Supporting Information

Synthesis of 3-alkyl-6-methyl-1,2,4,5tetrazines via a Sonogashira-type crosscoupling reaction

Enric Ros, ${ }^{\text {a }}$ Amparo Prades, ${ }^{a}$ Dominique Forson, ${ }^{\text {a Jacqueline }}$ Smyth, ${ }^{a}$ Xavier Verdaguer, ${ }^{\mathrm{a}, \mathrm{b}}$ Lluís Ribas de Pouplana**, ${ }^{*}$ and Antoni Riera*a, ${ }^{*}$

[^0]
Table of contents

1. General methods and instrumentation S2
2. Experimental procedures and characterization data S3
2.1. Synthetic route for 3-bromo-6-methyl-1,2,4,5-tetrazine (1a) and 3-bromo-6- phenyl-1,2,4,5-tetrazine (1b) S3
2.2. Screening of Sonogashira reaction conditions S6
2.3. Substrate scope of Sonogashira coupling between terminal alkynes and 1a-b S7
2.4. Deprotection of protective groups S13
2.5. Tandem hydrogenation + oxidation of 5c and $\mathbf{5 f}$ S14
2.6. Synthesis of unnatural amino acids S16
2.6.1. Preparation of substrates $\mathbf{8 a}$ and $\mathbf{8 b}$ S16
2.6.2. Sonogashira coupling between $8 \mathbf{a}-\mathbf{b}$ and $\mathbf{1 a}$ S18
2.6.3. Tandem hydrogenation-oxidation of $9 \mathbf{a}-\mathbf{b}$ S19
2.6.4. Deprotection of amino acids 9a-b and 11a-b S20
3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S23

1. General methods and instrumentation

General procedures and materials:

Unless otherwise indicated, materials were obtained from commercial suppliers (Merck, Fluorochem) and used without further purification. All reactions that required anhydrous conditions were performed in a degassed sealed vial under a dry nitrogen atmosphere. Dichloromethane and tetrahydrofuran were degassed and dried with a solvent purification system (SPS PS-MD-3). Anhydrous toluene was purchased from Merck. Solvents were removed under reduced pressure with a rotary evaporator. Silica gel chromatography was performed using an automated chromatography system (PuriFlash ${ }^{\circledR} 430$, Interchim), using a 0-100\% ethyl acetate gradient in hexane.

Instrumentation:

NMR spectroscopy: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ were recorded on the NMR spectrometers of the Centres Científics i Tecnològics of Universitat de Barcelona. The employed spectrometers were a Varian Mercury 400 or 500 MHz , specified for each case. Chemical shifts (δ) were referenced to internal solvent resonance. The coupling constants (J) are reported in Hertz (Hz). The following abbreviations are used to define multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), ddd (doublet of doublet of doublets), dt (doublet of triplets), td (triplet of doublets), tt (triplet of triplets) and m (multiplet).

High Resolution Mass Spectrometry (HRMS): High resolution ESI-MS spectra were recorded either in an LC/MSD-TOF G1969A (Agilent Technologies) of the Centres Científics i Tecnològics of Universitat de Barcelona or in a LTQ-FT Ultra (ThermoFisher Scientific) at the Mass Spectrometry and Proteomics Facility of the IRB Barcelona.

IR spectroscopy: IR spectra were measured in a Thermo Nicolet 6700 FT-IR spectrometer using an ATR system.

Melting points were determined using a Büchi melting point apparatus and were not corrected.

2. Experimental procedures and characterization data

2.1. Synthetic route for 3-bromo-6-methyl-1,2,4,5-tetrazine (1a) and 3-bromo-6-phenyl-1,2,4,5-tetrazine (1b)

Dodecyl-thiocarbohydrazide iodide salt (2)

Same experimental procedure as previously reported was followed. ${ }^{1}$ Briefly, commercially available thiocarbohydrazide 98% (Merck; $10.00 \mathrm{~g}, 92.32 \mathrm{mmol}, 1$ equiv) was suspended in EtOH ($470 \mathrm{~mL}, 0.2 \mathrm{M}$), and the suspension was heated under reflux. 1-iodododecane 98\% (Merck; 25.9 $\mathrm{mL}, 101.55 \mathrm{mmol}, 1.1$ equiv) was dissolved in $\mathrm{EtOH}(25 \mathrm{~mL})$ and added dropwise, and the reaction mixture was heated at reflux temperature for 4 h .

After cooling down the reaction mixture, the solvent was concentrated under reduced pressure until half the initial volume, and fresh $\mathrm{EtOH}(\approx 150 \mathrm{~mL}$) was added. The yellow suspension was filtered to remove the unreacted thiocarbohydrazide (4.90 g , NMR consistent with starting material). The filtrate solution was fully evaporated, the resulting residue was re-suspended in hexane and subjected to filtration to afford the desired product as a white solid ($15.08 \mathrm{~g}, 51 \%$ conversion, 78% yield).
${ }^{1} \mathrm{H}$ was in excellent agreement with the reported characterisation. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d d_{6}) $\boldsymbol{\delta} 2.90(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.17(\mathrm{~m}, 2 \mathrm{H})$, $0.85(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$
${ }^{13}$ C NMR (101 MHz, DMSO-d ${ }_{6}$) δ 31.7, 29.5-29.4, 29.3, 29.1, 28.9, 28.7, 28.5, 22.5, 14.4 ppm

[^1]
3-hydrazineyl-6-methyl-1,2,4,5-tetrazine (4a)

