), 3.18 (2H, q, J 6.4, H42), 2.11-1.95 (38H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40), 1.77-1.72 (5H, m, H41 & H43), 1.69-1.66 (18H, m, H44, H45, H46, H47, H48 & H49), 1.62-1.59 (9H, m, H50, H51 & H52); *δC* (75 MHz, CDCl₃): 153.48, 140.02, 138.00 136.20, 135.50, 135.47, 135.40, 135.36, 135.35, 135.26, 134.87, 133.75, 126.60, 125.71, 125.19, 125.17, 125.15, 125.10, 125.09, 125.04, 124.68, 124.61, 124.59, 124.34, 111.02, 59.17, 43.05, 39.91, 39.77, 37.01, 32.38, 32.37, 32.36, 32.33, 32.13, 29.85, 27.13, 26.84,

26.79, 26.74, 26.57, 26.56, 26.52, 26.47, 23.61, 23.60, 23.58, 23.51, 16.14, 15.99; HRMS (ESI+): found 863.7030; C₅₈H₉₁N₂O₃, [M+H]⁺ requires 863.7030.

Representative procedure for synthesis of compounds 9 – 14 via reductive amination

To a solution of aldehyde **6** (97 mg, 0.124 mmol) in CH₂Cl₂ (3 mL) was added 4-amino TEMPO (25.5 mg, 0.149 mmol) followed by sodium triacetoxyborohydride (52.5 mg, 0.248 mmol) and acetic acid (12.8 μ L). The reaction mixture was stirred at ambient temperature for 16 h and then saturated aqueous NaHCO₃ (50 mL) was added. The aqueous phase was extracted with EtOAc (2 x 50 mL) and the combined organic extracts dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The resulting crude reaction mixture was re-dissolved in 3:2 THF:methanol (10 mL), anhydrous K₂CO₃ added (124 mg, 0.896 mmol) added, and the resulting suspension stirred for 16 h at ambient temperature. Water (20 mL) was added, the layers were separated, and the aqueous phase extracted with EtOAc (2 x 20 mL). Combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The resulting yellow oil was purified by flash column chromatography (Silica gel, gradient 1:9 EtOAc:PE \rightarrow EtOAc) to yield amine **11** as a yellow oil (47 mg, 42%).

Und-OH (ω-1-pyrenemethylamine) (9)

Amine **9** was synthesized according to the representative procedure described above and purified by flash column chromatography (Silica gel, gradient 1:9 EtOAc:PE \rightarrow 1:1 EtOAc:PE) to yield the product as a yellow oil (38 mg, 39%). δH (600 MHz, CDCl₃): 8.38 (1H, d, J 9.2, Ar-H), 8.19-8.17 (2H, m, Ar-H), 8.15-8.13 (2H, m, Ar-H), 8.05-8.04 (2H, m, Ar-H), 8.02-7.99 (2H, m, Ar-H), 5.44 (1H, td, J 7.1, 1.3, H1), 5.15-5.08 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.49 (2H, s, H53), 4.09 (2H, dd, J 7.2, 0.8, H2), 2.78 (2H, t, J 7.2, H42), 2.11-1.95 (41H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40 & H41), 1.74-1.73 (3H, m, H43), 1.70-1.65 (18H, m, H44, H45, H46, H47, H48 & H49), 1.62-1.58 (9H, m, H50, H51 & H52); δC (75 MHz, CDCl₃): 139.95, 136.19, 135.50, 135.42, 135.38, 135.37, 135.36, 135.34, 135.06, 134.69, 131.48, 131.00, 130.80, 129.21, 127.77, 127.61,

127.19, 127.16, 126.00, 125.21, 125.20, 125.17, 125.16, 125.14, 125.12, 125.08, 125.03, 124.84, 124.76, 124.68, 124.64, 124.36, 124.28, 123.31, 59.14, 52.00, 49.78, 39.92, 39.83, 37.54, 32.38, 32.36, 32.36, 32.33, 32.14, 28.41, 26.85, 26.84, 26.79, 26.55, 26.52, 26.47, 23.61, 23.60, 23.58, 23.51, 16.15, 16.03; HRMS (ESI+) Found 956.7643; C₆₉H₉₈NO, [M+H]⁺ requires 956.7648.

