Supplementary Information

O-I-O Halogen Bond of Halonium Ions

Sofia Lindblad, Flóra Boróka Németh, Tamás Földes, Alan Vanderkooy, Imre Pápai, and Máté Erdélyi

Table of Contents

1. Supplementary figures	S2
2. SYNTHESIS	S3
1.1. General information	S3
1.2. Synthesis	S3
2. NMR SPECTRA OF SYNTHESIZED COMPOUNDS	S8
2.1. 4-Methoxypyridine <i>N</i> -oxide and complexes	S8
2.2. 4-Methylpyridine <i>N</i> -oxide and complexes	
2.3. Dibenzofuran complexes	S41
3. COMPUTATIONS	
3.1. Computational approach	S46
3.2. Structure of [RO-X-OR] ⁺ complexes	S46
3.3. Relative stability of [RO-X-OR] ⁺ complexes	S49
3.4. Formation of halogen bonded $RO\cdots I_2$ complexes	S50
3.5. Coordination of acetonitrile to [RO-X-OR] ⁺ complexes	S50
3.6. Computed ¹⁵ N NMR chemical shifts	S52
3.7. Total energy data	S53
3.8. Cartesian coordinates	S54
4. REFERENCES	S73

1. Supplementary figures

Figure S1. Some examples of literature known 3c4e halogen bond complexes with nitrogen, sulfur, selenium and mixed nitrogen-oxygen Lewis bases as halogen bond accceptors.¹⁻⁶

Figure S2. Synthetic scheme for the formation of $[bis(4-methoxypyridine N-oxide)iodine(I)]^+$ tetrafluoroborate $((1-OMe)_2-I, R = OMe)$ and $[bis(4-methylpyridine N-oxide)iodonine(I)]^+$ tetrafluoroborate $((1-Me)_2-I, R = Me)$, via the corresponding intermediate silver(I) complexes $(1-OMe)_2-Ag$ and $(1-Me)_2-Ag$.

2. SYNTHESIS

1.1. General information

Chemicals were purchased from commercial suppliers and used without further purification, unless stated otherwise. Dry deuterated solvents were obtained by opening a fresh bottle in a glovebox, adding molecular sieves (3 Å), and allowing it to stand at least overnight. All synthesis was performed in a glovebox with glassware that had been dried in an oven (150 °C) or in vacuo at least overnight. For LC-MS analyses an Agilent 1100 Series HPLC system with a C8 column (GRACE Genesis Lighting) connected to a Waters Micromass ZQ mass spectrometer was used. Acetonitrile and 1% formic acid in MQ-water was used as mobile phase, with gradient elution using 5-95 % acetonitrile over 10 min. For recording NMR spectra either an Agilent MR-400 equipped with a OneNMR probe, a Varian Mercury Plus 400 equipped with a two channel ATB probe, or a Bruker Avance Neo 500 equipped with a TXO cryogenic probe was used. Chemical shifts are reported on the δ scale (ppm), using the residual solvent signal as internal standard; CD₃CN ($\delta_{\rm H}$ 1.94, $\delta_{\rm C}$ 118.26, 1.32). The ¹⁵N NMR chemical shifts were referenced relative to the proton spectra using the Absolute Reference function in MestReNova (MeNO₂ reference scale $\delta_N 0.0$). ¹H NMR resonances were assigned based on chemical shift (δ), observed multiplicities, observed coupling constants (J Hz), and number of hydrogens. Recorded TOCSY, NOESY, COSY, ¹H, ¹³C HSQC, ¹H,¹³C HMBC, and ¹H,¹⁵N HMBC were also used as aids to make the correct assignments. Multiplicities are denoted as s (singlet), d (doublet), t (triplet), q (quartet), h (heptet), and m (multiplet). NMR spectra were processed using MestReNova 11.0.

1.2. Synthesis

[Bis(4-methoxypyridine *N*-oxide)silver(I)]⁺ tetrafluroborate ((**1**-*OMe*)₂-Ag)

$$H_{3}CO - N^{+}O^{-} - AgBF_{4} - CD_{3}CN + BF_{4} - O^{-}N^{+}O^{-}OCH_{3} - OCH_{3} + O^{-}OCH_{3} + O^{-}$$

In a glovebox, 4-methoxypyridine *N*-oxide hydrate (0.244 g, 1.71 mmol) was dissolved in dry CH₂Cl₂ (16 mL), and the solution was left standing over molecular sieves (3 Å) over night. A portion of the solution (8 mL, 0.85 mmol) was added to a vial with AgBF₄ (0.089 g, 0.46 mmol, 0.5 equiv). The solution was stirred, causing formation of a white precipitate. To ensure full precipitation, dry *n*-hexane (16 mL) was added. Upon standing, the precipitate sedimented, and the supernatant was removed with a syringe. The precipitate was dried *in vacuo* overnight to yield (**1-OMe**)₂-Ag as a white solid (0.156 g, 0.35 mmol, 82 %). ¹H NMR (500 MHz, 25 °C, CD₃CN) δ 7.99 (m, 4H, H2/2'/6/6'), 6.90 (m, 4H, H3/3'/5/5'), 3.38 (s, 6H, 2x-OCH₃); ¹³C NMR (126 MHz, 25 °C, CD₃CN) δ 158.4 (C4/4'), 140.6 (C2/2'/6/6'), 113.0 (C3/3'/5/5'), 57.0 (2x-OCH₃); ¹⁵N NMR (51 MHz, detected via HMBC at 500 MHz for ¹H, 25 °C, CD₃CN) δ –105.1.

[Bis(4-methoxypyridine N-oxide)iodine(I)]+ tetrafluroborate ((1-OMe)2-I

$$H_{3}CO \xrightarrow{5 \ 6} \\ + N - O^{----I^{+}--}O - N + \\ 3 \ 2 \\ BF_{4}^{-} \\ 2' \ 3' \\ CO - N + \\ - OCH_{3} \\ - OCH_{3$$

In a glovebox, I₂ (0.024 g, 0.09 mmol) was dissolved in CD₃CN (2.37 mL). To an NMR tube with (**1-OMe**)₂-Ag (2 mg, 0.004 mmol) in CD₃CN (0.4 mL), a portion of the I₂ solution was added (0.22 mL, 0.008 mmol, 2 equiv), causing formation of a yellow precipitate, leaving (**1-OMe**)₂-I in solution.^{* 1}H NMR (500 MHz, 25 °C, CD₃CN) δ 8.34 (m, 4H, H2/2'/6/6'), 7.21 (m, 4H, H3/3'/5/5'), 3.99 (s, 6H, 2x-OCH₃); ¹³C NMR (126 MHz, 25 °C, CD₃CN) δ 167.8 (C4/4'), 142.9 (C2/2'/6/6'), 114.4 (C3/3'/5/5'), 58.62 (2x-OCH₃); ¹⁵N NMR (51 MHz, detected via HMBC at 500 MHz for ¹H, 25 °C, CD₃CN) δ –134.2.

[4-Methoxypyridine N-oxide]I₂ Complex ((1-OMe)-I₂)

In a glovebox, 4-methoxypyridine *N*-oxide hydrate (0.011 g, 0.08 mmol) was dissolved in dry CD₃CN (3.5 mL), and the solutions was left standing over molecular sieves (3 Å) over night. I₂ (0.024 g, 0.09 mmol) was dissolved in CD₃CN (2.37 mL). A portion of the 4-methoxypyridine *N*-oxide solution (0.4 mL, 0.009 mmol) was added to an NMR tube, along with I₂ solution (0.22 mL, 0.009 mmol, 1 equiv.). ¹H NMR (500 MHz, 25 °C, CD₃CN) δ 8.17 (m, 2H, H2/6), 7.07 (m, 2H, H3/5), 3.91 (s, 3H, -OCH₃); ¹³C NMR (126 MHz, 25 °C, CD₃CN) δ 163.3 (C4), 142.0 (C2/6), 113.6 (C3/5), 57.7 (-OCH₃); ¹⁵N NMR (51 MHz, detected via HMBC at 500 MHz for ¹H, 25 °C, CD₃CN) δ –122.8.

[1-Hydroxy-4-methoxypyridin-1-ium]⁺ 2,2,2-trifluoroacetate ((1-OMe)-H)

$$H_3CO - \begin{pmatrix} 5 & 6 \\ + N - OH \\ 3 & 2 \end{pmatrix} CF_3COO^-$$

In a glovebox, 4-methoxypyridine *N*-oxide hydrate (0.011 g, 0.08 mmol) was dissolved in dry CD₃CN (3.5 mL), and the solutions was left standing over molecular sieves (3 Å) over night. A portion of the solution (0.4 mL, 0.009 mmol) was added to an NMR tube, along with a small amount of TFA (approx. 5-10 μ L, 0.065-0.130 mmol). ¹H NMR (500 MHz, 25 °C, CD₃CN) δ 8.52 (m, 2H, H2/6), 7.30 (m, 2H, H3/5), 4.03 (s, 3H, -OCH₃); ¹³C NMR (126 MHz, 25 °C, CD₃CN) δ 169.0 (C4), 142.9 (C2/6), 114.1 (C3/5), 58.7 (-OCH₃); ¹⁵N NMR (51 MHz, detected via HMBC at 500 MHz for ¹H, 25 °C, CD₃CN) δ –154.4.

^{*} The complex used for the reaction with 4-penten-1-ol was prepared in the same way, but with a 1:1 stoichiometry of the silver complex and iodine, i.e. without excess iodine.

[Bis(4-methylpyridine N-oxide)silver(+I)]⁺ tetrafluroborate ((1-Me)₂-Ag)

In a glovebox, AgBF₄ (0.019 g, 0.10 mmol) and 4-methylpyridine *N*-oxide (0.024 g, 0.22 mmol, 2.2 equiv) were dissolved in dry CH₂Cl₂ (8 mL) and stirred to generate a cloudy, white solution. Dry *n*-hexane (16 mL) was added, causing better precipitation of (**1**-*Me*)₂-Ag . The vial was centrifuged for 10 min at 2500 rpm, after which the supernatant was removed. The precipitate was dried *in vacuo* overnight to yield (**1**-*Me*)₂-Ag as a white solid (0.042 g, 0.10 mmol, 99 %). ¹H NMR (500 MHz, 25 °C, CD₃CN) δ 7.97 (m, 4H, H2/2'/6/6'), 7.13 (m, 4H, H3/3'/5/5'), 2.29 (s, 6H, 2x-CH₃); ¹³C NMR (126 MHz, 25 °C, CD₃CN) δ 139.1 (C2/2'/6/6'), 137.4 (C4/4'), 127.9 (C3/3'/5/5'), 20.0 (2x-CH₃); ¹⁵N NMR (51 MHz, detected via HMBC at 500 MHz for ¹H, 25 °C, CD₃CN) δ -92.0.

[Bis(4-methylpyridine N-oxide)iodine(I)]⁺ tetrafluroborate ((1-Me)2-I) in CD2Cl2

In the glovebox, $(1-Me)_2$ -Ag (0.003 g, 0.007 mmol) was attempted to be dissolved in CD₂Cl₂ (0.8 mL), generating a cloudy, white solution. I₂ (0.002 g, 0.008 mmol, 1.1 equiv.) was added, and the vial was shaken until AgI had precipitated. The clear, pale red solution with $(1-Me)_2$ -I was transferred to an NMR tube. ¹H NMR (500 MHz, 25 °C, CD₂Cl₂) δ 8.37 (H2/2'/6/6'), 7.56 (H3/3'/5/5'), 2.51 (2x-CH₃); ¹³C NMR (126 MHz, 25 °C, CD₂Cl₂) δ 152.9 (C4/4'), 140.3 (C2/2'/6/6'), 129.2 (C3/3'/5/5'), 21.8 (2x-CH₃); ¹⁵N NMR (51 MHz, detected via HMBC at 500 MHz for ¹H, 25 °C, CD₂Cl₂) δ –119.4.

[Bis(4-methylpyridine N-oxide)iodine(I)]⁺ tetrafluroborate ((1-Me)₂-I) in CD₃CN

$$H_{3}C \xrightarrow{5 \ 6} \\ + N - O^{----I^{+}--}O - N + \\ 3 \ 2 \\ BF_{4}^{-} \\ 2' \ 3' \\ CH_{3}$$

In the glovebox, 4-methylpyridine *N*-oxide (0.018 g, 0.16 mmol) was dissolved in dry CD₃CN (1 mL) and the resulting solution was dried over molecular sieves (3 Å) for three days. A portion of the solution (0.16 mL, 0.026 mmol) was added to a vial with AgBF₄ (0.0034 g, 0.017 mmol, 0.7 equiv). I₂ (0.0048 g, 0.019 mmol, 0.7 equiv) was dissolved in CD₃CN (0.48 mL), and the solution was added to the same vial. AgI precipitated, leaving a yellow, clear solution with (**1-***Me*)₂-**I**, which was transferred to an NMR tube. ¹H NMR (500 MHz, 25 °C, CD₃CN) δ 8.37 (H2/2'/6/6', (**1-***Me*)₂-**I**), 8.10 (H2/2'/6/6', protonated **1-***Me*), 7.59 (H3/3'/5/5', (**1-***Me*)₂-**I**) 7.28 (H3/3'/5/5', protonated **1-***Me*), 2.46 (2x-CH₃, (**1-***Me*)₂-**I**), 2.37 (2x-CH₃; protonated **1-***Me*); ¹³C NMR (126 MHz, 25 °C, CD₂Cl₂) δ 154.0 (C4/4', (**1-***Me*)₂-**I**), 140.8 (C2/2'/6/6', (**1-***Me*)₂-**I**), 139.4 (C2/2'/6/6', protonated **1-***Me*), 129.8

(C3/3'/5/5', (**1**-*Me*)₂-**I**), 128.4 (C3/3'/5/5', protonated **1**-*Me*) 21.5 (2x-CH₃, (**1**-*Me*)₂-**I**), 20.4 (2x-CH₃, protonated **1**-*Me*); ¹⁵N NMR (500 and 51 MHz, 25 °C, CD₃CN) δ -121.2 ((**1**-*Me*)₂-**I**), -105.0 (protonated **1**-*Me*).

