Supporting Information for

Unusual cyanide and methyl binding modes at a dicobalt macrocycle following acetonitrile C–C bond activation

Ariana Z. Spentzos, Michael R. Gau, Patrick J. Carroll, Neil C. Tomson*

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States

Table of Contents:	
General Considerations:	<u>S2</u>
Experimental Procedures and Characterization Data:	S4
NMR Spectra:	
IR Spectra:	S28
UV-Vis Spectra:	S32
Cyclic Voltammogram:	S34
X-ray Crystallography:	
References:	S41

General Considerations

All reactions containing transition metals were performed under an inert atmosphere of N_2 , using standard Schlenk line or glovebox techniques. Glassware, stir bars, filter aid (Celite), and 3 Å molecular sieves were dried in an oven at 150 °C for at least 12 h prior to use. All solvents (THF, pyridine, acetonitrile, fluorobenzene, 1,2-difluorobenzene, n-pentane and diethyl ether) were dried by passage through a column of activated alumina, deoxygenated by passage through a copper Q5 column where applicable, sparged with N₂, and stored over activated 3 Å molecular sieves under an inert atmosphere. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc., and dried over either Na/benzophenone (THF-d8, C6D6) or CaH2 (MeCN-d3), isolated by vacuum transfer (THF-d₈, MeCN-d₃) or distillation (C₆D₆), and stored under an inert atmosphere over 3 Å sieves. [³PDI₂Co₂(*µ*-Cl)(PMe₃)₂][OTf] ([Co₂Cl]⁺) was synthesized following previously published procedures.¹ KC₈ was synthesized according to a literature procedure² and stored under nitrogen at -35 °C in a glovebox prior to use. PMe₃ (98%) was either purchased from Strem Chemicals or synthesized according to a literature procedure;³ in both cases, it was stored as a 1 M solution in THF at -35 °C under dry nitrogen in a glovebox over 3 Å molecular sieves. NaBAr^F₄ was prepared according to a literature procedure.⁴ K¹³CN and ¹³CH₃CN were purchased from Sigma Aldrich and both NaCN and K¹³CN were ground to fine powders before use. Methylmagnesium chloride solution (3.0 M in THF) was purchased from Sigma Aldrich and titrated using salicylaldehyde phenylhydrazone.⁵ [ⁿBu₄N][PF₆] (98%) was purchased from MilliporeSigma and recrystallized twice from hot ethanol, followed by drying at 60 °C under 30 mbar for 10 h and stored in a glovebox under dry nitrogen prior to use.⁶ Ferrocene (98%) was purchased from Acros Organics, purified by sublimation three times,⁷ and stored in a glovebox under dry nitrogen prior to use. All other chemicals were used as received. ^{1}H , $^{13}C{^{1}H}$, $^{31}P{^{1}H}$, $^{19}F{^{1}H}$, $^{1}H{^{-13}C}$ HSQC, $^{1}H{^{-13}C}$ HMBC, and $^{1}H{^{-1}H}$ COSY NMR spectra were recorded on UNI 400, UNI 500, Bruker BioDRX500, Cryo 500, and NEO 600 spectrometers. All chemical shifts (δ) are reported in units of ppm, with references to the residual protio-solvent resonance for proton and carbon chemical shifts. External H₃PO₄ was used for referencing ³¹P NMR spectra. Internal PhF was used for referencing ¹⁹F NMR spectra.⁸ For the complexes with asymmetry in the PDI signals, the apostrophes in the assignments given below refer to the portion of the ligand closest to the coordinated PMe₃. Elemental analysis was performed by Midwest Microlab, LLC. IR spectra (KBr pellet) were collected on a JASCO FT/IR-480 Plus spectrometer FTIR. Solution phase effective magnetic moment data were determined using Evans' method.9

Cyclic voltammetry experiments were performed in a VAC OMNI-LAB glovebox with an Epsilon E2 Potentiostat. The data were processed with BASi Epsilon-EC software version 2.13.77. All experiments were performed under an N₂ atmosphere in a glovebox using an electrochemical cell that consists of a glassy carbon (3 mm outer diameter) working electrode, a platinum wire counter electrode, and a Ag/AgBAr^F₄ (1 M in 1,2-difluorobenzene) reference electrode. All experiments were conducted in 1,2-difluorobenzene, with 1 mM analyte and 100 mM [ⁿBu₄N][PF₆] as the supporting electrolyte. Potentials were reported versus Cp₂Fe^{+/0}.

UV-vis-NIR absorption spectra were collected from 200 to 1000 nm using an Agilent Cary 60 UV-vis spectrophotometer at room temperature. The samples were prepared under an N_2 atmosphere in a glovebox. Stock solutions were prepared by dissolving a known mass (*ca.* 10

mg) of sample in 10.00 mL of solvent ($[Co_2CN]^+$ (THF); $[Co_4(CN)_2][OTf]_2$ and $[Co_2CN]^{2+}$ (CH₃CN)). Varying amounts of the stock solutions (50.0–400.0 µL) were then diluted to 5.00 mL and transferred to a 10 mm path-length quartz cuvette with a screw cap for data collection. For each species, at least four spectra at different concentrations were collected. The absorption intensities of various peak maxima were plotted vs. concentration to ensure that absorption data were being collected in the linear response range of the spectrometer. Linear regression fits to the plotted data resulted in R² values ≥ 0.994 .

