### **Supporting Information**

| 1.  | General experimental considerations                              | 02 |
|-----|------------------------------------------------------------------|----|
| 2.  | Experimental procedures                                          | 03 |
| 3.  | <sup>1</sup> H and <sup>13</sup> C NMR spectra                   | 10 |
| 4.  | Variable temperature <sup>1</sup> H NMR of 8b                    | 27 |
| 5.  | <sup>1</sup> H NMR solvent screen of compound 8b                 | 28 |
| 6.  | Chemically induced dynamic <sup>1</sup> H NMR spectroscopy of 8b | 30 |
| 7.  | Structural characterization of iminium intermediates             | 31 |
| 8.  | 2D-NMR structural characterization of <i>int</i> -8b             | 34 |
| 9.  | Crystal structure report for compounds 8a, 8b, 8d                | 36 |
| 10. | Computational studies for 8a, 8d, and 8g                         | 58 |
| 11. | References                                                       | 68 |

#### **General experimental considerations**

Solvents and reagents were purchased from commercial distributors and used as received. All reactions requiring anhydrous conditions were performed under a positive pressure of nitrogen using flame-dried glassware. Reactions were monitored to completion by TLC and visualized by a dual short/long wave UV lamp and stained with an aqueous solution of potassium permanganate and/or iodine. Flash chromatography was performed on silica gel Siliaflash P60 (40-63 µm). DIMS mass spectra were determined by ESI. <sup>1</sup>H NMR and spectra were recorded at 500 MHz and 400 MHz spectrometers as indicated. The chemical shifts ( $\delta$ ) of proton resonances were reported relative to the deuterated solvent peak (7.26 ppm for CDCl<sub>3</sub>, 3.31 for CD<sub>3</sub>OD, 2.50 ppm for DMSO-*d*<sub>6</sub> and 7.16 ppm for Benzene-*d*<sub>6</sub>) using the following format: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, bs = broad singlet, bm = broad multiplet), coupling constant(s) (*J* in Hz), integral. <sup>13</sup>C NMR spectra were recorded at 126 MHz. The chemical shifts ( $\delta$ ) of carbon resonances were reported relative to the deuterated solvent sever reported relative to the deuterated solvent sever the several sector were recorded at 126 MHz. The chemical shifts ( $\delta$ ) of carbon resonances were reported relative to the deuterated solvent peak (77.2 ppm for CDCl<sub>3</sub>).

### **Experimental procedures**

General procedure for the preparation of N,S-acetals<sup>1</sup>



To a 100 mL round bottom flask charged with a magnetic stir bar and 3Å molecular sieves (200 mg) was added aldehyde (1.0 mmol), toluene (10 mL), tetrahydroisoquinoline (1.3 mmol) and glacial acetic acid (0.1 mmol). The reaction was heated to 60 °C and monitored by TLC until complete consumption of aldehyde. The reaction mixture was cooled to room temperature and filtered through a plug of celite, washed with  $CH_2Cl_2$  (50 mL), dried with  $Na_2SO_4$ , and concentrated under pressure. The crude material was washed with EtOAc (20 mL) and used without further purification.

5,13a-dihydro-6H,8H-benzo[5,6][1,3]thiazino[2,3-a]isoquinoline (8a).



8a

Reaction preformed with 0.92 mmol of 2-mercaptobenzaldehyde (**10a**) and 1.20 mmol of tetrahydroisoquinoline (**9a**), isolated as a white solid (148 mg, 63% over two steps). Spectroscopic data for **8a** match those previously reported in literature.<sup>1</sup>

### **TLC:** $R_f = 0.54$ (7:3 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 7.23 (qd, *J* = 6.7, 6.2, 1.8 Hz, 1H), 7.20 – 7.15 (m, 3H), 7.13 – 7.08 (m, 1H), 7.07 – 6.98 (m, 3H), 6.18 (s, 1H), 4.56 (d, *J* = 16.6 Hz, 1H), 3.96 (d, *J* = 16.6 Hz, 1H), 3.33 – 3.12 (m, 2H), 2.90 – 2.78 (m, 2H).

<sup>1</sup>**H NMR** (400 MHz, Benzene- $d_6$ )  $\delta$  7.03 – 6.89 (m, 4H), 6.80 (ddd, J = 14.4, 9.0, 7.3 Hz, 3H), 6.67 (d, J = 7.2 Hz, 1H), 5.86 (s, 1H), 4.10 (d, J = 16.6 Hz, 1H), 3.46 (d, J = 16.6 Hz, 1H), 3.13 (td, J = 11.9, 4.2 Hz, 1H), 2.88 (ddd, J = 18.3, 12.1, 6.7 Hz, 1H), 2.35 – 2.26 (m, 2H).

<sup>13</sup>**C NMR** (126 MHz, Chloroform-*d*) δ 134.84, 134.79, 133.1, 129.3, 128.0, 127.9, 127.0, 126.6,

126.4, 126.3, 126.1, 124.2, 67.1, 57.8, 43.7, 28.8.

**DIMS (ESI+):** calculated for  $C_{16}H_{16}NS m/z [M+H]^+ 254.1$ , Obsd. 254.0.

3-methoxy-5,13a-dihydro-6H,8H-benzo[5,6][1,3]thiazino[2,3-a]isoquinoline (8b).



Reaction preformed with 3.50 mmol of 2-mercaptobenzaldehyde (**10a**) and 4.55 mmol 6-methoxytetrahydroisoquinoline (**9b**), isolated as a white solid (435 mg, 44% over two steps). Spectroscopic data for **8b** match those previously reported in literature.<sup>1</sup>

**TLC:** R<sub>f</sub> = 0.39 (7:3 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\delta$  7.08 (dd, *J* = 8.8, 3.7 Hz, 2H), 7.05 – 6.96 (m, 3H), 6.74 (dd, *J* = 8.3, 2.6 Hz, 1H), 6.69 (d, *J* = 2.6 Hz, 1H), 6.13 (s, 1H), 4.60 – 3.88 (bm, 2H), 3.79 (s, 3H), 3.31 – 2.67 (bm, 4H).

<sup>1</sup>**H NMR** (500 MHz, Benzene-*d*<sub>6</sub>) δ 7.04 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.89 (td, *J* = 7.5, 1.7 Hz, 1H), 6.85 (td, *J* = 7.4, 1.5 Hz, 1H), 6.76 – 6.73 (m, 1H), 6.63 (dd, *J* = 8.4, 2.7 Hz, 1H), 6.55 (d, *J* = 2.6 Hz, 1H), 5.95 (s, 1H), 4.21 (d, *J* = 16.6 Hz, 1H), 3.56 (d, *J* = 16.6 Hz, 1H), 3.29 (s, 3H), 3.22 (td, *J* = 11.8, 4.3 Hz, 1H), 2.94 (ddd, *J* = 18.2, 12.0, 6.6 Hz, 1H), 2.42 – 2.31 (m, 2H).

<sup>13</sup>**C NMR** (126 MHz, Chloroform-*d*) δ 159.3, 135.2, 134.7, 128.1, 127.6, 127.8, 127.2, 126.9, 126.7, 124.3, 114.1, 112.5, 67.1, 58.1, 55.4, 43.8, 29.3.

**DIMS (ESI+):** calculated for C<sub>17</sub>H<sub>18</sub>NOS *m*/*z* [M+H]<sup>+</sup> 284.1, Obsd. 284.1.

10-nitro-5,13a-dihydro-6H,8H-benzo[5,6][1,3]thiazino[2,3-a]isoquinoline (8c).



8c

Reaction preformed with 0.71 mmol of 2-mercapto-5-nitrobenzaldehyde (**10c**) and 0.92 mmol tetrahydroisoquinoline (**9a**), isolated as a yellow solid (123 mg, 77% over two steps). Spectroscopic data for **8c** match those previously reported in literature.<sup>1</sup>

**TLC:**  $R_f$  = 0.61 (7:3 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 7.95 (dd, *J* = 10.4, 2.1 Hz, 2H), 7.29 – 7.08 (m, 5H), 6.27 (s, 1H), 4.32 (bs, 2H), 2.98 (bs, 4H).

<sup>1</sup>**H NMR** (500 MHz, Benzene- $d_6$ )  $\delta$  7.61 (dd, J = 8.7, 2.5 Hz, 1H), 7.57 (d, J = 2.5 Hz, 1H), 7.03 – 6.92 (m, 3H), 6.86 (dd, J = 7.3, 1.5 Hz, 1H), 6.55 (d, J = 8.6 Hz, 1H), 5.72 (s, 1H), 3.80 – 3.69 (m, 1H), 3.21 (d, J = 16.8 Hz, 1H), 2.81 (s, 2H), 2.36 – 2.25 (m, 1H), 2.18 (s, 1H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 146.0, 144.2, 133.9, 133.1, 129.6, 128.6, 127.2, 126.8, 126.6, 126.4, 123.1, 122.2, 77.5, 77.2, 77.0, 68.8, 57.8, 43.9, 28.8.

**DIMS (ESI+)**: calculated for  $C_{16}H_{15}N_2O_2S m/z [M+H]^+ 299.1$ , Obsd. 299.1.

3-methoxy-10-nitro-5,13a-dihydro-6H,8H-benzo[5,6][1,3]thiazino[2,3-a]isoquinoline (8d).



Reaction preformed with 1.48 mmol of 2-mercapto-5-nitrobenzaldehyde (**10c**) and 1.92 mmol 6-methoxytetrahydroisoquinoline (**9b**), isolated as a yellow solid (304 mg, 92% over two steps).

### **TLC:** $R_f = 0.46$ (6:4 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\delta$  7.94 (d, *J* = 7.7 Hz, 2H), 7.09 (t, *J* = 9.3 Hz, 2H), 6.77 (d, *J* = 8.5, 1H), 6.70 (s, 1H), 6.25 (s, 1H), 4.30 (s, 2H), 3.81 (s, 3H), 2.97 (dd, *J* = 11.8, 5.0 Hz, 4H). <sup>1</sup>**H NMR** (500 MHz, Benzene-*d*<sub>6</sub>)  $\delta$  7.62 – 7.54 (m, 2H), 6.86 (dd, *J* = 8.6, 2.7 Hz, 1H), 6.62 – 6.53

(m, 2H), 6.50 (s, 1H), 5.73 (s, 1H), 3.44 (bs, 2H), 3.25 (s, 3H), 2.51 (bs, 4H). <sup>1</sup>H NMR (500 MHz, Benzene- $d_6$ )  $\delta$  7.63 (dd, J = 8.8, 2.7 Hz, 1H), 7.59 (d, J = 3.3 Hz, 1H), 6.89 (dd, J = 8.6, 2.8 Hz, 1H), 6.65 – 6.55 (m, 2H), 6.53 (d, J = 3.1 Hz, 1H), 5.77 (s, 1H), 3.47 (s, 2H), 3.28 (t, J = 2.1 Hz, 3H), 2.55 (s, 4H).

<sup>13</sup>C NMR (125 MHz, Chloroform-*d*) δ 159.4, 146.1, 143.9, 134.4, 127.3, 127.0, 126.6, 126.1, 122.9, 122.0, 113.9, 112.6, 68.6, 57.7, 55.3, 43.6, 28.9.

**DIMS (ESI+):** calculated for C<sub>17</sub>H<sub>17</sub>N<sub>2</sub>O<sub>3</sub>S *m*/*z* [M+H]<sup>+</sup> 329.1, Obsd. 329.1.

3-nitro-5,13a-dihydro-6H,8H-benzo[5,6][1,3]thiazino[2,3-a]isoquinoline (8e).



8e

Reaction preformed with 3.50 mmol of 2-mercaptobenzaldehyde (**10a**) and 4.55 mmol 6nitrotetrahydroisoquinoline (**9c**), isolated as a yellow solid (343 mg, 33% over two steps).

**TLC:**  $R_f = 0.45$  (6:4 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 8.08 – 8.02 (m, 2H), 7.31 (d, J = 8.4 Hz, 1H), 7.15 – 7.09 (m, 1H), 7.07 – 7.03 (m, 2H), 7.01 – 6.97 (m, 1H), 6.20 (s, 1H), 4.55 (d, J = 16.7 Hz, 1H), 3.97 (d, J = 16.7 Hz, 1H), 3.31 – 3.20 (m, 2H), 3.00 – 2.82 (m, 2H).

<sup>1</sup>**H NMR** (500 MHz, Benzene-*d*<sub>6</sub>) δ 7.65 (dd, *J* = 8.5, 2.4 Hz, 1H), 7.58 (d, *J* = 2.4 Hz, 1H), 6.96 (dd, *J* = 7.4, 1.7 Hz, 1H), 6.85 (pd, *J* = 7.4, 1.6 Hz, 2H), 6.72 – 6.68 (m, 1H), 6.64 (d, *J* = 8.4 Hz, 1H), 5.62 (s, 1H), 4.04 (d, *J* = 16.6 Hz, 1H), 3.42 (d, *J* = 16.7 Hz, 1H), 2.93 (td, *J* = 11.9, 4.1 Hz, 1H), 2.58 (ddd, *J* = 17.9, 12.0, 6.8 Hz, 1H), 2.17 (dd, *J* = 11.7, 6.7 Hz, 1H), 2.05 (dd, *J* = 16.6, 4.1 Hz, 1H).

<sup>13</sup>**C NMR** (125 MHz, Chloroform-*d*) δ 141.8, 135.4, 133.9, 128.3, 127.5, 127.4, 126.8, 126.1, 124.9, 124.7, 121.5, 66.3, 57.6, 43.2, 29.0.

**DIMS (ESI+):** calculated for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub>S *m*/*z* [M+H]<sup>+</sup> 299.1, Obsd. 299.1.

10-methoxy-5,13a-dihydro-6H,8H-benzo[5,6][1,3]thiazino[2,3-a]isoquinoline (8f).



Reaction preformed with 0.97 mmol of 2-mercapto-5-methoxybenzaldehyde (10b) and 1.26 mmol of tetrahydroisoguinoline (9a), isolated as a white solid (152 mg, 55%).

### **TLC:** R<sub>f</sub> = 0.78 (6:4 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\delta$  7.21 (qd, J = 6.9, 1.9 Hz, 1H), 7.18 – 7.14 (m, 3H), 6.91 (d, J = 8.6 Hz, 1H), 6.71 (ddt, J = 8.6, 2.8, 0.6 Hz, 1H), 6.65 – 6.62 (m, 1H), 6.10 (s, 1H), 4.53 (d, J = 16.6 Hz, 1H), 3.91 (d, J = 16.7 Hz, 1H), 3.78 (s, 3H), 3.27 (td, J = 11.6, 4.0 Hz, 1H), 3.17 (ddd, *J* = 18.3, 12.2, 6.4 Hz, 1H), 2.86 – 2.78 (m, 2H).

<sup>1</sup>**H NMR** (500 MHz, Benzene- $d_6$ )  $\delta$  7.13 – 7.09 (m, 1H), 7.04 – 6.97 (m, 2H), 6.94 (d, J = 8.4 Hz. 1H), 6.92 – 6.89 (m, 1H), 6.57 – 6.52 (m, 2H), 5.90 (s, 1H), 4.19 (d, J = 16.6 Hz, 1H), 3.51 (d, J = 16.7 Hz, 1H), 3.31 (s, 3H), 3.27 (dd, J = 11.7, 4.2 Hz, 1H), 2.96 (ddd, J = 16.4, 12.1, 6.8 Hz, 1H), 2.45 – 2.36 (m, 2H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 156.9, 135.1, 133.3, 129.4, 128.0, 127.7, 127.6, 126.5, 126.2, 125.5, 113.7, 113.6, 67.0, 58.2, 55.6, 43.9, 29.0.

**DIMS (ESI+)**: calculated for  $C_{17}H_{18}NOS m/z [M+H]^+ 284.1$ , Obsd. 284.1.

10-methoxy-3-nitro-5,13a-dihydro-6H,8H-benzo[5,6][1,3]thiazino[2,3-a]isoquinoline (8g).



8g

Reaction preformed with 4.01 mmol of 2-mercapto-5-methoxybenzaldehyde (10b) and 5.21 mmol 6-nitrotetrahydroisoquinoline (9c), isolated as a yellow solid (345 mg, 26% over two steps).