Amine **10** was synthesized according to the representative procedure described above and purified by flash column chromatography (Silica gel, gradient 1:4 EtOAc:PE \rightarrow 2:5 EtOAc:PE) to yield the product as a yellow oil (39 mg, 38%). δH (600 MHz, CDCl₃): 7.36 (2H, d, *J* 8.6, H56), 7.15 (2H, d, *J* 8.0, H55), 5.44 (1H, td, *J* 7.1, 1.3, H2), 5.18-5.10 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.10-4.08 (2H, m, H1), 3.80 (2H, s, H53), 2.58 (2H, t, *J* 7.2, H42), 2.11-1.95 (38H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40), 1.75-1.74 (3H, m, H43), 1.69-1.65 (18H, m, H44, H45, H46, H47, H48 & H49), 1.63-1.57 (11H, m, H41, H50, H51 & H52); δC (75 MHz, CDCl₃): 139.95, 136.20, 135.51, 135.50, 135.41, 135.38, 135.37, 135.36, 135.33, 135.02, 134.58, 134.32, 129.77, 128.68, 127.86, 126.67, 126.56, 125.18, 125.17, 125.14, 125.09, 125.03, 124.89, 124.80, 124.68, 124.64, 124.42, 124.38, 124.29, 59.14, 53.44, 49.16, 39.92, 39.84, 37.43, 32.38, 32.36, 32.34, 32.14, 29.85, 28.22, 26.85, 26.82, 26.80, 26.56, 26.52, 26.47, 23.61, 23.58, 23.51, 16.15, 16.00; δF (600 MHz, CDCl₃): -65.31; HRMS (ESI+) Found 940.7259 C₆₁H₉₃F₃N₃O, [M+H]⁺ requires 940.7272.

Und-OH (ω-(4-amino-TEMPO)) (11)

Amine **11** was synthesized according to the representative procedure described above and purified by flash column chromatography (Silica gel, gradient 1:9 EtOAc:PE \rightarrow EtOAc) to yield the product as a yellow oil (47 mg, 42%). δH^* (600 MHz, CDCl₃): 5.52 (1H, br. s, H2), 5.27-5.11 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.22 (2H, br. s, H1), 2.21-2.00 (40H, m, H4, H5, H8, H9, H12, H13, H16, H17,

H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40 & H41), 1.82 (3H, s, H43), 1.78-1.74 (18H, m, H44, H45, H46, H47, H48 & H49), 1.71-1.66 (9H, m, H50, H51 & H52); *δC* (75 MHz, CDCl₃): 138.52, 134.77, 134.09, 134.07, 134.00, 133.96, 133.91, 57.79, 38.59, 38.48, 36.62, 31.05, 31.02, 30.09, 30.97, 30.81, 28.45, 25.52, 25.48, 25.45, 25.22, 25.18, 25.17, 25.14, 22.34, 22.32, 22.30, 22.27, 22.21, 22.20, 14.93, 14.90, 14.67; HRMS (ESI+) Found 896.8086; C₆₁H₁₀₄N₂O₂, [M+H]⁺ requires 896.8098.

*The paramagnetic nitroso species drastically reduces relaxation times, which lead to significant linebroadening in the 1H-NMR spectra, such that signals from the TEMPO unit were not observed.

Und-OH (ω-(4-azidoaniline)) (12)

Amine **12** was synthesized according to the representative procedure described above and purified by flash column chromatography (Silica gel, gradient 5:95 EtOAc:PE → 1:9 EtOAc:PE) to yield the product as a yellow oil (25 mg, 24%). δH (600 MHz, CDCl₃): 6.86-6.83 (2H, m, H55), 6.58-6.57 (2H, m, H54), 5.44 (1H, td, *J* 7.2, 1.4, H2), 5.18-5.10 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.09 (2H, d, *J* 7.1, H1), 3.06 (2H, t, *J* 7.1, H42), 2.11-1.95 (38H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40), 1.75-1.74 (3H, m, H43), 1.72-1.67 (20H, m, H41, H44, H45, H46, H47, H48 & H49), 1.62-1.59 (9H, m, H50, H51 & H52); δC (75 MHz, CDCl₃): 146.14, 140.02, 136.22, 135.51, 135.50, 135.42, 135.38, 135.37, 135.32, 134.96, 134.25, 128.73, 125.20, 125.18, 125.17, 125.15, 125.10, 125.04, 124.68, 124.61, 124.52, 124.31, 120.11, 113.90, 59.18, 43.98, 39.92, 39.82, 37.23, 32.39, 32.37, 32.37, 32.34, 32.15, 31.74, 27.61, 26.85, 26.80, 26.79, 26.56, 26.53, 26.47, 23.62, 23.61, 23.59, 23.52, 16.15, 16.04, 14.27; HRMS (ESI+) Found 859.7209; C₅₈H₉₁N₄O, [M+H]⁺ requires 859.7193.