[4-methylpyridine N-oxide]I2 Complex in CD3CN

In a glovebox, 4-methylpyridine *N*-oxide (0.0066 g, 0.052 mmol) was dissolved in dry CD₃CN (1 mL) and the resulting solution was dried over molecular sieves (3 Å) over night. A portion of the solution (0.4 mL, 0.026 mmol) was added to a vial with I₂ (0.0048 g, 0.019 mmol). More dry CD₃CN (0.24 mL) was added. When the I₂ had dissolved, the solution was transferred to an NMR tube and the sample was analyzed by NMR. ¹H NMR (500 MHz, 25 °C, CD₃CN) δ 8.08 (2H, H2/6), 7.28 (2H, H3/5), 2.36 (3H, -CH₃); ¹³C NMR (126 MHz, 25 °C, CD₃CN) δ 142.5 (C4), 139.7 (C2/6), 128.4 (C3/5), 20.5 (-CH₃); ¹⁵N NMR (51 MHz, 25 °C, CD₃CN) δ –102.2.

[4-methylpyridine N-oxide]I2 Complex in CD2Cl2

In a glovebox, 4-methylpyridine *N*-oxide (0.0036 g, 0.028 mmol) was dissolved in dry CD₂Cl₂ (1 mL) and the resulting solution was dried over molecular sieves (3 Å) over night. A portion of the solution (0.33 mL, 0.014 mmol) was added to a vial with I₂ (0.0022 g, 0.008 mmol). More dry CD₂Cl₂ (0.47 mL) was added. When the I₂ had dissolved, the solution was transferred to an NMR tube and the sample was analyzed by NMR. ¹H NMR (500 MHz, 25 °C, CD₂Cl₂) δ 8.07 (2H, H2/6), 7.16 (2H, H3/5), 2.37 (3H, -CH₃); ¹³C NMR (126 MHz, 25 °C, CD₂Cl₂) δ 139.1 (C2/6), 127.4 (C3/5), 20.6 (-CH₃); ¹⁵N NMR (51 MHz, 25 °C, CD₂Cl₂) δ –98.9.

Dibenzofuran complexes (attempts)

The attempt to form [bis(dibenzofuran)silver(I)]⁺ tetrafluroborate was carried out as follows. In a glovebox, dibenzofuran (0.004 g, 0.024 mmol) was dissolved in CD₃CN (0.4 mL) and transferred to a vial containing AgBF₄ (0.003 g, 0.015 mmol, 0.6 equiv). The resulting solution was transferred to an NMR tube. ¹H NMR (500 MHz, 25 °C, CD₃CN) δ 8.07 (ddd, *J* = 7.7, 1.3, 0.7 Hz, 4H, H4/4'/6/6'), 7.62 (ddd, *J* = 8.4, 1.0, 0.7 Hz, 4H, H1/1'/9/9'), 7.51 (ddd, *J* = 8.4, 7.3, 1.3 Hz, 4H, H2/2'/8/8'), 7.40 (ddd, *J* = 7.7, 7.3, 1.0 Hz, 4H, H3/3'/7/7'); ¹³C NMR (126 MHz, detected via HMCB and HSQC at 500 MHz for ¹H, 25 °C, CD₃CN) δ 156.5 (C4a/4a'/5a/5a'), 125.9 (9a/9a'/9b/9b'), 122.5 (C2/2'/8/8'), 118.0 (C3/3'/7/7'), 116.0 (C4/4'/6/6'), 106.5 (C1/1'/9/9').

The attempt to form [bis(dibenzofuran)iodine(I)]⁺ tetrafluroborate was performed as follows. In a glovebox, I₂ (0.031 g, 0.12 mmol) was dissolved in CD₃CN (3.08 mL). A portion of the solution (0.2 mL, 0.008 mmol) was added to an NMR sample containing the product of the procedure described above (0.012 mmol "silver complex", 1.5 equiv). ¹H NMR (500 MHz, 25 °C, CD₃CN) δ 8.07 (ddd, *J* = 7.7, 1.3, 0.7 Hz, 4H, H4/4'/6/6'), 7.62 (ddd, *J* = 8.4, 1.0, 0.7 Hz, 4H, H1/1'/9/9'), 7.51 (ddd, *J* = 8.4, 7.3, 1.3 Hz, 4H, H2/2'/8/8'), 7.40 (ddd, *J* = 7.7, 7.3, 1.0 Hz, 4H, H3/3'/7/7'); ¹³C NMR (126 MHz, detected via HMCB and HSQC at 500 MHz for ¹H, 25 °C, CD₃CN) δ 157.5 (C4a/4a'/5a/5a'), 127.8 (9a/9a'/9b/9b'), 122.0 (C2/2'/8/8'), 118.6 (C3/3'/7/7'), 116.3 (C4/4'/6/6'), 106.9 (C1/1'/9/9').

Halenium transfer reaction (iodocyclization):

The halocylclization of 4-penten-1-ol to form the 2-(iodomethyl)tetrahydrofuran was performed by adding of a solution of 4-penten-1-ol in CD₂Cl₂ (0.1 mL, 14 mg/mL, 16 μ mol), to an NMR sample of complex (1-*OMe*)₂-I in CD₂Cl₂ which had been derived by starting from 8 mg of the silver complex 1-*OMe* (6 μ mol). Observation of 2-(iodomethyl)tetrahydrofuran by NMR and MS (EI) confirmed that iodonium transfer took place.

2. NMR SPECTRA OF SYNTHESIZED COMPOUNDS

2.1. 4-Methoxypyridine N-oxide and complexes

Figure S3. ¹H NMR spectrum of 1-OMe (500 MHz, CD₃CN, 25 °C).

Figure S4. ¹³C NMR spectrum of 1-OMe (126 MHz, CD₃CN, 25 °C).

Figure S5. ¹H, ¹³C HSQC NMR spectrum of 1-*OMe* (500 and 126 MHz, CD₃CN, 25 °C).

Figure S6. ¹H,¹⁵N HMBC NMR spectrum of **1-***OMe* (500 and 51 MHz, CD₃CN, 25 °C).

Figure S7. ¹H NMR spectrum of (1-*OMe*)₂-Ag (500 MHz, CD₃CN, 25 °C).

Figure S8. ¹³C NMR spectrum of (1-*OMe*)₂-Ag (126 MHz, CD₃CN, 25 °C).

Figure S9. ¹H, ¹³C HSQC NMR spectrum of (1-OMe)₂-Ag (500 and 126 MHz, CD₃CN, 25 °C).

Figure S10. ¹H,¹⁵N HMBC NMR spectrum of (1-*OMe*)₂-Ag (500 and 51 MHz, CD₃CN, 25 °C).

Figure S11. ¹H NMR spectrum of (1-*OMe*)₂-I (500 MHz, CD₃CN, 25 °C).

Figure S12. ¹³C NMR spectrum of (1-*OMe*)₂-I (126 MHz, CD₃CN, 25 °C).

Figure S13. ¹H,¹³C HSQC NMR spectrum of (1-*OMe*)₂-I (500 and 126 MHz, CD₃CN, 25 °C).

Figure S14. ¹H,¹⁵N HMBC NMR spectrum of (1-*OMe*)₂-I (500 and 51 MHz, CD₃CN, 25 °C).

Figure S15. After addition of 4-penten-1-ol (20 μ mol) to (**1-***OMe*)₂-**I** (8.7 μ mol), both the alkene itself and the iodocyclized product are visible in the resulting ¹H NMR spectrum.

Figure S16. The ¹H spectra in CD₃CN of the I⁺ complex (1-*OMe*)₂-I (8.7 μ mol) (bottom), and after addition of 4-penten-1-ol (2 μ L, 20 μ mol, 2.3 equiv.) (top). The pyridyl signals changed upon addition of the alkene, in accordance with an I⁺ transfer, suggesting formation of (1-*OMe*)₂-I was successful.

Figure S17. The stacked ¹H,¹⁵N HMBC spectra in CD₃CN of (1-*OMe*)₂-I (8.7 µmol) (black), and after addition of 4-penten-1-ol (2 µL, 20 µmol, 2.3 equiv.) (red) with the new chemical shift indicated (-152.7). The substantial change further indicates an I⁺ transfer from (1-*OMe*)₂-I when the alkene is added, which is further evidence for successful formation of the iodine(I) complex (1-*OMe*)₂-I.

Figure S18. LC-MS chromatograms of (1-OMe)2-I.

Figure S19. LC-MS mass spectrum (positive mode) of the peak at 1.9 minutes of (1-OMe)₂-I, which shows a peak consistent with the mass to charge of the protonated ligand.

Figure S20. ¹H NMR spectrum of the control solution of (1-*OMe*)-I₂ (500 MHz, CD₃CN, 25 °C).

Figure S21. ¹³C NMR spectrum of the control solution of (1-*OMe*)-I₂ (126 MHz, CD₃CN, 25 °C).

Figure S22. ¹H, ¹³C HSQC NMR spectrum of the control solution of (1-*OMe*)-I₂ (500 and 126 MHz, CD₃CN, 25 °C).

Figure S23. ¹H, ¹⁵N HMBC NMR spectrum of the control solution of (1-*OMe*)-I₂ (500 and 51 MHz, CD₃CN, 25 °C).

Figure 24. ¹H NMR spectrum of (1-*OMe*)-H (500 MHz, CD₃CN, 25 °C).

Figure 25. ¹³C NMR spectrum of (1-*OMe*)-H (126 MHz, CD₃CN, 25 °C).

Figure 26. ¹H, ¹³C HSQC NMR spectrum of (1-OMe)-H (500 and 126 MHz, CD₃CN, 25 °C).

Figure 27. ¹H,¹⁵N HMBC NMR spectrum of (1-*OMe*)-H (500 and 51 MHz, CD₃CN, 25 °C).

2.2. 4-Methylpyridine *N*-oxide and complexes

Figure S28. ¹H NMR spectrum of 1-Me (500 MHz, CD₂Cl₂, 25 °C).

Figure S29. ¹³C NMR spectrum of **1**-*Me* (126 MHz, CD₂Cl₂, 25 °C).

Figure S30. ¹H, ¹³C HSQC NMR spectrum of 1-*Me* (500 and 126 MHz, CD₂Cl₂, 25 °C).

Figure S31. ¹H,¹⁵N HMBC NMR spectrum of **1-***Me* (500 and 51 MHz, CD₂Cl₂, 25 °C).

Figure S32. ¹H NMR spectrum of 1-*Me* (500 MHz, CD₃CN, 25 °C).

Figure S33. ¹³C NMR spectrum of 1-*Me* (126 MHz, CD₃CN, 25 °C).

Figure S34. ¹H,¹³C HSQC NMR spectrum of 1-*Me* (500 and 126 MHz, CD₃CN, 25 °C).

Figure S35. ¹H,¹⁵N HMBC NMR spectrum of 1-*Me* (500 and 51 MHz, CD₃CN, 25 °C).

Figure S36. ¹H NMR spectrum of (1-*Me*)₂-Ag (500 MHz, CD₃CN, 25 °C).

Figure S37. ¹³C NMR spectrum of (1-*Me*)₂-Ag (126 MHz, CD₃CN, 25 °C).

Figure S38. ¹H,¹³C HSQC NMR spectrum of (1-*Me*)₂-Ag (500 and 126 MHz, CD₃CN, 25 °C).

Figure S39. ¹H,¹⁵N HMBC NMR spectrum of (1-*Me*)₂-Ag (500 and 51 MHz, CD₃CN, 25 °C).

Figure S40. ¹H NMR spectrum of (1-*Me*)₂-I (500 MHz, CD₂Cl₂, 25 °C).

Figure S41. ¹³C NMR spectrum of (1-*Me*)₂-I (126 MHz, CD₂Cl₂, 25 °C).

Figure S42. ¹H,¹³C HSQC NMR spectrum of (1-Me)₂-I (500 and 126 MHz, CD₂Cl₂, 25 °C).

Figure S43. ¹H,¹⁵N HMBC NMR spectrum of (1-*Me*)₂-I (500 and 51 MHz, CD₂Cl₂, 25 °C).

Figure S44. ¹H NMR spectrum of $(1-Me)_2$ -I in CD₃CN (500 MHz, 25 °C). Broad signals (marked with blue) corresponding to the protonated 4-methylpyridine *N*-oxide can be seen along with the signals (marked with maroon) of the iodine(I) complex.

Figure S45. ¹³C NMR spectrum of (1-*Me*)₂-I in CD₃CN (500 MHz, 25 °C).

Figure S46. ¹H,¹⁵N HMBC NMR spectrum of (1-Me)₂-I in CD₃CN (500 and 51 MHz, 25 °C).

55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 fl (ppm)

Figure S47. ¹H NMR spectra of repeated formations of $(1-Me)_2$ -I in CD₃CN (500 MHz, 25 °C). Mixtures of the protonated 4-methylpyridine *N*-oxide and $(1-Me)_2$ -I are consistently obtained. The broad signals of protonated 4-methylpyridine *N*-oxide appear at varying chemical shifts, which is indicative of different pH of the samples.

Figure 48. ¹H NMR spectra of $(1-Me)_2$ -I (32 µmol) in CD₃CN (500 MHz, 25 °C) before (bottom) and after successively adding portions of a solution of 4-penten-1-ol (2 µL, 20 µmol) in CD₃CN (0.6 mL). The sharp signals belonging to $(1-Me)_2$ -I (marked with maroon) decrease upon addition, while the partially protonated 1-*Me* signals (marked with blue) shifts due to the changed pH.

Figure 49. ¹H NMR spectra of $(1-Me)_2$ -I (32 µmol) in CD₃CN (500 MHz, 25 °C) before (top) and after successively adding a drop of H₂O (middle) and a drop of TFA (bottom). The sharp signals belonging to $(1-Me)_2$ -I (marked with maroon) decrease upon addition, while the partially protonated 1-Me signals (marked with blue) increase and shifts due to the changed pH.

Figure S50. The ¹H spectrum in CD₂Cl₂ resulting from addition of 4-penten-1-ol (2 μ L, 20 μ mol, 0.8 equiv.) to the I⁺ complex (1-*Me*)₂-I shows formation of 1 equivalent of the iodocyclized product.