### **TLC:** R<sub>f</sub> = 0.35 (6:4 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\delta$  8.08 – 8.01 (m, 2H), 7.30 (d, J = 8.4 Hz, 1H), 6.91 (d, J = 8.6 Hz, 1H), 6.73 (dd, J = 8.7, 2.7 Hz, 1H), 6.65 (d, J = 2.8 Hz, 1H), 6.13 (s, 1H), 4.53 (d, J = 16.8 Hz, 1H), 3.93 (d, J = 16.8 Hz, 1H), 3.78 (d, J = 0.9 Hz, 3H), 3.32 – 3.19 (m, 2H), 3.00 – 2.80 (m, 2H). <sup>1</sup>**H NMR** (500 MHz, Benzene- $d_6$ )  $\delta$  7.65 (dd, J = 8.5, 2.3 Hz, 1H), 7.59 (d, J = 2.4 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 6.69 (d, J = 8.4 Hz, 1H), 6.57 – 6.50 (m, 2H), 5.60 (s, 1H), 4.07 (d, J = 16.7 Hz, 1H), 3.41 (d, J = 16.7 Hz, 1H), 3.30 (s, 3H), 3.02 (td, J = 11.8, 4.1 Hz, 1H), 2.60 (ddd, J = 10.7 Hz, 1Hz, 1H), 2.60 (ddd, J = 10.7 Hz, 1Hz, 18.0, 11.9, 6.8 Hz, 1H), 2.21 (dd, J = 11.6, 6.8 Hz, 1H), 2.07 (dd, J = 16.6, 3.9 Hz, 1H).

<sup>13</sup>C NMR (125 MHz, Chloroform-d) δ 157.2, 147.4, 141.9, 135.4, 127.7, 127.4, 127.2, 124.6, 124.3, 121.5, 113.8, 66.1, 57.8, 55.6, 43.2, 29.0.

**DIMS (ESI+):** calculated for C<sub>17</sub>H<sub>17</sub>N<sub>2</sub>O<sub>3</sub>S *m/z* [M+H]<sup>+</sup> 329.1, Obsd. 329.1.

2-mercaptobenzaldehyde (10a).



#### 10a

To a flamed dried 100 mL round bottom flask was added TMEDA (0.74 mL, 4.95 mmol), thiophenol (0.23 mL, 2.25 mmol) and 7 mL hexanes. The solution was cooled to 0 °C and 1.8 M <sup>n</sup>BuLi solution in cyclohexane (3.1 mL, 4.95 mmol) was added dropwise. The resulting solution was allowed to warm to room temperature and stirred for 16 h. DMF (0.44 mL, 5.6 mmol) was then added dropwise and again allowed to stir for 20 h. Et<sub>2</sub>O (10 mL) was added and stirred for 20 minutes. The reaction mixture was washed with 1 M HCL (25 mL) and the aqueous layer was extracted with Et<sub>2</sub>O (2 x 10 mL). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated. The crude material was used without further purification. Spectroscopic data for 10a match those previously reported in literature.<sup>2</sup>

#### **TLC:** $R_f = 0.25$ (7:3 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 10.19 (d, J = 0.6 Hz, 1H), 7.85 (dd, J = 7.6, 1.6 Hz, 1H), 7.77 – 7.73 (m, 1H), 7.47 (ddd, J = 8.1, 7.3, 1.6 Hz, 1H), 7.37 (td, J = 7.4, 1.1 Hz, 1H).

O-(2-formyl-4-methoxyphenyl) dimethylcarbamothioate (S-1).





To a 100 mL round bottom flask was added 2-hydroxy-5-methoxybenzaldehyde (2 g, 13.1 mmol), and 1,4-diazabicyclo[2.2.2]octane (4.42 g, 39.4 mmol) dissolved in DMF (20 mL). To the solution, *N*,*N*-dimethylthiocarbamoyl chloride (4.87 g, 39.4 mmol) was added in one portion. The reaction was heated to 50 °C for 5 h, and then poured into water (40 mL). The product was extracted with  $CH_2Cl_2$  (3 x 75 mL). The organic layers were combined and washed with 5% HCl (75 mL), 0.1M NaOH (75 mL), and brine (75 mL). The organic layer was dried over  $Na_2SO_4$  and concentrated under reduced pressure. The crude material was used without further purification. Spectroscopic data for **S-1** match those previously reported in literature.<sup>3</sup>

**TLC:**  $R_f = 0.25$  (7:3 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\delta$  10.02 (d, *J* = 2.0 Hz, 1H), 7.37 (t, *J* = 2.7 Hz, 1H), 7.15 (ddd, *J* = 8.9, 3.2, 2.1 Hz, 1H), 7.03 (dd, *J* = 8.9, 2.0 Hz, 1H), 3.85 (d, *J* = 3.1 Hz, 3H), 3.46 (d, *J* = 3.3 Hz, 3H), 3.40 (d, *J* = 2.5 Hz, 3H).

S-(2-formyl-4-methoxyphenyl) dimethylcarbamothioate (S-2).



S-2

To a 50 mL round bottom flask was added O-(2-formyl-4-methoxyphenyl) dimethylcarbamothioate (100 mg, 0.42 mmol) and CAN (229 mg, 0.42 mmol) dissolved in DMSO (8.5 mL). The reaction mixture was stirred for 24 h. To the completed reaction mixture was added H<sub>2</sub>O (60 mL) and the solution was extracted with Et<sub>2</sub>O (4 x 60 mL). The combined organic layers were washed with 60 mL of H<sub>2</sub>O, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The crude reaction material was used without further purification. Spectroscopic data for **S-2** match those previously reported in literature.<sup>4</sup>

**TLC:**  $R_f = 0.31$  (6:4 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*)  $\acute{\delta}$  10.33 (s, 1H), 7.53 (d, *J* = 3.0 Hz, 1H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.13 (dd, *J* = 8.6, 3.0 Hz, 1H), 3.87 (s, 3H), 3.26 – 2.96 (m, 6H).

2-formyl-4-methoxyphenyl dimethylcarbamodithioate (S-3).



S-3

CuCl<sub>2</sub> (0.5 mg, 0.004 mmol), zinc powder (10 mg, 0.15 mmol), DMSO (2 mL), K<sub>2</sub>CO<sub>3</sub> (16 mg, 0.11 mmol), tetramethylthiuram disulfide (55 mg, 0.23 mmol), and 2-iodo-5-methoxybenzaldehyde (100 mg, 0.38 mmol) were added to a 25 mL round bottom flask. The reaction mixture was stirred at 110 °C for 18 h. The mixture was cooled to room temperature and quenched with NH<sub>4</sub>Cl (10 mL) and then extracted with EtOAc (3 x 10 mL). The organic layers were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The crude material was used without further purification. Spectroscopic data for **S-3** match those previously reported in literature.<sup>5</sup>

**TLC:**  $R_f = 0.39$  (6:4 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 10.15 (s, 1H), 7.55 (d, *J* = 3.0 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 1H), 7.12 (dd, *J* = 8.5, 3.0 Hz, 1H), 3.87 (s, 3H), 3.52 (d, *J* = 8.3 Hz, 6H).

General procedure for the preparation of 2-mercapto-5-methoxybenzaldehyde (10b)<sup>5</sup>



10b

To a 100 mL round bottom flask was added S-aryl compound **S-2** or **S-3** (3.0 mmol) and dissolved in MeOH (10 mL). 3N NaOH was added dropwise (12 mL) and refluxed for 2h. The reaction mixture was cooled to room temperature and acidified to pH 5 with 10% HCl. The mixture was extracted with ethyl acetate (3 x 15 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The crude material was used without further purification. Spectroscopic data for **10b** match those previously reported in literature.<sup>3</sup>

**TLC:** R<sub>f</sub> =0.4 (6:4 hexanes:EtOAc).

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 10.16 (d, J = 0.6 Hz, 1H), 7.56 (d, J = 8.7 Hz, 1H), 7.37 (d, J = 2.9 Hz, 1H), 7.08 (ddd, J = 8.7, 3.0, 0.6 Hz, 1H), 3.86 (d, J = 0.5 Hz, 3H).

2-mercapto-5-nitrobenzaldehyde (**10c**).



10c

In a 10 mL round bottom flask 2-fluoro-5-nitrobenzaldehyde (100 mg, 0.59 mmol), sodium sulfide (60 mg, 0.77 mmol) and DMF (1 mL) were added. The reaction was stirred for 1 h and quenched with 1 M NaOH (5 mL). The mixture was washed with  $CH_2Cl_2$  (3 x 10 mL). The aqueous layer was acidified with 6 N HCl until formation of a white suspension (pH ~3) and extracted with  $CH_2Cl_2$  (3 x 10 mL). The combined organic layers were washed with brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure. The crude material was used without further purification. Spectroscopic data for **10c** match those previously reported in literature.<sup>6</sup>

<sup>1</sup>**H NMR** (500 MHz, Chloroform-*d*) δ 10.02 (d, J = 2.0 Hz, 1H), 7.37 (t, J = 2.7 Hz, 1H), 7.15 (ddd, J = 8.8, 3.2, 2.1 Hz, 1H), 7.04 (dd, J = 8.8, 1.9 Hz, 1H), 3.85 (d, J = 2.4 Hz, 3H).





| f1 (ppm) |  |
|----------|--|
|----------|--|













| f1 | (ppm) |
|----|-------|
|----|-------|





200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)





200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)





200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)









### Variable temperature <sup>1</sup>H NMR of 8b





| Figure S-1. Variable temperature | <sup>1</sup> H NMR spectroscopy of | 8b in CDCl <sub>3</sub> from -45 °C to 45 °C. |
|----------------------------------|------------------------------------|-----------------------------------------------|
|----------------------------------|------------------------------------|-----------------------------------------------|

### <sup>1</sup>H NMR solvent screen of compound 8b



Figure S-2. <sup>1</sup>H NMR solvent screen of compound 8b.

<sup>1</sup>**H NMR** (500 MHz, D<sub>2</sub>O) δ 7.42 – 7.29 (m, 4H), 7.22 (d, J = 7.7 Hz, 1H), 7.10 – 7.04 (m, 2H), 6.39 (s, 1H), 4.47 (s, 1H), 4.04 (s, 3H), 3.30 – 3.18 (m, 4H).





### Chemically induced dynamic <sup>1</sup>H NMR spectroscopy of 8b

#### Structural characterization of iminium intermediates





#### *int*-8b

<sup>1</sup>**H NMR** (500 MHz, TFA) δ 8.57 (s, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.53 – 7.41 (m, 3H), 7.13 (dd, J = 8.7, 2.3 Hz, 1H), 7.05 (d, J = 2.3 Hz, 1H), 5.22 (s, 2H), 4.07 (s, 3H), 4.03 (t, J = 8.1 Hz, 2H), 3.33 (t, J = 8.0 Hz, 2H). <sup>13</sup>**C NMR** (126 MHz, TFA) δ 169.4, 163.9, 139.6, 137.2, 132.8, 131.8, 131.8, 131.2, 127.8, 127.4, 116.8, 115.4, 114.4, 114.1, 62.1, 55.2, 47.4, 25.2.



*int*-8c

Observed as a mixture of isomers with the major isomer being *int-8c* along with two other unidentified isomers in a 4:2:1 ratio.



*int*-8d

<sup>1</sup>**H NMR** (500 MHz, TFA) δ 8.83 (s, 1H), 8.57 (d, J = 2.5 Hz, 1H), 8.43 (dd, J = 8.7, 2.2 Hz, 1H), 7.92 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.25 (dd, J = 8.7, 2.3 Hz, 1H), 7.15 (d, J = 2.5 Hz, 1H), 5.41 (s, 2H), 4.17 (s, 3H), 4.14 (t, J = 8.0 Hz, 2H), 3.45 (t, J = 8.0 Hz, 2H).



f1 (ppm)

 $^{1}\text{H}$  (500 MHz), in  $\text{CF}_{3}\text{CO}_{2}\text{D}$ 



### 2-D structural characterization of int-8b



Figure S-5. 2-D HMQC NMR characterization of *int*-8b in CF<sub>3</sub>CO<sub>2</sub>D.



### Crystal structure report for compounds 8a, 8b, 8d



A clear colourless hexagonal prism-like specimen of  $C_{16}H_{15}NS$ , approximate dimensions 0.065 mm x 0.390 mm x 0.600 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ( $\lambda = 0.71073$  Å).

| Axis  | dx<br>mm | 20<br>° | °       | φ<br>°  | Å      | width | Frames | Time<br>s | Wavelength<br>Å | Voltage<br>kV | Current<br>mA | Temperature<br>K |
|-------|----------|---------|---------|---------|--------|-------|--------|-----------|-----------------|---------------|---------------|------------------|
| Omega | 40.001   | -28.00  | -28.00  | 0.00    | 54.00  | 0.50  | 12     | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 40.001   | -28.00  | -28.00  | 90.00   | 54.00  | 0.50  | 12     | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 40.001   | 20.00   | 20.00   | 0.00    | 54.00  | 0.50  | 12     | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Phi   | 40.001   | -34.98  | -35.08  | -150.34 | 24.00  | 0.30  | 736    | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 40.001   | -34.98  | -34.22  | 40.00   | -55.50 | 0.30  | 298    | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 40.001   | -34.98  | -34.22  | 0.00    | -55.50 | 0.30  | 298    | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 40.001   | -34.98  | -138.44 | -80.00  | 54.74  | 0.30  | 343    | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 40.001   | -34.98  | -138.44 | -160.00 | 54.74  | 0.30  | 343    | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 40.001   | -34.98  | -34.22  | 120.00  | -55.50 | 0.30  | 298    | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 40.001   | -34.98  | -138.44 | 0.00    | 54.74  | 0.30  | 343    | 10.00     | 0.71073         | 50            | 35.0          | 103              |

### Table 1: Data collection details for 20181003AR.

A total of 2695 frames were collected. The total exposure time was 7.49 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 31106 reflections to a maximum  $\theta$  angle of 35.63° (0.61 Å resolution), of which 5713 were independent (average

redundancy 5.445, completeness = 100.0%, R<sub>int</sub> = 2.27%, R<sub>sig</sub> = 1.65%) and 4999 (87.50%) were greater than  $2\sigma(F^2)$ . The cell constants final of <u>a</u> = 12.2588(10) Å, <u>b</u> = 7.5269(6) Å, <u>c</u> = 13.4609(11) Å, β  $= 93.275(2)^{\circ}$ , volume = 1240.02(17) Å<sup>3</sup>, are based upon the refinement of the XYZ-centroids of 9977 reflections above  $20 \sigma(I)$  with  $4.371^{\circ} < 20 < 73.61^{\circ}$ . Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.938. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.8690 and 0.9850.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/n 1, with Z = 4 for the formula unit,  $C_{16}H_{15}NS$ . The final anisotropic full-matrix least-squares refinement on F<sup>2</sup> with 163 variables converged at R1 = 2.99%, for the observed data and wR2 = 8.63% for all data. The goodness-of-fit was 1.047. The largest peak in the final difference electron density synthesis was 0.593 e<sup>-</sup>/Å<sup>3</sup> and the largest hole was -0.214 e<sup>-</sup>/Å<sup>3</sup> with an RMS deviation of 0.057 e<sup>-</sup>/Å<sup>3</sup>. On the basis of the final model, the calculated density was 1.357 g/cm<sup>3</sup> and F(000), 536 e<sup>-</sup>.