Crystallographic X-ray intensity data were collected on a Bruker D8QUEST CMOS $([Co_4(CN)_2][BAr^F_4]_2, [Co_4(CN)_2][OTf]_2)$ or a Bruker APEXII CCD $([Co_2CN]^+, [Co_2CH_3]^+)$ area-detector diffractometer with graphite-monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) at 100 K. X-ray intensity data for [Co₂CN]²⁺ were collected on a Rigaku XtaLAB Synergy-S diffractometer equipped with an HPC area detector (Dectris Pilatus3 R 200K) and employing confocal multilayer optic-monochromated Mo-K_{α} radiation (λ =0.71073 Å) at a temperature of 100 K. Rotation frames were integrated using SAINT¹⁰ or CrysAlisPro¹¹ ([Co₂CN]²⁺) producing a listing of unaveraged F^2 and $\sigma(F^2)$ values. The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS¹² or SCALE3 ABSPACK¹³. The structures were solved by direct methods by using either SHELXT¹⁴ ([C0₂CN]⁺, [C04(CN)2][BAr^F4]2, [C04(CN)2][OTf]2, [C02CN]²⁺) or SHELXS-97¹⁵ ([C02CH₃]⁺) and refined by full-matrix least-squares, based on F² using SHELXL-2018.¹⁶ For [C04(CN)2][OTf]2, a reliable disorder model could not be devised for the triflates; the X-ray data were corrected for the presence of disordered triflates using SQUEEZE.¹⁷ For [Co₂CN]⁺, there are two independent molecules, each of which lies on a crystallographic mirror plane. Molecule No.1 lies parallel to the mirror plane that passes through the atoms Co1, Co2, N5/C5*, C6*/N6, N3, C5, C17, N2, C4, C13. Analysis of the thermal parameters led to the conclusion that the two linking atoms are 50/50 C/N mixtures. Molecule No. 2 is perpendicular to the mirror plane, which bisects the C4"/N4'-N4'/C4" bond. The linking pair of atoms in this molecule are required by symmetry to be identical. Therefore, they are each a 50/50 C/N mixture. For [C0₂CN]²⁺, the molecule lies on a crystallographic 2-fold axis (at ¹/₂, y, ¹/₄) that bisects the Co-Co vector and disorders the coordinated cyanide so that half the molecules have it bonded to one Co and half the molecules have it on the other. For [Co₂CH₃]⁺, hydrogen atoms were refined using a riding model, except for the H's on the bridging carbon, C36, which were refined isotropically. CCDC entries 2002336-2002338, 2002340 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data request/cif.

Experimental Procedures and Characterization Data

Synthesis of [(³PDI₂)Co₂(µ-CH₃)(PMe₃)][OTf] ([Co₂CH₃]⁺)

Method A: A 20 mL scintillation vial was charged with $[Co_2Cl]^+$ (23.1 mg, 0.02 mmol, 1.0 equiv), acetonitrile (23.5 µl, 0.508 M in THF, 0.01 mmol, 0.5 equiv) and 3 mL of THF. The dark green solution was frozen in a liquid nitrogen chilled cold-well. KC₈ (3.4 mg, 0.025, 1.1 equiv) was quickly added in one aliquot to the thawing solution, which turned blue-black before turning back to green upon warming. After stirring for 3 minutes, the solvent was removed *in vacuo* and the green solid was extracted into THF (3 mL) and filtered through Celite. The THF was removed *in vacuo* and a crude green solid (18.4 mg) was analyzed spectroscopically. NMR spectroscopic yields of $[Co_2CH_3]^+$ ranged from 33%-43% with $[Co_2CN]^+$ (17%) and $[Co_4(CN)_2][OTf]_2$ (4%) accounting for the remaining diamagnetic products. Small amounts of crystalline $[Co_2CH_3]^+$ and $[Co_2CN]^+$ were repeatedly isolated from PhF/pentane vapor diffusion crystallizations. PMe₃ was added to favor crystallization of $[Co_2CN]^+$. Repeated crystallizations without added PMe₃ gave higher purity fractions of $[Co_2CH_3]^+$.

Method B: A 20 mL scintillation vial was charged with $[Co_2Cl]^+$ (66.0 mg, 0.07 mmol, 1.0 equiv) and *ca*. 2 mL THF. A dilute solution of MeMgCl (22.7 µL, 3.0 M in THF, 0.07 mmol, 1.0 equiv; diluted to 8 mL in THF) was added dropwise over 10 minutes at ambient temperature with vigorous stirring. The solution gradually turned dark blue and was stirred for 1 minute following addition of MeMgCl. The solvent was removed *in vacuo*, and the solid was washed with ether (3 x 5 mL). Attempted crystallizations from this method failed to give isolable crystalline product, but NMR spectral analysis of the solid revealed the material to be the same as that isolated through Method A. The product decayed over several hours with loss of methane, as observed by NMR spectroscopy; no such decomposition was observed with product synthesized from Method A. When PMe₃ was added to material synthesized through Method B, broader and symmetric peaks were observed, and minimal decomposition was observed; however, this product has not been isolated.

¹H NMR (500 MHz, THF- d_8 , 300 K) δ 7.45 (s, 2H, py' *m*-H), 7.40 (s, 2H, py *m*-H), 3.73 (ddd, ² $J_{\text{HH}} = 12.8$, ³ $J_{\text{HH}} = 4.5$, ³ $J_{\text{HH}} = 2.6$ Hz, 2H, CH₂CH₂C' H_2), 3.55-3.42 (m, 6H, CH₂CH₂C'H₂ (4H) and CH₂CH₂C' H_2 (2H) overlapped), 2.59 (m, 2H, CH₂CH₂C'H₂), 2.25 (d, ⁵ $J_{\text{PH}} = 6.7$ Hz, 6H, N=C-C' H_3), 1.95 (dt, J = 14.8, 3.0 Hz, 2H, CH₂CH₂C'H₂), 1.81 (s, 6H, N=C-CH₃), 1.26 (s, 9H, C(CH₃)₃), 1.19 (s, 9H, C(C' H_3)₃), 1.04 (d, ² $J_{\text{PH}} = 8.2$ Hz, 9H, P(CH₃)₃), -3.22 (s, 3H, CH₃) ppm.

¹³C{¹H} NMR (126 MHz, THF- d_8 , 300 K) δ 155.1 (d, ³ $J_{PC} = 7.1$ Hz, C'imine), 150.1 (s, Cimine), 148.4 (s, *o*-ArC), 148.3 (d, ³ $J_{PC} = 3.2$ Hz, *o*-ArC'), 146.1 (d, ⁵ $J_{PC} = 3.3$ Hz, *p*-ArC'), 143.7 (s, *p*-ArC), 117.7 (d, ⁴ $J_{PC} = 1.9$ Hz, *m*-ArC'), 113.8 (s, *m*-ArC), 55.3 (s, CH₂CH₂C'H₂), 53.9 (s, CH₂CH₂C'H₂), 36.2 (s, C(CH₃)₃), 35.8 (s, C'(CH₃)₃), 32.5 (d, ⁴ $J_{PC} = 4.1$ Hz, CH₂CH₂C'H₂), 31.4 (s, C(C'H₃)₃), 31.2 (s, C(CH₃)₃), 14.6 (d, ¹ $J_{PC} = 18.3$ Hz, P(CH₃)₃), 14.6 (s, N=C-CH₃), 14.0 (d, ⁴ $J_{PC} = 3.6$ Hz, N=C-C'H₃) ppm. The bridging CH₃ resonance was not identified in this spectrum; see below.