8.65 8.60 8.75 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30 f1 (ppm)

Figure S51. The ¹H spectra in CD₂Cl₂ of the I⁺ complex (1-*Me*)₂-I (8 μ mol) (bottom), and after addition of 4penten-1-ol (2 μ L, 20 μ mol, 2.5 equiv.) (top). The pyridine signals changed upon addition of the alkene, in accordance with an I⁺ transfer, suggesting formation of (1-*Me*)₂-I was successful.

Figure S52. The stacked ¹H,¹⁵N HMBC spectra in CD₂Cl₂ of (1-*Me*)₂-I (8 µmol) (black), and after addition of 4penten-1-ol (2 µL, 20 µmol, 2.5 equiv.) (red) with the new chemical shift indicated (-129.5). The ~10 ppm change in chemical shift is consistent with an I⁺ transfer from (1-*Me*)₂-I to the alkene, which provides further evidence for the successful formation of the iodine(I) complex (1-*Me*)₂-I.

Figure S53. ¹H NMR spectrum of the control solution of (1-*Me*)-I₂ (500 MHz, CD₃CN, 25 °C).

Figure S54. ¹³C NMR spectrum of the control solution of (1-*Me*)-I₂ (126 MHz, CD₃CN, 25 °C).

Figure S55. ¹H,¹⁵N NMR spectrum of the control solution of (1-*Me*)-I₂ (500 and 51 MHz, CD₃CN, 25 °C).

Figure S56. Comparison of the ¹H NMR spectra of the control solution of $(1-Me)-I_2$ (bottom) and of the $(1-Me)_2$ -I in CD₃CN described in the synthetic information (top) (500 MHz, 25 °C). The small signals of the top spectrum matches the ones of $(1-Me)-I_2$ very well, but are actually originating from protonated 4-methylpyridine *N*-oxide (see Figures S47-S52 and S59).

Figure S57. Comparison of the ¹³C NMR spectra of the control solution of (1-Me)-I₂ (bottom) and of the (1-Me)-I in CD₃CN described in the synthetic information (top) (126 MHz, 25 °C). The small signals of the top spectrum matches the ones of (1-Me)-I₂ very well, but are actually protonated 4-methylpyridine *N*-oxide (see Figures S47-52, and S59).

Figure 58. Comparison of the ¹H,¹⁵N HMBC NMR spectra of the control solution of (1-Me)-I₂ (red) and of the (1-Me)2-I in CD₃CN described in the synthetic information (black) (126 MHz, 25 °C). The signal at -105.0 of the black spectrum matches the ones of (1-Me)-I₂ very well, but are actually originating from protonated 4-methylpyridine *N*-oxide (see Figures S47-S52, and S59).

Figure S59. ¹H NMR spectra of $(1-Me)_2$ -I (32 µmol) in CD₃CN (500 MHz, 25 °C) before (top) and after successively adding I₂ (13 µmol) (middle) and AgBF₄ (9 µmol) (bottom). Adding I₂ caused the signals marked in blue to grow, which could be in agreement with them being (1-Me)-I₂. However, addition of AgBF₄ does not cause the blue signals to be converted into iodine(I) complex (signals marked with maroon), which would have been expected if they originated from (1-Me)-I₂. This is instead in agreement with the blue signals being protonated 4-methylpyridine *N*-oxide. Each addition result in increasing amounts of moisture in the sample, which reacts with part of the iodine(I) complex to form more protonated 4-methylpyridine *N*-oxide, responsible also for the change in pH making the blue signals shift slightly.

Figure S60. ¹H NMR spectrum of the control solution of (1-*Me*)-I₂ (500 MHz, CD₂Cl₂, 25 °C).

Figure S61. ¹³C NMR spectrum of the control solution of (1-*Me*)-I₂ (126 MHz, CD₂Cl₂, 25 °C).

Figure S62. ¹H, ¹⁵N HMBC NMR spectrum of the control solution of (1-*Me*)-I₂ (500 and 51 MHz, CD₂Cl₂, 25 °C).

2.3. Dibenzofuran complexes

Figure S63. ¹H NMR spectrum of the attempt to form $[bis(dibenzofuran)iodine(I)]^+$ tetrafluoroborate (500 MHz, CD₃CN, 25 °C).

Figure S64. ¹H,¹³C HSQC NMR spectrum of the attempt to form [bis(dibenzofuran)iodine(I)]⁺ tetrafluoroborate (500 and 126 MHz, CD₃CN, 25 °C).

Figure S65. ¹H,¹³C HMBC NMR spectrum of the attempt to form [bis(dibenzofuran)iodine(I)]⁺ tetrafluoroborate (500 and 126 MHz, CD₃CN, 25 °C).

Figure S66. ¹H NMR spectrum of the solution of dibenzofuran and silver tetrafluoroborate (500 MHz, CD₃CN, 25 °C).

Figure S67. ¹H, ¹³C HSQC NMR spectrum of the solution of dibenzofuran and silver tetrafluoroborate (500 and 126 MHz, CD₃CN, 25 °C).

Figure S68. ¹H,¹³C HMBC NMR spectrum of the solution of dibenzofuran and silver tetrafluoroborate (500 and 126 MHz, CD₃CN, 25 °C).

Figure S69. The ¹H spectra of the attempt to form [bis(dibenzofuran)iodine(I)]⁺ tetrafluoroborate (top), and the solution of dibenzofuran and silver tetrafluoroborate (bottom) show no difference, confirming no iodine(I) complex was formed.

Figure S70. The ¹H, ¹³C HSQC spectra of the attempts to form $[bis(dibenzofuran)iodine(I)]^+$ tetrafluoroborate (red), and $[bis(dibenzofuran)silver(I)]^+$ tetrafluoroborate (black), which show no difference and further confirm that the iodine(I) complex was not formed.

Figure S71. The 1 H, 13 C HMBC spectra of the attempts to form [bis(dibenzofuran)iodine(I)]⁺ tetrafluoroborate (red/orange), and [bis(dibenzofuran)silver(+I)]⁺ tetrafluoroborate (black/white). Since the carbon at C4a/5a (the resonance at highest frequency) is the closest measureable nuclei to the oxygen, here one could expect the largest shift difference upon complexation. Since no difference is observed the most plausible conclusion is that the iodine(I) complex was not formed.

3. COMPUTATIONS

3.1. Computational approach

In the computational analysis of the present work, we used density functional theory (DFT) to describe the electronic structure of the investigated complexes. The geometries of all species were optimized in the presence of a solvent (acetonitrile, as one of the solvents used in experiments) at the $\omega B97X-D^{7-9}/Def2SVP^{10}$ level of theory.⁷⁻¹⁰ The dispersion-corrected, range-separated hybrid ω B97X-D functional was shown to provide accurate binding energies and topological properties for halogen-bonded systems.¹¹ The solvent effects were taken into account using the integral equation formalism variant of the polarizable continuum model (IEFPCM).¹² The atomic radii and non-electrostatic terms in the IEFPCM calculations were those introduced by Truhlar and coworkers (SMD solvation model).¹³ For each optimized structure, additional single-point energy calculations were performed with the larger Def2TZVPP basis set¹⁰ also in the presence of the solvent. Vibrational analysis was performed at the ω B97X-D/Def2SVP level, and the results were used to compute the thermal and entropic contributions to the Gibbs free energy. For the estimation of thermodynamic data, the ideal gas - rigid rotor harmonic oscillator approximation was utilized for 298.15 K and p = 1 atm (ideal gas standard state), but corrections were applied for switching to concentration relevant to solution phase. Namely, concentration of c = 1mol/dm³ ($\Delta G_{conc} = 0.003019$ a.u.) was applied for all investigated systems (ligands and complexes), except for acetonitrile, when it was explicitly considered as a coordinating molecule (see section 3.4). The molar concentration of acetonitrile in solvent phase is $c = 19.15 \text{ mol/dm}^3$ (r = 786 g/dm³, M = 41.05 g/mol), so the corresponding correction term is $\Delta G_{conc} = 0.005805$ a.u.. The relative energies reported in the paper refer to solution phase Gibbs free energies computed as $G = E_{0,sol} + (G_{0,sol} - E_{0,sol}) + \Delta G_{conc}$, where $E_{0,sol}$ and $E_{0,sol}$ are solution phase electronic energies obtained at the ω B97X-D/Def2TZVPP and ω B97X-D/Def2SVP levels, respectively, and $G_{0,sol}$ is solution phase Gibbs free energy computed at ω B97X-D/Def2SVP level. The ¹⁵N NMR chemical shifts $(\delta^{15}N)$ were computed from NMR shielding tensors calculated with the Gauge-Independent Atomic Orbital (GIAO) method¹⁴ using the ω B97X-D/Def2SVP level of DFT in solution phase (in acetonitrile). All DFT calculations were carried out with the Gaussian09 software.¹⁵

3.2. Structure of [RO-X-OR]⁺ complexes

The equilibrium structures of [RO-X-OR]⁺ complexes (with RO = 1-*OMe*, 1-*Me* and dibenzofuran 2; $X^+ = I^+$, Ag⁺ and H⁺) along with those of the free ligands and [RO-X]⁺ complexes are depicted in Figure S72 to S74.

Figure S72. Optimized structures of $[RO-I]^+$ and $[RO-I-OR]^+$ complexes with selected structural parameters. Bond distances are in Å and angles in degrees. φ denotes dihedral angles characterizing the relative position of the two coordinating ligands (N-O···O-N dihedral angles for ligands **1**-*OMe* and **1**-*Me*, C-O···O-C dihedral angles for ligand **2**).

Figure S73. Optimized structures of [RO-Ag]⁺ and [RO-Ag-OR]⁺ complexes with selected structural parameters. For notes, see caption of Figure S72.

Figure S74. Optimized structures of [ROH]⁺ and [RO-H-OR]⁺ complexes with selected structural parameters. For notes, see caption of Figure S72.

We note that iodine(I) complexes have a bent structure in that the aromatic rings of the ligands are not aligned with the O-I bonds, which is different from that found for the previously reported bis(pyridine) systems [**Py**-X-**Py**]⁺ (**Py** = pyridine) that are linear. For [RO-I-OR]⁺ complexes, the two O-I bonds lengths are identical, however, the equilibrium structures are not symmetrical, as the two ligands are displaced from the symmetrical position that would correspond to dihedral angles $\varphi = 0^{\circ}$ or 180°. Computations suggest that the rotation around the O-I-O molecular axis is basically free (the rotational barrier is less than 0.3 kcal/mol, as estimated from a constrained potential energy scan along the N-O^{...}O-N dihedral angle). The Ag⁺ complexes have similar structural features; however, the Ag-O bonds are predicted to be somewhat shorter as compared to the I-O bonds. The [RO-H-OR]⁺ complexes are hydrogen bonded systems, therefore asymmetric in their O-H bonds. Due to the cationic nature of R-OH⁺, the hydrogen bonds are rather strong (fairly short OH^{...}O distances).

Although the influence of the counter-ion on the structure of present complexes was not investigated in detail, we probed this effect by optimizing the structure of $[(1-OMe)_2-I]^+$ and $[(1-Me)_2-I]^+$ complexes in the presence of the BF₄⁻ anion (see Figure S75).

Figure S75. Optimized structures of $[(1-OMe)_2-I]^+BF_4^-$ and $[(1-Me)_2-I]^+BF_4^-$ ion pairs with selected structural parameters.

We find that the BF_4^- anion is not in direct contact with the iodine(I) cation, but rather it interacts with the ligand via $F^{\dots}\pi$ and $F^{\dots}H$ -C type interactions. Due to the flexible nature of the [RO-I-OR]⁺ complexes, the relative position of the ligand varies slightly with respect to their structures without the counter-ion, but the other structural parameters are practically unchanged.

3.3. Relative stability of [RO-X-OR]⁺ complexes

The relative stability of [RO-X-OR]⁺ complexes were quantified in terms of the Gibbs free energies of reactions (1) and (2) in acetonitrile.

$$[\text{RO-X}]^+ + \text{OR} \rightarrow [\text{RO-X-OR}]^+ \tag{1}$$

$$[\mathbf{P}\mathbf{y}-\mathbf{X}-\mathbf{P}\mathbf{y}]^{+} + 2\mathbf{OR} \rightarrow [\mathbf{RO}-\mathbf{X}-\mathbf{OR}]^{+} + 2\mathbf{P}\mathbf{y}$$
⁽²⁾

The first reaction describes the binding of the second OR ligand to the 1:1 complex, and the associated ΔG measures the thermodynamics of this process. On the other hand, the second reaction quantifies the relative stability of [RO-X-OR]⁺ complexes (only for X⁺ = I⁺ and Ag⁺) with respect to the bis-pyridine [**Py**-X-**Py**]⁺ complex as a reference. The computed free energy data are collected in Table S1 and Table S2.

Table S1. Computed thermodynamics for reaction (1).^a

	$[(1-OMe)_2-X]^+$	$[(1-Me)_2-X]^+$	$[(2)_2-X]^+$
$X^+ = I^+$	-15.0	-13.8	-2.0
$X^{\scriptscriptstyle +} = Ag^{\scriptscriptstyle +}$	-12.0	-10.1	1.6
$X^{\scriptscriptstyle +}=H^{\scriptscriptstyle +}$	-8.8	-9.1	-3.7

^a Solution phase Gibbs free energy data are given in kcal/mol.

Table S2. Computed thermodynamics for reaction (2).^a

	$[(1-OMe)_2-X]^+$	$[(1-Me)_2-X]^+$	$[(2)_2-X]^+$
$X^{\scriptscriptstyle +} = I^{\scriptscriptstyle +}$	-2.7	1.9	57.7
$X^{\scriptscriptstyle +} = Ag^{\scriptscriptstyle +}$	4.5	7.8	29.7

^a Solution phase Gibbs free energy data are given in kcal/mol.

The results indicate that the coordination of ligands **1**-*OMe* and **1**-*Me* to the corresponding $[\text{RO-X}]^+$ systems is highly exergonic for all $X^+ = I^+$, Ag^+ and H^+ cations (Table S1), so the formation of $[\text{RO-X-OR}]^+$ complexes is thermodynamically feasible. For ligand **2**, computations predict far less stable $[\text{RO-X-OR}]^+$ complexes with ΔG values close to zero (for $X^+ = I^+$ and Ag^+), but the hydrogen-bonded complex $[2-H-2]^+$ is less stable as well than those with ligands **1**-*OMe* and **1**-*Me*.