### Table 2. Sample and crystal data for 20181003AR.

| Identification code    | 20181003AR                         |                             |  |  |
|------------------------|------------------------------------|-----------------------------|--|--|
| Chemical formula       | C <sub>16</sub> H <sub>15</sub> NS |                             |  |  |
| Formula weight         | 253.35 g/mol                       |                             |  |  |
| Temperature            | 103(2) K                           |                             |  |  |
| Wavelength             | 0.71073 Å                          |                             |  |  |
| Crystal size           | 0.065 x 0.390 x 0.60               | 0 mm                        |  |  |
| Crystal habit          | clear colourless hexagonal prism   |                             |  |  |
| Crystal system         | monoclinic                         |                             |  |  |
| Space group            | P 1 21/n 1                         |                             |  |  |
| Unit cell dimensions   | a = 12.2588(10) Å                  | $\alpha = 90^{\circ}$       |  |  |
|                        | b = 7.5269(6) Å                    | $\beta = 93.275(2)^{\circ}$ |  |  |
|                        | c = 13.4609(11) Å                  | γ = 90°                     |  |  |
| Volume                 | 1240.02(17) Å <sup>3</sup>         |                             |  |  |
| Z                      | 4                                  |                             |  |  |
| Density (calculated)   | 1.357 g/cm <sup>3</sup>            |                             |  |  |
| Absorption coefficient | 0.240 mm <sup>-1</sup>             |                             |  |  |
| F(000)                 | 536                                |                             |  |  |

 Table 3. Data collection and structure refinement for 20181003AR.

| Theta range for data collection     | 2.31 to 35.63°                     |
|-------------------------------------|------------------------------------|
| Index ranges                        | -20<=h<=20, -12<=k<=12, -22<=l<=19 |
| Reflections collected               | 31106                              |
| Independent reflections             | 5713 [R(int) = 0.0227]             |
| Coverage of independent reflections | 100.0%                             |
| Absorption correction               | Multi-Scan                         |

| 0.9850 and 0.8690                                                      |                                                                                                                                                                                                                                                                                                                  |  |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| direct methods                                                         |                                                                                                                                                                                                                                                                                                                  |  |  |
| SHELXT 2014/5 (Sł                                                      | neldrick, 2014)                                                                                                                                                                                                                                                                                                  |  |  |
| Full-matrix least-squares on F <sup>2</sup>                            |                                                                                                                                                                                                                                                                                                                  |  |  |
| SHELXL-2017/1 (Sheldrick, 2017)                                        |                                                                                                                                                                                                                                                                                                                  |  |  |
| $\Sigma w(F_o^2 - F_c^2)^2$                                            |                                                                                                                                                                                                                                                                                                                  |  |  |
| 5713 / 0 / 163                                                         | 713 / 0 / 163                                                                                                                                                                                                                                                                                                    |  |  |
| 1.047                                                                  |                                                                                                                                                                                                                                                                                                                  |  |  |
| 0.001                                                                  |                                                                                                                                                                                                                                                                                                                  |  |  |
| 4999 data; I>2σ(I)                                                     | R1 = 0.0299, wR2 = 0.0824                                                                                                                                                                                                                                                                                        |  |  |
| all data                                                               | R1 = 0.0359, wR2 = 0.0863                                                                                                                                                                                                                                                                                        |  |  |
| w=1/[ $\sigma^2$ (F $_o^2$ )+(0.046)<br>where P=(F $_o^2$ +2F $_c^2$ ) | i3P) <sup>2</sup> +0.3211P]<br>/3                                                                                                                                                                                                                                                                                |  |  |
| 0.593 and -0.214 eÅ                                                    | <b>/</b> -3                                                                                                                                                                                                                                                                                                      |  |  |
| 0.057 eÅ <sup>-3</sup>                                                 |                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                        | 0.9850 and 0.8690<br>direct methods<br>SHELXT 2014/5 (SI<br>Full-matrix least-squ<br>SHELXL-2017/1 (SI<br>$\Sigma w(F_o^2 - F_c^2)^2$<br>5713 / 0 / 163<br>1.047<br>0.001<br>4999 data; I>2 $\sigma$ (I)<br>all data<br>w=1/[ $\sigma^2(F_o^2)$ +(0.046<br>where P=( $F_o^2$ +2 $F_c^2$ )<br>0.593 and -0.214 eX |  |  |

# Table 4. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å<sup>2</sup>) for 20181003AR.

U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|     | x/a        | y/b         | z/c        | U(eq)       |
|-----|------------|-------------|------------|-------------|
| S1  | 0.33862(2) | 0.51906(2)  | 0.56071(2) | 0.01327(5)  |
| N1  | 0.42405(5) | 0.24145(8)  | 0.67786(4) | 0.01154(10) |
| C1  | 0.44926(5) | 0.41737(9)  | 0.64624(5) | 0.01096(10) |
| C2  | 0.46296(5) | 0.54747(9)  | 0.73110(5) | 0.01041(10) |
| C3  | 0.50989(6) | 0.71322(9)  | 0.71415(5) | 0.01338(11) |
| C4  | 0.51841(6) | 0.83965(10) | 0.78936(6) | 0.01629(12) |
| C5  | 0.48146(7) | 0.79922(10) | 0.88285(6) | 0.01724(13) |
| C6  | 0.43622(6) | 0.63367(10) | 0.90035(5) | 0.01450(12) |
| С7  | 0.42542(5) | 0.50609(9)  | 0.82468(5) | 0.01136(11) |
| C8  | 0.37541(6) | 0.32682(10) | 0.84335(5) | 0.01503(12) |
| С9  | 0.33567(6) | 0.23569(9)  | 0.74681(5) | 0.01391(11) |
| C10 | 0.41418(6) | 0.11560(9)  | 0.59548(5) | 0.01461(12) |
| C11 | 0.33290(5) | 0.15980(9)  | 0.50965(5) | 0.01117(10) |
| C12 | 0.29397(6) | 0.02137(9)  | 0.44763(5) | 0.01320(11) |
| C13 | 0.22272(6) | 0.05262(10) | 0.36527(5) | 0.01570(12) |
| C14 | 0.18907(6) | 0.22622(11) | 0.34373(5) | 0.01710(13) |
| C15 | 0.22696(6) | 0.36549(10) | 0.40410(5) | 0.01517(12) |
| C16 | 0.29890(5) | 0.33338(9)  | 0.48701(5) | 0.01145(11) |

## Table 5. Bond lengths (Å) for 20181003AR.

| S1-C16   | 1.7661(7)  | S1-C1    | 1.8901(7)  |
|----------|------------|----------|------------|
| N1-C1    | 1.4300(9)  | N1-C10   | 1.4582(9)  |
| N1-C9    | 1.4669(9)  | C1-C2    | 1.5066(9)  |
| С1-Н1    | 1.0        | C2-C3    | 1.3980(9)  |
| C2-C7    | 1.4006(9)  | C3-C4    | 1.3890(10) |
| С3-Н3    | 0.95       | C4-C5    | 1.3952(11) |
| C4-H4    | 0.95       | C5-C6    | 1.3895(11) |
| С5-Н5    | 0.95       | C6-C7    | 1.4006(10) |
| С6-Н6    | 0.95       | C7-C8    | 1.5091(10) |
| C8-C9    | 1.5245(10) | C8-H8A   | 0.99       |
| C8-H8AB  | 0.99       | С9-Н9А   | 0.99       |
| C9-H9AB  | 0.99       | C10-C11  | 1.5188(10) |
| C10-H10A | 0.99       | C10-H10B | 0.99       |
| C11-C16  | 1.3997(9)  | C11-C12  | 1.4017(10) |
| C12-C13  | 1.3916(10) | С12-Н12  | 0.95       |
| C13-C14  | 1.3957(11) | С13-Н13  | 0.95       |
| C14-C15  | 1.3899(11) | C14-H14  | 0.95       |
| C15-C16  | 1.4034(10) | C15-H15  | 0.95       |

## Table 6. Bond angles (°) for 20181003AR.

| C16-S1-C1  | 100.77(3) | C1-N1-C10   | 112.65(5) |
|------------|-----------|-------------|-----------|
| C1-N1-C9   | 113.30(5) | C10-N1-C9   | 115.45(6) |
| N1-C1-C2   | 113.13(5) | N1-C1-S1    | 113.36(5) |
| C2-C1-S1   | 104.10(4) | N1-C1-H1    | 108.7     |
| C2-C1-H1   | 108.7     | S1-C1-H1    | 108.7     |
| C3-C2-C7   | 120.31(6) | C3-C2-C1    | 119.04(6) |
| C7-C2-C1   | 120.61(6) | C4-C3-C2    | 120.46(6) |
| С4-С3-Н3   | 119.8     | С2-С3-Н3    | 119.8     |
| C3-C4-C5   | 119.56(7) | СЗ-С4-Н4    | 120.2     |
| С5-С4-Н4   | 120.2     | C6-C5-C4    | 120.11(7) |
| С6-С5-Н5   | 119.9     | С4-С5-Н5    | 119.9     |
| C5-C6-C7   | 120.91(6) | С5-С6-Н6    | 119.5     |
| С7-С6-Н6   | 119.5     | C6-C7-C2    | 118.64(6) |
| C6-C7-C8   | 120.96(6) | C2-C7-C8    | 120.40(6) |
| С7-С8-С9   | 111.92(6) | С7-С8-Н8А   | 109.2     |
| С9-С8-Н8А  | 109.2     | С7-С8-Н8АВ  | 109.2     |
| С9-С8-Н8АВ | 109.2     | Н8А-С8-Н8АВ | 107.9     |
| N1-C9-C8   | 108.32(6) | N1-C9-H9A   | 110.0     |
| С8-С9-Н9А  | 110.0     | N1-C9-H9AB  | 110.0     |

| С8-С9-Н9АВ   | 110.0     | Н9А-С9-Н9АВ   | 108.4     |
|--------------|-----------|---------------|-----------|
| N1-C10-C11   | 117.30(6) | N1-C10-H10A   | 108.0     |
| С11-С10-Н10А | 108.0     | N1-C10-H10B   | 108.0     |
| С11-С10-Н10В | 108.0     | H10A-C10-H10B | 107.2     |
| C16-C11-C12  | 118.51(6) | C16-C11-C10   | 122.98(6) |
| C12-C11-C10  | 118.45(6) | C13-C12-C11   | 121.71(7) |
| С13-С12-Н12  | 119.1     | С11-С12-Н12   | 119.1     |
| C12-C13-C14  | 119.24(7) | С12-С13-Н13   | 120.4     |
| С14-С13-Н13  | 120.4     | C15-C14-C13   | 119.98(7) |
| С15-С14-Н14  | 120.0     | C13-C14-H14   | 120.0     |
| C14-C15-C16  | 120.59(7) | С14-С15-Н15   | 119.7     |
| С16-С15-Н15  | 119.7     | C11-C16-C15   | 119.98(6) |
| C11-C16-S1   | 123.18(5) | C15-C16-S1    | 116.81(5) |

### Table 7. Torsion angles (°) for 20181003AR.

| C10-N1-C1-C2    | -178.29(5) | C9-N1-C1-C2     | 48.34(7)   |
|-----------------|------------|-----------------|------------|
| C10-N1-C1-S1    | 63.47(6)   | C9-N1-C1-S1     | -69.90(6)  |
| C16-S1-C1-N1    | -39.39(5)  | C16-S1-C1-C2    | -162.74(4) |
| N1-C1-C2-C3     | 166.60(6)  | S1-C1-C2-C3     | -69.90(7)  |
| N1-C1-C2-C7     | -15.89(9)  | S1-C1-C2-C7     | 107.61(6)  |
| C7-C2-C3-C4     | -0.93(10)  | C1-C2-C3-C4     | 176.59(6)  |
| C2-C3-C4-C5     | 1.09(11)   | C3-C4-C5-C6     | -0.16(11)  |
| C4-C5-C6-C7     | -0.95(11)  | C5-C6-C7-C2     | 1.10(10)   |
| C5-C6-C7-C8     | -179.47(7) | C3-C2-C7-C6     | -0.17(10)  |
| C1-C2-C7-C6     | -177.65(6) | C3-C2-C7-C8     | -179.59(6) |
| C1-C2-C7-C8     | 2.93(10)   | C6-C7-C8-C9     | 160.22(6)  |
| C2-C7-C8-C9     | -20.36(9)  | C1-N1-C9-C8     | -66.25(7)  |
| C10-N1-C9-C8    | 161.74(6)  | C7-C8-C9-N1     | 49.59(8)   |
| C1-N1-C10-C11   | -55.69(8)  | C9-N1-C10-C11   | 76.63(8)   |
| N1-C10-C11-C16  | 24.26(10)  | N1-C10-C11-C12  | -158.70(6) |
| C16-C11-C12-C13 | -0.27(10)  | C10-C11-C12-C13 | -177.44(6) |
| C11-C12-C13-C14 | 0.01(11)   | C12-C13-C14-C15 | 0.18(11)   |
| C13-C14-C15-C16 | -0.11(11)  | C12-C11-C16-C15 | 0.34(10)   |
| C10-C11-C16-C15 | 177.38(6)  | C12-C11-C16-S1  | 178.19(5)  |
| C10-C11-C16-S1  | -4.78(9)   | C14-C15-C16-C11 | -0.16(11)  |
| C14-C15-C16-S1  | -178.14(6) | C1-S1-C16-C11   | 10.93(6)   |
| C1-S1-C16-C15   | -171.16(5) |                 |            |

## Table 8. Anisotropic atomic displacement parameters (Å<sup>2</sup>) for 20181003AR.

The anisotropic atomic displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup> a<sup>\*2</sup> U<sub>11</sub> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sub>12</sub>]

|     | <b>U</b> 11 | $U_{22}$   | U <sub>33</sub> | U <sub>23</sub>  | U <sub>13</sub>  | U <sub>12</sub>  |
|-----|-------------|------------|-----------------|------------------|------------------|------------------|
| S1  | 0.01774(8)  | 0.01015(7) | 0.01149(7)      | -0.00044(5)      | -0.00280(5)      | 0.00319(5)       |
| N1  | 0.0149(2)   | 0.0092(2)  | 0.0104(2)       | -<br>0.00039(17) | -<br>0.00049(17) | 0.00107(17)      |
| C1  | 0.0118(2)   | 0.0112(2)  | 0.0098(2)       | 0.00029(19)      | 0.00035(19)      | 0.00112(19)      |
| C2  | 0.0105(2)   | 0.0106(2)  | 0.0100(2)       | 0.00018(19)      | -<br>0.00003(18) | 0.00002(19)      |
| C3  | 0.0143(3)   | 0.0125(3)  | 0.0131(3)       | 0.0022(2)        | -0.0011(2)       | -0.0016(2)       |
| C4  | 0.0195(3)   | 0.0116(3)  | 0.0171(3)       | 0.0008(2)        | -0.0045(2)       | -0.0030(2)       |
| C5  | 0.0214(3)   | 0.0143(3)  | 0.0155(3)       | -0.0032(2)       | -0.0038(2)       | -0.0007(2)       |
| C6  | 0.0163(3)   | 0.0160(3)  | 0.0111(2)       | -0.0021(2)       | -0.0002(2)       | 0.0001(2)        |
| C7  | 0.0115(2)   | 0.0122(2)  | 0.0103(2)       | -<br>0.00023(19) | 0.00027(19)      | -<br>0.00056(19) |
| C8  | 0.0193(3)   | 0.0146(3)  | 0.0114(3)       | 0.0003(2)        | 0.0030(2)        | -0.0040(2)       |
| C9  | 0.0154(3)   | 0.0127(3)  | 0.0137(3)       | 0.0002(2)        | 0.0008(2)        | -0.0029(2)       |
| C10 | 0.0180(3)   | 0.0120(3)  | 0.0132(3)       | -0.0026(2)       | -0.0041(2)       | 0.0051(2)        |
| C11 | 0.0119(2)   | 0.0115(2)  | 0.0101(2)       | -<br>0.00070(19) | 0.00034(19)      | 0.00153(19)      |
| C12 | 0.0137(3)   | 0.0129(3)  | 0.0130(3)       | -0.0019(2)       | 0.0005(2)        | 0.0005(2)        |
| C13 | 0.0157(3)   | 0.0173(3)  | 0.0137(3)       | -0.0028(2)       | -0.0018(2)       | -0.0015(2)       |
| C14 | 0.0172(3)   | 0.0197(3)  | 0.0138(3)       | -0.0006(2)       | -0.0043(2)       | 0.0001(2)        |
| C15 | 0.0159(3)   | 0.0159(3)  | 0.0132(3)       | 0.0010(2)        | -0.0033(2)       | 0.0023(2)        |
| C16 | 0.0120(2)   | 0.0123(3)  | 0.0099(2)       | -<br>0.00017(19) | -<br>0.00026(19) | 0.00143(19)      |

# Table 9. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å<sup>2</sup>) for 20181003AR.

|      | x/a    | y/b     | z/c    | U(eq) |
|------|--------|---------|--------|-------|
| H1   | 0.5186 | 0.4136  | 0.6107 | 0.013 |
| НЗ   | 0.5361 | 0.7396  | 0.6507 | 0.016 |
| H4   | 0.5492 | 0.9529  | 0.7772 | 0.02  |
| Н5   | 0.4872 | 0.8850  | 0.9346 | 0.021 |
| НG   | 0.4123 | 0.6066  | 0.9645 | 0.017 |
| H8A  | 0.3131 | 0.3418  | 0.8863 | 0.018 |
| H8AB | 0.4303 | 0.2504  | 0.8792 | 0.018 |
| H9A  | 0.3157 | 0.1109  | 0.7602 | 0.017 |
| H9AB | 0.2703 | 0.2975  | 0.7173 | 0.017 |
| H10A | 0.3940 | -0.0014 | 0.6226 | 0.018 |
| H10B | 0.4871 | 0.1023  | 0.5684 | 0.018 |
| H12  | 0.3168 | -0.0969 | 0.4622 | 0.016 |
| H13  | 0.1973 | -0.0431 | 0.3242 | 0.019 |

|     | x/a    | y/b    | z/c    | U(eq) |
|-----|--------|--------|--------|-------|
| H14 | 0.1403 | 0.2492 | 0.2878 | 0.021 |
| H15 | 0.2039 | 0.4835 | 0.3891 | 0.018 |