Salt 2 (11.21 g, 27.86 mmol, 1 equiv) was suspended in $\mathrm{EtOH}(200 \mathrm{~mL}, 0.14 \mathrm{M}$) at room temperature, and triethyl orthoacetate (Merck; $10.55 \mathrm{~mL}, 55.716 \mathrm{mmol}, 2$ equiv) was added, turning the solution clear yellow. After 10 min , triethylamine ($15.5 \mathrm{~mL}, 111.431 \mathrm{mmol}, 4$ equiv) was added, immediately turning the solution light red and eventually magenta. The reaction mixture was stirred vigorously overnight at room temperature, and TLC (50:50 Hexane/EtOAc) showed the desired product (pink, front) and a by-product (yellow, baseline). The solvent was evaporated under reduced pressure, the resulting crude diluted in water and extracted with diethyl ether (x 3). The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure to 20 mL . The resulting crude was purified by column chromatography (50:50 Hexane/ $\mathrm{Et}_{2} \mathrm{O}$) to afford 4.20 g of 3 a as an impure pink oil.

Then, to a stirred solution of $3 \mathrm{a}(4.20 \mathrm{~g})$ in EtOH (90 mL) was added hydrazine 1 M in THF (14.20 $\mathrm{mL}, 14.20 \mathrm{mmol}$, 1 equiv considering 3a as pure). The reaction mixture was stirred at room temperature and TLC (100\% EtOAc) analysis showed completion after 6 h . The solvent was evaporated under reduced pressure and the resulting residue was diluted in EtOAc and dryloaded to an 80 g silica column using a 0-100\% EtOAc gradient in hexane to obtain $4 \mathrm{a}, 838 \mathrm{mg}$ (24\% from 2), as a red solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d \mathbf{d}_{6}) $\boldsymbol{\delta} 9.28(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$
${ }^{13}$ C NMR (101 MHz, DMSO-d ${ }_{6}$) $\boldsymbol{\delta}$ 163.5, 160.7, 19.5 ppm
HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 127.07267$ / found 127.07272
IR U $_{\text {max }}: 3268,3199,2924,1540,1496,909 \mathrm{~cm}^{-1}$

3-bromo-6-methyl-1,2,4,5-tetrazine (1a)

To a stirred solution of $\mathbf{4 a}(480 \mathrm{mg}, 3.806 \mathrm{mmol}, 1$ equiv $)$ in 2 mL glacial acetic acid was added a solution of bromine (0.2 mL) in glacial acetic acid (4 mL) dropwise. After 15 mins , TLC (90:10

Hexane/EtOAc) showed completion. The reaction mixture was diluted in water, extracted with DCM (x3) and the combined organic layers were washed with water ($x 3$). The organic phase was dried over MgSO_{4} and concentrated under reduced pressure to obtain 1a, 544 mg (82% yield), as a pink crystalline solid.
$\mathrm{Mp}: 86.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.05$ ($\mathrm{s}, 3 \mathrm{H}$) ppm
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\boldsymbol{\delta}$ 168.1, 161.2, 20.6 ppm
HRMS (APCI) calculated for $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BrN}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 174.9614$ and 176.9593 / found: 174.9608 and 176.9588

IR $U_{\text {max }}$: 2920, 2846, 1305, 1140, $865 \mathrm{~cm}^{-1}$

3-bromo-6-phenyl-1,2,4,5-tetrazine (1b)

The same experimental procedure was followed for the synthesis of $\mathbf{1 b}$, with the only exception of the temperature in the reaction from $\mathbf{2}$ to $\mathbf{3 a}$, which was set at $55^{\circ} \mathrm{C}$. Starting from $\mathbf{2}(2.87 \mathrm{~g}$, 7.13 mmol), 1b was finally obtained as a pink solid ($219.8 \mathrm{mg}, 0.927 \mathrm{mmol}, 13 \%$ overall yield). Spectroscopic data are in full agreement with the reported ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60-8.53(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.56(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\boldsymbol{\delta} 164.74,161.11,133.62,130.61,129.64,128.49 \mathrm{ppm}$

[^2]
2.2. Screening of Sonogashira reaction conditions

To a degassed reaction vessel with $1 \mathrm{a}\left(10.0 \mathrm{mg}, 0.057 \mathrm{mmol}, 1\right.$ equiv), $\mathrm{PPh}_{3}(1.5 \mathrm{mg}, 0.006 \mathrm{mmol}$, 0.1 equiv), Cul ($5.5 \mathrm{mg}, 0.006 \mathrm{mmol}, 0.1$ equiv) and the corresponding Pd-catalyst (0.003 mmol , 0.05 equiv), the required solvent (0.4 mL , for a final reaction concentration of 0.15 M), TMSacetylene ($15.8 \mu \mathrm{~L}, 0.114 \mathrm{mmol}, 2$ equiv) and diisopropylamine ($16.0 \mu \mathrm{~L}, 0.114 \mathrm{mmol}, 2$ equiv) were added.

The reaction mixture was stirred overnight at the corresponding temperature, after which the suspension was filtered through Celite, the filtrate concentrated under reduced pressure, resuspended in CDCl_{3} and mesitylene ($7.9 \mu \mathrm{~L}, 0.057 \mathrm{mmol}, 1$ equiv) added as an internal standard.
${ }^{1} \mathrm{H}$ NMR yield was determined through the ratio of the integration between mesitylene peak at $6.79 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$ and the product 3-methyl-6-((trimethylsilyl)ethynyl)-1,2,4,5-tetrazine (5a) methyl peak at $3.07 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H})$. Compound 5 a was also purified and characterized following reaction conditions specified in section 2.3.