The thermodynamics computed for the ligand exchange reaction (2) point to rather stable halogen-bonded complexes with ligands 1-*OMe* and 1-*Me*, comparable to that of the reference systems $[Py-I-Py]^+$, but the analogous complex with 2 is predicted to be highly unstable. A similar trend is obtained for $[RO-Ag-OR]^+$ complexes, although these complexes are somewhat destabilized with respect to $[Py-Ag-Py]^+$.

3.4. Formation of halogen bonded RO…I₂ complexes

Association between ligand 1-*OMe* and 1-*Me* and I_2 was examined computationally and complexes (1-*OMe*)...I₂ and (1-*Me*)...I₂ were found to be thermodynamically favored relative to their dissociation limits. The optimized structures are depicted in Figure S72.

Figure S76. Optimized structures of $(1-OMe)\cdots I_2$ and $(1-Me)\cdots I_2$ complexes with selected bond distances (in Å) and bond angles (degrees). Relative stabilities with respect to corresponding dissociation limits are shown in parentheses (in kcal/mol).

3.5. Coordination of acetonitrile to [RO-X-OR]⁺ complexes

Since most of the NMR measurements were carried out in acetonitrile, the coordination of the acetonitrile molecule (ACN) to the central cations in thermodynamically stable [RO-X-OR]⁺ complexes ($X^+ = I^+$ and Ag⁺ with RO = **1**-*OMe* and **1**-*Me*) was examined computationally. We identified several conformers computationally for complexes with one and two coordinating ACN molecules (i.e. [RO-X-OR]⁺(ACN) and [RO-X-OR]⁺(ACN)₂ complexes, respectively). The optimized structures for complexes with ligand **1**-*OMe* are depicted in Figure S77. We note that very similar structures were found for ligand **1**-*Me* (the optimized structures are provided in xyz format in section 3.8)

Figure S77. Optimized structures of $[RO-X-OR]^+(ACN)$ and $[RO-X-OR]^+(ACN)_2$ complexes with selected bond distances (in Å). Relative stabilities with respect to $[RO-X-OR]^+ + ACN$ and $[RO-X-OR]^+ + 2ACN$ dissociation limits are shown in parentheses (in kcal/mol).

It is apparent from the obtained structures that ACN does not coordinate to the central iodine of $[RO-I-OR]^+$ complexes, it interacts only weakly with the ligands (ACN-I bond distances are around 4 Å in all structures; the association is clearly unfavored thermodynamically). On the contrary, the short ACN-Ag distances give evidence for coordination to Ag⁺ of $[RO-Ag-OR]^+$ complexes. The computed relative stabilities are in line with these observations.

Additionally, we have computed the Gibbs free energy of reaction (3), which measures the relative stabilities with respect to bis(ACN) complexes [ACN-X-ACN]⁺ (see Table S3). The predicted data suggest that this ligand exchange process is highly unfavored for [RO-I-OR]⁺ complexes, however, thermodynamic equilibrium between [RO-Ag-OR]⁺ and [ACN-Ag-ACN]⁺ complexes may exist in the solution of acetonitrile.

$$[\text{RO-X-OR}]^+ + 2\text{ACN} \rightarrow [\text{ACN-X-ACN}]^+ + 2\text{RO}$$
(3)

Table S3. Computed thermodynamics for reaction (3)^{.a}

	1- <i>OMe</i>	1-Me
$\mathbf{X}^{+} = \mathbf{I}^{+}$	25.2	20.5
$X^{\scriptscriptstyle +} = Ag^{\scriptscriptstyle +}$	1.5	-1.9

^a Gibbs free energy data are given in kcal/mol.

3.6. Computed ¹⁵N NMR chemical shifts

DFT calculations were also carried out to predict the ¹⁵N chemical shifts for the experimentally characterized [RO-I-OR]⁺ complexes (RO = 1-*OMe* and 1-*Me*; $X^+ = I^+$, Ag⁺ and H⁺). The results are summarized in Table S4.

	1-OMe	1- <i>Me</i>
OR ligand	-98.8 [-103.0]	-86.6 [-91.7]
[RO-I-OR] ⁺	-143.5 [-134.2]	-129.0 [-105.0 ^b]
[RO-Ag-OR] ⁺	-131.4 [-105.1]	-116.6 [-92.0]
[RO-H-OR] ⁺	-164.9 / -138.5 [-152.7]	-147.4 / -126.1 [-129.5]

Table S4. Computed ¹⁵N NMR chemical shifts for [RO-X-OR]⁺ complexes.^a

^a Chemical shifts are given in ppm with respect to nitromethane (-128.6 ppm). Experimental data are shown in brackets.^b The experimental chemical shift determined in CD₂Cl₂ is in better agreement with calculations (119.4 ppm)

The applied methodology gives quite reasonable $\delta^{15}N$ predictions for the two ligands 1-*OMe* and 1-*Me* (underestimation by 4-5 ppm). For [RO-I-OR]⁺ complexes, the agreement is still acceptable for 1-*OMe* (overestimation by 9 ppm). The calculated chemical shift of the [RO-I-OR]⁺ complex of 1-*Me* deviates significantly from the experimental value determined in acetonitrile, however, this could be related to the difficulties forming the complex in acetonitrile. The experimental chemical shift of the [RO-I-OR]⁺ complex of 1-*Me* in CD₂Cl₂ is much closer to the calculated value. Our results obtained for the [(1-*OMe*)₂-I]⁺[BF₄]⁻ and [(1-*Me*)₂-I]⁺[BF₄]⁻ ion pairs indicate that the deviation does not arise from the omission of the counterions in the model systems (for the ion pairs, computations give -142.9 and -128.6 ppm, respectively). Interestingly, ¹⁵ δ N data computed for [RO-Ag-OR]⁺ complexes are far off the experimental observations. Computations predict significant variation in the δ^{15} N chemical shifts upon the coordination of both ligands to Ag⁺, however, this contradicts with experiment (only a very small alteration in ¹⁵ δ N is measured). For hydrogen bonded [RO-H-OR]⁺ complexes, the average values of the two computed ¹⁵ δ N chemical shifts correlate well with experimental data.

As noted above, the coordination of ACN molecules to $[\text{RO-Ag-OR}]^+$ complexes to form tri- or tetracoordinated $[\text{RO-X-OR}]^+(\text{ACN})$ and $[\text{RO-X-OR}]^+(\text{ACN})_2$ complexes is thermodynamically feasible (see Figure S77). We have, therefore, computed the δ^{15} N shifts in these complexes as well (see Table S5). Although the chemical shifts are lowered upon the coordination of ACN molecules as compared to those in $[\text{RO-Ag-OR}]^+$ (the Ag-OR bonds are weakened), the δ^{15} N predictions are still far away from those of the **1-OMe** and **1-Me** ligands.

The equilibrium predicted for reaction (3) may imply that the concentration of [RO-Ag-OR]⁺ complexes in acetonitrile is rather low, which could be a plausible explanation for the observed chemical shifts.

Table S5. Computed ¹⁵N NMR chemical shifts [RO-Ag-OR]⁺(ACN) and [RO-Ag-OR]⁺(ACN)₂ complexes.^a

	1-OMe	1- <i>Me</i>
[RO-Ag-OR] ⁺ (ACN)	-128.8 / -128.8 (-131.4)	-111.3 / -109.6 (-116.6)
[RO-Ag-OR] ⁺ (ACN) ₂	-116.5 / -117.3 (-131.4)	-103.8 / -106.7 (-116.6)

^a Chemical shifts are given in ppm with respect to nitromethane. Data obtained for computations of [RO-Ag-OR]⁺ complexes are shown in parenthesis.

3.7. Total energy data

structure	$E_{0,sol}$	$G_{0,sol}$	$E_{0,sol}$ '	G
1- <i>OMe</i>	-0.70	-0.70	-0.70	-0.70
1-Me	-0.58	-0.58	-0.58	-0.58
2	-0.86	-0.86	-0.86	-0.86
[1 OM ₂ I] ⁺	1 17	1 17	1 17	1 17
[1-0me-1] ⁺	-1.17	-1.17	-1.17	-1.17
[1-2020-1] [2]]+	-1.05	-1.05	-1.05	-1.03
$[2^{-1}]$ [(1 OM ₂), I] ⁺	-1.55	-1.55	-1.33	-1.55
$[(1 - OMe)_2 - 1]$	-1.67	-1.67	-1.67	-1.67
$[(1-2ME)^{2-1}]$	-1.03	-1.03	-1.03	-1.03
	-2.10	-2.16	-2.17	-2.17
[1- <i>OMe</i> -Ag] ⁺	-0.93	-0.93	-0.93	-0.93
[1-Me-Ag] ⁺	-0.81	-0.81	-0.81	-0.81
[2-Ag] ⁺	-1.09	-1.09	-1.09	-1.09
[(1 - <i>OMe</i>) ₂ -Ag] ⁺	-1.63	-1.63	-1.63	-1.63
[(1 - <i>Me</i>) ₂ -Ag] ⁺	-1.39	-1.39	-1.39	-1.39
$[(2)_2 - Ag]^+$	-1.94	-1.94	-1.95	-1.95
[1- <i>OMe</i> - H] ⁺	-0.70	-0.70	-0.70	-0.70
[1-Me-H] ⁺	-0.58	-0.58	-0.58	-0.58
[2-H] ⁺	-0.86	-0.86	-0.86	-0.86
[(1- <i>OMe</i>) ₂ -H] ⁺	-1.40	-1.39	-1.40	-1.40
[(1-Me)2- H] ⁺	-1.16	-1.16	-1.16	-1.16
[(2) ₂ -H] ⁺	-1.71	-1.71	-1.71	-1.71
[(1- <i>OMe</i>) ₂ - I] ⁺ [BF ₄] [□]	-2.54	-2.54	-2.55	-2.55
$[(1-Me)_2-I]^+[BF_4]^{\square}$	-2.31	-2.30	-2.31	-2.31
[Pv-I-Pv] ⁺	-1.26	-1.26	-1.27	-1.27
$[\mathbf{Py}-\mathbf{Ag}-\mathbf{Py}]^+$	-1.02	-1.02	-1.03	-1.03
Py	-0.40	-0.40	-0.40	-0.40
(1-OMe)I ₂	-1.65	-1.65	-1.65	-1.65
(1 -Me) I ₂	-1.53	-1.53	-1.53	-1.53
I ₂	-0.95	-0.95	-0.95	-0.95
[(1-OMe) 2-I] ⁺ (ACN)	-2.08	-2.08	-2.08	-2.08
[(1- <i>OMe</i>) ₂ - I] ⁺ (ACN) ₂	-2.29	-2.29	-2.29	-2.29
$[(1-OMe)_2-Ag]^+(ACN)$	-1.84	-1.84	-1.84	-1.84
$[(1-OMe)_2-Ag]^+(ACN)_2$	-2.05	-2.05	-2.05	-2.05
$[(1-Me)_2-I]^+(ACN)$	-1.84	-1.84	-1.84	-1.84
$[(1-Me)_2-I]^+(ACN)_2$	-2.05	-2.05	-2.05	-2.05
$[(1-Me)_2-Ag]^+(ACN)$	-1.60	-1.60	-1.60	-1.60
$[(1-Me)_2-Ag]^+(ACN)_2$	-1.81	-1.81	-1.81	-1.81
ACN	-0.21	-0.21	-0.21	-0.21
[ACN-I-ACN] ⁺	-0.90	-0.90	-0.90	-0.90
[ACN-Ag-ACN] ⁺	-0.66	-0.66	-0.66	-0.66

Table S6. Total energy data (in kcal/mol) computed for wB97X-D/Def2SVP optimized structures.^a

^a $\overline{G = E_{0,sol}' + (G_{0,sol} - E_{0,sol}) + \Delta G_{conc}}$, where $E_{0,sol}'$ and $E_{0,sol}$ are solution phase electronic energies obtained at the ω B97X-D/Def2TZVPP and ω B97X-D/Def2SVP levels, respectively, and $G_{0,sol}$ is solution phase Gibbs free energy computed at ω B97X-D/Def2SVP level. $\Delta G_{conc} = 0.003019$ a.u. corresponding to c = 1 mol/dm³ concentration except for ACN, where $\Delta G_{conc} = 0.005805$ a.u. that corresponds to molar concentration of acetonitrile (c = 19.15 mol/dm³).

3.8. Cartesian coordinates

Cartesian coordinates of the optimized geometries are given below in standard XYZ format (units are in Å). The first line shows the number of atoms, the second line is the notation used for structures discussed in the main text and the SI (see above in Table S6).