³¹P{¹H} NMR (162 MHz, THF- d_8 , 300 K): $\delta = -2.06$ (s, $P(CH_3)_3$) ppm.

The ¹³C enriched isotopologue $[Co_2^{13}CH_3]^+$ was synthesized as described above in Method A using neat ¹³CH₃CN. Selected data for $[Co_2^{13}CH_3]^+$:

¹³C NMR (126 MHz, THF- d_8 , 300 K): $\delta = 12.4$ (q, ¹ $J_{CH} = 110.0$ Hz, Co- CH_3) ppm.

¹H NMR (500 MHz, THF- d_8 , 220 K) δ = -12.7 (d, ¹ J_{CH} = 74.5 Hz, 1H, Co- CH_3) ppm. ¹³C{¹H} NMR (126 MHz, THF- d_8 , 220 K): δ = 14.9 (s, Co- CH_3) ppm.

Repeated recrystallizations failed to yield analytically pure [C02¹³CH3]⁺.

Synthesis of [(³PDI₂)Co₂(µ-CN)(PMe₃)₂][OTf] ([Co₂CN]⁺)

Method A: See Method A of [Co₂CH₃]⁺ for synthesis of [Co₂CN]⁺ from MeCN.

Method B: A flask was charged with $[Co_2Cl]^+$ (82.8 mg, 0.09 mmol, 1.0 equiv), NaCN (4.4 mg, 0.09 mmol, 1.0 equiv), and *ca*. 3 mL of pyridine. The dark green solution was stirred at 95 °C for 2 days. The solution gradually turned dark green-brown. The solvent was removed *in vacuo* and the solid was twice triturated with pentane. The solid was then extracted with fluorobenzene (~5 mL) and filtered through Celite. One drop of PMe₃ was added to the solution. Layering with pentane (10 mL) afforded blocks of $[Co_2CN]^+$ (55 mg, 59%) after 3 d at ambient temperature.

¹H NMR (500 MHz, THF- d_8 , 300 K): δ = 7.79 (s, 4H, py *m*-H), 4.60-4.54 (br q, 4H, CH₂CH₂CH₂), 3.80-3.76 (br t, 4H, CH₂CH₂CH₂), 2.55-2.47 (m, 2H, CH₂CH₂CH₂), 2.18 (d, ⁵J_{PH} = 9.6 Hz, 12H, N=C-CH₃), 1.42 (m, overlapped, 2H, CH₂CH₂CH₂), 1.39 (s, 18H, C(CH₃)₃), 0.89 (d, ²J_{PH} = 9.4 Hz, 18H, P(CH₃)₃ ppm.

¹³C{¹H} NMR (126 MHz, THF- d_8 , 300 K): $\delta = 170.4$ (s, C=N), 153.0 (d, ³ $J_{PC} = 5.4$ Hz, C_{imine}), 147.8 (s, *o*-ArC), 142.9 (d, ⁵ $J_{PC} = 10.1$ Hz, *p*-ArC), 119.1 (d, ⁴ $J_{PC} = 5.8$ Hz, *m*-ArC), 58.1 (s, CH₂CH₂CH₂), 36.4 (s, C(CH₃)₃ and CH₂CH₂CH₂), 31.0 (s, C(CH₃)₃), 13.8 (s, N=C-CH₃), 13.3 (d, ¹ $J_{PC} = 16.9$ Hz, P(CH₃)₃) ppm.

¹⁹F{¹H} NMR (376 MHz, THF- d_8 , 300 K): $\delta = -78.7$ (s, CF₃) ppm.

³¹P{¹H} NMR (162 MHz, THF- d_8 , 300 K): $\delta = 29.7$ (s, $P(CH_3)_3$) ppm.

Anal. Calcd. for $C_{40}H_{64}C_{02}F_3N_7O_3P_2S_1 \bullet 1 C_6H_5F_1$ and $\frac{1}{2}C_5H_{12}$ (1092.0 g/mol): C, 53.34; H, 6.92; N, 8.98. Found: C, 53.24; H, 7.03; N, 8.87 %.

IR (KBr): $v_{CN} = 2098 \text{ cm}^{-1}$

UV-vis-NIR (THF): 265 nm (4.28 × 10^4 M⁻¹ cm⁻¹), 420 nm (2.10 × 10^4 M⁻¹ cm⁻¹), 561 nm (4.29 × 10^3 M⁻¹ cm⁻¹) and 879 nm (3.73 × 10^3 M⁻¹ cm⁻¹).

The ¹³C enriched isotopologue $[Co_2^{13}CN]^+$ was synthesized as described above, using K¹³CN as the cyanide source. Selected data for $[Co_2^{13}CN]^+$: IR (KBr): $v_{CN} = 2054$ cm⁻¹

Synthesis of [(³PDI₂)Co₂(*µ*-CN)(PMe₃)₂][OTf]₂ ([Co₂CN]²⁺)

 $[Co_2CN]^+$ (29.5 mg, 0.03 mmol, 1.0 equiv) was added to a 20 mL scintillation vial and dissolved in THF (3 mL). AgOTf (6.9 mg, 0.03 mmol, 1.0 equiv) was dissolved in minimal THF and added to the stirring dark green solution in one aliquot at ambient temperature. Immediate formation of a dark precipitate and a metallic coating on the walls of the flask were observed. The reaction was stirred for 5 minutes before removal of the solvent *in vacuo*. The dark green solid was washed with THF (1 mL), extracted with 1,2-difluorobenzene (*ca*. 2 mL) and filtered through Celite. Vapor diffusion of pentane into the 1,2-difluorobenzene solution overnight yielded dark green-brown thick plates (22.1 mg, 74%).