3-methyl-6-((trimethylsilyl)ethynyl)-1,2,4,5-tetrazine (5a)

Pink oil (39.6 mg, 72\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 3.07$ (s, 3H), 0.34 ($\mathrm{s}, 9 \mathrm{H}$) ppm
${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta} 165.66,156.49,106.10,96.93,21.65,-0.60 \mathrm{ppm}$
HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 193.0906$ / found 193.0904
IR $U_{\text {max }}$: 2960, 2900, 2066, 1390, 1349, 1274, 1250, $1076 \mathrm{~cm}^{-1}$

2.3. Substrate scope of Sonogashira coupling between terminal alkynes and 1a-b

To a degassed reaction vessel with 1a ($50.0 \mathrm{mg}, 0.286 \mathrm{mmol}, 1$ equiv) or $\mathbf{1 b}$ ($67.8 \mathrm{mg}, 0.286$ mmol, 1 equiv), the corresponding alkyne (0.572 mmol , 2 equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(10.1 \mathrm{mg}, 0.014$ mmol, 0.05 equiv), PPh_{3} ($7.5 \mathrm{mg}, 0.029 \mathrm{mmol}, 0.1$ equiv) and Cul ($5.5 \mathrm{mg}, 0.029 \mathrm{mmol}, 0.1$ equiv), toluene (2 mL , for a final reaction concentration of 0.15 M) and diisopropylamine ($80.2 \mu \mathrm{~L}, 0.572$ mmol, 2 equiv) were added. The reaction mixture was stirred overnight at room temperature.

The reaction crude was evaporated under reduced pressure, and the resulting residue extracted from water with ethyl acetate (3x). The organic phases were combined, dried with MgSO_{4}, filtered and concentrated under vacuum. The desired products were then purified with flash chromatography in 12 g of silica, using hexane with increasing concentrations of ethyl acetate

3-(dec-1-yn-1-yl)-6-methyl-1,2,4,5-tetrazine (5b)

Pink oil (43.5 mg, 65\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta} 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.40$ $(\mathrm{m}, 2 \mathrm{H}), 1.38-1.19(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.81(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 165.57, 157.06, 101.44, 75.26, 32.02, 29.33, 29.26, 29.18, 27.98 , 22.86, 21.63, 19.90, 14.30 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 233.176$ / found 233.1761
IR $\mathbf{U}_{\text {max }}: 2924,2854,2235,1458,1402,1362,1273,1078,1035 \mathrm{~cm}^{-1}$

3-(3,3-dimethylbut-1-yn-1-yl)-6-methyl-1,2,4,5-tetrazine (5c)

Pink oil (49.8 mg, 99\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 3.05$ (s, 3H), 1.42 (s, 9H) ppm
${ }^{13}{ }^{1}$ NMR (101 MHz, CDCl 3) $\delta 165.46,157.01,108.39,73.95,30.28,28.58,21.53 \mathrm{ppm}$

HRMS (ESI') calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 177.1135$ / found 177.1133
IR $U_{\text {max }}$ 2935, 2830, 2230, 1443, 1405, 1355, 1050, cm^{-1}

3-(cyclopropylethynyl)-6-methyl-1,2,4,5-tetrazine (5d)

Pink oil ($25.2 \mathrm{mg}, 55 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 3.03(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.01(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}$ 165.23, 156.94, 104.60, $70.42,21.51,9.70,0.57 \mathrm{ppm}$
HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 161.0818$ / found 161.0822
IR $U_{\text {max }}: 3011,2923,2234,1410,1336,1274,1182,1077,1058,1033 \mathrm{~cm}^{-1}$

3-methyl-6-(phenylethynyl)-1,2,4,5-tetrazine (5e)

Pink solid (27.5 mg, 49\%). Mp = $119^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 7.73$ (dd, J = $8.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57-7.39(\mathrm{~m}, 3 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$ ${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta} 165.45,157.34,132.89,132.84,128.83,120.38,97.92,83.01,21.62$ ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 193.0906$ / found 193.0904
IR $\mathbf{U}_{\text {max }}$: 2960, 2900, 2066, 1390, 1349, 1274, 1250, $1076 \mathrm{~cm}^{-1}$

3-methyl-6-(p-tolylethynyl)-1,2,4,5-tetrazine (5f)

Pink solid (49.3 mg, 82\%). Mp = $157{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$ ppm
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.26,157.36,141.52,132.82,129.58,117.27,98.48,82.68,21.88$, 21.57 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 211.0978$ / found 211.0977
IR $\mathbf{U}_{\text {max }}: 3040,2953,2923,2850,2213,1509,1404,1365,1274,1158,1036 \mathrm{~cm}^{-1}$

3-((4-chlorophenyl)ethynyl)-6-methyl-1,2,4,5-tetrazine (5g)

Pink solid ($41.5 \mathrm{mg}, 63 \%$). $\mathrm{Mp}=166^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$
${ }^{13}{ }^{13}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.55,157.20,137.26,134.04,129.30,118.81,96.49,83.81,21.64$ ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 231.0432$ / found 231.0433
IR $\mathbf{U}_{\text {max }}$: 2233, 2205, 1701, 1482, 1402, 1365, $1086 \mathrm{~cm}^{-1}$

3-((4-methoxyphenyl)ethynyl)-6-methyl-1,2,4,5-tetrazine (5h)