Und-OH (ω-(3-ethynylaniline)) (13)

Amine **13** was synthesized according to the representative procedure described above and purified by flash column chromatography (Silica gel, gradient 1:4 EtOAc:PE → EtOAc) to yield the product as a yellow oil (35 mg, 35%). δH (600 MHz, CDCl₃): 7.09 (1H, t, *J* 7.9, H57), 6.82 (1H, dt, *J* 7.5, 1.2, H58), 6.70 (1H, dd, *J* 2.3, 1.5, H54), 6.57 (1H, ddd, *J* 8.2, 2.4, 0.9, H56), 5.44 (1H, td, *J* 7.2, 1.4, H2), 5.18-5.09 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.09 (2H, d, *J* 6.9, H1), 3.07 (2H, t, *J* 7.1, H42), 3.00 (1H, s, H60), 2.11-1.95 (38H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40), 1.75-1.74 (3H, m, H43), 1.73-1.67 (20H, m, H41, H44, H45, H46, H47, H48 & H49), 1.62-1.59 (9H, m, H50, H51 & H52); δC (75 MHz, CDCl₃): 148.35, 140.02, 136.21, 135.51, 135.42, 135.38, 135.37, 135.37, 135.33, 134.97, 134.23, 129.25, 125.21, 125.18, 125.17, 125.14, 125.09, 125.03, 124.67, 124.61, 124.50, 124.29, 122.80, 121.13, 115.81, 113.81, 84.51, 76.24, 59.17, 43.51, 39.91, 39.80, 37.20, 32.38, 32.37, 32.36, 32.36, 32.34, 32.15, 27.55, 26.85, 26.80, 26.79, 26.56, 26.52, 26.47, 23.62, 23.61, 23.58, 23.52, 16.15, 16.04; HRMS (ESI+) Found 842.7179; C₆₀H₉₂NO, [M+H]⁺ requires 842.7179.

Und-OH (ω-propargylamine) (14)

Amine **14** was synthesized according to the representative procedure described above and purified by flash column chromatography (Silica gel, gradient 1:4 EtOAc:PE \rightarrow 3:7 EtOAc:PE) to yield the product as a yellow oil (30 mg, 41%). δH (600 MHz, CDCl₃): 5.44 (1H, td, J 7.2, 1.4, H2), 5.18-5.08 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.09 (2H, dd, J 7.2, 0.9, H1), 3.42 (2H, d, J 2.4, H53), 2.66 (2H, t J 7.2, H42), 2.20 (1H, t, J 2.4, H55), 2.11-1.95 (38H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37 & H40), 1.75-1.74 (3H, m, H43), 1.70-1.67 (18H, m, H44, H45, H46, H47, H48 & H49), 1.62-1.56 (11H, m, H41, H50, H51 & H52); δC (75 MHz, CDCl₃): 139.96, 136.20, 135.51, 135.42, 135.38, 135.37, 135.34, 135.05, 134.60, 125.18, 125.17, 125.14, 125.09, 125.04, 124.78,

124.68, 124.65, 124.42, 124.29, 82.39, 71.36, 59.14, 48.52, 39.92, 39.84, 38.30, 37.45, 32.38, 32.36, 32.34, 32.15, 30.47, 29.85, 28.13, 26.85, 26.83, 26.80, 26.56, 26.52, 26.47, 23.62, 23.61, 23.58, 23.55, 23.52, 16.16, 16.01; HRMS (ESI+) Found 780.7020; C₅₅H₉₀NO⁺, [M+H]⁺ requires 780.7022.

Und-OH (ω-epoxide) (15)