¹H NMR (400 MHz, MeCN- d_3 , 300 K): $\delta = 18.2$ (br s), 11.1 (br s), 1.4 (s, C(CH_3)_3), -7.6 (br s) ppm.

Anal. Calcd. for $C_{41}H_{64}Co_2F_6N_7O_6P_2S_2$ (1108.93 g/mol): C, 44.41; H, 5.82; N, 8.84. Found: C, 44.21; H, 5.69; N, 8.35 %.

IR (KBr): $v_{CN} = 1975 \text{ cm}^{-1}$

UV-vis-NIR (MeCN): 234 nm ($3.75 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$), 288 nm (shoulder, $1.39 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$), 416 nm ($9.81 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$), 680 nm ($4.61 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$), 852 nm ($6.65 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$).

Synthesis of [(³PDI₂)₂Co₄(µ-CN)₂(PMe₃)₂][OTf]₂ ([Co₄(CN)₂][OTf]₂)

A heavy-walled glass vessel was charged with $[Co_2Cl]^+$ (248.5 mg, 0.26 mmol, 1.0 equiv), NaCN (12.6 mg, 0.26 mmol, 1.0 equiv), and *ca*. 5 mL of pyridine. The dark green solution was stirred at 95 °C for 5 days. The solution gradually turned dark green-brown. The solvent was removed *in vacuo* and the solid was twice triturated with pentane. The dark green solid was extracted with THF (6 x 2 mL) and filtered through Celite. The remaining purple solid (after extraction of $[Co_2CN]^+$) was extracted with 1,2-difluorobenzene (*ca*. 6 mL), filtered through Celite, and layered with pentane (*ca*. 10 mL). After an additional recrystallization under the same conditions, $[Co_4(CN)_2][OTf]_2$ was isolated as dark purple blocks (60.1 mg, 27%).

The solution-phase dynamics and low solubility of $[Co_4(CN)_2][OTf]_2$ prevented the collection of a full complement of NMR spectral data, but comparison of the observables with those for $[Co_4(CN)_2][BAr^F_4]_2$ support the assigned structure.

¹H NMR (500 MHz, 1,2-difluorobenzene- h_4/C_6D_6): δ 7.32 (s, 4H, py *m*-H), 6.95 (s, 4H, py' *m*-H), 6.03 (dd, J = 14.7, 11.8 Hz, 4H, $CH_2CH_2C'H_2$), 4.94 – 4.56 (m, 4H, $CH_2CH_2C'H_2$), 4.17 (br d, J = 12.7 Hz, 4H, $CH_2CH_2C'H_2$), 4.12 – 4.04 (m, 4H, $CH_2CH_2C'H_2$), 3.41 – 3.26 (m, 4H, $CH_2CH_2C'H_2$), 2.42 (br d, J = 15.5 Hz, 4H, $CH_2CH_2C'H_2$), 2.25 (d, ⁵ $J_{PH} = 8.8$ Hz, 12H, N=C-C'H₃), 1.27 (s, 12H, N=C-CH₃), 1.21 (s, 18H, $C(CH_3)_3$), 0.99 (s, 18H, $C(C'H_3)_3$), 0.22 (d, ² $J_{PH} = 9.5$ Hz, 18H, P(CH_3)₃) ppm.

³¹P{¹H} NMR (162 MHz, 1,2-difluorobenzene- h_4/C_6D_6 , 300 K): $\delta = 3.40$ (s, $P(CH_3)_3$) ppm.

Anal. Calcd. for $C_{74}H_{110}Co_4F_6N_{14}O_6P_2S_2$ (1752.54 g/mol): C, 50.28; H, 6.27; N, 11.09. Found: C, 46.70; H, 5.81; N, 11.01. Repeated attempts to generate analytically pure material were unsuccessful.

IR (KBr): $v_{CN} = 2061 \text{ cm}^{-1}$

UV-vis-NIR (MeCN): 245 nm (7.19 × 10⁴ M⁻¹ cm⁻¹), 318 nm (shoulder, 2.47×10^4 M⁻¹ cm⁻¹), 379 nm (2.19×10^4 M⁻¹ cm⁻¹), 486 nm (1.70×10^4 M⁻¹ cm⁻¹), 553 nm (2.08×10^4 M⁻¹ cm⁻¹).

The ¹³C enriched isotopologue $[Co_4(^{13}CN)_2][OTf]_2$ was synthesized as described above, using K¹³CN as the cyanide source. Selected data for $[Co_4(^{13}CN)_2][OTf]_2$: IR (KBr): $v_{CN} = 2020$ cm⁻¹

Synthesis of [(³PDI₂)₂Co₄(*µ*-CN)₂(PMe₃)₂][BAr^F₄]₂ ([Co₄(CN)₂][BAr^F₄]₂)

A 20 mL scintillation vial was charged with $[Co_4(CN)_2][OTf]_2$ (27.5 mg, 0.02 mmol, 1.0 equiv) and 1,2-difluorobenzene (2 mL). A solution of NaBAr^F₄ (28.8, 0.03 mmol, 2.1 equiv) in THF (*ca.* 1 mL) was added to the stirring, purple solution at room temperature. After stirring for 2 hours at ambient temperature, the solvent was removed *in vacuo*. The purple solid was triturated with pentane, washed with diethyl ether (2 x 2 mL) then extracted with THF (2 mL) and filtered through Celite. Vapor diffusion of pentane into the THF solution over 3 days at ambient temperature yielded a crop of purple needles. To remove residual NaOTf, the crystals were recrystallized from THF/pentane and twice more from fluorobenzene/pentane vapor diffusion, yielding 5.2 mg (10.5%) of the product.