16			
1-0	ЭМе		
С	0.500544	0.028715	0.535257
С	1.207304	-0.515196	-0.514301
С	1.774090	0.314620	-1.492925
С	1.588402	1.693999	-1.354815
С	0.868200	2.188194	-0.278790
Ν	0.324113	1.377024	0.665680
н	0.038569	-0.563618	1.324422
н	1.324471	-1.597950	-0.580059
н	1.993146	2.410306	-2.069528
н	0.690724	3.250969	-0.116581
0	-0.334231	1.855647	1.647985
0	2.450243	-0.276444	-2.485886
С	3.034967	0.531963	-3.485350
н	3.531952	-0.149545	-4.186194
н	2.273462	1.114267	-4.030239
н	3.784707	1.219996	-3.060647
15			
1-/	Ле		
С	0.907921	-0.060839	0.559323
С	1.492535	-0.565824	-0.586443
С	1.529632	0.177809	-1.772351
С	0.941530	1.445262	-1.721205
С	0.363700	1.923349	-0.558236
Ν	0.342278	1.181053	0.584782
Н	0.851876	-0.598555	1.505354
Н	1.926041	-1.567533	-0.542036
Н	0.924261	2.088535	-2.603828
Н	-0.107797	2.901475	-0.467505
0	-0.190704	1.631103	1.645449
С	2.185073	-0.351499	-3.015216
Н	1.872247	0.214047	-3.903919
Н	3.282119	-0.276130	-2.938117
Н	1.941550	-1.412751	-3.171737
2	1		
2	7 012074	2 262164	0.012412
c	-7.913874	-3.303104	0.012412
c	-0.510017	-3.219940	0.010660
c	-5.913029	-1.962851	0.019121
C	-6.764715	-0.864052	0.029434
C	-8.164705	-0.978919	0.031452
	-8./4991/	-2.2492/4	0.022746
н	-8.349028	-4.36489/	0.005566
Н	-5.885584	-4.112135	0.002589
Н	-4.829401	-1.840020	0.01/890
Н	-9.836038	-2.363211	0.024129
C C	-7.503090	1.192051	0.04/369
C	-/.545680	2.581235	0.058806
C	-8.810358	3.167653	0.066448

C -9.979864 2.388719 0.062769

С	-9.916091	0.997457	0.051145
С	-8.656280	0.389895	0.043410
Н	-6.631408	3.176771	0.061586
Н	-8.891603	4.257069	0.075537
Н	-10.952951	2.884628	0.069076
Н	-10.826370	0.394115	0.048330
0	-6.368133	0.439041	0.038881
17			
[1-	$OMe-I]^+$		
С	0.617378	0.085956	0.712287
С	1.165061	-0.474646	-0.408208
С	1.713278	0.357109	-1.410819
С	1.687760	1.755023	-1.220943
С	1.126388	2.263240	-0.075189
Ν	0.610516	1.432517	0.852237
н	0.173532	-0.485288	1.528150
н	1.176504	-1.557798	-0.527534
н	2.099049	2.451478	-1.949966
н	1.066742	3.329137	0.148486
0	0.131251	1.960890	1.998402
0	2.215599	-0.240543	-2.463673
С	2.781765	0.526962	-3.523759
н	3.117585	-0.197529	-4.273068
н	2.026758	1.193859	-3.965672
н	3.641166	1.110956	-3.162932
1 -	1.898263	2.396922	1.967120
16			
[1-	<i>Me-</i> I]+		
c	1.008838	-0.037666	0.649391
С	1.433620	-0.584472	-0.541947
C	1.473131	0.196591	-1.706787
c	1.066672	1.537834	-1.609403
c	0.650226	2.053789	-0.403288
N	0.634928	1,255449	0.682992
н	0 952035	-0 580441	1 593405
н	1.735757	-1.632119	-0.557031
н	1 074749	2 191688	-2 482330
н	0 324406	3 083628	-0 250962
0	0 301312	1 794686	1 876278
і.	1 726381	1 743785	2 310035
Ċ	1 955258	-0.363808	-3 003630
н	1 347079	0.006125	-3 840745
н	2 991011	-0.028391	-3 177346
н	1 947345	-1 461050	-2 996503
••	1.5 17 5 15	1.101050	2.550505
2	2		
[2-	- I1+		
C	-7.912849	-3.349572	0.016470
C	-6.518147	-3.242332	-0.053895
c	-5.883187	-1.997994	-0.081840
Ĉ	-6.724154	-0.906332	-0.031815
C	-8.113797	-0.963293	0.038054
ć	-8.724787	-2.217462	0.059772
н	-8.371231	-4.340059	0.036155
н	-5.906434	-4,145701	-0.088131
н	-4 797489	-1 905742	-0 136359
н	-9.811590	-2.301845	0.108745
C	-7 504236	1 252022	-0.005909
c	-7 553884	2 630518	-0 025771
c	-8 836890	3 18196/	0.022566
c c	-9 978212	2 272256	0.022300
C	5.570212	2.372330	5.002554

0 000440	0 004040	0.000040
C -9.880118	0.981912	0.096646
C -8.609186	0.407774	0.054201
H -6.659160	3.252695	-0.072728
	1 269226	0.011547
11 -0.943299	4.208220	0.011347
H -10.963321	2.841216	0.118673
H -10.770159	0.351967	0.137434
0 -6.324001	0.460062	-0.078490
I -4 438985	1 133541	0 641840
1 1100000	1.1000 11	0.011010
22		
33		
$[(1-OMe)_2-I]^+$		
C 9.369537 -	0.689835	0.146070
C 9 41 5 4 8	0 290821	1 152595
C 9 2020/1	0 255571	2 07/002
0.392941	0.555571	2.074992
N 7.361723 -	0.507456	2.026330
C 7.289180 -	1.463081	1.072078
C 8.275052 -	1.576909	0.125135
0 6 404202	0 437108	2 952926
1 4 690706 0	0.107100	2:552520
	0.02/90/	2.555297
0 2.955612	2.100954	1.//4///
N 1.938739	1.413131	1.252223
C 0.962753	0.959516	2.060052
C -0 118881	0 273757	1 549476
C 0.102199	0.011690	0 164257
C -0.193188	0.044080	0.104237
C 0.844311	0.536784	-0.652273
C 1.894701	1.212315	-0.084585
0 -1.172215	-0.603765	-0.437752
C -2 244314 -	1 133707	0 331165
0 10 204601	0.045700	0.331103
0 10.284681	-0.845709	-0.791883
C 11.412476	0.019119	-0.827361
H -0.885631 ·	-0.072394	2.240781
H 0.815586	0.379563	-1.730486
H 1 090924	1 176018	3 120830
11 1.000024	1.170010	0.000140
H 2./319//	1.621236	-0.650143
H -1.877537 ·	-1.874755	1.057726
H -2.787326 ·	-0.331346	0.853622
H -2.916116	-1.623734	-0.382074
H 8 357223	1 086961	2 882793
	2 111056	1 120624
H 0.414/70 -	2.111950	1.120024
H 10.231353	1.00/6/0	1.232/1/
H 8.210237 -	2.351071	-0.639577
H 12.007944	-0.073713	0.093661
H 11.101216	1.065358	-0.969927
H 12 01/1277	_0 201028	-1 68//68
11 12.014577	0.301320	1.004400
31		
$[(1-Me)_2-I]^+$		
C -0.044352	0.031481	-0.030958
C -0.008690	0.019971	1.371643
C 0.082330	0 60/350	2 052470
C 0.982333	1.275200	2.052470
N 1.926720	1.375299	1.3/1041
C 1.935966	1.412629	0.025345
C 0.959156	0.749603	-0.692394
0 2.850295	2.055526	2.046746
4 676278	0 881769	2 512721
	0.072400	2 01225
0 0.505385	-0.2/3486	3.012355
N 7.388778	-0.342425	2.019104
C 8.336349	0.611855	1.913095
C 9.283592	0.535508	0.914226
C 9 271603	-0.528931	0.000147
C Q 267172	-1 /0750/	0 150622
0.20/1/3	1,70044	1.100022
C 7.334388	-1.380414	1.163525
C 10.302701	-0.623889	-1.079910

С	-1.113675	-0.702978	-0.776372
Н	10.040265	1.319246	0.851819
н	8.201479	-2.345598	-0.526255
н	8 280507	1 407172	2 657247
	0.209397	2.002070	1 220055
н	6.528271	-2.092879	1.338855
н	1.068036	0.730723	3.138469
Н	2.741951	1.992016	-0.425196
Н	-0.763109	-0.518929	1.946925
н	0.988186	0.800589	-1.781684
н	-1 0/2750	-0 530690	-1 857819
 Ц	1.030609	1 704202	0 595366
п	-1.050008	-1.764265	-0.585200
н	-2.108674	-0.387698	-0.428033
Н	10.097411	-1.458814	-1.761835
Н	10.339781	0.311125	-1.658545
Н	11.299485	-0.770350	-0.635190
Л	2		
г ()), T]+		
[(4)2 -1]		0 4 9 6 9 9 4
C	-7.810717	-3.333239	0.126824
С	-6.469287	-3.207724	-0.260292
С	-5.885645	-1.957148	-0.472298
С	-6.712696	-0.867013	-0.273556
C	-8 052116	-0 950038	0 111436
c	-8 615/00	-2 211/181	0.31/000
	-8.013499	-2.211401	0.314990
н	-8.230/11	-4.328976	0.281977
н	-5.862198	-4.104053	-0.402061
Н	-4.842571	-1.853150	-0.775442
Н	-9.660537	-2.310056	0.613876
С	-7.481625	1.253015	-0.137452
Ċ	-7 550054	2 633176	-0 178236
c	9 790060	2.000170	0.1/0200
C	-8.789009	5.100597	0.14/0/9
C	-9.884530	2.383594	0.489334
С	-9.778642	0.994570	0.518237
С	-8.548143	0.417154	0.198546
Н	-6.692996	3.252657	-0.446781
н	-8.901270	4.274474	0.131551
н	-10 8373/2	2 855816	0 736628
Ц	10 622744	0.269642	0.793664
П	-10.632744	0.308043	0.782004
0	-6.354262	0.477658	-0.437390
С	1.393084	0.125581	0.727166
С	0.318329	-0.685633	0.337290
С	-0.900971	-0.136391	-0.064243
С	-0.971969	1.244100	-0.047392
Ċ	0 074510	2 086039	0 333262
c	1 205015	1 E14034	0.333202
	1.205015	0.244755	0.728504
н	2.330848	-0.341755	1.034043
н	0.431548	-1.771490	0.344301
Н	-1.741383	-0.760597	-0.371905
Н	2.124240	2.145601	1.029001
С	-1.732086	3.360403	-0.259741
Ċ	-2 546706	4 445924	-0 523366
c	1 075700	5 700719	0.323300
c	-1.373700	5.700718	-0.302288
C	-0.657604	5.834135	0.155919
С	0.135405	4.716609	0.408539
С	-0.415983	3.451254	0.196724
Н	-3.571261	4.334205	-0.881674
н	-2.573608	6.593869	-0.494240
н	-0 246514	6 832846	0 315731
ц	1 162460	1 871506	0.762522
0	1.102400	-+.021300	0.702052
U	-2.082012	2.012963	-0.420952
1	-4.219394	1.246416	-0.434250

[1-	OMe-Ag]+		
С	0.636738	0.103627	0.711550
С	1.175425	-0.466822	-0.416591
С	1.725300	0.349131	-1.421341
С	1.705322	1.738046	-1.224979
С	1.149450	2.250670	-0.068230
Ν	0.623257	1.447689	0.876456
Н	0.191045	-0.469152	1.524435
Н	1.172858	-1.551090	-0.530631
Н	2.113696	2.437172	-1.953628
Н	1.097684	3.317734	0.147519
0	0.132446	1.967547	1.984623
0	2.224776	-0.259302	-2.488545
С	2.783553	0.518430	-3.534952
Н	3.117979	-0.191742	-4.299629
Н	2.032022	1.195566	-3.970525
н	3.646744	1.101627	-3.177672
Ag	-2.003584	2.403043	2.068030
0			
16			
[1	Me-Ag] ⁺		
С	1.043764	-0.030900	0.648122
С	1.460664	-0.578460	-0.551156
С	1.490315	0.192973	-1.717832
С	1.083033	1.528526	-1.601469
С	0.674281	2.038964	-0.385398
Ν	0.654360	1.259371	0.718611
Н	0.994489	-0.582410	1.586586
Н	1.761724	-1.627286	-0.564630
Н	1.078340	2.190413	-2.469321
Н	0.342406	3.066227	-0.234849
0	0.290398	1.766702	1.873271
С	1.954539	-0.368800	-3.026918
Н	1.326645	-0.009528	-3.854752
Н	2.986680	-0.041237	-3.231680
Н	1.943082	-1.466831	-3.018300
Ag	-1.843217	1.839723	2.356115
2	2		
[2-	Ag] ⁺		
C	-7.900175	-3.361487	0.044305
С	-6.503519	-3.216774	0.036497
С	-5.904737	-1.957210	0.030794
С	-6.764240	-0.869885	0.033268
С	-8.160198	-0.978670	0.040972
С	-8.740709	-2.250502	0.046588
Н	-8.332677	-4.364147	0.048655
Н	-5.870464	-4.106713	0.034899
н	-4.819602	-1.830133	0.024775
н	-9.826131	-2.367405	0.052687
С	-7.523221	1.207197	0.033594
C	-7.568867	2.592414	0.031616
С	-8.839688	3.167336	0.037527
C	-9.999860	2.376409	0.045003
С	-9.924543	0.985348	0.046932
ć	-8.660067	0.389205	0.041141
Н	-6.658716	3.196042	0.025918
н	-8,931009	4,255632	0.036278
н	-10.977504	2.862825	0.049441
Н	-10.828624	0.373376	0.052748
0	-6.375089	0.449502	0.028668
Ag	-4.115476	1.212560	0.027856

33			
[(1	-OMe)2-Ag]	+	
Ag	-2.343030	1.143318	1.539190
0	-0.256190	0.771927	1.586233
0	-4.431636	1.511730	1.484126
Ν	0.465530	1.410891	2.491680
Ν	-5.174455	0.832882	0.628255
С	0.597548	0.892767	3.735176
С	1.107840	2.545263	2.156453
С	-6.128467	0.007660	1.097815
С	-5.014094	1.000247	-0.706050
С	1.376955	1.514018	4.680846
н	0.043733	-0.027986	3.918154
С	1.906971	3.216749	3.061920
н	0.946032	2.887008	1.134271
С	-6.961988	-0.692055	0.245681
H	-6.187268	-0.064327	2.183573
C	-5 807482	0 328600	-1 604140
н	-4 218494	1 685568	-0 999784
c	2 054404	2 704278	4 359814
ц	1 /68069	1 083156	5 678153
	2 400517	1.083130	2.078133
н С	2.400317	4.130334	1 1 1 0 1 2 2
	-0.810075	1 246022	-1.140455
	-7.714967	-1.346032	0.083548
н	-5.65/50/	0.473530	-2.6/4282
0	2.786967	3.257559	5.315/33
0	-7.541857	-1.162981	-2.055031
С	3.487203	4.462870	5.050775
С	-8.562230	-2.057270	-1.640621
Н	4.221627	4.324722	4.241965
Н	2.791805	5.275137	4.787341
Н	4.012449	4.721445	5.977109
Н	-9.324611	-1.537408	-1.039521
Н	-8.142799	-2.896756	-1.064270
н	-9.023386	-2.441685	-2.557365
24			
31	M _1) A _1 ⁺		
	-Me)2-Ag	0.057600	0.044145
C	0.754402	0.057693	-0.844115
C	2.085392	-0.182186	-0.549509
C	3.084014	0.695961	-0.977383
С	2.663567	1.815566	-1./08/25
С	1.327440	2.020273	-1.983358
Ν	0.387868	1.145204	-1.553171
Н	-0.056459	-0.601347	-0.530014
Н	2.331532	-1.077260	0.024089
Н	3.384861	2.546471	-2.078647
Н	0.941280	2.867919	-2.548340
0	-0.860663	1.402777	-1.847782
С	-5.660984	0.445166	-0.659311
С	-6.940502	0.809383	-0.276237
С	-7.952460	-0.145925	-0.156355
С	-7.599379	-1.472377	-0.441132
С	-6.313427	-1.796930	-0.819247
Ν	-5.358595	-0.842453	-0.925397
н	-4.843091	1.160179	-0.766940
н	-7.134795	1.863484	-0.071813
н	-8.334922	-2.275745	-0.369748
н	-5.980752	-2.807611	-1.053161
0	-4.161394	-1.221976	-1.292559
ć	-9.348297	0.214782	0.252156
й	-10 061905	-0 054980	-0 541591
н	-9.641230	-0.341978	1.155402
•••	5.5 11250	0.0 110/0	2.233.02