A clear colourless rhombic prism-like specimen of  $C_{17}H_{17}NOS$ , approximate dimensions 0.050 mm x 0.250 mm x 0.290 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ( $\lambda = 0.71073$  Å).

| Table | ; I. Da  |         |         | ctans n |        | 1010       |        |           |                 |               |               |                  |
|-------|----------|---------|---------|---------|--------|------------|--------|-----------|-----------------|---------------|---------------|------------------|
| Axis  | dx<br>mm | 20<br>° | °       | φ<br>°  | ×<br>° | Width<br>° | Frames | Time<br>s | Wavelength<br>Å | Voltage<br>kV | Current<br>mA | Temperature<br>K |
| Omega | 39.895   | -28.00  | -28.00  | 0.00    | 54.00  | 0.50       | 12     | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | -28.00  | -28.00  | 90.00   | 54.00  | 0.50       | 12     | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | 20.00   | 20.00   | 0.00    | 54.00  | 0.50       | 12     | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | -33.72  | -136.98 | 80.00   | 54.74  | 1.30       | 79     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | -33.72  | -136.98 | 160.00  | 54.74  | 1.30       | 79     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | -33.72  | -31.92  | -40.00  | -55.50 | 1.30       | 67     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | -33.72  | -136.98 | 120.00  | 54.74  | 1.30       | 79     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | -33.72  | -31.92  | -80.00  | -55.50 | 1.30       | 67     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | -33.72  | -136.98 | -120.00 | 54.74  | 1.30       | 79     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | -33.72  | -31.92  | 40.00   | -55.50 | 1.30       | 67     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.895   | -33.72  | -136.98 | -40.00  | 54.74  | 1.30       | 79     | 20.00     | 0.71073         | 50            | 35.0          | 103              |

### Table 1: Data collection details for 20181010AR.

A total of 632 frames were collected. The total exposure time was 3.41 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 24293 reflections to a

maximum θ angle of 34.88° (0.62 Å resolution), of which 5960 were independent (average redundancy 4.076, completeness = 99.9%, R<sub>int</sub> = 4.97%, R<sub>sig</sub> = 4.67%) and 4375 (73.41%) were greater than  $2\sigma(F^2)$ . The final cell constants of <u>a</u> = 18.2786(14) Å, <u>b</u> = 5.5078(4) Å, <u>c</u> = 13.6680(11) Å, β  $= 95.902(2)^{\circ}$ volume = 1368.73(18)  $Å^3$ , are based upon the refinement of the XYZ-centroids of 5782 reflections above  $20 \sigma(I)$  with  $5.991^{\circ} < 2\theta < 67.82^{\circ}$ . Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.896. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9360 and 0.9890.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P 1 21/c 1, with Z = 4 for the formula unit,  $C_{17}H_{17}NOS$ . The final anisotropic full-matrix least-squares refinement on F<sup>2</sup> with 182 variables converged at R1 = 4.43%, for the observed data and wR2 = 10.88% for all data. The goodness-of-fit was 1.026. The largest peak in the final difference electron density synthesis was 0.598 e<sup>-</sup>/Å<sup>3</sup> and the largest hole was - 0.292 e<sup>-</sup>/Å<sup>3</sup> with an RMS deviation of 0.071 e<sup>-</sup>/Å<sup>3</sup>. On the basis of the final model, the calculated density was 1.375g/cm<sup>3</sup> and F(000), 600 e<sup>-</sup>.

| Table 2. Sample and crystal data for 20181010AR. |                                     |                             |  |  |  |
|--------------------------------------------------|-------------------------------------|-----------------------------|--|--|--|
| Identification code                              | 20181010AR                          |                             |  |  |  |
| Chemical formula                                 | C <sub>17</sub> H <sub>17</sub> NOS |                             |  |  |  |
| Formula weight                                   | 283.37 g/mol                        |                             |  |  |  |
| Temperature                                      | 103(2) K                            |                             |  |  |  |
| Wavelength                                       | 0.71073 Å                           |                             |  |  |  |
| Crystal size                                     | 0.050 x 0.250 x 0.290 mm            |                             |  |  |  |
| Crystal habit                                    | clear colourless rhombic prism      |                             |  |  |  |
| Crystal system                                   | monoclinic                          |                             |  |  |  |
| Space group                                      | P 1 21/c 1                          |                             |  |  |  |
| Unit cell dimensions                             | a = 18.2786(14) Å                   | $\alpha = 90^{\circ}$       |  |  |  |
|                                                  | b = 5.5078(4) Å                     | $\beta = 95.902(2)^{\circ}$ |  |  |  |
|                                                  | c = 13.6680(11) Å                   | γ = 90°                     |  |  |  |
| Volume                                           | 1368.73(18) Å <sup>3</sup>          |                             |  |  |  |
| Z                                                | 4                                   |                             |  |  |  |
| Density (calculated)                             | 1.375 g/cm <sup>3</sup>             |                             |  |  |  |
| Absorption coefficient                           | 0.231 mm <sup>-1</sup>              |                             |  |  |  |
| F(000)                                           | 600                                 |                             |  |  |  |

| Table 3. Data collection and structure refinement for 20181010AR. |                                  |  |  |  |
|-------------------------------------------------------------------|----------------------------------|--|--|--|
| Theta range for data collection                                   | 3.00 to 34.88°                   |  |  |  |
| Index ranges                                                      | -20<=h<=29, -8<=k<=8, -21<=l<=21 |  |  |  |

| Reflections collected               | 24293                                                                                                                                                      |                                 |  |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|
| Independent reflections             | 5960 [R(int) = 0.049                                                                                                                                       | 97]                             |  |  |  |
| Coverage of independent reflections | 99.9%                                                                                                                                                      |                                 |  |  |  |
| Absorption correction               | Multi-Scan                                                                                                                                                 |                                 |  |  |  |
| Max. and min. transmission          | 0.9890 and 0.9360                                                                                                                                          |                                 |  |  |  |
| Structure solution technique        | direct methods                                                                                                                                             |                                 |  |  |  |
| Structure solution program          | SHELXT 2014/5 (SI                                                                                                                                          | SHELXT 2014/5 (Sheldrick, 2014) |  |  |  |
| Refinement method                   | Full-matrix least-squares on F <sup>2</sup>                                                                                                                |                                 |  |  |  |
| Refinement program                  | SHELXL-2017/1 (Sheldrick, 2017)                                                                                                                            |                                 |  |  |  |
| Function minimized                  | $\Sigma w (F_o^2 - F_c^2)^2$                                                                                                                               |                                 |  |  |  |
| Data / restraints / parameters      | 5960 / 0 / 182                                                                                                                                             |                                 |  |  |  |
| Goodness-of-fit on F <sup>2</sup>   | 1.026                                                                                                                                                      |                                 |  |  |  |
| $\Delta / \sigma_{max}$             | 0.001                                                                                                                                                      |                                 |  |  |  |
| Final R indices                     | 4375 data; I>2σ(I)                                                                                                                                         | R1 = 0.0443, wR2 = 0.0985       |  |  |  |
|                                     | all data                                                                                                                                                   | R1 = 0.0706, wR2 = 0.1088       |  |  |  |
| Weighting scheme                    | w=1/[ $\sigma^2$ (F <sub>o</sub> <sup>2</sup> )+(0.0475P) <sup>2</sup> +0.5247P]<br>where P=(F <sub>o</sub> <sup>2</sup> +2F <sub>c</sub> <sup>2</sup> )/3 |                                 |  |  |  |
| Largest diff. peak and hole         | 0.598 and -0.292 e                                                                                                                                         | <b>Å</b> -3                     |  |  |  |
| R.M.S. deviation from mean          | 0.071 eÅ <sup>-3</sup>                                                                                                                                     |                                 |  |  |  |

# Table 4. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å<sup>2</sup>) for 20181010AR.

U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|     | x/a        | y/b         | z/c        | U(eq)       |
|-----|------------|-------------|------------|-------------|
| S1  | 0.34375(2) | 0.75754(5)  | 0.48034(2) | 0.01285(7)  |
| 01  | 0.05954(5) | 0.32765(17) | 0.65734(7) | 0.01816(18) |
| N1  | 0.24202(5) | 0.69012(18) | 0.31552(7) | 0.01080(17) |
| C1  | 0.37789(6) | 0.9468(2)   | 0.39136(8) | 0.01154(19) |
| C2  | 0.42818(6) | 0.1267(2)   | 0.42660(9) | 0.0143(2)   |
| C3  | 0.45823(7) | 0.2832(2)   | 0.36213(9) | 0.0165(2)   |
| C4  | 0.43759(7) | 0.2651(2)   | 0.26165(9) | 0.0167(2)   |
| С5  | 0.38571(6) | 0.0919(2)   | 0.22708(9) | 0.0143(2)   |
| C6  | 0.35512(6) | 0.9314(2)   | 0.29032(8) | 0.01164(19) |
| С7  | 0.29793(6) | 0.7486(2)   | 0.24936(8) | 0.01252(19) |
| C8  | 0.19802(6) | 0.9021(2)   | 0.33778(8) | 0.0124(2)   |
| С9  | 0.13245(6) | 0.8261(2)   | 0.39100(8) | 0.0123(2)   |
| C10 | 0.15044(6) | 0.6286(2)   | 0.46627(8) | 0.01049(19) |
| C11 | 0.09949(6) | 0.5631(2)   | 0.53046(8) | 0.0128(2)   |
| C12 | 0.11358(6) | 0.3736(2)   | 0.59710(8) | 0.0126(2)   |
| C13 | 0.17944(6) | 0.2443(2)   | 0.60052(8) | 0.01295(19) |

|     | x/a        | y/b       | z/c         | U(eq)       |
|-----|------------|-----------|-------------|-------------|
| C14 | 0.23033(6) | 0.3105(2) | 0.53641(8)  | 0.01143(19) |
| C15 | 0.21687(6) | 0.5008(2) | 0.46993(8)  | 0.01039(19) |
| C16 | 0.27349(6) | 0.5683(2) | 0.40248(8)  | 0.01100(19) |
| C17 | 0.06988(7) | 0.1221(2) | 0.72084(10) | 0.0189(2)   |

# Table 5. Bond lengths (Å) for 20181010AR.

| S1-C1    | 1.7638(12) | S1-C16   | 1.8940(11) |
|----------|------------|----------|------------|
| 01-C12   | 1.3729(14) | 01-C17   | 1.4274(15) |
| N1-C16   | 1.4328(14) | N1-C8    | 1.4674(15) |
| N1-C7    | 1.4684(14) | C1-C2    | 1.4028(16) |
| C1-C6    | 1.4032(16) | C2-C3    | 1.3859(17) |
| С2-Н2    | 0.95       | C3-C4    | 1.3900(18) |
| СЗ-НЗ    | 0.95       | C4-C5    | 1.3927(17) |
| C4-H4    | 0.95       | C5-C6    | 1.3931(16) |
| С5-Н5    | 0.95       | C6-C7    | 1.5164(16) |
| C7-H7A   | 0.99       | C7-H7AB  | 0.99       |
| C8-C9    | 1.5232(16) | C8-H8A   | 0.99       |
| C8-H8AB  | 0.99       | C9-C10   | 1.5100(16) |
| С9-Н9А   | 0.99       | С9-Н9АВ  | 0.99       |
| C10-C11  | 1.3912(16) | C10-C15  | 1.3997(15) |
| C11-C12  | 1.3918(16) | С11-Н11  | 0.95       |
| C12-C13  | 1.3953(16) | C13-C14  | 1.3907(16) |
| С13-Н13  | 0.95       | C14-C15  | 1.3923(15) |
| C14-H14  | 0.95       | C15-C16  | 1.5018(15) |
| С16-Н16  | 1.0        | C17-H17A | 0.98       |
| С17-Н17В | 0.98       | C17-H17C | 0.98       |

# Table 6. Bond angles (°) for 20181010AR.

| C1-S1-C16 | 101.84(5)  | C12-01-C17 | 116.90(10) |
|-----------|------------|------------|------------|
| C16-N1-C8 | 112.49(9)  | C16-N1-C7  | 111.61(9)  |
| C8-N1-C7  | 112.58(9)  | C2-C1-C6   | 119.87(11) |
| C2-C1-S1  | 116.51(9)  | C6-C1-S1   | 123.56(9)  |
| C3-C2-C1  | 120.64(11) | С3-С2-Н2   | 119.7      |
| С1-С2-Н2  | 119.7      | C2-C3-C4   | 119.90(11) |
| С2-С3-Н3  | 120.0      | С4-С3-Н3   | 120.0      |
| C3-C4-C5  | 119.38(11) | С3-С4-Н4   | 120.3      |
| С5-С4-Н4  | 120.3      | C4-C5-C6   | 121.78(11) |

| С4-С5-Н5      | 119.1      | С6-С5-Н5      | 119.1      |
|---------------|------------|---------------|------------|
| C5-C6-C1      | 118.36(11) | C5-C6-C7      | 119.84(10) |
| C1-C6-C7      | 121.79(10) | N1-C7-C6      | 114.54(9)  |
| N1-C7-H7A     | 108.6      | С6-С7-Н7А     | 108.6      |
| N1-C7-H7AB    | 108.6      | С6-С7-Н7АВ    | 108.6      |
| Н7А-С7-Н7АВ   | 107.6      | N1-C8-C9      | 110.80(9)  |
| N1-C8-H8A     | 109.5      | C9-C8-H8A     | 109.5      |
| N1-C8-H8AB    | 109.5      | C9-C8-H8AB    | 109.5      |
| Н8А-С8-Н8АВ   | 108.1      | C10-C9-C8     | 113.36(9)  |
| С10-С9-Н9А    | 108.9      | С8-С9-Н9А     | 108.9      |
| С10-С9-Н9АВ   | 108.9      | С8-С9-Н9АВ    | 108.9      |
| Н9А-С9-Н9АВ   | 107.7      | C11-C10-C15   | 118.79(10) |
| C11-C10-C9    | 120.23(10) | C15-C10-C9    | 120.91(10) |
| C10-C11-C12   | 121.09(10) | С10-С11-Н11   | 119.5      |
| С12-С11-Н11   | 119.5      | 01-C12-C11    | 115.76(10) |
| 01-C12-C13    | 123.87(10) | C11-C12-C13   | 120.37(10) |
| C14-C13-C12   | 118.41(10) | С14-С13-Н13   | 120.8      |
| С12-С13-Н13   | 120.8      | C13-C14-C15   | 121.59(10) |
| C13-C14-H14   | 119.2      | С15-С14-Н14   | 119.2      |
| C14-C15-C10   | 119.75(10) | C14-C15-C16   | 120.01(10) |
| C10-C15-C16   | 120.24(10) | N1-C16-C15    | 112.45(9)  |
| N1-C16-S1     | 113.55(8)  | C15-C16-S1    | 105.16(7)  |
| N1-C16-H16    | 108.5      | С15-С16-Н16   | 108.5      |
| S1-C16-H16    | 108.5      | 01-С17-Н17А   | 109.5      |
| 01-С17-Н17В   | 109.5      | H17A-C17-H17B | 109.5      |
| 01-С17-Н17С   | 109.5      | H17A-C17-H17C | 109.5      |
| Н17В-С17-Н17С | 109.5      |               |            |