¹H NMR (500 MHz, THF- d_8 , 300 K): $\delta = 7.78$ (br s, 16H, *o*-CH BAr^F₄), 7.57 (s, 8H, *p*-CH BAr^F₄), 7.54 (s, 4H, py *m*-H), 7.17 (s, 4H, py *m*-H), 6.02-6.07 (td, J = 2.9 Hz, J = 13.4 Hz, 4H, CH₂CH₂C'H₂), 4.73-4.79 (td, J = 3.3 Hz, J = 13.2 Hz, 4H, CH₂CH₂C'H₂), 4.23-4.26 (br d, 4H, CH₂CH₂C'H₂), 4.14-4.19 (dt, J = 13.2 Hz, J = 3.8 Hz, 4H, CH₂CH₂C'H₂), 3.42-3.52 (m, 4H, CH₂CH₂C'H₂), 2.43 (d, ⁵*J*_{PH} = 9.4 Hz, 12H, N=C-C'H₃), 2.34-2.39 (m, 4H, CH₂CH₂C'H₂), 1.54 (s, 12H, N=C-CH₃), 1.28 (s, 18H, C(CH₃)₃), 1.10 (s, 18H, C(C'H₃)₃), 0.37 (d, ²*J*_{PH} = 10.0 Hz, 18H, P(CH₃)₃) ppm.

¹H NMR (600 MHz, 1,2-difluorobenzene- h_4/C_6D_6 , 300 K): $\delta = 8.34-8.17$ (br s, 16H, *o*-CH BAr^F₄), 7.55 (s, 8H, *p*-CH BAr^F₄), 7.36 (s, 4H, py *m*-H), 6.99 (s, 4H, py' *m*-H), 5.99 (td, *J* = 13.5, 2.9 Hz, 4H, CH₂CH₂C'H₂), 4.71 (td, *J* = 13.1, 3.2 Hz, 4H, CH₂CH₂C'H₂), 4.12-3.90 (m, 8H, CH₂CH₂C'H₂ and CH₂CH₂C'H₂ overlapped), 3.28-3.17 (m, 4H, CH₂CH₂C'H₂), 2.23-2.17 (m, 4H, CH₂CH₂C'H₂), 2.16 (d, ⁵*J*_{PH} = 9.4 Hz, 12H, N=C-C'H₃), 1.24 (s, 18H, C(CH₃)₃), 1.19 (s, 12H, N=C-CH₃), 1.01 (s, 18H, C(C'H₃)₃), 0.19 (d, ²*J*_{PH} = 9.9 Hz, 18H, P(CH₃)₃) ppm.

¹³C{¹H} NMR (126 MHz, THF- d_8 , 300 K): $\delta = 162.8$ (q, ¹ $J_{BC} = 49.9$ Hz, C-B), 153.6 (s, C_{imine}), 153.5 (d, ³ $J_{PC} = 8.0$ Hz, C'_{imine}), 149.7 (d, ⁵ $J_{PC} = 7.2$ Hz, *p*-ArC'), 149.0 (s, *o*-ArC), 148.1 (d, ³ $J_{PC} = 2.2$ Hz, *o*-ArC'), 144.4 (s, *p*-ArC), 135.6 (br s, *o*-CH BAr^F₄), 130.0 (qq, ³ $J_{CB} = 2.8$ Hz, ² $J_{CF} = 31.4$ Hz, *m*-C BAr^F₄), 125.5 (q, ¹ $J_{CF} = 272.3$ Hz, CF₃ BAr^F₄), 118.5 (d, ⁴ $J_{PC} = 5.0$ Hz, *m*-ArC'), 118.2 (br sept, ³ $J_{CF} = 4.0$ Hz, *p*-C BAr^F₄), 115.5 (s, *m*-ArC), 57.4 (s, CH₂CH₂C'H₂), 56.0 (s, CH₂CH₂C'H₂), 37.7 (s, C(CH₃)₃), 35.7 (d, ⁶ $J_{PC} = 2.1$ Hz, C'(CH₃)₃), 31.0 (d, ⁷ $J_{PC} = 1.8$ Hz,

 $C(C'H_3)_3$, 29.8 (s, $C(CH_3)_3$), 28.8 (d, ${}^4J_{PC} = 3.9$ Hz, $CH_2CH_2C'H_2$), 16.5 (s, N=C-*C*H₃), 14.2 (d, ${}^4J_{PC} = 4.8$ Hz, N=C-*C*'H₃), 11.4 (d, ${}^1J_{PC} = 20.9$ Hz, $P(CH_3)_3$) ppm. *C*=N resonance not found.

¹⁹F{¹H} NMR (376 MHz, THF- d_8 , 300 K): $\delta = -63.3$ (s, CF₃) ppm.

³¹P{¹H} NMR (162 MHz, THF- d_8 , 300 K): $\delta = 4.97$ (s, $P(CH_3)_3$) ppm.

³¹P{¹H} NMR (162 MHz, 1,2-difluorobenzene- h_4/C_6D_6 , 300 K): $\delta = 3.24$ (s, $P(CH_3)_3$) ppm.

IR (KBr): $v_{CN} = 2063 \text{ cm}^{-1}$

The ¹³C enriched isotopologue $[Co_4({}^{13}CN)_2][BAr^F_4]_2$ was synthesized as described above, using K¹³CN as the CN⁻ source. Selected data for $[Co_4({}^{13}CN)_2][BAr^F_4]_2$: ¹³C{¹H} NMR (126 MHz, THF-*d*₈, 300 K): $\delta = 176.4$ (d, ²*J*_{PC} = 15.1 Hz, *C*=N) ppm.

Figure S1: ¹H NMR spectrum of $[Co_2CN]^+$ in THF- d_8 at 300 K. @ denotes co-crystallized fluorobenzene, * denotes co-crystallized pentane (overlapping with coordinated PMe₃). # denotes added free PMe₃, added to prevent dimerization. % denotes grease.

Figure S2: ${}^{13}C{}^{1}H$ NMR spectrum of $[Co_2CN]^+$ in THF-*d*₈ with added PMe₃ at 300 K.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 δ (ppm)

Figure S3: ${}^{31}P{}^{1}H$ NMR spectrum of $[Co_2CN]^+$ in THF- d_8 with added PMe₃ at 300 K.

Figure S4: ¹⁹F{¹H} NMR spectrum of $[Co_2CN]^+$ in THF- d_8 with added PMe₃ at 300 K.