Orange solid ($23.3 \mathrm{mg}, 36 \%$). $\mathrm{Mp}=163^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 7.66(\mathrm{dd}, J=9.0,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{dd}, J=9.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}$, 3 H), 3.07 ($\mathrm{s}, 3 \mathrm{H}$) ppm
${ }^{13} \mathrm{C}^{2}$ NMR (101 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta} 165.12,161.69,157.41,134.71,114.53,112.23,98.80,82.46,55.56$, 21.55 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 227.0927$ / found 227.0929
IR $\mathbf{U}_{\text {max }}: 3098,2965,2834,2204,1600,1418,1403,1366,1252,1197,1154,1023 \mathrm{~cm}^{-1}$

3-((2-methoxyphenyl)ethynyl)-6-methyl-1,2,4,5-tetrazine (5i)

Pink solid (40.1 mg, 62\%). $\mathrm{Mp}=134{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 7.66$ (dd, $\left.J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45$ (ddd, $J=8.5,7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 - 6.91 (m, 2H), 3.96 (s, 3H), 3.09 (s, 3H) ppm
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 165.21,161.47,157.46,134.71,132.55,120.75,111.03,109.66$, 95.16, 86.84, 56.04, 21.58 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 227.0927 / found 227.0928
IR $U_{\text {max }}: 3406,2971,2213,1714,1694,1519,1494,1455,1392,1274,1248,1167,1075,1044$, $1010 \mathrm{~cm}^{-1}$

2-(3-(6-methyl-1,2,4,5-tetrazin-3-yl)prop-2-yn-1-yl)isoindoline-1,3-dione (5j)

Pink oil (44.7 mg, 56\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 7.91(\mathrm{dd}, J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77$ (dd, $\left.J=5.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.84$ (s, 2H), 3.06 (s, 3H) ppm
${ }^{13}$ C NMR (101 MHz, CDCl 3) $\delta 166.86,166.02,156.49,134.60,132.06,123.94,91.77,27.77,21.65$ ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 280.0830$ / found 280.0829
IR $U_{\text {max }}: 3203,3078,2975,2924,2216,1753,1598,1475,1387,1288,1053 \mathrm{~cm}^{-1}$

Tert-butyl (6-(6-methyl-1,2,4,5-tetrazin-3-yl)hex-5-yn-1-yl)carbamate (5k)

Pink oil (49.2 mg, 69\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta} 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$ ${ }^{13}$ C NMR (101 MHz, CDCl $_{3}$) $\delta 165.95,156.62,155.26,95.10,80.74,77.39,31.24,28.46,21.63$ ppm
HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 250.12985$ / found 250.13180
IR $U_{\text {max }}: 3338,2978,2932,2255,1698,1519,1403,1366,1250,1167,1048 \mathrm{~cm}^{-1}$

3-methyl-6-(3-((tetrahydro-2H-pyran-2-yl)oxy)prop-1-yn-1-yl)-1,2,4,5-tetrazine (5I)

Pink oil ($45.5 \mathrm{mg}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)_{3}$) $8.94(\mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{ddd}, J=11.1,9.3,3.1 \mathrm{~Hz}$, 1H), $3.63-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.61(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm}$
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 165.94,156.68,97.51,94.92,79.43,62.20,54.41,30.26,25.42$, 21.65, 18.97 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 235.11908 / found 235.11895
IR U $_{\text {max }}$: 3326, 2943, 2831, $1448 \mathrm{~cm}^{-1}$

Methoxymethyl 7-(6-methyl-1,2,4,5-tetrazin-3-yl)hept-6-ynoate (5m)

Pink oil ($52.8 \mathrm{mg}, 70 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.24(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}$, $\mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.97-1.68$ (m, 4H) ppm
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 172.84,165.59,156.89,100.17,90.53,75.56,57.81,33.80,27.24$, 24.13, 21.55, 19.57 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 265.12952$ / found 265.13156
IR $U_{\text {max }}$: 2941, 2237, 1741, 1590, 1405, 1364, 1137, $1093 \mathrm{~cm}^{-1}$
3-(dec-1-yn-1-yl)-6-phenyl-1,2,4,5-tetrazine (5n)

Pink oil ($59.8 \mathrm{mg}, 71 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 8.60(\mathrm{dd}, \mathrm{J}=8.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.54(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.74(\mathrm{p}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$ ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.74,156.89,133.11,131.61,129.47,128.49,102.03,75.65$, 31.96, 29.27, 29.20, 29.13, 27.94, 22.79, 19.95, 14.23 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 295.1917 / found 295.1914
IR $\mathbf{U}_{\text {max }}$: 2923, 2853, 2233, 1727, 1600, 1463, 1391, $1087 \mathrm{~cm}^{-1}$

3-phenyl-6-(p-tolylethynyl)-1,2,4,5-tetrazine (5o)

Pink oil ($73.2 \mathrm{mg}, 94 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64(\mathrm{dd}, \mathrm{J}=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.43$ ($\mathrm{s}, 3 \mathrm{H}$) ppm
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.48,157.31,141.60,133.20,132.92,131.60,131.04,129.65$, $129.51,128.57,117.45,99.22,83.28,21.95 \mathrm{ppm}$

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 273.1135$ / found 273.1131
IR $\mathbf{U}_{\text {max }}$: 3066, 2952, 2920, 2213, 1723, 1598, 1509, 1395, 1166, $1076 \mathrm{~cm}^{-1}$