Und-OAc (2) (0.96 g, 1.19 mmol) was dissolved in 9:1 THF:water (100 mL) and cooled to 0 °C. N-Bromosuccinimide (232 mg, 1.30 mmol) was added in parts over 15 minutes and the resulting solution stirred at 0 °C for 5 h. Brine (100 mL) was added, the layers separated and the aqueous phase extracted with EtOAc (2 x 50 mL). The combined organic layers dried over anhydrous Na₂SO₄ and concentrated in vacuo. The resulting material was then dissolved in 3:2 THF:MeOH (100 mL) and anhydrous K₂CO₃ (1.15 g, 8.30 mmol) was added. The resulting suspension was stirred for 16 h at ambient temperature. Brine (50 mL) and water (50 mL) were then added, followed by extraction of the aqueous layer with EtOAc (2 x 50 mL). The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to yield crude epoxide. This crude material was purified by flash column chromatography (silica gel, 5:95 EtOAc:PE) to afford epoxide **15** as a clear oil (470 mg, 36% over 3 steps). δH (400 MHz, CDCl₃): 5.43 (1H, d, J 6.9, H2), 5.18-5.08 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.08 (2H, d, J 7.0, H1), 2.69 (1H, t J 6.2, H42), 2.11-1.95 (40H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40 & H41), 1.73 (3H, s, H44), 1.70-1.67 (18H, m, H45, H46, H47, H48, H49 & H50), 1.62-1.59 (9H, m, H51, H52 & H53), 1.29 (3H, s, H55), 1.25 (3H, s, H54); δ*C* (75 MHz, CDCl₃): 139.82, 136.12, 135.44, 135.35, 135.31, 135.25, 134.91, 134.07, 125.14, 125.12, 125.06, 125.04, 125.01, 124.66, 124.64, 124.45, 124.27, 64.33, 59.09, 58.47, 39.87, 39.76, 36.43, 32.35, 32.33, 32.31, 32.10, 27.58, 26.80, 26.76, 26.53, 26.49, 26.45, 25.00, 23.57, 23.55, 23.48, 18.85, 16.11; HRMS (ESI+) Found 805.6837; C₅₅H₉₀NaO₂, [M+Na]⁺ requires 805.6833.

Undecaprenyl α -THP ether (ω -alcohol) (16)

Epoxide 5 (600 mg, 0.766 mmol) was dissolved in THF (4.5 mL), cooled to 0 °C and water (0.25 mL) added. To this cooled solution was added periodic acid (192 mg, 0.843 mmol) in water (0.25 mL), and allowed to warm to ambient temperature after 30 mins at 0 °C. After stirring for 2.5 h at ambient temperature, the reaction was diluted with brine (5 mL) and extracted with EtOAc (2 x 10 mL). Combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. This crude mixture was dissolved in CH₂Cl₂ (5 mL) and dihydropyran (105 µL, 1.15 mmol) added, followed by pyridinium *p*-toluenesulfonate (19.0 mg, 0.077 mmol). The reaction mixture stirred for 16 h. Aqueous saturated NaHCO₃ (5 mL) was added, followed by extraction with CH₂Cl₂ (2 x 10 mL). The combined organic extracts were dried with anhydrous Na₂SO₄ and concentrated *in vacuo*. The resulting material was then dissolved in dry Et₂O (2.3 mL) and sodium borohydride (43 mg, 1.15 mmol) added along with methanol (50 µL). The resulting suspension was stirred for 6 h. Water (5 mL) and Et₂O (5 mL) were added to the reaction mixture, the layers were separated, and the aqueous layer extracted with Et₂O (2 x 10 mL). Combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Crude product was purified by flash column chromatography (SiO₂, 1:9 EtOAc:pentane) to yield the alcohol product **16** as a clear oil (325 mg, 51%). δH (400 MHz, CDCl₃): 5.39-5.35 (1H, m, H2), 5.18-5.08 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.82 (0.2H, dd, J 5.0, 2.9, β-THP H53), 4.63 (0.8H, t, J 3.7, α-THP H53), 4.21 (1H, ddd, J 11.8, 6.5, 1.1, H1), 3.98 (1H, ddd, J 11.8, 7.5, 0.8, H1'), 3.88 (1H, ddd, J 11.3, 8.2, 3.1, α-THP & β-THP H57), 3.63 (2H, t, J 6.5, H42), 3.56 (0.2H, m, H57), 3.58-3.54 (0.2H, m, β-THP H57'), 3.52-3.49 (0.8H, m, α-THP H57'), 2.11-1.96 (40H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40 & H41), 1.89-1.76 (2H, m, 2xTHP-H) 1.76-1.74 (3H, m, H43), 1.70-1.65 (18H, m, H44, H45, H46, H47, H48 & H49), 1.62-1.49 (13H, m, H50, H51, H52 & 4xTHP-H); δ_C (75 MHz, CDCl₃): 140.56, 135.66, 135.49, 135.38, 135.36, 135.35, 135.31, 134.95, 134.71, 125.17, 125.16, 125.13, 125.09, 124.97, 124.77, 124.50, 124.29, 121.76, 98.63, 98.00, 63.59, 63.51, 62.97, 62.29, 60.54, 39.89, 39.79, 36.15, 32.58, 32.38, 32.35, 32.34, 32.14, 30.86, 26.82, 26.79, 26.75, 26.68, 25.55, 26.51, 25.66, 23.72, 23.61, 23.58, 23.54, 19.70, 16.14, 16.12, 16.00; HRMS (ESI+) Found 844.7562; C₅₇H₉₈NO₃, [M+NH₄]⁺ requires 844.7547.