# Table 7. Torsion angles (°) for 20181010AR.

| C16-S1-C1-C2  | 175.10(9)  | C16-S1-C1-C6  | -2.24(11)   |
|---------------|------------|---------------|-------------|
| C6-C1-C2-C3   | -2.87(17)  | S1-C1-C2-C3   | 179.68(9)   |
| C1-C2-C3-C4   | 1.08(18)   | C2-C3-C4-C5   | 1.17(18)    |
| C3-C4-C5-C6   | -1.68(18)  | C4-C5-C6-C1   | -0.10(17)   |
| C4-C5-C6-C7   | 179.05(11) | C2-C1-C6-C5   | 2.35(16)    |
| S1-C1-C6-C5   | 179.60(9)  | C2-C1-C6-C7   | -176.78(10) |
| S1-C1-C6-C7   | 0.48(15)   | C16-N1-C7-C6  | -65.48(12)  |
| C8-N1-C7-C6   | 62.13(12)  | C5-C6-C7-N1   | -147.29(10) |
| C1-C6-C7-N1   | 31.83(15)  | C16-N1-C8-C9  | -62.99(12)  |
| C7-N1-C8-C9   | 169.87(9)  | N1-C8-C9-C10  | 39.89(13)   |
| C8-C9-C10-C11 | 171.02(10) | C8-C9-C10-C15 | -11.91(15)  |

| C15-C10-C11-C12 | -0.30(17)   | C9-C10-C11-C12  | 176.83(10)  |
|-----------------|-------------|-----------------|-------------|
| C17-01-C12-C11  | 175.09(11)  | C17-01-C12-C13  | -5.38(17)   |
| C10-C11-C12-O1  | 179.31(10)  | C10-C11-C12-C13 | -0.23(17)   |
| 01-C12-C13-C14  | -179.14(11) | C11-C12-C13-C14 | 0.37(17)    |
| C12-C13-C14-C15 | 0.02(17)    | C13-C14-C15-C10 | -0.55(17)   |
| C13-C14-C15-C16 | 179.47(10)  | C11-C10-C15-C14 | 0.68(16)    |
| C9-C10-C15-C14  | -176.43(10) | C11-C10-C15-C16 | -179.34(10) |
| C9-C10-C15-C16  | 3.55(16)    | C8-N1-C16-C15   | 53.88(12)   |
| C7-N1-C16-C15   | -178.46(9)  | C8-N1-C16-S1    | -65.38(11)  |
| C7-N1-C16-S1    | 62.27(10)   | C14-C15-C16-N1  | 156.11(10)  |
| C10-C15-C16-N1  | -23.87(14)  | C14-C15-C16-S1  | -79.84(11)  |
| C10-C15-C16-S1  | 100.18(10)  | C1-S1-C16-N1    | -28.24(9)   |
| C1-S1-C16-C15   | -151.58(7)  |                 |             |

# Table 8. Anisotropic atomic displacement parameters (Å<sup>2</sup>) for 20181010AR.

The anisotropic atomic displacement factor exponent takes the form: -2 $\pi^2$ [ h<sup>2</sup> a<sup>\*2</sup> U<sub>11</sub> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sub>12</sub>]

|     | <b>U</b> <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | $U_{23}$   | U <sub>13</sub> | <b>U</b> <sub>12</sub> |
|-----|------------------------|-----------------|-----------------|------------|-----------------|------------------------|
| S1  | 0.01358(12)            | 0.01405(13)     | 0.01041(11)     | 0.00090(9) | -0.00127(8)     | -<br>0.00091(10)       |
| 01  | 0.0149(4)              | 0.0212(4)       | 0.0193(4)       | 0.0073(3)  | 0.0064(3)       | 0.0027(3)              |
| N1  | 0.0115(4)              | 0.0115(4)       | 0.0092(4)       | -0.0004(3) | 0.0006(3)       | 0.0018(3)              |
| C1  | 0.0100(4)              | 0.0118(5)       | 0.0128(4)       | -0.0003(4) | 0.0011(3)       | 0.0020(4)              |
| C2  | 0.0112(5)              | 0.0150(5)       | 0.0163(5)       | -0.0016(4) | -0.0008(4)      | 0.0006(4)              |
| C3  | 0.0119(5)              | 0.0146(5)       | 0.0227(6)       | -0.0015(4) | 0.0009(4)       | -0.0014(4)             |
| C4  | 0.0142(5)              | 0.0159(5)       | 0.0204(5)       | 0.0033(4)  | 0.0031(4)       | 0.0003(4)              |
| C5  | 0.0131(5)              | 0.0157(5)       | 0.0142(5)       | 0.0012(4)  | 0.0018(4)       | 0.0018(4)              |
| C6  | 0.0100(4)              | 0.0125(5)       | 0.0124(4)       | -0.0002(4) | 0.0008(3)       | 0.0021(4)              |
| C7  | 0.0137(5)              | 0.0140(5)       | 0.0101(4)       | -0.0014(4) | 0.0021(3)       | -0.0007(4)             |
| C8  | 0.0138(5)              | 0.0109(5)       | 0.0122(4)       | 0.0006(4)  | 0.0003(4)       | 0.0025(4)              |
| C9  | 0.0116(5)              | 0.0127(5)       | 0.0124(4)       | 0.0016(4)  | -0.0001(4)      | 0.0035(4)              |
| C10 | 0.0107(4)              | 0.0094(4)       | 0.0110(4)       | -0.0008(3) | -0.0005(3)      | 0.0010(4)              |
| C11 | 0.0110(5)              | 0.0137(5)       | 0.0137(5)       | -0.0005(4) | 0.0012(4)       | 0.0016(4)              |
| C12 | 0.0122(5)              | 0.0135(5)       | 0.0120(4)       | -0.0009(4) | 0.0013(4)       | -0.0011(4)             |
| C13 | 0.0146(5)              | 0.0119(5)       | 0.0120(4)       | 0.0013(4)  | -0.0002(4)      | 0.0003(4)              |
| C14 | 0.0116(5)              | 0.0101(4)       | 0.0123(4)       | -0.0010(3) | -0.0002(4)      | 0.0018(4)              |
| C15 | 0.0111(5)              | 0.0097(4)       | 0.0102(4)       | -0.0016(3) | 0.0003(3)       | 0.0009(4)              |
| C16 | 0.0112(4)              | 0.0103(5)       | 0.0114(4)       | -0.0011(4) | 0.0003(3)       | 0.0008(4)              |
| C17 | 0.0188(6)              | 0.0195(6)       | 0.0191(5)       | 0.0065(5)  | 0.0041(4)       | -0.0016(5)             |

|      | x/a    | y/b     | z/c    | U(eq) |
|------|--------|---------|--------|-------|
| Н2   | 0.4418 | 1.1414  | 0.4953 | 0.017 |
| НЗ   | 0.4929 | 1.4027  | 0.3866 | 0.02  |
| H4   | 0.4587 | 1.3698  | 0.2170 | 0.02  |
| Н5   | 0.3708 | 1.0830  | 0.1585 | 0.017 |
| H7A  | 0.2729 | 0.8131  | 0.1871 | 0.015 |
| H7AB | 0.3233 | 0.5969  | 0.2337 | 0.015 |
| H8A  | 0.1803 | 0.9864  | 0.2758 | 0.015 |
| H8AB | 0.2291 | 1.0169  | 0.3795 | 0.015 |
| H9A  | 0.1138 | 0.9697  | 0.4243 | 0.015 |
| H9AB | 0.0927 | 0.7684  | 0.3419 | 0.015 |
| H11  | 0.0543 | 0.6492  | 0.5288 | 0.015 |
| H13  | 0.1893 | 0.1142  | 0.6456 | 0.016 |
| H14  | 0.2754 | 0.2239  | 0.5380 | 0.014 |
| H16  | 0.2980 | 0.4165  | 0.3824 | 0.013 |
| H17A | 0.0276 | 0.1059  | 0.7590 | 0.028 |
| H17B | 0.1148 | 0.1440  | 0.7657 | 0.028 |
| H17C | 0.0744 | -0.0247 | 0.6814 | 0.028 |

Table 9. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å<sup>2</sup>) for 20181010AR.



A clear colourless 'rhombic prism'-like specimen of  $C_{17}H_{16}N_2O_3S$ , approximate dimensions 0.160 mm x 0.210 mm x 0.290 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured ( $\lambda = 0.71073$  Å).

### Table 1: Data collection details for 20181011AR.

| Axis  | dx<br>mm | 2 <b>0</b> | ů      | φ<br>°  | Å      | width | Frames | Time<br>s | Wavelength<br>Å | Voltage<br>kV | Current<br>mA | Temperature<br>K |
|-------|----------|------------|--------|---------|--------|-------|--------|-----------|-----------------|---------------|---------------|------------------|
| Omega | 39.825   | -28.00     | -28.00 | 0.00    | 54.00  | 0.50  | 12     | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -28.00     | -28.00 | 90.00   | 54.00  | 0.50  | 12     | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | 20.00      | 20.00  | 0.00    | 54.00  | 0.50  | 12     | 10.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69     | -42.82 | -120.00 | -55.50 | 2.00  | 49     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69     | -42.82 | 0.00    | -55.50 | 2.00  | 49     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69     | -42.82 | 160.00  | -55.50 | 2.00  | 49     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69     | -42.82 | 80.00   | -55.50 | 2.00  | 49     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69     | -42.82 | -40.00  | -55.50 | 2.00  | 49     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69     | -42.82 | -160.00 | -55.50 | 2.00  | 49     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69     | -42.82 | -80.00  | -55.50 | 2.00  | 49     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69     | -42.82 | 120.00  | -55.50 | 2.00  | 49     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69     | -42.82 | 40.00   | -55.50 | 2.00  | 49     | 20.00     | 0.71073         | 50            | 35.0          | 103              |

| Axis  | dx<br>mm | 20<br>° | °       | φ<br>°  | ×<br>X | Width | Frames | Time<br>s | Wavelength<br>Å | Voltage<br>kV | Current<br>mA | Temperature<br>K |
|-------|----------|---------|---------|---------|--------|-------|--------|-----------|-----------------|---------------|---------------|------------------|
| Omega | 39.825   | -34.24  | -136.79 | 160.00  | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -13.69  | -116.24 | 90.00   | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69  | -146.25 | -120.00 | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69  | -146.25 | 0.00    | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69  | -146.25 | 120.00  | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69  | -146.25 | 40.00   | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69  | -146.25 | -80.00  | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69  | -146.25 | -160.00 | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69  | -146.25 | -40.00  | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69  | -146.25 | 80.00   | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -43.69  | -146.25 | 160.00  | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -34.24  | -136.79 | -120.00 | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -34.24  | -136.79 | -40.00  | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -34.24  | -136.79 | 80.00   | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -13.69  | -116.24 | 180.00  | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |
| Omega | 39.825   | -13.69  | -116.24 | 270.00  | 54.74  | 2.00  | 51     | 20.00     | 0.71073         | 50            | 35.0          | 103              |

A total of 1293 frames were collected. The total exposure time was 7.08 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using a triclinic unit cell yielded a total of 52965 reflections to a maximum  $\theta$  angle of 37.78° (0.58 Å resolution), of which 7991 were independent (average redundancy 6.628, completeness = 99.8%, R<sub>int</sub> = 3.78%, R<sub>sig</sub> = 2.67%) and 6454 (80.77%) were greater than  $2\sigma(F^2)$ . The final cell constants

of <u>a</u> = 7.2999(3) Å, <u>b</u> = 8.7882(3) Å, <u>c</u> = 12.8272(5) Å,  $\alpha$  = 70.7810(10)°,  $\beta$  = 74.6590(10)°,  $\gamma$  = 80.3970(10)°, volume = 746.48(5) Å<sup>3</sup>, are based upon the refinement of the XYZ-centroids of 9847 reflections above 20  $\sigma$ (I) with 4.927° < 20 < 79.30°. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.952. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9350 and 0.9630.

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group P -1, with Z = 2 for the formula unit,  $C_{17}H_{16}N_2O_3S$ . The final anisotropic full-matrix least-squares refinement on F<sup>2</sup> with 209 variables converged at R1 = 3.58%, for the observed data and wR2 = 10.04% for all data. The goodness-of-fit was 1.069. The largest peak in the final difference electron density synthesis was 0.670 e<sup>-</sup>/Å<sup>3</sup> and the largest hole was -0.240 e<sup>-</sup>/Å<sup>3</sup> with an RMS deviation of 0.068 e<sup>-</sup>/Å<sup>3</sup>. On the basis of the final model, the calculated density was 1.461 g/cm<sup>3</sup> and F(000), 344 e<sup>-</sup>.

| Table 2. Sample and crystal dat | ta for 20181011AR.       |                                  |  |  |  |  |
|---------------------------------|--------------------------|----------------------------------|--|--|--|--|
| Identification code             | 20181011AR               | 20181011AR                       |  |  |  |  |
| Chemical formula                | $C_{17}H_{16}N_2O_3S$    |                                  |  |  |  |  |
| Formula weight                  | 328.38 g/mol             |                                  |  |  |  |  |
| Temperature                     | 103(2) K                 |                                  |  |  |  |  |
| Wavelength                      | 0.71073 Å                |                                  |  |  |  |  |
| Crystal size                    | 0.160 x 0.210 x 0.290    | mm                               |  |  |  |  |
| Crystal habit                   | clear colourless 'rhom   | clear colourless 'rhombic prism' |  |  |  |  |
| Crystal system                  | triclinic                | triclinic                        |  |  |  |  |
| Space group                     | P -1                     |                                  |  |  |  |  |
| Unit cell dimensions            | a = 7.2999(3) Å          | $\alpha = 70.7810(10)^{\circ}$   |  |  |  |  |
|                                 | b = 8.7882(3) Å          | $\beta = 74.6590(10)^{\circ}$    |  |  |  |  |
|                                 | c = 12.8272(5) Å         | γ = 80.3970(10)°                 |  |  |  |  |
| Volume                          | 746.48(5) Å <sup>3</sup> |                                  |  |  |  |  |
| Ζ                               | 2                        | 2                                |  |  |  |  |
| Density (calculated)            | 1.461 g/cm <sup>3</sup>  | 1.461 g/cm <sup>3</sup>          |  |  |  |  |
| Absorption coefficient          | 0.234 mm <sup>-1</sup>   |                                  |  |  |  |  |
| F(000)                          | 344                      |                                  |  |  |  |  |

| Table 3. Data collection and structure refinement for 20181011AR. |                                    |  |  |  |  |
|-------------------------------------------------------------------|------------------------------------|--|--|--|--|
| Theta range for data collection                                   | 2.46 to 37.78°                     |  |  |  |  |
| Index ranges                                                      | -12<=h<=12, -15<=k<=15, -22<=l<=22 |  |  |  |  |
| Reflections collected                                             | 52965                              |  |  |  |  |
| Independent reflections                                           | 7991 [R(int) = 0.0378]             |  |  |  |  |

| Coverage of independent reflections | 99.8%                                                                                                                           |                                  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
| Absorption correction               | Multi-Scan                                                                                                                      |                                  |  |  |  |
| Max. and min. transmission          | 0.9630 and 0.9350                                                                                                               |                                  |  |  |  |
| Structure solution technique        | direct methods                                                                                                                  |                                  |  |  |  |
| Structure solution program          | SHELXT 2014/5 (Sh                                                                                                               | neldrick, 2014)                  |  |  |  |
| Refinement method                   | Full-matrix least-squ                                                                                                           | uares on F <sup>2</sup>          |  |  |  |
| Refinement program                  | SHELXL-2017/1 (Sheldrick, 2017)                                                                                                 |                                  |  |  |  |
| Function minimized                  | $\Sigma w(F_o^2 - F_c^2)^2$                                                                                                     |                                  |  |  |  |
| Data / restraints / parameters      | 7991 / 0 / 209                                                                                                                  |                                  |  |  |  |
| Goodness-of-fit on F <sup>2</sup>   | 1.069                                                                                                                           |                                  |  |  |  |
| $\Delta / \sigma_{max}$             | 0.001                                                                                                                           |                                  |  |  |  |
| Final R indices                     | 6454 data; I>2σ(I)                                                                                                              | R1 = 0.0358, wR2 = 0.0924        |  |  |  |
|                                     | all data                                                                                                                        | R1 = 0.0514, wR2 = 0.1004        |  |  |  |
| Weighting scheme                    | w=1/[ $\sigma^2$ (F <sub>o</sub> <sup>2</sup> )+(0.049)<br>where P=(F <sub>o</sub> <sup>2</sup> +2F <sub>c</sub> <sup>2</sup> ) | 3P) <sup>2</sup> +0.1762P]<br>/3 |  |  |  |
| Largest diff. peak and hole         | 0.670 and -0.240 eA                                                                                                             | <b>\</b> -3                      |  |  |  |
| R.M.S. deviation from mean          | 0.068 eÅ <sup>-3</sup>                                                                                                          |                                  |  |  |  |

# Table 4. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å<sup>2</sup>) for 20181011AR.

U(eq) is defined as one third of the trace of the orthogonalized  $U_{ij}$  tensor.