Figure S5: ¹H-¹H COSY spectrum of $[Co_2CN]^+$ in THF- d_8 with added PMe₃ at 300 K.

Figure S6: $^{1}H-^{13}C{^{1}H}$ HSQC spectrum of $[Co_{2}CN]^{+}$ in THF- d_{8} with added PMe₃ at 300 K.

Figure S7: $^{1}H^{-13}C{^{1}H}$ HMBC spectrum of $[Co_{2}CN]^{+}$ in THF- d_{8} with added PMe₃ at 300 K.

Figure S8: VT ${}^{31}P{}^{1}H$ NMR spectra of $[Co_2{}^{13}CN]^+$ in THF- d_8 with added PMe₃.

Figure S9: VT ¹H NMR spectra of $[Co_2^{13}CN]^+$ in THF- d_8 with added PMe₃.

Figure S10: ¹H NMR spectrum of $[Co_2CN]^{2+}$ in MeCN- d_3 at 300 K.

Figure S11: ¹H NMR spectrum of $[Co_4(CN)_2][BAr^F_4]_2$ in THF- d_8 at 300 K.

Figure S12: ¹³C{¹H} NMR spectrum of $[Co_4(CN)_2][BAr^F_4]_2$ in THF- d_8 at 300 K.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 δ (ppm)

Figure S14: ³¹P{¹H} NMR spectrum of $[Co_4(CN)_2][BAr^F_4]_2$ in THF- d_8 at 300 K.

Figure S15: ¹⁹F{¹H} NMR spectrum of $[Co_4(CN)_2][BAr^F_4]_2$ in THF-*d*₈ with PhF internal standard at 300 K.

Figure S16: ¹H-¹H COSY spectrum of $[Co_4(CN)_2][BAr^F_4]_2$ in THF- d_8 at 300 K.

Figure S17: $^{1}H-^{13}C{^{1}H}$ HSQC spectrum of [Co₄(CN)₂][BAr^F₄]₂ in THF- d_8 at 300 K.

Figure S18: $^{1}H-^{13}C{^{1}H}$ HMBC spectrum of [Co₄(CN)₂][BAr^F₄]₂ in THF- d_8 at 300 K.

Figure S19: ¹H NMR spectrum of $[Co_4(CN)_2][BAr^F_4]_2$ in 1,2-difluorobenzene- h_4/C_6D_6 at 300 K.

AZS-06-114-02 2.32.fid Co4CN2BArF24 P DFB/c6d6

-3.2367

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 δ(ppm)

Figure S20: ³¹P{¹H} NMR spectrum of $[Co_4(CN)_2][BAr^F_4]_2$ in 1,2-difluorobenzene- h_4/C_6D_6 .

Figure S21: ¹H NMR spectrum of $[Co_4(CN)_2][OTf]_2$ in 1,2-difluorobenzene- h_4/C_6D_6 .

Figure S22: ³¹P{¹H} NMR spectrum of $[Co_4(CN)_2][OTf]_2$ in 1,2-difluorobenzene- h_4/C_6D_6 at 300 K.

Figure S23: Stacked ¹H NMR spectra of $[Co_4(CN)_2][OTf]_2$ and $[Co_4(CN)_2][BAr^F_4]_2$ in 1,2-difluorobenzene- h_4/C_6D_6 , as well as $[Co_4(CN)_2][BAr^F_4]_2$ in THF- d_8 at 300 K.

Figure S24: ¹H NMR spectrum of $[Co_2CH_3]^+$ in THF- d_8 at 300 K.

Figure S25: ${}^{13}C{}^{1}H$ NMR spectrum of [Co₂CH₃]⁺ in THF- d_8 at 300 K.

AZS-06-105-01.31.fid Co-Me THFd8 P 300K

-2.0617

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 δ (ppm)

Figure S26: ${}^{31}P{}^{1}H$ NMR spectrum of [Co₂CH₃]⁺ in THF- d_8 at 300 K.

Figure S27: ¹H-¹H COSY spectrum of $[Co_2CH_3]^+$ in THF- d_8 at 300 K.

Figure S28: $^{1}\text{H}-^{13}\text{C}\{^{1}\text{H}\}$ HSQC spectrum of $[\text{Co}_{2}\text{CH}_{3}]^{+}$ in THF- d_{8} at 300 K.

Figure S29: ¹H-¹³C{¹H} HMBC spectrum of [**Co₂CH₃**]⁺ in THF-*d*₈ at 300 K.

Figure S30: VT ¹H NMR spectra of $[Co_2CH_3]^+$ in THF-*d*₈. ***** denotes proposed bridging C*H*₂H moiety. Note two separate samples were used for high temperature and low temperature data collection, accounting for the difference in residual solvents. **▲** denotes a signal from a small amount of a known, Co-containing diamagnetic impurity.

Figure S31: VT ¹H NMR spectra of $[Co_2CH_3]^+$ in THF- d_8 showing upfield region.

Figure S32: Top: ¹H NMR spectrum of $[Co_2CD_3]^+$ in THF- d_8 at 300 K made from CD₃CN. Bottom: ¹H NMR spectrum of $[Co_2CH_3]^+$ in THF- d_8 at 300 K made from CH₃CN. % denotes grease.

Figure S33: ²H NMR spectrum of $[Co_2CD_3]^+$ in THF-*h*₈ with one drop of C₆D₆ at 300 K.

Figure S34: ¹H NMR spectrum of $[Co_2^{13}CH_3]^+$ in THF- d_8 at 300 K.

Figure S35: Top: ¹³C{¹H} NMR spectrum of $[Co_2^{13}CH_3]^+$ in THF- d_8 at 300 K. Bottom: ¹³C NMR spectrum of $[Co_2^{13}CH_3]^+$ in THF- d_8 at 300 K.

Figure S36: ¹H NMR spectrum of $[Co_2^{13}CH_3]^+$ in THF- d_8 at 220 K.