Und-OH (ω-thioacetate) (17)

Alcohol 16 (100 mg, 0.121 mmol) was dissolved in CH₂Cl₂ (0.2 mL), cooled to 0 °C, and triethylamine (20.2 µL, 0.145 mmol) added. After stirring for 10 min, mesyl chloride (18.7 µL, 0.242 mmol) was added, and the reaction mixture stirred at ambient temperature for 2 h. The reaction mixture was diluted with CH_2Cl_2 (1 mL) and water (1 mL), the phase separated and the aqueous phase extracted with CH_2Cl_2 (2 x 1 mL). Combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude mesylate was dissolved in dry DMF (0.75 mL), and heated to 60 °C, at which point potassium thioacetate (27.6 mg, 0.242 mmol) was added. After 1 h, the reaction mixture was concentrated and CH_2CI_2 (5 mL) and water (5 mL) were added. The phases were separated and the aqueous phase extracted with CH₂Cl₂ (2 x 5 mL). Combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo to yield crude thioacetate (100 mg, 93%), which was used in the subsequent step without further purification (HRMS (ESI+) Found 902.7418; C₅₉H₁₀₀NO₃S⁺, [M+NH₄]⁺ requires 902.7443). This crude material was dissolved in THF (1 mL) and a solution of *p*-toluene sulfonic acid (5 mg, 0.024) mmol) in MeOH (1 mL) added dropwise over 1 min. The reaction mixture was stirred at ambient temperature for 1 h and then saturated aqueous Na₂SO₄ (2.5 mL) and water (2.5 mL) were added. The aqueous layer was extracted with Et₂O (2 x 5 mL) and the combined organic layers dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The resulting crude material was purified by flash column chromatography (SiO₂, 1:9 EtOAc:pentane) to yield thioacetate **17** as a clear oil (50 mg, 50%). δ_H (600 MHz, CDCl₃): 5.44 (1H, td, J 7.2, 1.3, H2), 5.16-5.09 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.09 (2H, dd, J 7.2, 0.8, H1), 2.82 (2H, t, J 7.4, H42), 2.31 (3H, s, H54), 2.10-1.96 (38H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40), 1.75-1.73 (3H, m, H43), 1.70-1.63 (20H, m, H41, H44, H45, H46, H47, H48 & H49), 1.61 (3H, s, CH3), 1.59 (3H, s, CH3), 1.58 (3H, s, H52); δ_C (75 MHz, CDCl₃): 196.05, 139.95, 136.18, 135.49, 135.40, 135.36, 135.35, 135.32, 134.94, 133.68, 125.50, 125.16, 125.15, 125.13, 125.07, 125.02, 124.67, 124.62, 124.48, 124.26, 59.14, 39.88, 39.77, 32.35, 32.32, 32.13, 30.76, 28.74, 27.84, 26.82, 26.79, 26.76, 26.55, 26.51, 26.46, 23.61, 23.59, 23.57, 23.50, 16.14, 16.11, 15.91; HRMS (ESI+) Found 818.6726; C₅₄H₉₂NO₂S, [M+NH₄]⁺ requires 818.6849.

Und-OH (ω-azide) (18)