|     | x/a         | y/b         | z/c        | U(eq)       |
|-----|-------------|-------------|------------|-------------|
| S1  | 0.62664(3)  | 0.54997(2)  | 0.20377(2) | 0.01347(5)  |
| 01  | 0.82946(9)  | 0.92720(8)  | 0.48824(5) | 0.01674(11) |
| 02  | 0.00488(10) | 0.24633(9)  | 0.04584(7) | 0.02276(14) |
| 03  | 0.24476(10) | 0.06559(8)  | 0.03751(6) | 0.01970(12) |
| Nl  | 0.27126(9)  | 0.70936(8)  | 0.26364(6) | 0.01214(11) |
| N2  | 0.16689(10) | 0.19170(9)  | 0.05763(6) | 0.01371(11) |
| C1  | 0.48031(10) | 0.45210(9)  | 0.16282(6) | 0.01116(12) |
| C2  | 0.56253(11) | 0.30914(9)  | 0.13699(7) | 0.01310(12) |
| C3  | 0.46004(11) | 0.22261(9)  | 0.10324(7) | 0.01322(12) |
| C4  | 0.27361(11) | 0.28111(9)  | 0.09589(6) | 0.01148(12) |
| C5  | 0.18701(11) | 0.42001(9)  | 0.12353(6) | 0.01176(12) |
| C6  | 0.28961(11) | 0.50753(9)  | 0.15817(6) | 0.01088(11) |
| С7  | 0.19278(11) | 0.66027(10) | 0.18697(7) | 0.01360(13) |
| C8  | 0.23352(12) | 0.60571(10) | 0.38126(7) | 0.01423(13) |
| С9  | 0.28397(12) | 0.68640(10) | 0.45758(7) | 0.01525(13) |
| C10 | 0.47187(11) | 0.76076(9)  | 0.40792(6) | 0.01204(12) |
| C11 | 0.56202(11) | 0.80385(10) | 0.47659(7) | 0.01296(12) |
| C12 | 0.72998(11) | 0.88018(9)  | 0.42933(7) | 0.01270(12) |
| C13 | 0.80889(11) | 0.91604(10) | 0.31310(7) | 0.01408(13) |

|     | x/a         | y/b         | z/c        | U(eq)       |
|-----|-------------|-------------|------------|-------------|
| C14 | 0.72038(11) | 0.87272(10) | 0.24542(7) | 0.01282(12) |
| C15 | 0.55234(11) | 0.79468(9)  | 0.29232(6) | 0.01146(12) |
| C16 | 0.46714(11) | 0.73851(9)  | 0.21852(6) | 0.01163(12) |
| C17 | 0.77666(15) | 0.87010(11) | 0.60875(7) | 0.01939(16) |

# Table 5. Bond lengths (Å) for 20181011AR.

| 1.7487(8)  | S1-C16                                                                                                                                                                                                                                  | 1.8929(8)                                                                                                                                                                                                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3658(9)  | 01-C17                                                                                                                                                                                                                                  | 1.4242(11)                                                                                                                                                                                                                                                                                       |
| 1.2286(10) | 03-N2                                                                                                                                                                                                                                   | 1.2323(9)                                                                                                                                                                                                                                                                                        |
| 1.4255(10) | N1-C8                                                                                                                                                                                                                                   | 1.4633(11)                                                                                                                                                                                                                                                                                       |
| 1.4633(10) | N2-C4                                                                                                                                                                                                                                   | 1.4579(10)                                                                                                                                                                                                                                                                                       |
| 1.4020(11) | C1-C6                                                                                                                                                                                                                                   | 1.4061(10)                                                                                                                                                                                                                                                                                       |
| 1.3796(11) | С2-Н2                                                                                                                                                                                                                                   | 0.95                                                                                                                                                                                                                                                                                             |
| 1.3884(11) | СЗ-НЗ                                                                                                                                                                                                                                   | 0.95                                                                                                                                                                                                                                                                                             |
| 1.3872(11) | C5-C6                                                                                                                                                                                                                                   | 1.3940(10)                                                                                                                                                                                                                                                                                       |
| 0.95       | C6-C7                                                                                                                                                                                                                                   | 1.5198(11)                                                                                                                                                                                                                                                                                       |
| 0.99       | C7-H7AB                                                                                                                                                                                                                                 | 0.99                                                                                                                                                                                                                                                                                             |
| 1.5270(11) | C8-H8A                                                                                                                                                                                                                                  | 0.99                                                                                                                                                                                                                                                                                             |
| 0.99       | C9-C10                                                                                                                                                                                                                                  | 1.5090(11)                                                                                                                                                                                                                                                                                       |
| 0.99       | С9-Н9АВ                                                                                                                                                                                                                                 | 0.99                                                                                                                                                                                                                                                                                             |
| 1.3925(11) | C10-C11                                                                                                                                                                                                                                 | 1.4007(11)                                                                                                                                                                                                                                                                                       |
| 1.3907(11) | С11-Н11                                                                                                                                                                                                                                 | 0.95                                                                                                                                                                                                                                                                                             |
| 1.3966(11) | C13-C14                                                                                                                                                                                                                                 | 1.3829(11)                                                                                                                                                                                                                                                                                       |
| 0.95       | C14-C15                                                                                                                                                                                                                                 | 1.3984(11)                                                                                                                                                                                                                                                                                       |
| 0.95       | C15-C16                                                                                                                                                                                                                                 | 1.4994(10)                                                                                                                                                                                                                                                                                       |
| 1.0        | C17-H17A                                                                                                                                                                                                                                | 0.98                                                                                                                                                                                                                                                                                             |
| 0.98       | С17-Н17С                                                                                                                                                                                                                                | 0.98                                                                                                                                                                                                                                                                                             |
|            | 1.7487(8)<br>1.3658(9)<br>1.2286(10)<br>1.4255(10)<br>1.4633(10)<br>1.4020(11)<br>1.3796(11)<br>1.3884(11)<br>1.3872(11)<br>0.95<br>0.99<br>1.5270(11)<br>0.99<br>1.3925(11)<br>1.3907(11)<br>1.3966(11)<br>0.95<br>0.95<br>1.0<br>0.98 | 1.7487(8)S1-C161.3658(9)O1-C171.2286(10)O3-N21.4255(10)N1-C81.4633(10)N2-C41.4020(11)C1-C61.3796(11)C2-H21.3884(11)C3-H31.3872(11)C5-C60.95C6-C70.99C7-H7AB1.5270(11)C8-H8A0.99C9-C100.99C9-H9AB1.3925(11)C10-C111.3907(11)C11-H111.3966(11)C13-C140.95C14-C150.95C15-C161.0C17-H17A0.98C17-H17C |

## Table 6. Bond angles (°) for 20181011AR.

| C1-S1-C16 | 101.16(3) | C12-01-C17 | 117.52(7) |
|-----------|-----------|------------|-----------|
| C16-N1-C8 | 113.02(6) | C16-N1-C7  | 111.75(6) |
| C8-N1-C7  | 114.93(6) | 02-N2-03   | 123.18(7) |
| 02-N2-C4  | 118.60(7) | 03-N2-C4   | 118.22(7) |
| C2-C1-C6  | 120.59(7) | C2-C1-S1   | 115.94(6) |
| C6-C1-S1  | 123.45(6) | C3-C2-C1   | 120.76(7) |
| С3-С2-Н2  | 119.6     | С1-С2-Н2   | 119.6     |
| C2-C3-C4  | 118.07(7) | С2-С3-Н3   | 121.0     |
| С4-С3-Н3  | 121.0     | C5-C4-C3   | 122.45(7) |
| C5-C4-N2  | 119.51(7) | C3-C4-N2   | 118.04(7) |

| C4-C5-C6      | 119.72(7) | С4-С5-Н5      | 120.1     |
|---------------|-----------|---------------|-----------|
| С6-С5-Н5      | 120.1     | C5-C6-C1      | 118.37(7) |
| C5-C6-C7      | 118.91(6) | C1-C6-C7      | 122.71(7) |
| N1-C7-C6      | 115.97(6) | N1-C7-H7A     | 108.3     |
| С6-С7-Н7А     | 108.3     | N1-C7-H7AB    | 108.3     |
| С6-С7-Н7АВ    | 108.3     | Н7А-С7-Н7АВ   | 107.4     |
| N1-C8-C9      | 110.30(6) | N1-C8-H8A     | 109.6     |
| С9-С8-Н8А     | 109.6     | N1-C8-H8AB    | 109.6     |
| С9-С8-Н8АВ    | 109.6     | Н8А-С8-Н8АВ   | 108.1     |
| C10-C9-C8     | 113.06(7) | С10-С9-Н9А    | 109.0     |
| С8-С9-Н9А     | 109.0     | С10-С9-Н9АВ   | 109.0     |
| С8-С9-Н9АВ    | 109.0     | Н9А-С9-Н9АВ   | 107.8     |
| C15-C10-C11   | 119.37(7) | C15-C10-C9    | 120.26(7) |
| С11-С10-С9    | 120.30(7) | C12-C11-C10   | 120.10(7) |
| С12-С11-Н11   | 119.9     | С10-С11-Н11   | 119.9     |
| 01-C12-C11    | 124.95(7) | 01-C12-C13    | 114.66(7) |
| C11-C12-C13   | 120.38(7) | C14-C13-C12   | 119.49(7) |
| С14-С13-Н13   | 120.3     | С12-С13-Н13   | 120.3     |
| C13-C14-C15   | 120.54(7) | С13-С14-Н14   | 119.7     |
| С15-С14-Н14   | 119.7     | C10-C15-C14   | 120.10(7) |
| C10-C15-C16   | 120.41(7) | C14-C15-C16   | 119.37(7) |
| N1-C16-C15    | 113.76(6) | N1-C16-S1     | 113.00(5) |
| C15-C16-S1    | 102.94(5) | N1-C16-H16    | 109.0     |
| С15-С16-Н16   | 109.0     | S1-C16-H16    | 109.0     |
| 01-C17-H17A   | 109.5     | 01-С17-Н17В   | 109.5     |
| Н17А-С17-Н17В | 109.5     | 01-С17-Н17С   | 109.5     |
| H17A-C17-H17C | 109.5     | Н17В-С17-Н17С | 109.5     |
|               |           |               |           |

# Table 7. Torsion angles (°) for 20181011AR.

| C16-S1-C1-C2 | 175.93(6)  | C16-S1-C1-C6 | -5.78(7)   |
|--------------|------------|--------------|------------|
| C6-C1-C2-C3  | 1.96(12)   | S1-C1-C2-C3  | -179.70(6) |
| C1-C2-C3-C4  | -0.12(12)  | C2-C3-C4-C5  | -1.48(12)  |
| C2-C3-C4-N2  | 178.57(7)  | 02-N2-C4-C5  | 3.33(11)   |
| 03-N2-C4-C5  | -177.44(7) | 02-N2-C4-C3  | -176.72(8) |
| 03-N2-C4-C3  | 2.51(11)   | C3-C4-C5-C6  | 1.22(12)   |
| N2-C4-C5-C6  | -178.83(7) | C4-C5-C6-C1  | 0.64(11)   |
| C4-C5-C6-C7  | 179.41(7)  | C2-C1-C6-C5  | -2.19(11)  |
| S1-C1-C6-C5  | 179.60(6)  | C2-C1-C6-C7  | 179.09(7)  |
| S1-C1-C6-C7  | 0.88(11)   | C16-N1-C7-C6 | 59.47(9)   |
| C8-N1-C7-C6  | -71.06(9)  | C5-C6-C7-N1  | 156.10(7)  |
| C1-C6-C7-N1  | -25.19(11) | C16-N1-C8-C9 | 61.95(8)   |

| C7-N1-C8-C9     | -168.14(6) | N1-C8-C9-C10    | -44.31(9)  |
|-----------------|------------|-----------------|------------|
| C8-C9-C10-C15   | 18.98(11)  | C8-C9-C10-C11   | -164.28(7) |
| C15-C10-C11-C12 | 0.18(12)   | C9-C10-C11-C12  | -176.58(7) |
| C17-01-C12-C11  | 11.29(12)  | C17-01-C12-C13  | -169.33(8) |
| C10-C11-C12-O1  | -179.95(7) | C10-C11-C12-C13 | 0.70(12)   |
| 01-C12-C13-C14  | 179.55(7)  | C11-C12-C13-C14 | -1.03(12)  |
| C12-C13-C14-C15 | 0.48(12)   | C11-C10-C15-C14 | -0.73(11)  |
| C9-C10-C15-C14  | 176.03(7)  | C11-C10-C15-C16 | 175.27(7)  |
| C9-C10-C15-C16  | -7.96(11)  | C13-C14-C15-C10 | 0.40(12)   |
| C13-C14-C15-C16 | -175.64(7) | C8-N1-C16-C15   | -50.47(9)  |
| C7-N1-C16-C15   | 178.03(6)  | C8-N1-C16-S1    | 66.44(7)   |
| C7-N1-C16-S1    | -65.06(7)  | C10-C15-C16-N1  | 22.98(10)  |
| C14-C15-C16-N1  | -160.99(7) | C10-C15-C16-S1  | -99.65(7)  |
| C14-C15-C16-S1  | 76.38(8)   | C1-S1-C16-N1    | 36.96(6)   |
| C1-S1-C16-C15   | 160.09(5)  |                 |            |

# Table 8. Anisotropic atomic displacement parameters (Ų) for 20181011AR.

The anisotropic atomic displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup> a<sup>\*2</sup> U<sub>11</sub> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sub>12</sub>]

|     | <b>U</b> 11 | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | <b>U</b> 13 | $U_{12}$   |
|-----|-------------|-----------------|-----------------|-----------------|-------------|------------|
| S1  | 0.00996(8)  | 0.01538(9)      | 0.01765(9)      | -0.00835(7)     | -0.00440(6) | 0.00094(6) |
| 01  | 0.0192(3)   | 0.0206(3)       | 0.0128(2)       | -0.0042(2)      | -0.0054(2)  | -0.0071(2) |
| 02  | 0.0128(3)   | 0.0291(3)       | 0.0332(4)       | -0.0177(3)      | -0.0065(2)  | -0.0007(2) |
| 03  | 0.0252(3)   | 0.0139(3)       | 0.0238(3)       | -0.0095(2)      | -0.0083(3)  | 0.0005(2)  |
| N1  | 0.0103(2)   | 0.0136(3)       | 0.0137(3)       | -0.0058(2)      | -0.0031(2)  | 0.0000(2)  |
| N2  | 0.0143(3)   | 0.0144(3)       | 0.0128(3)       | -0.0048(2)      | -0.0018(2)  | -0.0031(2) |
| C1  | 0.0100(3)   | 0.0118(3)       | 0.0114(3)       | -0.0037(2)      | -0.0023(2)  | -0.0001(2) |
| C2  | 0.0108(3)   | 0.0132(3)       | 0.0157(3)       | -0.0059(2)      | -0.0033(2)  | 0.0017(2)  |
| C3  | 0.0130(3)   | 0.0121(3)       | 0.0146(3)       | -0.0053(2)      | -0.0028(2)  | 0.0010(2)  |
| C4  | 0.0120(3)   | 0.0114(3)       | 0.0117(3)       | -0.0041(2)      | -0.0027(2)  | -0.0013(2) |
| C5  | 0.0104(3)   | 0.0125(3)       | 0.0129(3)       | -0.0047(2)      | -0.0030(2)  | 0.0001(2)  |
| C6  | 0.0103(3)   | 0.0109(3)       | 0.0113(3)       | -0.0037(2)      | -0.0027(2)  | 0.0002(2)  |
| C7  | 0.0116(3)   | 0.0135(3)       | 0.0182(3)       | -0.0075(3)      | -0.0063(2)  | 0.0027(2)  |
| C8  | 0.0137(3)   | 0.0142(3)       | 0.0150(3)       | -0.0050(3)      | -0.0016(2)  | -0.0033(2) |
| C9  | 0.0152(3)   | 0.0183(3)       | 0.0127(3)       | -0.0058(3)      | -0.0002(2)  | -0.0051(3) |
| C10 | 0.0125(3)   | 0.0117(3)       | 0.0121(3)       | -0.0042(2)      | -0.0023(2)  | -0.0012(2) |
| C11 | 0.0144(3)   | 0.0135(3)       | 0.0114(3)       | -0.0041(2)      | -0.0030(2)  | -0.0017(2) |
| C12 | 0.0141(3)   | 0.0123(3)       | 0.0131(3)       | -0.0044(2)      | -0.0050(2)  | -0.0008(2) |
| C13 | 0.0133(3)   | 0.0158(3)       | 0.0134(3)       | -0.0038(2)      | -0.0030(2)  | -0.0034(2) |
| C14 | 0.0129(3)   | 0.0143(3)       | 0.0111(3)       | -0.0037(2)      | -0.0022(2)  | -0.0020(2) |
| C15 | 0.0123(3)   | 0.0112(3)       | 0.0114(3)       | -0.0040(2)      | -0.0032(2)  | -0.0006(2) |

| <b>U</b> 11   | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | <b>U</b> 13 | <b>U</b> 12 |
|---------------|-----------------|-----------------|-----------------|-------------|-------------|
| C16 0.0113(3) | 0.0123(3)       | 0.0119(3)       | -0.0043(2)      | -0.0029(2)  | -0.0004(2)  |
| C17 0.0284(4) | 0.0190(4)       | 0.0129(3)       | -0.0019(3)      | -0.0080(3)  | -0.0082(3)  |