Pink oil ($70.0 \mathrm{mg}, 75 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.67-8.55(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.49(\mathrm{~m}, 3 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.47$ $(\mathrm{d}, \mathrm{J}=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.73(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.83,161.76,156.77,133.15,131.53,129.46,128.50,100.75$, 90.51, 76.02, 57.80, 33.80, 27.26, 24.14, 19.67 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 327.1452$ / found 327.1452
IR $\mathbf{U}_{\text {max }}$: 2938, 2360, 2233, 1735, 1600, 1391, 1133, $1089 \mathrm{~cm}^{-1}$

2.4. Deprotection of protecting groups:

The corresponding amount of protected alkynyl-tetrazine (0.100 mmol) was placed in a glass vial, which was sealed, degassed and placed under N_{2} atmosphere. DCM was then added (to reach a final concentration of 0.1 M), and HCl 4 M in dioxane ($50 \mu \mathrm{~L}$, 2 equiv) was added. The reaction mixture was stirred at room temperature for 4 h , after which the reaction mixture was concentrated under reduced pressure, diluted in water and extracted with ethyl acetate (3x). The combined organic phases were washed once with brine, dried with MgSO_{4} and concentrated under high vacuum to afford the corresponding products.

* Deprotection of $\mathbf{5 k}$ was verified, but compound $\mathbf{6} \mathbf{a}$ could not be isolated.

3-(6-methyl-1,2,4,5-tetrazin-3-yl)prop-2-yn-1-ol (6b)

Pink oil (11.0 mg, 73\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$) $\boldsymbol{\delta} 4.66$ ($\mathrm{s}, 2 \mathrm{H}$), 3.09 ($\mathrm{s}, 3 \mathrm{H}$), $2.00(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 166.08,156.61,96.17,79.36,51.50,21.66 \mathrm{ppm}$
HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 151.06101$ / found 151.06144
IR $\mathbf{U}_{\text {max }}: 3189$ (broad), 2991, 2926, 2843, 2156, 1497, 1302, $1178 \mathrm{~cm}^{-1}$

7-(6-methyl-1,2,4,5-tetrazin-3-yl)hept-6-ynoic acid (6c)

Pink oil (21.8 mg, 99\%). $\mathbf{M p}=102.4^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-$ $1.69(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 178.62,165.60,156.88,100.16,75.56,33.40,27.18,24.02,21.56$, 19.56 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 221.10330$ / found 221.10503
IR $U_{\text {max }}$: 2926, 2860, 2231, 1703, 1406, $1263 \mathrm{~cm}^{-1}$

2.5. Tandem hydrogenation + oxidation of $5 c$ and $5 f$

Glass vials equipped with a PTFE-coated stirring bar were charged with the corresponding substrate (0.187 mmol, 1.0 equiv.). Commercially available 10% palladium on carbon, 50% wet (Fluorochem) was added ($2 \mathrm{~mol} \%$ final Pd concentration), and MeOH ($1 \mathrm{~mL} / 0.1 \mathrm{mmol}$ substrate) was added as the reaction solvent. Each reaction vial was placed on a reactor, which was purged with N_{2}, charged with 1 bar (g) of H_{2} and left stirring overnight at room temperature. Afterwards, the reaction mixture was filtrated through a short plug of Celite and concentrated under reduced pressure to afford the corresponding crude mixture, which was dissolved in $\mathrm{DCM} . \mathrm{PhI}(\mathrm{OAc})_{2}$ ($90.4 \mathrm{mg}, 0.281 \mathrm{mmol}, 1.5$ equiv.) was added, and the reaction mixture was stirred for 4 h at room temperature until TLC showed completion. The reaction mixture was washed with water $(3 x)$, the organic phase was dried with MgSO_{4} and evaporated under vacuum. The desired product was then purified with flash chromatography in 12 g of silica, using hexane with increasing concentrations of ethyl acetate as the mobile phase.

3-decyl-6-methyl-1,2,4,5-tetrazine (7c)

Pink oil (44.1 mg, >99\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.27(\mathrm{t}, J=91.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{tt}, J=7.8,6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.47-1.19(\mathrm{~m}, 14 \mathrm{H}), 0.95-0.82(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3) $\delta 170.39,167.47,34.88,32.02,29.68,29.58,29.43,29.39,29.29$, 28.50, 22.81, 21.22, 14.24 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 237.20737$ / found 237.20925
IR $U_{\text {max }}$ 2957, 2926, 2855, 1730, 1464, 1405, 1284, 1125, $1074 \mathrm{~cm}^{-1}$

3-methyl-6-(4-methylphenethyl)-1,2,4,5-tetrazine (7f)

Pink solid (40.0 mg, >99\%). $\mathbf{M p}=84^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 7.11(\mathrm{q}, \mathrm{J}=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.68-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.03$ (s, 3H), $2.31(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}^{2}$ NMR (101 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta} 169.41,167.54,136.93,136.14,129.42,128.42,36.60,33.73,21.23$, 21.14 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 215.12912$ / found 215.13082
IR $U_{\text {max }}$: 2925, 2848, 1593, 1516, 1431, 1408, 1348, $1045 \mathrm{~cm}^{-1}$

2.6. Synthesis of unnatural amino acids

2.6.1. Preparation of substrates $8 a$ and $8 b$

Synthesis of methoxymethyl (S)-2-((tert-butoxycarbonyl)amino)pent-4-ynoate (8a)