Figure S37: ¹³C{¹H} NMR spectrum of $[Co_2^{13}CH_3]^+$ in THF- d_8 at 220 K

Figure S38: IR (KBr) spectrum of [Co₂CN]⁺

Figure S39: IR (KBr) spectrum of [Co₂¹³CN]⁺

	120 -	_													
%	100 - 80 - T 60 - 40 -	- 	3 456 7			9 8			10		11	12 ¹³ / 14 ¹ / ₁	20 20 20	24	2728 31 33 356 32 34 30
	400	00				3000			2000			18	³ 10	000	400
Accur Zero I Gain Date/ Opera File N Samp Comn	mulation Filling Time ator Iame Ile Name nent	e	16 ON Auto (4) 1/29/2020 6: Memory#2 KTO_IV_21(27PM			Resolution Apodization Scanning S Update	speed	4 cm-1 Cosine Auto (2 mm/sec) 1/29/2020 6:27PM						
No.	cm-1		%Т	No.	cm-1	%Т	No.	cm-1	%Т	No.	cm-1	%Т	No.	cm-1	%T
1	3855.0	1	92.4339	2	3841.51	93.5899	3	3736.4	94.0394	4	3677.59	94.1678	5	3650.59	94.0994
10 11	3630.34	4 0	94.244	10	3568.63	93.724	8	2966.95	79.3988	9	2909.09	84.7725	10	19/4.75	96.9619
16	1369.2	1	90.0444 88 3625	12	1336.43	87 9121	13	1265.07	21 8011	14	1425.14	04.4052 73.2129	15	1149 37	58 6929
21	1105.0	1	83.2397	22	1072.23	91.4235	23	1030.77	42.5749	24	945.913	51.8454	20	877.452	98.7561
26	843.70	4	102.285	27	762.709	98.7155	28	731.853	96.4211	29	670.142	103.408	30	637.358	48,4623
31 36	599.75 434.86	3 9	103.755 105.589	32	571.79	95.1243	33	542.863	104.371	34	516.829	90.2147	35	458.975	106.411

Figure S40: IR (KBr) spectrum of [Co₂CN]²⁺

Figure S41: IR (KBr) spectrum of [C04(CN)2][OTf]2.

Figure S42: IR (KBr) spectrum of [Co₄(CN)₂][BAr^F₄]₂.

Figure S43: IR (KBr) spectrum of [C04¹³CN2][OTf]2.