The ω -mesylate was synthesized as described above. This material (45 mg, 0.063 mmol) was dissolved in THF (0.5 mL). To this solution was added *p*-toluene sulphonic acid (1.15 mg, 0.0067 mmol) in MeOH (0.5 mL) over 1 min and the resulting reaction mixture was stirred for 16 h at ambient temperature. Aqueous saturated NaHCO₃ (2 mL) was added, the phase separated and the aqueous phase extracted with CH₂Cl₂ (2 x 1 mL). Combined organic extracts were then dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. This crude material was purified by flash column chromatography (SiO₂, 1:9 EtOAc:PE) to yield azide **18** as a clear oil (25 mg, 53%). δ *H* (600 MHz, CDCl₃): 5.44 (1H, td, *J* 7.2, 1.4, H2), 5.16-5.09 (9H, m, H6, H10, H14, H18, H22, H26, H30, H34 & H38), 4.09 (2H, app. t, *J* 6.1, H1), 3.23 (2H, t, *J* 7.0, H42), 2.10-1.95 (38H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40), 1.76-1.74 (3H, m, H43), 1.70-1.67 (20H, m, H41, H44, H45, H46, H47, H48 & H49), 1.62-1.59 (9H, m, H50, H51 & H52); δ *C* (75 MHz, CDCl₃): 134.00, 136.20, 135.51, 135.51, 135.42, 135.38, 135.37, 135.31, 134.90, 133.42, 125.73, 125.20, 125.19, 125.17, 125.11, 125.06, 124.69, 124.66, 124.58, 124.33, 59.19, 51.07, 39.91, 39.77, 36.66, 32.40, 32.38, 32.36, 32.16, 27.17, 26.86, 26.81, 26.79, 26.57, 26.54, 26.50, 23.60, 23.59, 23.57, 23.51, 16.16, 16.12, 15.94; HRMS (ESI+) Found 790.6592; C₅₂H₈₅N₃NaO, [M+Na]⁺ requires 790.6590.

*d*₁-Und-P (20)

 d_1 -Und-OH (4) (180 mg, 0.234 mmol) was dissolved in dry CH₂Cl₂ (3 mL) and added rapidly via syringe to a vigorously stirred suspension of 5-ethylthio-1*H*-tetrazole (143 mg, 1.101 mmol) and bis(2cyanoethyl)-*N*,*N*'-diisopropylphosphoramidite (190 mg, 0.703 mmol) in dry CH₂Cl₂ (3 mL). The reaction mixture became homogeneous within a few min. After 3 h, the mixture was diluted with CH₂Cl₂ (40 mL) and washed with aqueous saturated NaHCO₃ (30 mL), water (30 mL) and brine (30 mL). The organic solution was dried over anhydrous Na₂SO₄ and concentrated *in vacuo* to yield the phosphite as a yellow oil. The product was dissolved in THF (6 mL) and cooled to -78 °C. Hydrogen peroxide (30%, 0.6 mL) was added dropwise via syringe to the vigorously stirred solution. After the addition was complete, the ice bath was removed and the mixture was allowed to warm to ambient temperature over 2 h. The reaction mixture was then diluted with ice-cold saturated sodium sulfite (5 mL) and stirred at 0 °C for 5 min. The reaction mixture was then extracted with EtOAc (50 mL) and the organic layer was washed with saturated aqueous NaHCO₃ (25 mL), water (25 mL) and brine (25 mL), dried over anhydrous Na₂SO₄ and concentrated in vacuo to yield the phosphate as a yellow oil. The crude phosphate was suspended in anhydrous MeOH (4.5 mL) and petroleum ether (1 mL) and a 25% NaOMe in MeOH solution (0.175 mL) was added. The resulting suspension was stirred at ambient temperature for 16 h. The reaction mixture was diluted with CH₂Cl₂ (7 mL) and carefully neutralized with DOWEX 50WX8 H⁺ form resin. The resin was removed by filtration and the filtrate concentrated in vacuo. The resulting yellow oil was purified by column chromatography (SiO₂, 90:10:0:0.1 to 65:25:5:0.1 CHCl₃:MeOH:H₂O:NH₄OH) to yield the product as an off-white foam (120 mg, 58%). δH (400 MHz, CDCl₃): 5.34 (1H, br. s, J 7.2, H2), 5.19-5.01 (10H, m, H6, H10, H14, H18, H22, H26, H30, H34, H38 & H42), 4.37 (1H, br. s, H1), 2.09-1.94 (40H, m, H4, H5, H8, H9, H12, H13, H16, H17, H20, H21, H24, H25, H28, H29, H32, H33, H36, H37, H40 & H41), 1.71-1.54 (36H, m, H44, H45, H46, H47, H48, H49, H50, H51, H52, H53, H54 & H55); δ*C* (75 MHz, CDCl₃): 145.47, 135.31, 135.08, 135.01, 131.35, 125.18, 125.17, 125.08, 124.55, 124.41, 124.38, 124.29, 68.63, 39.91, 39.88, 32.37, 32.35, 32.33, 32.15, 26.92, 26.83, 26.80, 26.55, 26.52, 26.49, 26.40, 25.84, 23.62, 23.57, 23.50, 17.83, 16.16, 16.15, 16.14; δP (400 MHz, CDCl₃): 0.71; HRMS (ESI-): found 846.6643; C₅₅H₈₉DO₄P, [M-H]⁻ requires 846.6639.