Commercially available N-Boc-L-2-propargylglycine (Merck; $400 \mathrm{mg}, 1.876 \mathrm{mmol}$, 1 equiv) was suspended in DCM (10 mL) at $0^{\circ} \mathrm{C}$, and DIPEA ($654 \mu \mathrm{~L}, 3.752 \mathrm{mmol}$, 2 equiv) was added, turning the suspension a clear solution. Chloromethyl methyl ether ($285 \mu \mathrm{~L}, 3.752 \mathrm{mmol}$, 2 equiv) was added dropwise, generating a thick white gas that was totally removed with N_{2} flow. The reaction mixture was allowed to warm at room temperature and stirred overnight. The reaction mixture was then diluted with water, extracted with DCM (3x), the combined organics washed once with brine, dried over MgSO_{4} and evaporated in vacuo to afford 8a, 480 mg , 99% yield, as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.32$ (dd, $\left.J=35.6,5.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.50(\mathrm{dt}, J=8.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}$, 3 H), $2.93-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 170.49, 155.23, $91.67,80.43,78.52,71.92,58.00,52.16,28.42$, 22.91 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 258.13360$ / found 258.13570
IR $U_{\text {max }}: 3375,3292,2977,2934,1751,1715,1505,1367,1251,1162,1251,1162,1097,1061$ cm^{-1}

Synthesis of methoxymethyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4ethynylphenyl)propanoate (8b)

(S)-2-((tert-butoxycarbonyl)amino)-3-(4-((trimethylsilyl)ethynyl)phenyl)propanoic acid:

Commercially available N-Boc-4-iodo-L-phenylalanine (Fluorochem; $500 \mathrm{mg}, 1.278 \mathrm{mmol}, 1$ equiv) was placed in a reaction vial together with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(44.8 \mathrm{mg}, 0.064 \mathrm{mmol}, 0.05$ equiv $)$, PPh_{3} ($33.6 \mathrm{mg}, 0.128 \mathrm{mmol}, 0.1$ equiv) and Cul ($24.4 \mathrm{mg}, 0.128 \mathrm{mmol}, 0.1$ equiv). Toluene (8 mL ,
for a final reaction concentration of 0.16 M), TMS-acetylene ($354 \mu \mathrm{~L}$, 2.556 mmol , 2 equiv) and diisopropylamine ($358 \mu \mathrm{~L}, 2.556 \mathrm{mmol}$, 2 equiv) were added. The reaction mixture was stirred overnight at $60^{\circ} \mathrm{C}$, and then it was filtered through Celite and the filtrate evaporated under reduced pressure. The resulting residue was re-suspended in a HCl 0.1 M aqueous solution, extracted with ethyl acetate (3x), the combined organics washed once with brine, dried over MgSO_{4} and evaporated to yield a brown oil, from which the desired product ($401 \mathrm{mg}, 1.109$ $\mathrm{mmol}, 87 \%$ yield) was purified as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta} 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=70.6,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$

(S)-2-((tert-butoxycarbonyl)amino)-3-(4-ethynylphenyl)propanoic acid:

The corresponding product from previous reaction ($400 \mathrm{mg}, 1.106 \mathrm{mmol}, 1$ equiv) was dissolved in THF (6 mL), and tetrabutylammonium fluoride solution 1.0 M in THF ($1.66 \mathrm{~mL}, 1.660 \mathrm{mmol}$, 1.5 equiv) was added dropwise. The reaction mixture was stirred overnight at room temperature, moment in which TLC showed completion. The reaction mixture was concentrated in vacuo, the resulting residue re-suspended in HCl 0.1 M aqueous solution and extracted with ethyl acetate (3x). The combined organics were washed once with brine, dried over MgSO_{4} and evaporated under vacuum to afford the desired product ($263.8 \mathrm{mg}, 0.912 \mathrm{mmol}, 82 \%$) as a brown oil, which was taken onto next step without further purification.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 9.62(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.03$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=14.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=14.1,5.4 \mathrm{~Hz}$, 1H), 3.06 (s, 1H), 1.41 (s, 9H) ppm

Methoxymethyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-ethynylphenyl)propanoate (8b):

The corresponding N-Boc-4-acetylene-L-phenylalanine ($263.8 \mathrm{mg}, 0.912 \mathrm{mmol}, 1$ equiv) was suspended in DCM at $0{ }^{\circ} \mathrm{C}$, and DIPEA ($318 \mu \mathrm{~L}, 1.824 \mathrm{mmol}$, 2 equiv) was added. Chloromethyl methyl ether ($139 \mu \mathrm{~L}, 1.824 \mathrm{mmol}, 2$ equiv) was added dropwise, generating a thick white gas that was totally removed with N_{2} in-flow. The reaction mixture was allowed to warm at room temperature and stirred overnight. The reaction mixture was then diluted with water, extracted
with ethyl acetate ($3 x$), the combined organics washed once with brine, dried over MgSO_{4} and evaporated in vacuo. The resulting residue was purified with flash chromatography in 12 g of silica, using hexane with increasing concentrations of ethyl acetate. The relevant fractions were combined and concentrated to obtain $\mathbf{8 b}, 107 \mathrm{mg}, 0.320 \mathrm{mmol}, 35 \%$ yield, as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)^{2}$) $7.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.38-5.12(\mathrm{~m}, 2 \mathrm{H})$, $4.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{dd}, J=13.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (dd, $J=13.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.06(\mathrm{~s}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$
${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$) $\boldsymbol{\delta} 171.52,155.16,136.98,132.45,129.51,121.05,91.52,83.47,80.28$, 77.48, 58.08, 54.41, 38.30, 28.41 ppm