Н	-9.442497	1.289377	0.456234
С	4.532665	0.467204	-0.670305
н	5.134632	0.504314	-1.590618
н	4.910488	1.257091	-0.002285
н	4 691204	-0 503826	-0 183136
	2 101801	0.094240	1 502272
Ag	-2.494094	0.064549	-1.502275
_	_		
4	3		
[(2) 2-Ag]+		
С	-8.522282	-3.082541	-1.107671
С	-7.125598	-3.201495	-1.187970
С	-6.284573	-2.161735	-0.791400
С	-6.907859	-1.017946	-0.319431
Ċ	-8 296323	-0 865431	-0 225910
c	-9 121///7	-1 919665	-0.628/01
ц	0 1/0102	2 019221	1 127221
	-9.146192	-5.916521	-1.42/254
н	-0.085439	-4.125785	-1.568222
н	-5.196584	-2.240247	-0.848429
Н	-10.207825	-1.830864	-0.567477
С	-7.234544	1.013356	0.500768
С	-6.998964	2.283224	1.002660
С	-8.127759	3.035495	1.327558
С	-9.422828	2.522499	1.151702
C	-9.629370	1,241036	0.645499
c	_8 511102	0.470721	0 313036
с	-0.511192 E 09E261	0.470721	1 125020
	-3.965201	2.000770	1.155660
н	-7.998035	4.043522	1./2/1//
н	-10.282472	3.141108	1.417671
Н	-10.638026	0.845719	0.510735
0	-6.261596	0.116190	0.119422
С	1.821520	0.765729	1.316670
С	0.821833	-0.211759	1.445225
С	-0.493667	0.040123	1.055752
C	-0 747689	1 300974	0 541006
c	0 223854	2 298761	0 399219
c	1 526/01	2.230701	0.355215
	2.040425	2.023670	1.021021
	2.840425	0.531548	1.031921
н	1.076230	-1.190309	1.858026
н	-1.282423	-0.709929	1.149843
Н	2.316617	2.783243	0.697032
С	-1.801078	3.043869	-0.328858
С	-2.798221	3.853991	-0.847356
С	-2.412219	5.140347	-1.224126
С	-1.085209	5.576049	-1.080927
С	-0.102878	4.738653	-0.556590
Ċ	-0 469194	3 445413	-0 172427
ŭ	2 926111	2 500544	0.052220
Ц	2 15020444	5.500544 E 9100E4	1 620747
	-5.159800	5.619954	-1.056747
н	-0.820662	6.590348	-1.386891
н	0.927906	5.081152	-0.447008
0	-1.974019	1.747178	0.101480
Ag	-3.976792	0.558239	0.107318
17			
[1-	<i>OMe-</i> H] ⁺		
С	0.534048	0.597513	0.885962
С	1.432392	0.266970	-0.092165
ć	1 968832	1 278395	-0 919894
ĉ	1 55/0002	2 610021	0 715001
C C	1.334008	2.010021	0.000101
C N	0.050934	2.003050	0.203191
N	0.1//02/	1.889666	1.054935
Н	0.069223	-0.122221	1.560257
Н	1.727803	-0.772584	-0.232356

Н	1.922423	3.438297	-1.320684
н	0.277461	3.883884	0.504834
0	-0.764565	2.186982	1.991701
0	2.825982	0.898428	-1.837291
С	3.405031	1.857057	-2.719632
н	4.071484	1.293132	-3.380744
н	2.626554	2.354789	-3.316682
н	3 986663	2.602084	-2 156655
н	-0 276718	2.002004	2.130035
	-0.270718	2.555220	2.820090
10			
10	Ma 111+		
[1.	- <i>Me</i> -nj [*]	0 072527	0.007000
C	0.717215	-0.073537	0.607886
C	1.400675	-0.550248	-0.488388
C	1.506191	0.228282	-1.652834
С	0.891250	1.489026	-1.653529
С	0.216472	1.935981	-0.537106
Ν	0.159871	1.150364	0.551748
Н	0.585336	-0.620553	1.541793
н	1.849502	-1.542719	-0.433622
н	0.930912	2.134064	-2.531912
н	-0.289604	2.898943	-0.463236
0	-0.564143	1.582076	1.619971
H	0.073651	2.010806	2.222390
c	2 264254	-0.269236	-2 839454
ц	2.204234	0.205250	-3 744361
н ц	2.013285	0.299209	-3.744301
	3.344469	-0.159508	-2.649180
н	2.068654	-1.33/385	-3.008036
~ ~			
22			
[2.	-H]*		
С	-7.858892	-3.334191	0.026183
С	-6.462608	-3.228068	-0.002635
С	-5.827944	-1.982426	-0.034751
С	-6.683613	-0.906406	-0.024107
С	-8.071863	-0.949734	0.007821
С	-8.678889	-2.205296	0.029749
Н	-8.315497	-4.325435	0.046016
н	-5.850608	-4.131757	-0.004551
н	-4.743121	-1.874103	-0.064327
н	-9.765790	-2.296098	0.052156
C	-7.470073	1.278112	-0.005123
c	-7 496368	2 652532	0.006856
c c	-8 770312	3 206083	0.054152
c	0.022766	2 200385	0.034132
c	-9.922700	2.396460	0.074902
C	-9.835180	1.006008	0.056199
с 	-8.56/192	0.426169	0.019633
н	-6.592439	3.261833	-0.016464
Н	-8.883627	4.293280	0.070372
Н	-10.906288	2.870814	0.106340
Н	-10.730371	0.382724	0.072696
0	-6.278637	0.473792	-0.085930
Н	-5.504040	0.747708	0.464973
33			
[(1	- <i>OMe</i>) ₂ -H] ⁺		
C	-2.398294	2.081931	1.531533
C	-1.794939	0.906667	1.895897
ç	-0.730132	0.399855	1.122044
č	-0.296660	1 142495	0.008672
c	-0 0/12/1/	2 220027	-0 202671
с N	1 072407	2.32003/	-0.3030/1
IN .	-1.9/219/	2./55233	0.440413
н	-3.238651	2.527747	2.063201

Н	-2.145888	0.361643	2.771929
Н	0.528319	0.820430	-0.624875
Н	-0.673914	2.944403	-1.156109
0	-2.630457	3.871655	0.072192
С	-5.300730	1.776376	-0.316248
С	-5.728244	0.634408	0.334491
C	-5.100842	-0.589258	0.057617
Ċ	-4.065728	-0.602390	-0.895719
ĉ	-3 684311	0 566853	-1 506757
N	-4 290100	1 7/0822	-1 205785
	5 726620	2 760720	0 1/5691
	-5.750050	2.700720	1 050201
	-0.544178	0.723370	1.050381
н	-3.559/35	-1.535493	-1.144282
Н	-2.882857	0.634954	-2.242107
0	-3.861691	2.855/35	-1.//3665
Н	-3.205748	3.541010	-0.779840
0	-0.211618	-0.748133	1.506258
0	-5.410592	-1.745009	0.626383
С	-6.437663	-1.787183	1.604748
Н	-6.507691	-2.831303	1.929722
Н	-6.186463	-1.152711	2.469236
н	-7.403307	-1.472471	1.179328
С	0.857359	-1.327642	0.767485
H	1,740399	-0.671034	0.776393
н	1 097306	-2 270143	1 271378
н	0 5/9932	-1 532126	-0 269313
	0.545552	1.552120	0.205515
21			
[/1	$-M_{\alpha}$		
[[]]	1 797224	0 702067	0 017725
c	-1.782334	0.792007	1 126694
C	-0.747375	-0.095936	1.126684
C	0.577994	0.284665	0.873406
C	0.793160	1.585389	0.398634
C	-0.2/0981	2.439099	0.186830
Ν	-1.523851	2.027616	0.449462
Н	-2.828731	0.563776	1.122682
Н	-0.983989	-1.093421	1.499611
Н	1.799923	1.943633	0.179217
Н	-0.178932	3.456870	-0.191765
0	-2.534088	2.882842	0.248968
С	-5.574920	1.524777	-0.123112
С	-6.527555	0.683802	0.420640
С	-6.604259	-0.657645	0.029009
С	-5.678817	-1.091230	-0.928988
c	-4 733868	-0 223756	-1 440490
N	-4 693504	1 062790	-1 035243
	5 490017	2 570999	0 122017
н ц	-3.480917	2.379888	1 154050
	-7.222212	1.094911	1.154959
н	-5.683194	-2.122328	-1.286158
н	-3.981198	-0.500509	-2.1//9/6
0	-3.784333	1.864822	-1.549384
Н	-3.123500	2.463080	-0.584265
С	-7.611756	-1.592500	0.624470
Н	-7.892106	-2.381628	-0.086441
Н	-7.184338	-2.082428	1.514646
н	-8.515117	-1.054311	0.942269
С	1.716516	-0.650073	1.132683
н	2.589354	-0.397829	0.516113
н	2.017922	-0.573893	2.190291
н	1.424680	-1.692427	0.945668
•••			

43 [(2)₂-H]⁺

С	-6.854461	-2.813572	-1.249151
С	-5.955447	-2.395988	-2.239604
С	-5.417761	-1.106078	-2.235608
С	-5.833946	-0.304548	-1.195026
С	-6.717668	-0.673501	-0.184488
С	-7.246871	-1.964196	-0.214506
н	-7.255244	-3.828210	-1.289018
н	-5.668199	-3.086493	-3.034724
н	-4 718314	-0 758105	-2 996767
ц.	7 044052	2 207202	0 55/000
н С	-7.944952	1 495666	0.334333
C	-0.041726	1.485000	0.204868
C	-5.858955	2.731034	0.766505
С	-6.566986	2.954194	1.950585
С	-7.399947	1.969667	2.498208
С	-7.553945	0.723124	1.891117
С	-6.849391	0.472382	0.713219
Н	-5.213494	3.489806	0.320589
Н	-6.468073	3.918856	2.451622
Н	-7.940062	2.184638	3.422254
н	-8.202494	-0.039644	2.324814
0	-5 424721	1 038736	-0 992245
c c	-1 130351	0 449756	2 552520
c c	1.070101	0.449750	1 057122
c	-1.970101	-0.301809	1.957122
C	-2.655891	-0.225262	0.772740
C	-2.453344	1.036664	0.245043
С	-1.630019	2.012808	0.808957
С	-0.948346	1.711794	1.989926
Н	-0.608488	0.194781	3.478079
Н	-2.090494	-1.482158	2.422352
Н	-3.303361	-0.961863	0.293177
Н	-0.293891	2.448892	2.458465
С	-2.603822	2.833962	-1.088847
c	-2 980055	3 673836	-2 120391
c	-2 /17306	4 951397	-2 0953/13
c c	1 5 2 7 5 0 1	5 227596	1 092267
c	1 1 7 1 4 5 9	3.337380	-1.062207
C	-1.1/1458	4.402528	-0.057184
с 	-1.725942	3.180796	-0.059980
н	-3.6/1/30	3.356504	-2.902066
Н	-2.676088	5.660302	-2.884396
Н	-1.106778	6.344951	-1.098342
Н	-0.480411	4.768502	0.730196
0	-3.049541	1.521778	-0.920752
Н	-4.354031	1.251486	-1.055218
38			
[(1	-OMe)2-I] ⁺ [$[BF_4]^-$	
С	1.102661	1.968379	2.720671
С	0.304168	0.832433	2.491425
c	1 619559	2 656680	1 609028
c	0.055991	0 422972	1 205873
с ц	0.0555551	0.422372	2 210250
	-0.157451	0.279546	3.319330
0	1.308321	2.314261	3.979120
C	1.323815	2.203912	0.340785
Н	2.241864	3.544504	1.709022
Ν	0.566634	1.107212	0.156504
Н	-0.562917	-0.439910	0.958838
С	2.091047	3.462264	4.275591
Н	1.677795	2.688266	-0.569115
0	0.332645	0.687916	-1.088959
н	3.118431	3,347730	3.897111
н	1.634553	4.370171	3.852057
н	2.112717	3.541558	5.368102
N	_/ 700/21	0 710021	_1 35900F
14	4.700431	0.719021	T.220022