*d*₁-Lipid II (19)

Dibenzyl phosphate 21 (synthesized as previously described¹) (50 mg, 33 µmol) was dissolved in anhydrous MeOH (6 mL) and the flask flushed with an argon baloon. Pd/C (10 % w/w, 106 mg, 99 µmol) was added and the resulting suspension stirred under a H₂ atmosphere for 3 h. The suspension was then filtered through celite, which was washed with MeOH (2 x 3 mL). Pyridine (1 mL) was added to the filtrate, which was then concentrated in vacuo and dried by high vacuum for 1 h to yield the sugar phosphate salt as a white solid. This salt was dissolved in dry DMF (1 mL) and dry THF (1 mL) and carbonyl diimidazole (26.8 mg, 165 µmol) was added. The resulting clear solution was stirred at ambient temperature for 2 h, at which point analysis by ESI showed complete product formation ([M-H]⁻ = 1388.4). Excess carbonyl diimidazole was destroyed by the addition of dry MeOH (5.34 µL, 132 µmol) and stirring continued for 45 min. The reaction mixture was then concentrated in vacuo and dried under high vac for 1 h. To resulting activated phosphate was added a solution of d_1 -Und-P (29 mg, 33 μ mol) in THF (2 mL) and 5-ethylthio-1H-tetrazole (4.3 mg, 33 µmol). The resulting solution was stirred for 96 h under argon at ambient temperature and concentrated in vacuo. To this crude mixture was added 1,4-dioxane (1 mL) and a solution of sodium hydroxide (40 mg, 1 mmol) in water (1 mL). The resulting mixture was stirred at 37 °C for 2 h and filtered through an aqueous filter disc, which was washed with 1:1 H₂O/1,4-dioxane (2 mL). Lipid II was then purified by HPLC: column = Phenomenex Luna $C_{18}(2)$ 100 Å prep-scale column; flow-rate = 20 mL/min, UV = 220 nm, method: solvent A = 50 mM NH₄HCO₃(aq), solvent B = MeOH, gradient = 2 to 98 % B over 30 min, 98 % B for 10 min, 98 to 2 % B over 1 min and 2 % B for 4 min. d_1 -Lipid II eluted between 33.7 – 34.4 min. Product containing fractions were concentrated by rotary evaporator and diluted with H_2O , frozen and lyophilized to yield d_1 -lipid II (19)

as a fluffy white power (17.7 mg, 29%). HRMS (ESI-): found 1875.0588; C₉₄H₁₅₃DN₈O₂₆P₂, [M-H]⁻ requires 1875.0596.

Expression and purification of UdpK

The DNA for UdpK WT from Streptococus mutans was cloned into the pETDuet vector to produce an expression construct with an N-terminal TEV-cleavable hexahistidine-tag. For expression, chemically competent C43(DE3) cells were transformed with the pETDuet vector and grown in ampicillinsupplemented (50 µg/mL) LB agar plates. The transformed C43(DE3) cells were used to prepare an overnight (16 h) starter culture with which to inoculate TB medium. Cultures were grown at 180 rpm and 37 °C to an OD₆₀₀ of 0.6 and cooled to 20 °C on ice. Expression of UdpK WT was induced with 1 mM IPTG and cells were grown for 20 h at 20 °C post-induction. Cells were harvested at 6,000 x q for 10 min at 4 °C, resuspended in buffer A (75 mM Tris-HCl, 300 mM NaCl, 2 mM EDTA, final pH 7.8) and lysed at 1,000-1,750 bar using an EmulsiFlex-C5 homogeniser (Avestin, Canada) at 4 °C. Cell debris was removed by centrifugation at 9,000 x q for 25 min. Membranes were pelleted by centrifugation at 120,000 x q for 1 h at 4 °C, solubilized in buffer B (75 mM Tris-HCl, 300 mM NaCl, 2 mM EDTA, 3 %(v/v) Empigen, final pH 7.8) for 30 min at 4 °C followed by centrifugation at 9,000 x q for 20 min at 4 °C. The supernatant was mixed with Ni-NTA resin (Qiagen, Germany) on a mixer for 60 min at 4 °C. The resin was washed with 50 mL of buffer C (40 mM HEPES, 300 mM NaCl, 1.5 %(v/v) Empigen, 40 mM Imidazole, 10 µM BHT, final pH 7.5). The Empigen detergent was exchanged to decyl maltoside (DM) by pulse washing the resin with 50 mL of buffer D (20 mM HEPES, 0.25 %(w/v) DM, 100 mM NaCl, final pH 7.5). Protein was eluted with buffer E (10 mM Tris-HCl, 100 mM NaCl, 0.5 %(w/v) DM, 400 mM Imidazole, final pH 7.4). The hexahistidine-tag was cleaved by incubation for 16 h with TEV protease at 4 °C. The TEV protease and any uncleaved UdpK WT were removed by reverse IMAC using Ni-NTA resin. The cleaved UdpK protein was further purified using a HiLoad 16/60 Superdex 200 column (GE Healthcare, UK) equilibrated in buffer F (10 mM Tris-HCl, 150 mM NaCl, 0.25 %(w/v) DM, final pH 7.4). The purified protein was concentrated in a 50 kDa MWCO Amicon Ultra 15 concentrator (Millipore, USA) to 12 mg/mL, aliquoted, snap frozen in liquid nitrogen and stored at -80 °C for subsequent use in functional assays.