2.6.2. Sonogashira coupling between $8 \mathrm{a}-\mathrm{b}$ and 1a:

To a degassed reaction vessel with 1a ($50.0 \mathrm{mg}, 0.286 \mathrm{mmol}, 1$ equiv), the corresponding double protected amino acid $8 \mathbf{a}$ or $\mathbf{8 b}$ ($0.572 \mathrm{mmol}, 2$ equiv), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(10.1 \mathrm{mg}, 0.0143 \mathrm{mmol}, 0.05$ equiv), PPh_{3} ($7.5 \mathrm{mg}, 0.029 \mathrm{mmol}, 0.1$ equiv) and $\mathrm{Cul}(5.5 \mathrm{mg}, 0.029 \mathrm{mmol}, 0.1$ equiv), toluene (2 mL , for a final reaction concentration of 0.15 M) and diisopropylamine ($80.2 \mu \mathrm{~L}, 0.572 \mathrm{mmol}$, 2 equiv) were added. The reaction mixture was stirred overnight at $50^{\circ} \mathrm{C}$.

The reaction crude was evaporated under reduced pressure, and the resulting residue extracted from water with ethyl acetate (3x). The organic phases were combined, dried with MgSO_{4}, filtered and concentrated under vacuum. The desired tetrazine-containing protected amino acids were then purified with flash chromatography in 12 g of silica, using hexane with increasing concentrations of ethyl acetate.

Methoxymethyl
 (S)-2-((tert-butoxycarbonyl)amino)-5-(6-methyl-1,2,4,5-tetrazin-3-yl)pent-4-ynoate (9a)

Pink oil (49.2 mg, 49\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36$ (dd, $J=21.6,5.9 \mathrm{~Hz}, 2 \mathrm{H}$), $4.71-4.63$ (m, 1H), $3.51(\mathrm{~s}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.21(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 169.97, 165.81, 156.62, 155.11, $94.41,92.07,80.77,58.22,52.03$, 28.42, 24.19, 21.60 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 352.1615$ / found 352.1624
IR $\mathbf{U}_{\text {max }}: 3339,2976,2922,2359,2239,1713,1614,1503,1366,1259,1149,1054 \mathrm{~cm}^{-1}$

Methoxymethyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-((6-methyl-1,2,4,5-tetrazin-3-yl)ethynyl)phenyl)propanoate (9b)

Pink oil (78.2 mg, 64\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.67(\mathrm{~d}, 2 \mathrm{H}), 7.26(\mathrm{~d}, 2 \mathrm{H}), 5.28(\mathrm{dd}, 2 \mathrm{H}), 5.02(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ $(\mathrm{m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.27-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 171.39,165.42,157.32,155.12,139.42,133.05,129.83,119.12$, 97.70, 91.62, 83.24, 80.39, 58.16, 54.36, 38.58, 28.41, 21.63 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{10} \mathrm{NaO}_{10}[2 \mathrm{M}+\mathrm{Na}]^{+}: 877.3604$ / found 877.3604
IR $U_{\text {max }}: 3361,2973,2929,2218,1744,1704,1508,1404,1365,1156,1091,1053,1019 \mathrm{~cm}^{-1}$

2.6.3. Tandem hydrogenation-oxidation of 9a-b:

The same experimental protocol described in Section 5.2. was followed. The amount of starting material employed is detailed in each case.

Methoxymethyl
 (S)-2-((tert-butoxycarbonyl)amino)-5-(6-methyl-1,2,4,5-tetrazin-3-

 yl)pentanoate (11a)

Pink oil ($36.7 \mathrm{mg}, 97 \%$ starting from 37.4 mg of 9 a).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 5.28(\mathrm{dd}, J=32.3,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H})$, $3.47(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{td}, J=7.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}$
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\boldsymbol{\delta} 172.31,169.49,167.70,155.49,91.43,80.26,58.05,53.36,34.30$, 32.22, 28.45, 23.98, 21.25 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 356.1928$ / found 356.1932
IR $\mathbf{U}_{\text {max }}: 3354,2971,2929,2360,2341,1709,1507,1456,1405,1365,1249,1148,1088,1049$ cm^{-1}

Methoxymethyl (S)-2-((tert-butoxycarbonyl)amino)-3-(4-(2-(6-methyl-1,2,4,5-tetrazin

-3-yl)ethyl)phenyl)propanoate (11b)

Pink oil ($21.3 \mathrm{mg}, 95 \%$ starting from 22.3 mg of 9 b).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22$ - 7.15 (m, 2H), 7.07 (dd, $J=17.2,7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $5.30(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1.4 \mathrm{H}), 3.59$ (ddd, J $=8.0,7.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{~s}, 1.6 \mathrm{H}), 3.25(\mathrm{dd}, J=9.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.03$ (s, 3H), 1.41 (s, 9H) ppm
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\boldsymbol{\delta} 172.46,171.74,169.29,167.62,155.21,138.85,134.25$ ($\mathrm{d}, \mathrm{J}=15.9$ Hz), 129.75, 129.70, 128.77, 91.43, 80.14, 58.04, 54.53, 52.34, 38.02 (d, J= 16.8 Hz), 36.39, 33.69, 28.43, 21.25 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 432.2241$ / found 432.2240
IR $\mathbf{U}_{\text {max }}: 3353$ (broad), 2973, 2927, 2854, 1743, 1707, 1514, 1404, 1365, 1160, $1093 \mathrm{~cm}^{-1}$

2.6.4. Deprotection of amino acids 9a-b and 11a-b:

The corresponding amount of double protected amino acid (specified for each substrate) was placed in a glass vial, which was sealed, degassed and placed under N_{2} atmosphere. DCM was then added (to reach a final concentration of 0.1 M), and HCl 4 M in dioxane (2 equiv) was added. The reaction mixture was stirred at room temperature for 4 h , after which the reaction mixture was concentrated under reduced pressure. Two different separation methods were employed: Method A: the resulting residue was washed with DCM, and the supernatant decanted.