С	-5.112740	1.368765	-0.254036
Ċ	-5 074594	-0 556799	-1 602671
õ	-3 907364	1 345841	-2 232934
c c	-5 9//185	0 758702	0.658061
с	4 746072	2 200041	0.038001
	-4.740075	2.300941	-0.142759
C	-5.897206	-1.219150	-0.728135
н	-4.681075	-0.995170	-2.519518
C	-6.343199	-0.569995	0.439442
н	-6.2414/1	1.318104	1.543001
Н	-6.191185	-2.249253	-0.929196
0	-7.121095	-1.262186	1.248878
С	-7.571676	-0.673381	2.461232
Н	-8.205743	0.203947	2.259468
Н	-6.717598	-0.390134	3.091817
Н	-8.165938	-1.441254	2.969066
L	-1.769412	1.051114	-1.718777
В	-3.137162	-0.624990	2.252124
F	-3.072846	0.768882	2.130364
F	-4.383033	-0.999094	2,783884
F	-2 965029	-1 222656	0 993143
F	-2 116561	-1.067338	3 113935
•	2.110501	1.007550	5.115555
26			
50) 1 Ma), TI+FD	D. 1-	
10	1 0 C 7 7 2	1 741200	0 007020
1	-1.856//3	1.741306	-0.697038
N	-4.824379	1.429985	-0.444513
C	-5.5/4414	0.779163	-1.355832
С	-4.920750	1.158931	0.871708
0	-3.979571	2.368744	-0.869885
С	-6.478165	-0.180868	-0.948865
Н	-5.408336	1.069540	-2.393035
С	-5.802979	0.194441	1.315812
Н	-4.255766	1.719319	1.530692
С	-6.612697	-0.501075	0.409707
н	-7.073559	-0.690736	-1.707769
н	-5.832813	-0.015960	2.385338
С	-7.597425	-1.527868	0.873826
н	-7.281607	-1.981620	1.822739
н	-8 576631	-1 049483	1 040167
н	-7 736521	-2 315479	0 120741
N	0 747297	1 / 5/7/9	0.762238
с Г	0.747257	0.807204	1 004600
c	1 716072	2 201/204	0.767208
	1.710075	2.591420	0.707598
0	0.241155	1.071309	-0.409159
C	0.833095	1.284103	3.117704
Н	-0.500866	0.162888	1.802623
C	2.285628	2.791444	1.959134
Н	1.994332	2.782942	-0.210759
С	1.851224	2.244020	3.174417
Н	0.426020	0.829609	4.021468
Н	3.069892	3.549617	1.933064
С	2.465258	2.651251	4.476737
Н	2.840058	3.682891	4.436007
н	3.320670	1.993330	4.701972
н	1.746238	2.556003	5.301615
В	-2.774729	0.306885	3.515343
F	-2.697741	1.657654	3.130059
F	-4.047347	0.043972	4.041664
F	-2.552492	-0.510932	2.392351
F	-1.796809	0.040199	4.484601

23 [Py-I-Py]+

Ν	2.621068	2.269939	2.068888
L	4.544977	1.169903	2.611700
Ν	6.474013	0.075558	3.152644
С	1.435468	1.684535	2.286300
С	0.246595	2.327245	1.971388
С	0.299127	3.605578	1.419459
c	1 539949	4 200231	1 199374
c	2 688109	3 / 98533	1 538298
ц	1 / 52273	0.682524	2 720616
	0.702025	1 925076	2.720010
	-0.705025	1.825070	2.159920
н	-0.620646	4.135059	1.162806
н	1.626369	5.199060	0.770139
н	3.685881	3.916916	1.388300
С	7.062639	0.313878	4.332511
С	8.237927	-0.329237	4.694213
С	8.808257	-1.237588	3.804741
С	8.184358	-1.473614	2.581373
С	7.010485	-0.794897	2.286352
н	6.573974	1.035348	4.991128
н	8.693547	-0.114681	5.661610
н	9 732683	-1 758115	4 062974
н	8 506803	-2 175006	1 856107
	6.390695	-2.173990	1.030197
п	0.480517	-0.942300	1.342700
2	2		
	3		
[Py	'-Ag- Py]⁺		
Ν	2.732404	2.215633	2.109113
Ag	4.548953	1.176074	2.613820
Ν	6.366939	0.139673	3.118386
С	1.537989	1.637788	2.312903
С	0.343415	2.270482	1.992119
С	0.387639	3.548376	1.439949
С	1.627633	4.146701	1.229159
С	2.776511	3.447368	1.577125
н	1.543591	0.635740	2.746735
н	-0.603608	1.761201	2.175670
н	-0 533813	4 072294	1 176901
н	1 712807	5 1/15792	0 799772
 	2 766211	2 992401	1 1 26921
с С	6.088460	0.201400	1.420054
C	0.988469	0.391490	4.281300
C	8.164358	-0.250734	4.648507
С	8.716495	-1.188418	3.779124
С	8.070322	-1.448902	2.573078
С	6.897661	-0.763949	2.279591
Н	6.525563	1.132536	4.936348
Н	8.634162	-0.013236	5.603910
н	9.639938	-1.710601	4.038615
н	8.464708	-2.174557	1.860547
н	6.362992	-0.941265	1.344124
1	1		
D.,	1		
г у С	2 690601	2 166701	1 505070
	2.060091	3.400781	1.505676
IN C	2.051031	2.260193	2.0/554/
C	1.45/810	1./16088	2.320397
С	0.250944	2.343396	2.011964
С	0.290741	3.603001	1.417251
С	1.533001	4.178659	1.157856
Н	1.455968	0.725257	2.788328
н	-0.697503	1.850770	2.234978
н	-0.632261	4.128248	1.160031
н	1.616404	5.163243	0.693604
н	3.670505	3.895757	1.313506
•••			

18				
(1-	OMe)…I ₂			
С	9.190127	-0.661253	0.220639	
С	9.435087	0.111486	1.367207	
С	8.679398	-0.106287	2.501689	
N	7,716624	-1.048112	2,531657	
c	7 455302	-1 801490	1 437140	
c	9 172664	1 621054	0.079452	
	0.172004 7.020252	1 250172	0.276455	
0	7.029353	-1.250172	3.642158	
1	5.0/2/50	0.058137	3./5943/	
0	9.849859	-0.547262	-0.921367	
С	10.893272	0.408912	-1.033383	
Н	8.814494	0.451815	3.428034	
Н	6.656692	-2.533606	1.555449	
Н	10.203617	0.882695	1.398900	
н	7.952760	-2.248570	-0.593290	
н	11 696532	0 204126	-0 308397	
н	10 510230	1 /30828	-0 886987	
	11 200626	0.211656	-0.000907	
	11.288020	0.311050	-2.050642	
I	2./1/045	1.615978	3.910099	
1	7			
(1-	Me)…I2			
С	8.169017	-1.677562	0.315142	
С	9.151558	-0.686916	0.201598	
С	9.375265	0.117746	1.326973	
c	8 651410	-0.075666	2 486349	
N	7 716/18	-1 0/873/	2.400343	
0	7.710410	1 040134	1 102110	
c	7.405026	-1.640125	1.495110	
C	9.949516	-0.507962	-1.053204	
0	7.050923	-1.230454	3.675685	
T	5.043429	0.060933	3.776091	
T	2.680885	1.574118	3.890453	
Н	8.777733	0.513504	3.394432	
Н	6.689546	-2.590523	1.645624	
н	10.122729	0.912812	1.307502	
н	7 937867	-2 336713	-0 523205	
н	0 112213	-0.955252	-1 01820/	
и П	10 125 720	0.555252	1 25/2294	
н	10.135730	0.556464	-1.254219	
н	10.930399	-0.998807	-0.944400	
2	2			
I_2				
T	4.834259	0.087184	3.890194	
Т	2.520822	1.423729	4.222629	
39				
[(1	-OMe)2-I1+()	ACN)		
(<u> </u>	1 272202	2 152028	0 788832	
c	1.373333	2.132028	1 1 1 0 0 5 7	
C	0.540727	3.232009	1.140857	
C	1.410340	1.031712	1.636344	
С	-0.227681	3.156468	2.274194	
Н	0.497337	4.120029	0.510244	
0	2.065735	2.272090	-0.328764	
С	0.613104	1.014658	2.760506	
н	2.036422	0.164534	1.432271	
N	-0.182794	2.057118	3.060613	
н	-0 900228	3 947221	2 606226	
с С	2 002205	1 206750	0.756750	
с П	2.303303	1.200738	2 AE0217	
П	0.576422	0.1//868	3.45821/	
0	-0.938250	2.009/43	4.160921	
н	3.696858	1.008865	-0.020207	

Н	2.315827	0.292343	-0.931377
н	3.355064	1.535391	-1.699167
Ν	-5.054211	0.276670	1.810000
С	-4.765936	-0.918385	1.262915
C	-5.435739	1.325463	1.046176
0	-4 964478	0 430392	3 132308
c	-1 85/98/	-1 115075	-0.098952
ц	-1 161167	-1 696383	1 96/152
\hat{c}	5 520267	1 102107	0.215265
ц	-5.555507	2 240607	1 694217
	-5.040550	2.249607	1.584317
	-5.240708	-0.042658	-0.919829
н	-4.610853	-2.098558	-0.497284
Н	-5.846009	2.044042	-0.923598
0	-5.333929	-0.100531	-2.238016
C	-4.986960	-1.301/36	-2.915128
н	-5.648987	-2.127511	-2.613645
н	-3.937303	-1.571802	-2.721506
н	-5.121519	-1.097770	-3.982980
L	-2.963993	1.220105	3.707907
С	-2.178901	1.367938	-2.359759
н	-1.641425	0.705255	-3.051955
н	-1.848791	2.403558	-2.519909
н	-3.257386	1.297451	-2.557414
С	-1.900700	0.972254	-0.988647
Ν	-1.679358	0.653104	0.100761
45			
[(1	- -OMe)2-I1+($(ACN)_2$	
\mathbf{C}	0 928327	1 127902	1 372500
c	0.320527	1 282272	2 585152
c	1 1 2 9 2 1 6	0 172721	0.000765
c	1.156210	-0.172721	0.005/05
	-0.257768	0.178728	3.235458
П	0.063032	2.277500	2.999674
0	1.332973	2.232496	0.771136
C	0.618047	-1.242547	1.5/9/20
н	1.677669	-0.3/1146	-0.041020
Ν	-0.064361	-1.057986	2.724653
Н	-0.821909	0.222936	4.166605
С	2.005166	2.147106	-0.478110
Н	0.716828	-2.277826	1.253230
0	-0.563956	-2.116827	3.367031
н	2.949553	1.590319	-0.380220
н	1.364266	1.669548	-1.235217
н	2.219666	3.178429	-0.779039
Ν	-5.133473	-1.625300	1.320278
С	-5.055666	-1.850427	-0.004426
С	-5.515111	-0.423549	1.807652
0	-4.820834	-2.606601	2.170030
С	-5.356756	-0.856782	-0.910879
н	-4.737898	-2.852443	-0.292822
c	-5 823161	0.606315	0 955378
н	-5.543118	-0.339726	2,893350
c	-5 72973/	0.333720	-0 /35/72
ч	-5 272011	-1 022122	-1 0729E2
ч	-6 120144	1 57/570	1 250043
0	-0.120144 E 000000	1 156110	1 202225
0	-2.900039	1.450148	-1.203325
	-5.844368	1.345/21	-2.612596
H	-6.554676	0.613015	-3.025001
Н	-4.815192	1.062225	-2.881397
Н	-6.068076	2.337893	-3.019699
I	-2.695474	-2.428738	2.807432
С	-2.511018	4.071274	3.110851

H -3.181725 4.637019 2.449852 H -1.498607 4.066604 2.684006 C -2.990181 2.705600 3.245212 N -3.361932 1.615031 3.346103 C -2.825570 2.595667 -0.228883 H -3.757651 2.752458 0.331103 H -2.989025 2.856153 -1.283908 H -2.037967 3.241233 0.184087 C -2.418121 1.204109 -0.126490 N -2.096315 0.095551 -0.055856 39 [(**1-***OMe*)₂-Ag]⁺(ACN) Ag 0.541723 0.794254 -2.611973 0 -1.568206 1.247674 -2.514886 O 2.641537 0.376892 -2.926272 N -2.093656 1.026672 -1.325447 N 3.260918 -0.000388 -1.825534 C -2.106720 2.016714 -0.402641 C -2.619271 -0.177616 -1.032741 C 3.792351 0.920101 -0.999792 C 3.355280 -1.316469 -1.525746 C -2.638737 1.813817 0.848281 H -1.658097 2.956332 -0.723785 C -3.169955 -0.444435 0.206674 H -2.562518 -0.916411 -1.832134 C 4.439702 0.558791 0.166396 H 3.662716 1.955930 -1.312863 C 3.986671 -1.740390 -0.380550 H 2.890957 -1.990984 -2.244661 C -3.179519 0.560702 1.184440 H -2.630792 2.622999 1.578998 H -3.572502 -1.440146 0.387122 C 4.544075 -0.798705 0.501855 H 4.845870 1.349510 0.795345 H 4.047946 -2.805721 -0.156832 O -3.650505 0.416230 2.416997 0 5.131391 -1.266575 1.596322 C -4.197311 -0.831995 2.809516 C 5.711193 -0.356236 2.516270 H -5.074612 -1.090818 2.195903 H -3.446236 -1.634424 2.738768 H -4.506913 -0.716338 3.854318 H 4.954284 0.331368 2.925635 H 6.521492 0.222181 2.044970 H 6.125691 -0.963672 3.328797 C -0.108142 -0.617680 2.292242 H -0.600489 0.232778 2.783758 H 0.743862 -0.948617 2.902093 H -0.825517 -1.443680 2.188092 C 0.358925 -0.215394 0.977839 N 0.721892 0.105827 -0.071233 45 $[(1-OMe)_2-Ag]^+(ACN)_2$ Ag 0.546059 -0.566378 2.443686 O -1.263249 -1.721473 1.461002 O 2.490989 -1.647647 1.735303 N -1.615863 -1.169793 0.335241 N 2.925801 -1.152142 0.610522 C -1.131187 -1.650701 -0.837549 C -2.445188 -0.105423 0.322071 C 3.774389 -0.103715 0.607445