Kinase activity assay

Each of the compounds tested was solubilized by sonication using 15 mM LDAO in 2 %(v/v) DMSO² to a concentration of 2.5 mM. The assay mix contained 75 mM PIPES pH 6.9, 50 mM LiCl, 0.1 mM EGTA, 0.1 mM EDTA, 1 %(w/v) DM, 1 mM PEP, 3 mM ATP, 15 mM magnesium acetate, 0.2 mM DTT, 0.25 mM NADH, 20 U/mL PK and LDH. To eliminate any ADP in the system and for thermal equilibration, the reaction mixture was incubated at 30 °C for 10 min prior to assay. The kinase reaction, in triplicate, was initiated by adding 0.2 mL Assay Mix to 0.4 μ L UdpK solution of a 1.2 mg/mL stock, purified protein in Buffer F. Immediately, the plate was placed in a SpectraMax M5e plate reader (Molecular Devices) prewarmed to 30 °C. A340 was recorded every 15 s with mixing for 2 s between each reading. UdpK-free blanks were run with each assay using Buffer F in place of protein solution. Background rates, corresponding to non-enzymatic hydrolysis of ATP and NADH photobleaching, were subtracted from those recorded in the presence of UdpK.³

References

- Y. Y. Dong, H. Wang, A. C. W. Pike, S. A. Cochrane, S. Hamedzadeh, F. J. Wyszyński, S. R. Bushell, S. F. Royer, D. A. Widdick, A. Sajid, H. I. Boshoff, Y. Park, R. Lucas, W-M. Liu, S. S. Lee, T. Machida, L. Minall, S. Mehmood, K. Belaya, W-W. Liu, A. Chu, L. Shrestha, S. M.M. Mukhopadhyay, C. Strain-Damerell, R. Chalk, N. A. Burgess-Brown, M. J. Bibb, C. E. Barry 3rd, C. V. Robinson, D. Beeson, B. G. Davis, E. P. Carpenter. *Cell* **2018**, *175*, 1045.
- L. Y. Huang, S. H. Huang, Y. C. Chang, W. C. Cheng, T. J. R. Cheng and C. H. Wong. *Angew. Chem. Int. Ed.* 2014, 53, 8060.
- 3) D. Li and M. Caffrey. *Proc. Natl. Acad. Sci. USA* **2011**, *108*, 8639.

NMR Spectra

1

¹H-NMR:

¹³C-NMR:

 \searrow

¹H-NMR:

¹³C-NMR:

 \leq

¹H-NMR:

¹³C-NMR:

¹H-NMR:

_____4

¹³C-NMR:

 \bigvee

¹H-NMR:

 \bigvee^{0}

¹³C-NMR:

\=0

¹H-NMR:

S35

Ο -NH₂ -NH

¹H-NMR:

¹H-NMR:

−NH ∖ N. |∑N CF3

S45

S49

¹H-NMR:

S50

-NH _ HO-_

-NH но_____ _ ____

 \sim

 \sim

-s) O

¹H-NMR:

 \searrow -N₃

-N₃

-0.707

³¹P-NMR:

Manager and a half half a frank a half and a straight and a half and the straight and a half and a straight and a st with an interpretation is reliably to interpretation of provide interpretation of the interpret 00m 90 80 70 60 30 10 -40 -50 -60 -70 -80 -90 50 40 20 -10 -20 -30