Method B: the resulting residue resuspended in DCM and filtered through a C-type crucible filter.

Each final amino acid was recovered in its hydrochloride salt form.
(S)-1-carboxy-4-(6-methyl-1,2,4,5-tetrazin-3-yl)but-3-yn-1-aminium chloride (10a)

Purple solid ($17.9 \mathrm{mg}, 92 \%$ starting from 28.0 mg of 9 a). Isolated using Method A.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \boldsymbol{\delta} 7.33(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{dd}, \mathrm{J}=8.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{ddd}, \mathrm{J}=14.9,5.2$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.25 (ddd, $J=14.9,8.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (s, 3H) ppm
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) δ 167.70, 165.02, 140.61, 136.47, 124.55, 52.22, 43.37, 21.23 ppm HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClN}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 244.0596$ / found 244.0602 IR $U_{\max }: 3338,2929,2241,1709,1509,1402,1365,1275,1251,1157,1058,1025 \mathrm{~cm}^{-1}$
(S)-1-carboxy-2-(4-((6-methyl-1,2,4,5-tetrazin-3-yl)ethynyl)phenyl)ethan-1-aminium chloride (10b)

Pink solid (15.8 mg, 96\% starting from 22.0 mg of 9b). Isolated using Method B.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 3.40$ (dd, J = 14.6, 5.8 Hz, 1H), 3.25 (dd, J=14.6, 5.8 Hz, 1H), 3.04 (s, 3H) ppm ${ }^{13}$ C NMR (101 MHz, CD ${ }_{3}$ OD) δ 170.99, 167.09, 158.21, 138.98, 134.21, 131.19, 121.06, 96.89, 84.27, 54.78, 37.30, 21.45 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}-\mathrm{Cl}]^{+}: 284.1142$ / found 284.1144
IR $U_{\text {max }}: 3412,2920,2215,1724,1510,1403,1205,1159,1111,1076,1019 \mathrm{~cm}^{-1}$
(S)-1-carboxy-4-(6-methyl-1,2,4,5-tetrazin-3-yl)butan-1-aminium chloride (12a)

Pink solid (15.6 mg, 89\% starting from 25.1 mg of 11a). Isolated using Method A.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 4.06(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.23-$ 2.04 (m, 4H) ppm
${ }^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{3}$ OD) $\boldsymbol{\delta} 171.58$, 170.28, 169.00, 53.64, 34.76, 30.84, 24.18, 21.03 ppm HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 212.11420$ / found 212.11588

IR $U_{\text {max }}: 3339,3155,2934,1742,1598,1404,1216,1216,1084,1043 \mathrm{~cm}^{-1}$
(S)-1-carboxy-2-(4-(2-(6-methyl-1,2,4,5-tetrazin-3-yl)ethyl)phenyl)ethan-1-aminium chloride (12b)

Pink solid (12.1 mg , 95\% starting from 17.0 mg of 11b). Isolated using Method B.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.31-7.14(\mathrm{~m}, 7 \mathrm{H}), 4.23(\mathrm{dd}, \mathrm{J}=7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{dd}, \mathrm{J}=14.6,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H})$ ppm
${ }^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{3} \mathrm{OD}$) δ 171.18, 170.33, 168.89, 141.31, 133.62, 130.70, 130.33, 55.09, 37.15, 36.93, 34.35, 21.00 ppm

HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 288.14550$ / found 288.14781
IR $\mathbf{U}_{\text {max }}: 3412,2930,1742,1726,1587,1482,1407 \mathrm{~cm}^{-1}$

3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1a

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1b

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 1b

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) of 2

${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) of 2

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) of 4a

${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) of 4a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 a}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 a

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 b}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 c

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 d

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 d

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 e}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 e

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 f}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $5 f$

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{5 g}$

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of $\mathbf{5 g}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 h}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 h}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 i}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 i

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 j}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 j

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 k}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 k}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 I

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5I

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 m

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 m

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{5 n}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5 n

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 50

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 50

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 5p

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 b}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 6b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 c}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{6 c}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 c

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7c

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7 f

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 7f

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 a}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 8a

${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of $\mathbf{8 b}$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 8b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9a

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 9b

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of 9b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 10a

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 10a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 10b

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 10 b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 11a

${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) of 11a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 11b

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 11b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 12a

* $=$ signals consistent with residual dichloromethane
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 12a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 12b

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of 12b

[^0]: a. Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.
 b. Departament de Química Inorgànica i Orgànica, Secció Orgànica. Universitat de Barcelona, Martí i Franquès 1, Barcelona E-08028, Spain.
 c. Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, Barcelona 08010, Spain.
 e-mail: antoni.riera@irbbarcelona.org; Iluis.ribas@irbbarcelona.org.

[^1]: ${ }^{1}$ Ros, E.; Bellido, M.; Verdaguer, X.; Ribas de Pouplana, L.; Riera, A. Bioconjugate Chem. 2020, 31, 933.

[^2]: ${ }^{2}$ A. Counotte-Potman and H. van der Plas, J. Heterocycl. Chem., 1981, 18, 123-127