С	2.507636	-1.675613	-0.569028
С	-1.436865	-1.054069	-2.038395
Н	-0.483231	-2.520819	-0.743387
С	-2.794478	0.534468	-0.854307
Н	-2.793596	0.219556	1.302135
С	4.213274	0.476617	-0.569646
н	4 063630	0 257735	1 593912
c C	2 902045	-1 138117	-1 77180/
L L	1 925/60	2 5 2 7 7 2 0	0 470404
	1.855409	-2.527729	-0.479494
C	-2.2/5133	0.071840	-2.069208
н	-1.019005	-1.453404	-2.963080
Н	-3.458335	1.395725	-0.792123
С	3.764862	-0.030444	-1.795317
Н	4.889202	1.328063	-0.501274
Н	2.535929	-1.569164	-2.704209
0	-2.500644	0.629142	-3.259089
0	4.080577	0.468847	-2.989826
C	-3.329845	1.775022	-3.335711
c	1 9/1/72	1 591737	-3 061531
ц	-4 350547	1 5518/1	-2 086320
н Ц	2 012595	2 600050	2.380323
	-2.912585	2.609059	-2.748940
н	-3.364912	2.059916	-4.393502
н	5.930439	1.363251	-2.633262
Н	4.506636	2.461438	-2.543445
Н	5.054308	1.825649	-4.126406
С	0.765985	2.093559	-1.764949
Н	-0.058000	1.721655	-2.388652
н	1.721647	1.851161	-2.248726
н	0.677427	3,182980	-1.655188
c	0 707633	1 468438	-0.456113
N	0.660855	0 973420	0.586238
0	0.000855	0.573420	7.0550238
Ľ	-0.209944	0.058072	7.055930
н	-1.280632	0.557755	7.280667
н	0.101363	1./00664	7.211734
Н	0.367825	-0.000542	7.718139
С	0.029674	0.285606	5.675600
N	0.219292	-0.011127	4.577441
37			
[(1	$-Me)_{2}-I]^{+}(A)$	CN)	
L	-0.927347	1.129984	-1.940089
Ν	-3.876716	0.848228	-1.607255
С	-4.125570	-0.306261	-0.958099
c	-4 485065	1 998813	-1 258720
ñ	-3 022176	0.851/157	-2 629122
c c	5.022170	0.001407	0.005427
	-5.010151	-0.328308	1 222000
н	-3.584163	-1.1/9135	-1.323089
C	-5.384786	2.015958	-0.212029
Н	-4.214149	2.872542	-1.851347
С	-5.665490	0.844275	0.503240
Н	-5.197004	-1.276078	0.604826
Н	-5.865125	2.960623	0.046927
С	-6.587856	0.852304	1.680433
н	-6.002801	1.042537	2.595553
н	-7.341284	1.646619	1.593729
н	-7 089/50	-0 117152	1 802232
N I		1 505262	1.002232
	1.14005/	1.393303	0.13/021
C C	1.18666/	0.526/51	0.977525
C	1.111999	2.853482	0.637497
0	1.136157	1.405156	-1.161450
С	1.201206	0.706388	2.344973
Н	1.208367	-0.445229	0.484920
С	1.126826	3.073695	2.000517

Н	1.077964	3.643249	-0.113182
С	1.161871	1.995434	2.894067
н	1 235871	-0 175401	2 986298
	1.200071	4 102652	2.300230
П	1.104764	4.102053	2.301903
C	1.118786	2.203792	4.374629
Н	1.466233	3.208146	4.650328
н	1.722647	1.450592	4.899163
н	0.078759	2.096271	4.724626
c	-7 393381	3 573807	1 235796
	1 765742	4 166072	1.235750
	-1./05/43	4.100073	1.915809
н	-3.433/44	3.920401	1.305988
Н	-2.035429	3.704613	0.204905
С	-2.320716	2.167749	1.599203
Ν	-2.263187	1.047360	1.882123
43			
[(1	Ⅰ-Me) 2- Ⅰ] ⁺ (A	CN) ₂	
Ŀ	-0.986936	0.642748	-1.705389
Ν	-3.959601	0.379829	-1.661842
c	-4 286340	-0 916850	-1 493681
c	4.550340	1 252507	0.040000
C	-4.550361	1.353507	-0.942388
0	-3.040616	0.705968	-2.571125
С	-5.240344	-1.274741	-0.563462
н	-3.752793	-1.623799	-2.129033
С	-5.510946	1.035397	-0.003542
ц	_/ 221005	2 360024	-1 159/06
2	-4.221995	2.303024	-1.133400
C	-5.8/3058	-0.299307	0.218200
н	-5.483088	-2.331916	-0.446944
Н	-5.974069	1.845203	0.561747
С	-6.862756	-0.672285	1.276011
н	-6.323229	-0.894891	2,211662
ц.	7 562159	0 1 4 0 5 7 4	1 470160
	-7.302138	0.149374	1.479109
н	-7.426150	-1.5/2823	0.996351
Ν	0.875820	0.625558	0.607164
С	0.975275	-0.540570	1.276602
С	0.661276	1.791102	1.246246
0	1 001009	0 620342	-0 719710
ĉ	0.954741	0 550272	2 640026
	0.854741	-0.339273	2.049930
н	1.146/38	-1.423070	0.660476
С	0.527384	1.811641	2.620508
Н	0.594869	2.675269	0.612182
С	0.612930	0.625837	3.359664
н	0.935511	-1.515994	3.167915
н	0 3//891	2 768996	3 110383
2	0.344031	2.700550	4 942520
с 	0.425070	0.607628	4.843539
н	0.363415	1.623028	5.255217
Н	1.250652	0.069930	5.332756
н	-0.504359	0.071268	5.092828
С	-2.213154	4.341265	-2.262698
н	-2 611022	3 383670	-2 628708
	1 270407	4 570965	2.020700
	-1.2/848/	4.570805	-2./92/83
н	-2.944535	5.139008	-2.451665
С	-1.955081	4.238155	-0.835822
Ν	-1.755883	4.138860	0.299182
С	-2.974693	1.676647	2.539593
H.	-7 4871/18	1 791370	3 515272
U U	4 05 600 4	1 024060	2 661 400
п	-4.056984	1.824066	2.001480
Н	-2.5/9642	2.432055	1.844294
С	-2.720134	0.343915	2.018527
Ν	-2.516855	-0.716763	1.603289

37 [(**1-***Me*)₂-**Ag**]⁺(ACN)

S70

С	0.898250	0.431378	-0.837609
С	2.022536	0.385258	-0.031147
С	3.298974	0.572788	-0.566725
С	3.369237	0.808582	-1.946541
С	2.226129	0.847557	-2.718129
N	1 003198	0 659665	-2 164494
н	-0 116394	0.289696	-0.462202
н	1 882175	0.108155	1 03/8/6
 Ц	1.002175	0.198155	2 420675
	4.330279	0.966401	-2.439675
н	2.219381	1.026804	-3.792682
0	-0.038375	0./14114	-2.945293
С	-5.287471	0.922018	-0.640533
С	-6.644398	1.034774	-0.884128
С	-7.401276	-0.080956	-1.254759
С	-6.717173	-1.299325	-1.351545
С	-5.360729	-1.371680	-1.101488
Ν	-4.657669	-0.267916	-0.757082
н	-4.645536	1.759213	-0.367212
н	-7.106213	2.019147	-0.789835
н	-7 240494	-2 213653	-1 637591
н	-// 772011	-2 285805	-1 177370
~	-4.772911	-2.203033	0 5 5 7 0 2
0	-3.3/3986	-0.353760	-0.553793
C	-8.870580	0.012826	-1.535863
н	-9.130826	-0.540312	-2.450169
Н	-9.446844	-0.433469	-0.709511
Н	-9.190895	1.057080	-1.649124
С	4.536294	0.515132	0.277440
Н	5.144177	-0.362051	0.004969
н	5.160505	1.406515	0.114806
н	4.290547	0.445983	1.345329
Αg	-2.099852	0.264071	-2.332543
c C	-6 423752	0 358337	-4 627709
й	-6.850442	-0 643805	-1 183358
Ц	6 422272	0.043005	5 607922
	7 025 922	1.005610	-3.037822
	-7.025832	1.095019	-4.078095
C	-5.064892	0.377301	-4.122002
N	-3.98/66/	0.388850	-3.707481
43			
[(1	$-Me)_{2}-Ag]^{+}($	ACN) ₂	
С	-1.184905	1.465292	-0.529333
С	-0.123630	0.632001	-0.233606
С	0.888674	0.392967	-1.171276
С	0.768419	1.053724	-2.397203
С	-0.311637	1.877535	-2.659371
Ν	-1.287808	2.067771	-1.740081
н	-1.993360	1.686655	0.165851
н	-0.095737	0 163666	0 752265
н	1 521544	0.105000	-3 177315
н Ц	0.461220	0.928204	-3.177313
	-0.461329	2.397288	-3.000032
0	-2.316212	2.806099	-2.010018
C	-4.632794	0.821564	-0.931366
С	-4.449324	-0.139521	0.047110
С	-4.984981	-1.422494	-0.095621
С	-5.713815	-1.669873	-1.266010
С	-5.875830	-0.685761	-2.221508
Ν	-5.334921	0.544189	-2.053097
Н	-4.194111	1.820160	-0.901003
Н	-3.864413	0.127334	0.929273
н	-6 160785	-2 648725	-1 450337
н	-6 /10/02	-0 833830	-3 155505
0	5.402047	1 4 4 7 4 0	3.133303
		1 /1 / / / / / / / / /	_/ U //
с С	-5.483047	1.444749	-2.977924

н	-5.741234	-2.848657	1.325904
Н	-4.268900	-3.362801	0.485901
Н	-4.170008	-2.130551	1.773025
С	2.028121	-0.534592	-0.870204
н	2.801710	-0.484602	-1.648075
н	2 486870	-0 291198	0 099727
н	1 660703	-1 57/50/	-0.808867
۱۱ ۸ م	1.009793	-1.374394	4 007257
Ag	-3.522070	2.049727	-4.007357
C	-2.029904	-2.133454	-1.906260
н	-1.022488	-2.500588	-2.146066
Н	-2.754976	-2.950764	-2.022716
Н	-2.052444	-1.770197	-0.869494
С	-2.378112	-1.046898	-2.802630
Ν	-2.657232	-0.176722	-3.509566
С	-2.080163	4.717908	-7.732965
H	-2 895461	4 846688	-8 457999
н	-1 231/26	1.010000	-8 210053
 Ц	1 762501	5 700619	7 250250
	-1.702591	5.700018	-7.556556
C	-2.546025	3.908378	-6.624797
N	-2.917677	3.264335	-5.743532
6			
AC	N		
С	2.578598	-8.378771	3.080091
H	2 942487	-9 415445	3 076139
 Ц	2.042507	7 962909	2 190242
	2.942311	-7.803838	2.180245
Н	1.479824	-8.381143	3.076007
C	3.063241	-7.693172	4.267558
Ν	3.448795	-7.148163	5.211682
13			
ΓΔ	CN-L-ACNI	+	
LA N	CIN-I-ACIN]	0 5 20965	1 062020
N C	-0.2/535/	-0.529865	1.062920
C	-7.426323	-0.509681	1.053836
С	-8.869614	-0.479340	1.041130
Н	-9.223104	0.092337	1.910542
Н	-9.208953	0.002329	0.113523
Н	-9.251185	-1.508528	1.090158
·	-4.052194	-0.533721	1.066880
N	-1 828887	-0 526539	1 065702
c	0.677017	0.520555	1.000702
c	-0.077917	-0.500945	1.050502
C	0.765391	-0.478942	1.042009
н	1.141545	-0.845405	2.00/118
Н	1.128241	-1.124025	0.229748
Η	1.101523	0.554238	0.877673
13			
[A	CN-Ag-ACI	^]+	
Ν	-6.166275	-0.539366	1.063319
С	-7.317538	-0.513212	1.054108
Ċ	-8 763997	-0 475326	1 041302
й	-0 1100/1	0.048595	1 030072
	-9.119941	0.048393	1.939072
н 	-9.103308	0.05/5//	0.142357
H	-9.153858	-1.502333	1.032527
Ag	-4.052118	-0.548746	1.068217
Ν	-1.937983	-0.537631	1.065554
С	-0.786724	-0.511713	1.055895
С	0.659744	-0.475086	1.041541
н	1.039775	-0.764584	2.030843
н	1.032443	-1.176018	0.282087
н	0 992945	0 543757	0 800777
••	5.552545	5.5 .57 57	2.000777
4. REFERENCES

- 1. J. Barluenga, J. M. González, P. J. Campos and G. Asensio, *Angew. Chem.Int.Ed. Engl.*, 1985, **24**, 319.
- 2. L. Koskinen, P. Hirva, E. Kalenius, S. Jääskeläinen, K. Rissanen and M. Haukka, *CrystEngComm*, 2015, **17**, 1231.
- 3. A. Karim, M. Reitti, A.-C. C. Carlsson, J. Gräfenstein and M. Erdelyi, *Chem. Sci.*, 2014, **5**, 3226.
- 4. A.-C. C. Carlsson, J. Gräfenstein, J. L. Laurila, J. Bergquist and M. Erdélyi, *Chem. Commun.*, 2012, **48**, 1458.
- 5. A.-C. C. Carlsson, J. Gräfenstein, A. Budnjo, J. L. Laurila, J. Bergquist, A. Karim, R. Kleinmaier, U. Brath and M. Erdélyi, *Journal of the American Chemical Society*, 2012, **134**, 5706.
- 6. R. Puttreddy, O. Jurček, S. Bhowmik, T. Mäkelä and K. Rissanen, *Chem. Commun.*, 2016, **52**, 2338.
- 7. R. Puttreddy, O. Jurcek, S. Bhowmik, T. Makela and K. Rissanen, *Chem Commun*, 2016, **52**, 2338.
- 8. K. Zhao, Y. Zhi, X. Li, R. Puttreddy, K. Rissanen and D. Enders, *Chem Commun*, 2016, **52**, 2249.
- 9. U. Kaya, P. Chauhan, D. Hack, K. Deckers, R. Puttreddy, K. Rissanen and D. Enders, *Chem. Commun.*, 2016, **52**, 1669.
- 10. M. Dommaschk, V. Thoms, C. Schutt, C. Nather, R. Puttreddy, K. Rissanen and R. Herges, *Inorg Chem*, 2015, **54**, 9390.
- 11. (a) S. Kozuch, J. M. L. Martin, *J. Chem. Theory Comput.* 2013, **9**, 1918–1931; (b) A. Forni, S. Pieraccini, D. Franchini, M. Sironi, *J. Phys. Chem. A* 2016, **120**, 9071–9080
- 12. J. Tomasi, B. Mennucci and E. Cancès, J. Mol. Struct., 1999, **464**, 211.
- 13. H. Valkenier, C. M. Dias, K. L. Porter Goff, O. Jurcek, R. Puttreddy, K. Rissanen and A. P. Davis, *Chem Commun*, 2015, **51**, 14235.
- 14. J. R. Cheeseman, G. W. Trucks, T. A. Keith and M. J. Frisch, *The J. Chem. Phys.*, 1996, **104**, 5497.
- M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian, Inc., Wallingford CT, 2009.