# Table 9. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å<sup>2</sup>) for 20181011AR.

|      | x/a    | y/b    | z/c    | U(eq) |
|------|--------|--------|--------|-------|
| Н2   | 0.6903 | 0.2714 | 0.1428 | 0.016 |
| НЗ   | 0.5154 | 0.1258 | 0.0855 | 0.016 |
| Н5   | 0.0583 | 0.4553 | 0.1189 | 0.014 |
| H7A  | 0.1995 | 0.7502 | 0.1155 | 0.016 |
| Н7АВ | 0.0563 | 0.6444 | 0.2215 | 0.016 |
| H8A  | 0.3101 | 0.5004 | 0.3865 | 0.017 |
| H8AB | 0.0971 | 0.5853 | 0.4070 | 0.017 |
| H9A  | 0.1817 | 0.7717 | 0.4712 | 0.018 |
| Н9АВ | 0.2894 | 0.6049 | 0.5317 | 0.018 |
| H11  | 0.5083 | 0.7809 | 0.5556 | 0.016 |
| Н13  | 0.9225 | 0.9698 | 0.2808 | 0.017 |
| H14  | 0.7742 | 0.8962 | 0.1664 | 0.015 |
| Н16  | 0.4804 | 0.8216 | 0.1424 | 0.014 |
| H17A | 0.6464 | 0.9140 | 0.6350 | 0.029 |
| Н17В | 0.8645 | 0.9053 | 0.6405 | 0.029 |
| H17C | 0.7828 | 0.7517 | 0.6336 | 0.029 |

### Computational studies of 8a, 8d, and 8g<sup>1</sup>



(M06-2X-D3 / def2-TZVPP / IEFPCM (toluene) / / TPSS-D2 / 6-31+G(d,p) / IEFPCM (toluene))





Conformational searches were performed with MacroModel<sup>7</sup> using the OPLS3 force field.<sup>8</sup> All DFT calculations were performed with GAUSSIAN 09.<sup>9</sup> Ground state structures were obtained using the meta-GGA functional TPSS<sup>10</sup> with Grimme's dispersion-correction D2,<sup>11</sup> and the double- $\zeta$  basis set 6-31+G(d,p). All optimized geometries were verified as zero imaginary frequencies. Single-point energy calculations were completed on these structures using the M06-2X functional<sup>12</sup> and a triple- $\zeta$  def2-TZVPP basis set,<sup>13</sup> with Grimme's dispersion-correction D3.<sup>14</sup> The integral equation formalism polarizable continuum model (IEFPCM) was used to account for solvation by toluene in all calculations. <sup>15</sup> Entropic influences of the reported free energies were calculated using partition functions evaluated with Truhlar's quasiharmonic approximation.<sup>16</sup>

Cartesian Coordinates and Calculated Energies

### Compound 8a anti

| SCF energy:            | -1071.645263  |
|------------------------|---------------|
| Corrected free energy: | -1071.418155  |
| Charge:                | 0             |
| Solvation:             | Toluene (PCM) |
| Spin multiplicity:     | 1             |
| Imaginary frequencies: | 0             |
|                        |               |

### Cartesian Coordinates

| С | 2.847237  | -1.244524 | 0.793565  |
|---|-----------|-----------|-----------|
| С | 2.010963  | -0.170555 | 0.437031  |
| С | 2.468714  | 0.818105  | -0.458348 |
| С | 3.765879  | 0.701958  | -0.989201 |
| С | 4.596561  | -0.372174 | -0.640780 |
| С | 4.136964  | -1.349590 | 0.258465  |
| С | 0.619104  | -0.099761 | 1.007241  |
| N | 0.001185  | 1.173692  | 0.862386  |
| С | 0.111862  | 1.721277  | -0.505960 |
| С | 1.589041  | 2.006518  | -0.801654 |
| S | -0.391971 | -1.551050 | 0.100274  |
| С | -2.003163 | -0.801940 | -0.062557 |
| С | -2.360876 | 0.420490  | 0.554592  |
| С | -1.368840 | 1.192303  | 1.407996  |
| С | -2.945269 | -1.469745 | -0.876751 |
| С | -4.232054 | -0.947939 | -1.054158 |
| С | -4.593241 | 0.265827  | -0.445104 |
| С | -3.648851 | 0.941176  | 0.339694  |
| Н | 2.477476  | -1.999175 | 1.488228  |
| Н | 4.122652  | 1.463888  | -1.682668 |
| Н | 5.596358  | -0.446313 | -1.065861 |
| Н | 4.777662  | -2.183728 | 0.539240  |
| Н | 0.591607  | -0.403900 | 2.057626  |
| Н | -0.479427 | 2.643959  | -0.542337 |
| Н | -0.302486 | 1.011389  | -1.243371 |
| Н | 1.910726  | 2.873174  | -0.203544 |
| Н | 1.713365  | 2.272148  | -1.860680 |
| Н | -1.314546 | 0.771811  | 2.423731  |
| Н | -1.689948 | 2.239033  | 1.489813  |
| Н | -2.663325 | -2.401529 | -1.365910 |
| Н | -4.945913 | -1.484924 | -1.677105 |
| Н | -5.588457 | 0.682999  | -0.588358 |
| Н | -3.906690 | 1.893582  | 0.805676  |

### Compound 8a syn

| -1071.664446  |
|---------------|
| -1071.414545  |
| 0             |
| Toluene (PCM) |
| 1             |
| 0             |
|               |

### Cartesian Coordinates

| С | 2.429236  | -1.543687 | 0.683688  |
|---|-----------|-----------|-----------|
| С | 1.912085  | -0.305501 | 0.253451  |
| С | 2.776814  | 0.657312  | -0.304875 |
| С | 4.143988  | 0.351948  | -0.439840 |
| С | 4.652346  | -0.887620 | -0.031609 |
| С | 3.789800  | -1.839361 | 0.538729  |
| С | 0.432119  | -0.020340 | 0.438963  |
| Ν | -0.010031 | 1.267761  | -0.091039 |
| С | 0.982793  | 2.338457  | 0.113797  |
| С | 2.235156  | 2.014183  | -0.703848 |
| S | -0.532632 | -1.367546 | -0.429241 |
| С | -2.174070 | -0.711702 | -0.187127 |
| С | -2.412107 | 0.624571  | 0.205101  |
| С | -1.308362 | 1.632490  | 0.487126  |
| С | -3.262477 | -1.578510 | -0.429954 |
| С | -4.578498 | -1.129287 | -0.278915 |
| С | -4.825879 | 0.193400  | 0.126202  |
| С | -3.744463 | 1.050782  | 0.362640  |
| Н | 1.755339  | -2.276632 | 1.126938  |
| Н | 4.810539  | 1.103723  | -0.863216 |
| Н | 5.713075  | -1.106214 | -0.144843 |
| Н | 4.174636  | -2.801902 | 0.871294  |
| Н | 0.172242  | -0.118237 | 1.511414  |
| Н | 1.242767  | 2.453227  | 1.186665  |
| Н | 0.526514  | 3.275698  | -0.229256 |
| Н | 3.003460  | 2.783523  | -0.544871 |
| Н | 1.967215  | 2.018953  | -1.771010 |
| Н | -1.218785 | 1.773092  | 1.587892  |
| Н | -1.598212 | 2.601847  | 0.060146  |
| Н | -3.069438 | -2.607220 | -0.732258 |
| Н | -5.405099 | -1.811496 | -0.470977 |
| Н | -5.845927 | 0.552739  | 0.249363  |
| Н | -3.926877 | 2.082503  | 0.666692  |

| SCF energy:<br>Corrected free energy:<br>Charge:<br>Solvation:<br>Spin multiplicity:<br>Imaginary frequencies: |                    | -1071.612246<br>-1071.386361<br>0<br>Toluene (PCM)<br>1<br>0 |                    |
|----------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------|--------------------|
| Cartesian                                                                                                      | Coordinates        |                                                              |                    |
| С                                                                                                              | -2.54352           | 1.95732                                                      | -0.02143           |
| С                                                                                                              | -1.97510           | 0.68105                                                      | 0.18698            |
| С                                                                                                              | -2.72388           | -0.49678                                                     | -0.08003           |
| С                                                                                                              | -4.03792           | -0.37150                                                     | -0.53609           |
| С                                                                                                              | -4.60966           | 0.90166                                                      | -0.72591           |
| С                                                                                                              | -3.86354           | 2.06526                                                      | -0.47236           |
| С                                                                                                              | -0.61501           | 0.55824                                                      | 0.65642            |
| Ν                                                                                                              | -0.10356           | -0.58663                                                     | 1.04326            |
| C                                                                                                              | -0.97940           | -1.77761                                                     | 1.19751            |
| C                                                                                                              | -2.013/4           | -1.82788                                                     | 0.06963            |
| S                                                                                                              | 1.51607            | -1.8/298                                                     | -1.09898           |
| C                                                                                                              | 2.42064            | -0.46237                                                     | -0.59133           |
| C                                                                                                              | 2.23067            | -0.61780                                                     | 0.72210            |
| C                                                                                                              | 1.201J4<br>3.3/311 | -0.01/80                                                     | -1 44004           |
| C                                                                                                              | 4 04526            | 1 34084                                                      | -1 00789           |
| C                                                                                                              | 3.85852            | 1.86028                                                      | 0.28848            |
| C                                                                                                              | 2.95169            | 1.21995                                                      | 1.14568            |
| Н                                                                                                              | -1.94934           | 2.84822                                                      | 0.17749            |
| Н                                                                                                              | -4.61837           | -1.26760                                                     | -0.75172           |
| Н                                                                                                              | -5.63635           | 0.98256                                                      | -1.07839           |
| Н                                                                                                              | -4.30823           | 3.04566                                                      | -0.62910           |
| Н                                                                                                              | 0.05500            | 1.41734                                                      | 0.66582            |
| Н                                                                                                              | -1.46486           | -1.69409                                                     | 2.18302            |
| Н                                                                                                              | -0.32339           | -2.65047                                                     | 1.16794            |
| Н                                                                                                              | -1.48446           | -2.05867                                                     | -0.86601           |
| H                                                                                                              | -2.72966           | -2.63349                                                     | 0.27340            |
| H                                                                                                              | 1.52353            | -1.68298                                                     | 1.73049            |
| H                                                                                                              | 1.23280            | -0.13973                                                     | 2.62148            |
| H                                                                                                              | 3.49908            | -U.1/685                                                     | -2.44593           |
| H                                                                                                              | 4./436/            | 1.8263U                                                      | -1.68985           |
| H<br>II                                                                                                        | 4.4033/            | 2./4298                                                      | U.6186/<br>0 15501 |
| п                                                                                                              | ∠./8/⊥U            | 1.39940                                                      | Z.13301            |

Compound 8d anti

| -1390.687763  |
|---------------|
| -1390.432592  |
| 0             |
| Toluene (PCM) |
| 1             |
| 0             |
|               |

### Cartesian Coordinates

| С | 1.724208  | -2.026208 | -0.209521 |
|---|-----------|-----------|-----------|
| С | 2.654350  | -0.844441 | -0.006450 |
| С | 2.227478  | 0.266295  | 0.744785  |
| С | 0.836555  | 0.328944  | 1.294854  |
| Ν | 0.131960  | -0.893022 | 1.265803  |
| С | 3.961972  | -0.874783 | -0.523928 |
| С | 4.838801  | 0.199967  | -0.295167 |
| С | 4.413453  | 1.312412  | 0.462031  |
| С | 3.118097  | 1.335881  | 0.973087  |
| С | 0.258687  | -1.623216 | -0.013543 |
| S | -0.112519 | 1.760715  | 0.186361  |
| С | -1.721007 | 1.060701  | 0.021462  |
| С | -2.163100 | -0.070661 | 0.764005  |
| С | -1.250355 | -0.766302 | 1.759585  |
| С | -2.599202 | 1.659182  | -0.919968 |
| С | -3.889004 | 1.173615  | -1.110021 |
| С | -4.305673 | 0.054105  | -0.368936 |
| С | -3.448590 | -0.571477 | 0.548175  |
| 0 | 6.126180  | 0.258716  | -0.764693 |
| С | 6.592456  | -0.861248 | -1.541011 |
| N | -5.648752 | -0.477898 | -0.566812 |
| 0 | -6.396340 | 0.094353  | -1.391838 |
| 0 | -5.992969 | -1.483091 | 0.096519  |
| Н | 1.979202  | -2.812136 | 0.518029  |
| Н | 1.861352  | -2.447837 | -1.214553 |
| Н | 0.787817  | 0.778025  | 2.289874  |
| Н | 4.278131  | -1.741379 | -1.100156 |
| Н | 5.106463  | 2.132778  | 0.633815  |
| Н | 2.784841  | 2.195098  | 1.555228  |
| Н | -0.387351 | -2.506834 | 0.044058  |
| Н | -0.084053 | -0.991526 | -0.851943 |
| Н | -1.206740 | -0.205721 | 2.705043  |
| Н | -1.636025 | -1.770924 | 1.973143  |
| Н | -2.255693 | 2.514911  | -1.498202 |
| Н | -4.567523 | 1.634041  | -1.821956 |
| Н | -3.796903 | -1.444146 | 1.095996  |
| Н | 7.622298  | -0.616955 | -1.813077 |
| H | 5.977994  | -0.985556 | -2.444700 |
| Н | 6.564324  | -1.783261 | -0.941862 |

### Compound 8d syn

| SCF energy:            | -1390.683526  |
|------------------------|---------------|
| Corrected free energy: | -1390.429123  |
| Charge:                | 0             |
| Solvation:             | Toluene (PCM) |
| Spin multiplicity:     | 1             |
| Imaginary frequencies: | 0             |

### Cartesian Coordinates

| С | -2.181416 | 2.331878  | -0.795413 |
|---|-----------|-----------|-----------|
| С | -2.903548 | 1.077965  | -0.347197 |
| С | -2.174828 | 0.037353  | 0.270032  |
| С | -0.677137 | 0.136476  | 0.469261  |
| N | -0.065442 | 1.336304  | -0.085613 |
| С | -4.290259 | 0.956715  | -0.494733 |
| С | -4.965892 | -0.190521 | -0.041832 |
| С | -4.247909 | -1.225686 | 0.589002  |
| С | -2.861649 | -1.093939 | 0.741819  |
| С | -0.917670 | 2.534182  | 0.044776  |
| S | 0.121360  | -1.354155 | -0.361361 |
| С | 1.818912  | -0.889853 | -0.207439 |
| С | 2.232148  | 0.412500  | 0.178387  |
| С | 1.263369  | 1.542264  | 0.496230  |
| С | 2.789005  | -1.877787 | -0.512136 |
| С | 4.148915  | -1.599641 | -0.420818 |
| С | 4.542407  | -0.313481 | -0.015495 |
| С | 3.601242  | 0.682234  | 0.276339  |
| 0 | -6.323459 | -0.203916 | -0.244834 |
| С | -7.041948 | -1.362579 | 0.219856  |
| N | 5.965908  | -0.000852 | 0.093320  |
| 0 | 6.789716  | -0.899918 | -0.184816 |
| 0 | 6.293809  | 1.149622  | 0.460073  |
| Н | -2.845389 | 3.201383  | -0.698581 |
| Н | -1.887808 | 2.244198  | -1.852041 |
| Н | -0.431803 | 0.019004  | 1.542157  |
| Η | -4.864978 | 1.758402  | -0.956146 |
| Н | -4.748672 | -2.115126 | 0.960662  |
| Н | -2.305581 | -1.892191 | 1.233616  |
| Н | -1.185166 | 2.731469  | 1.102519  |
| Η | -0.336591 | 3.386831  | -0.327884 |
| Η | 1.199077  | 1.667677  | 1.599485  |
| Н | 1.668101  | 2.475253  | 0.084194  |
| Н | 2.463452  | -2.871738 | -0.813566 |
| Н | 4.898801  | -2.351330 | -0.647536 |
| Н | 3.947191  | 1.670995  | 0.568703  |
| Н | -8.088056 | -1.177234 | -0.036569 |
| Н | -6.680158 | -2.269287 | -0.286737 |
| Н | -6.930421 | -1.474758 | 1.308341  |

### Compound int-8d

| SCF energy:<br>Corrected free energy:<br>Charge:<br>Solvation:<br>Spin multiplicity:<br>Imaginary frequencies: |                    | -1390.668697<br>-1390.414321<br>0<br>Toluene (PCM)<br>1<br>0 |          |
|----------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------|----------|
| Cartesian Co                                                                                                   | ordinates          |                                                              |          |
| С                                                                                                              | -3.11953           | 0.78400                                                      | 1.74401  |
| С                                                                                                              | -2.22234           | 1.36105                                                      | 0.78785  |
| С                                                                                                              | -2.21845           | 0.76313                                                      | -0.52546 |
| С                                                                                                              | -3.02250           | -0.32965                                                     | -0.83538 |
| C                                                                                                              | -3.87958           | -0.86583                                                     | 0.14400  |
| C                                                                                                              | -3.92954           | -0.30046                                                     | 1.43870  |
| C                                                                                                              | -1.29659           | 1.33544                                                      | -1.56612 |
| N                                                                                                              | 0.13/92            | 1.13435                                                      | -1.16/28 |
| C                                                                                                              | U.558/I<br>1 02250 | -0.04911                                                     | -0.12490 |
| C                                                                                                              | 2 81703            | -0.31101                                                     | -0.43499 |
| C                                                                                                              | 2.01755            | 2 17711                                                      | -0 33959 |
| C                                                                                                              | 1 10891            | 2 23902                                                      | -1 38125 |
| C                                                                                                              | 2.37667            | -1.63550                                                     | -0.24543 |
| C                                                                                                              | 3.70609            | -1.89017                                                     | 0.09058  |
| C                                                                                                              | 4.59064            | -0.79976                                                     | 0.25653  |
| С                                                                                                              | 4.13705            | 0.53432                                                      | 0.09440  |
| S                                                                                                              | -1.19226           | 2.68904                                                      | 1.18051  |
| 0                                                                                                              | 5.90128            | -0.92732                                                     | 0.58154  |
| С                                                                                                              | 6.42311            | -2.26369                                                     | 0.77657  |
| N                                                                                                              | -4.69739           | -2.00536                                                     | -0.17916 |
| 0                                                                                                              | -5.46524           | -2.46628                                                     | 0.70501  |
| 0                                                                                                              | -4.61085           | -2.50373                                                     | -1.33448 |
| Н                                                                                                              | -3.15354           | 1.21926                                                      | 2.74040  |
| H                                                                                                              | -3.00417           | -0.77537                                                     | -1.82755 |
| H                                                                                                              | -4.60051           | -0.72919                                                     | 2.17810  |
| H                                                                                                              | -1.42554           | 2.42026                                                      | -1.64901 |
| H                                                                                                              | -1.44482           | 0.85654                                                      | -2.54320 |
| H                                                                                                              | -0.19296           | -0.83606                                                     | -0.72754 |
| п<br>u                                                                                                         | 2.99907<br>1 79877 | 2.91003                                                      | -0.59174 |
| п                                                                                                              | 1.79044            | 2.44201<br>3.1710/                                           | -1 28718 |
| н                                                                                                              | 1 50185            | 2 13015                                                      | -2 40408 |
| н                                                                                                              | 1 68298            | -2 46480                                                     | -0 37516 |
| H                                                                                                              | 4.04663            | -2.91223                                                     | 0.22393  |
| H                                                                                                              | 4.84005            | 1.34878                                                      | 0.25714  |
| Н                                                                                                              | 6.31612            | -2.84968                                                     | -0.14613 |
| Н                                                                                                              | 7.47790            | -2.12364                                                     | 1.02157  |
| Н                                                                                                              | 5.89726            | -2.75709                                                     | 1.60477  |

# Compound 8g anti

| -1390.686403  |
|---------------|
| -1390.431201  |
| 0             |
| Toluene (PCM) |
| 1             |
| 0             |
|               |

### Cartesian Coordinates

| С | -1.262423 | 2.115234  | -0.382793 |
|---|-----------|-----------|-----------|
| С | -2.196160 | 0.960239  | -0.074845 |
| С | -1.776675 | -0.094151 | 0.766615  |
| С | -0.373335 | -0.125366 | 1.311847  |
| Ν | 0.308284  | 1.123314  | 1.209533  |
| С | -3.500363 | 0.940761  | -0.587741 |
| С | -4.357228 | -0.114596 | -0.253587 |
| С | -3.961666 | -1.163543 | 0.589561  |
| С | -2.662164 | -1.139202 | 1.096898  |
| С | 0.201807  | 1.736962  | -0.132018 |
| S | 0.518269  | -1.586453 | 0.334930  |
| С | 2.156366  | -0.900781 | 0.120519  |
| С | 2.610932  | 0.260066  | 0.793007  |
| С | 1.691401  | 1.034117  | 1.722122  |
| С | 3.020554  | -1.549965 | -0.780374 |
| С | 4.328806  | -1.091570 | -0.994562 |
| С | 4.777145  | 0.059393  | -0.320872 |
| С | 3.905464  | 0.734297  | 0.551699  |
| 0 | 6.032431  | 0.605874  | -0.460464 |
| С | 6.938093  | -0.072733 | -1.350134 |
| Ν | -5.724674 | -0.120144 | -0.804127 |
| 0 | -6.061434 | 0.820836  | -1.547546 |
| 0 | -6.474950 | -1.066578 | -0.497322 |
| Н | -1.528987 | 2.966072  | 0.262034  |
| Н | -1.395279 | 2.434197  | -1.425203 |
| Н | -0.355275 | -0.466572 | 2.351221  |
| Н | -3.855080 | 1.735179  | -1.239268 |
| Н | -4.658010 | -1.960439 | 0.831230  |
| Н | -2.322574 | -1.939680 | 1.752578  |
| Н | 0.839095  | 2.628586  | -0.138378 |
| Н | 0.561952  | 1.043879  | -0.911478 |
| Н | 1.635544  | 0.551702  | 2.709365  |
| Н | 2.072737  | 2.053812  | 1.859583  |
| Н | 2.673284  | -2.429646 | -1.320710 |
| Н | 4.971844  | -1.625586 | -1.688826 |
| Н | 4.252660  | 1.639573  | 1.049069  |
| Н | 7.866956  | 0.502287  | -1.314200 |
| Н | 7.114694  | -1.103473 | -1.008571 |
| Н | 6.537173  | -0.084863 | -2.374563 |

## Compound 8g syn

| SCF energy:            | -1390.681551  |
|------------------------|---------------|
| Corrected free energy: | -1390.427049  |
| Charge:                | 0             |
| Solvation:             | Toluene (PCM) |
| Spin multiplicity:     | 1             |
| Imaginary frequencies: | 0             |

### Cartesian Coordinates

| С | -1.883052 | 2.328510  | -0.614963 |
|---|-----------|-----------|-----------|
| С | -2.513547 | 1.007623  | -0.229455 |
| С | -1.710239 | -0.031586 | 0.288615  |
| С | -0.209941 | 0.136281  | 0.435824  |
| N | 0.312842  | 1.399555  | -0.078502 |
| С | -3.898447 | 0.813761  | -0.336632 |
| С | -4.457167 | -0.402297 | 0.068935  |
| С | -3.679862 | -1.440972 | 0.601833  |
| С | -2.303728 | -1.239796 | 0.710633  |
| С | -0.589024 | 2.537574  | 0.175659  |
| S | 0.615741  | -1.259689 | -0.489973 |
| С | 2.310250  | -0.747713 | -0.240038 |
| С | 2.664032  | 0.562791  | 0.156921  |
| С | 1.651043  | 1.654196  | 0.469707  |
| С | 3.323915  | -1.692151 | -0.485693 |
| С | 4.678570  | -1.362194 | -0.346346 |
| С | 5.028923  | -0.061298 | 0.060606  |
| С | 4.019972  | 0.883730  | 0.308817  |
| 0 | 6.320455  | 0.378307  | 0.237515  |
| С | 7.368901  | -0.570743 | -0.029245 |
| N | -5.914649 | -0.590070 | -0.049958 |
| 0 | -6.591333 | 0.347064  | -0.519030 |
| 0 | -6.396801 | -1.677702 | 0.324583  |
| Н | -2.588338 | 3.147533  | -0.420938 |
| Н | -1.644594 | 2.331890  | -1.688551 |
| Н | 0.063474  | -0.006465 | 1.500126  |
| Н | -4.541189 | 1.599989  | -0.724041 |
| Н | -4.150300 | -2.366717 | 0.918253  |
| Н | -1.674473 | -2.028161 | 1.120266  |
| Н | -0.811928 | 2.649525  | 1.256831  |
| Н | -0.073909 | 3.445068  | -0.162239 |
| Н | 1.599310  | 1.789231  | 1.572927  |
| Н | 2.005783  | 2.601409  | 0.043126  |
| Н | 3.054899  | -2.703106 | -0.789087 |
| Н | 5.435019  | -2.115869 | -0.546677 |
| Н | 4.308759  | 1.888276  | 0.616666  |
| Н | 8.302327  | -0.033994 | 0.158842  |
| Н | 7.286215  | -1.437517 | 0.643318  |
| Н | 7.327567  | -0.908116 | -1.075631 |

## Compound int-8g

| SCF energy:<br>Corrected free energy:<br>Charge:<br>Solvation:<br>Spin multiplicity:<br>Imaginary frequencies: |                      | -1390.640685<br>-1390.386868<br>0<br>Toluene (PCM)<br>1<br>0 |          |
|----------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------|----------|
| Cartesian (                                                                                                    | Coordinates          |                                                              |          |
| C                                                                                                              | -3.50833             | -0.37834                                                     | 1.65661  |
| C                                                                                                              | -2.62319             | -1.04//4                                                     | 0.//856  |
| C                                                                                                              | -2.03420             | -0.62783                                                     | -0.58641 |
| C                                                                                                              | -3.4//44             | 0.39067                                                      | -1.04026 |
| C                                                                                                              | -4.30022             | 0 62780                                                      | 1 20705  |
| C                                                                                                              | -1 66821             | -1 31680                                                     | -1 50905 |
| N                                                                                                              | -0.26660             | -1.15925                                                     | -0.98595 |
| С                                                                                                              | 0.18696              | 0.06179                                                      | -0.75917 |
| C                                                                                                              | 1.56596              | 0.32319                                                      | -0.44850 |
| С                                                                                                              | 2.45159              | -0.76940                                                     | -0.21661 |
| С                                                                                                              | 1.86366              | -2.16791                                                     | -0.22249 |
| С                                                                                                              | 0.69549              | -2.27055                                                     | -1.20732 |
| С                                                                                                              | 2.03704              | 1.65634                                                      | -0.36612 |
| С                                                                                                              | 3.37682              | 1.91226                                                      | -0.08221 |
| С                                                                                                              | 4.23606              | 0.82048                                                      | 0.12567  |
| C                                                                                                              | 3.78878              | -0.51390                                                     | 0.06834  |
| S                                                                                                              | -1.53413             | -2.32624                                                     | 1.28113  |
| 0                                                                                                              | -5.16387             | 2.00496                                                      | -0.68486 |
| N                                                                                                              | -0.07319             | 2.00139                                                      | 0.21557  |
| N<br>O                                                                                                         | 6 40093              | 0 09346                                                      | 0.41372  |
| 0                                                                                                              | 6.03215              | 2,26762                                                      | 0.46853  |
| H                                                                                                              | -3.52562             | -0.66418                                                     | 2.70655  |
| Н                                                                                                              | -3.46017             | 0.70650                                                      | -2.08274 |
| Н                                                                                                              | -5.04696             | 1.10502                                                      | 1.91804  |
| Н                                                                                                              | -1.69946             | -0.90158                                                     | -2.52597 |
| Н                                                                                                              | -1.84610             | -2.39914                                                     | -1.52722 |
| Н                                                                                                              | -0.54784             | 0.86498                                                      | -0.77140 |
| Η                                                                                                              | 1.49130              | -2.40280                                                     | 0.78394  |
| H                                                                                                              | 2.62555              | -2.90953                                                     | -0.49032 |
| H                                                                                                              | 1.04472              | -2.19294                                                     | -2.24898 |
| H                                                                                                              | 0.13782              | -3.19909                                                     | -1.06377 |
| н<br>u                                                                                                         | 1.34/43              | 2.48120                                                      | -0.03514 |
| л<br>u                                                                                                         | J. 1000/<br>A. 10002 | 2.92369<br>-1 30035                                          | -0.0206/ |
| л<br>Ч                                                                                                         | 4.49002<br>-5 50100  | -1.32233                                                     | 1 02107  |
| H                                                                                                              | -6.60973             | 3,39368                                                      | -0.39376 |
| H                                                                                                              | -6.77860             | 1.93713                                                      | 0.64940  |
|                                                                                                                |                      |                                                              |          |

### References

- **1.** C. L. Jarvis, T. M. Richers, M. Breugst, K. N. Houk, and D. Seidel, Redox-Neutral α-Sulfenylation of Secondary Amines: N,S-Acetals *Org. Lett.* 2014, **16**, 3556–3559.
- 2. D. F. Toste, A. J. Lough, and I. W. Still, Preparation of 6,12-Imino-6H,12H-dibenzo[b,f]-1,5-dithiocins. *Tetrahedron Lett.* 1995, **36**, 6619–6622.
- R. Romagnoli, P. G. Baraldi, M. D. Carrion, O. Cruz-Lopez, M. Tolomeo, S. Grimaudo, A. D. Cristina, M. R. Pipitone, J. Balzarini, A. Brancale, and E. Hamel, Substituted 2-(3',4',5'-trimethoxybenzoyl)-benzo[b]thiophene derivatives as potent tubulin polymerization inhibitors *Bioorg. Med. Chem.* 2010, **18**, 5114–5122.
- S. K. Pedersen, A. Ulfkjær, M. N. Newman, S. Yogarasa, A. U. Petersen, T. I. Sølling, and M. Pittelkow, Inverting the Selectivity of the Newman-Kwart Rearrangement via One Electron Oxidation at Room Temperature *J. Org. Chem.* 2018, **83**, 12000–12006.
- Q. Cao, H.-Y. Peng, Y. Cheng, and Z.-B. Dong, A Highly Efficient CuCl<sub>2</sub>-Catalyzed C-S Coupling of Aryl lodides with Tetraalkylthiuram Disulfides: Synthesis of Aryl Dithiocarbamates Synthesis 2018, 50, 1527–1534.
- L. G. Voskressensky, E. A. Sokolova, A. A. Festa, and A. V. Varlamov, A novel domino condensation-intramolecular nucleophilic cyclization approach towards annulated thiochromenes *Tetrahedron Letters* 2013, 54, 5172–5173.
- 7. MacroModel; Schrödinger, LLC: New York, NY, 2017.
- E. Harder, W. Damm, J. Maple, C. Wu, M. Reboul, J. Y. Xiang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. W. Kaus, D. S. Cerutii, G. Krilov, W. L. Jorgensen, R. Abel, and R. A. Friesner, OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins *J. Chem. Therory Comput.* 2016, **12**, 281–296.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc.: Wallingford CT, 2009.
- **10.** J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids *Phys. Rev. Lett.* 2003, **91**, 146401-1–146401-4.
- **11.** S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. *J. Comput. Chem.* 2006, **27**, 1787–1799.
- **12.** Y. Zhao, and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals *Theor. Chem. Acc.* 2008, **120**, 215–241.
- **13.** F. Weigend, and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy *Phys. Chem. Chem. Phys.* 2005, **7**, 3297–3305.
- **14.** S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate *ab initio* parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu *J. Chem. Phys.* 2010, **132**, 154104.

- **15.** E. Cancès, B. Mennucci, and J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics *J. Chem. Phys.* 1997, **107**, 3032–3041.
- **16.** R. F. Ribeiro, A. V. Marenich, C. J. Cramer, and D. G. Truhlar, Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation *J. Phys. Chem. B* 2011, **115**,14556–14562.