	110 L														
	100	1256-8901145 20 229 287	28		\sim		31	2 33	34 3	5079901424		•0 •0		5 667 68 70 71 72	74
	80				30					45	49051 54 583	57 61 59 50	(
%	т				29										
	60	-										58 62	63 2	69	
	40														
											V				
	30L	0	1		2000		1					5			
	4000	0			3000		Way	2000 venumber [cm-1]				1	000		400
Accur Zero I	mulation Filling	16 ON				Resolution Apodizatior	1	4 cm-1 Cosine							
Gain Date/ Opera File N Samp Comr	Time ator Jame ble Name ment	Auto (4) 3/14/2020 7: Memory#1 & KTO_IV_191	41PM			Scanning S Update	peed	Auto (2 mm/sec) 3/14/2020 7:43PM							
Gain Date/ Opera File N Samp Comn No.	Time ator lame ble Name ment cm-1	Auto (4) 3/14/2020 7: Memory#1 KTO_IV_191	41PM I No.	cm-1	%Т	Scanning S Update No.	cm-1	Auto (2 mm/sec) 3/14/2020 7:43PM %T	No.	cm-1	%T	No.	cm-1	%Т	
Gain Date/ Opera File N Samp Comm No.	Time ator lame ole Name ment <u>cm-1</u> 3934.07	Auto (4) 3/14/2020 7: Memory#1 KTO_IV_191 %T 94.6007	41PM I <u>No.</u> 2	_cm-1 3919.61	%T 94.6149	Scanning S Update No. 3	cm-1 3905.15	Auto (2 mm/sec) 3/14/2020 7:43PM %T 93.5321	No.	cm-1 3893.57	%T 94.4479	<u>No.</u>	cm-1 3885.86	%T 94.6501	
Gain Date/ Opera File N Samp Comm No. 1 6	Time ator lame ble Name nent 3934.07 3873.33	Auto (4) 3/14/2020 7: Memory#1 KTO_IV_191 %T 7 94.6007 3 93.9543 9 93.9543	41PM	cm-1 3919.61 3855.01 2771 12	%T 94.6149 91.8596 91.2542	Scanning S Update No. 3 8	cm-1 3905.15 3840.54 2752 8	Auto (2 mm/sec) 3/14/2020 7:43PM %T 93.5321 94.118 92.9545	No. 4 9	cm-1 3893.57 3822.22 2746.05	%T 94.4479 93.7219 95.0187	No. 5 10	cm-1 3885.86 3808.72 2737 37	%T 94.6501 94.1836 02.345	
Gain Date/ Opera File N Samp Comn No. 1 6 11 16	Time ator lame ole Name ment <u>cm-1</u> 3934.07 3873.33 3780.76 3725.8	Auto (4) 3/14/2020 7: Memory#1 KTO_IV_191 9%T 7 94.6007 3 93.9543 5 95.0372 94.9974	41PM I No. 2 7 12 17	cm-1 3919.61 3855.01 3771.12 3713.26	%T 94.6149 91.8596 94.3943 93.7469	Scanning S Update No. 3 8 13 13	cm-1 3905.15 3840.54 3752.8 3752.8	Auto (2 mm/sec) 3/14/2020 7:43PM 93.5321 94.118 92.9515 94.9403	No. 4 9 14	cm-1 3893.57 3822.22 3746.05 3692.05	%T 94.4479 93.7219 95.0187 93.6164	No. 5 10 15 20	cm-1 3885.86 3808.72 3737.37 3677.59	%T 94.6501 94.1836 93.365 92.8017	
Gain Date/ Opera File N Samp Comn 1 6 11 16 21	Time ator lame ole Name ment 3934.07 3873.33 3780.76 3725.8 3650.59	Auto (4) 3/14/2020 7: Memory#1 5 KTO_IV_191 7 94.6007 7 94.6007 3 93.9543 5 95.0372 94.9974 9 21502	41PM No. 2 7 12 17 22	cm-1 3919.61 3855.01 3771.12 3713.26 3631.3	%T 94.6149 91.8596 94.3943 93.7469 92.9733	Scanning S Update No. 3 8 13 18 23	cm-1 3905.15 3840.54 3752.8 3703.62 3620.7	Auto (2 mm/sec) 3/14/2020 7:43PM %T 93.5321 94.118 92.9515 94.9403 93.0273	No. 4 9 14 19 24	cm-1 3893.57 3822.22 3746.05 3692.05 3612.02	%T 94.4479 93.7219 95.0187 93.6164 93.916	No. 5 10 15 20 25	cm-1 3885.86 3808.72 3737.37 3677.59 3588.88	%T 94.6501 94.1836 93.365 92.8017 92.0286	
Gain Date/ Opera File N Samp Comm 1 6 11 6 11 16 21 26	Time ator lame ole Name nent 3934.07 3873.33 3780.76 3725.8 3650.59 3568.63	Auto (4) 3/14/2020 7: Memory#1 KTO_IV_191 7 94.6007 3 93.9543 5 95.0372 94.9974 9 92.1502 3 90.2521	41PM No. 2 7 12 17 22 27	cm-1 3919.61 3855.01 3771.12 3713.26 3617.3 3647.41	%T 94.6149 91.8596 94.3943 93.7469 92.9733 90.6147	No. No. 3 8 13 18 23 28	cm-1 3905.15 3840.54 3752.8 3703.62 3620.7 3449.06	Auto (2 mm/sec) 3/14/2020 7:43PM 93.5321 94.118 92.9515 94.9403 93.0273 90.7729	No. 4 9 14 19 24 29	cm-1 3893.57 3822.22 3746.05 3692.05 3612.02 2960.2	%T 94.4479 93.7219 95.0187 93.6164 93.916 71.3495	No. 5 10 15 20 25 30	cm-1 3885.86 3808.72 3737.37 3677.59 3588.88 2904.27	%T 94.6501 94.1836 93.365 92.8017 92.0286 74.7918	
Gain Date/ Opera File N Samp Comm No. 1 6 11 16 21 26 31	Time ator Jame ole Name nent 3934.07 3873.33 3780.76 3725.8 3650.59 3568.63 2372.98	Auto (4) 3/14/2020 7 Memory#1 KTO_IV_191 %T 9 94.6007 9 94.6007 9 94.6007 9 94.6007 9 94.6007 9 94.9974 9 92.1502 3 90.2521 3 92.2571	41PM No. 2 7 12 17 22 27 32	cm-1 3919.61 3855.01 3771.12 3713.26 3631.3 3547.41 2345.98	%T 94.6149 91.8596 94.3943 93.7469 92.9733 90.6147 93.1141	Scanning S Update No. 3 8 13 18 23 28 33	cm-1 3905.15 3840.54 3752.8 3703.62 3620.7 3449.06 2081.78	Auto (2 mm/sec) 3/14/2020 7:43PM 93.5321 94.118 92.9515 94.9403 93.0273 90.7729 93.1449	No. 4 9 14 19 24 29 34	cm-1 3893.57 3822.22 3746.05 3692.05 3692.05 3612.02 2960.2 1846.51	%T 94,4479 93,7219 95,0187 93,6164 93,916 71,3495 94,3847	No. 5 100 15 20 25 300 35	cm-1 3885.86 3808.72 3737.37 3677.59 3588.88 2904.27 1794.44	%T 94,6501 94,1836 93,365 92,8017 92,0286 74,7918 94,1729	
Gain Date/ Opera File N Samp Comm 1 6 11 16 21 26 31 36	Time ator lame ble Name nent 3934.07 3873.33 3780.76 3725.8 3650.59 3568.63 2372.98 1774.19	Auto (4) 3/14/2020 7: Memory#1 5 KTO_IV_191 7 94.6007 3 93.9543 5 95.0372 94.9974 9 92.1502 3 90.2521 3 92.9713 9 93.9371	41PM No. 2 7 12 17 22 27 32 37	cm-1 3919.61 3855.01 3771.12 3713.26 3631.3 3547.41 2345.98 1752.01	%T 94.6149 91.8596 94.3943 93.7469 92.9733 90.6147 93.1141 93.8714	Scanning S Update No. 3 8 13 18 23 28 33 38	cm-1 3905.15 3840.54 3752.8 3703.62 3620.7 3449.06 2081.78 1735.62	Auto (2 mm/sec) 3/14/2020 7:43PM 93.5321 94.118 92.9515 94.9403 90.7729 93.1449 93.3663	No. 4 9 14 19 24 29 34 39	cm-1 3893.57 3822.22 3746.05 3612.02 2960.2 1846.51 1719.23	%T 94.4479 93.7219 95.0187 93.6164 93.916 71.3495 94.3847 92.8667	No. 5 10 15 20 25 30 35 40	cm-1 3885.86 3808.72 3737.37 3677.59 3588.88 2904.27 1794.44 1700.91	%T 94.6501 94.1836 93.365 92.8017 92.0286 74.7918 94.1729 93.1537	
Gain Date/ Opera File N Samp Comm 1 6 11 16 21 26 31 36 41	Time ator lame ble Name nent 3934.07 3873.33 3780.76 3725.8 3650.59 3568.63 2372.98 1774.19 1686.44	Auto (4) 3/14/2020 7: Memory#1 KTO_IV_191 7 94.6007 3 93.9543 5 95.0372 94.9974 9 92.1502 3 90.2521 3 92.9713 9 3.9371 4 92.6216	41PM No. 7 12 17 22 27 32 37 37 42	cm-1 3919.61 3855.01 3771.12 3713.26 3631.3 3647.41 2345.98 1752.01 1654.62	%T 94.6149 91.8596 93.7469 92.9733 90.6147 93.1141 93.7684	No. 3 8 13 18 23 28 33 38 33 38 43 34 36 43 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 <td>cm-1 3905.15 3840.54 3752.8 3703.62 3620.7 3449.06 2081.78 1735.62 1647.87</td> <td>Auto (2 mm/sec) 3/14/2020 7:43PM 93.5321 94.118 92.9515 94.9403 93.0273 90.7729 93.1449 93.3663 92.266</td> <td>No. 4 9 14 19 24 29 34 39 44</td> <td>cm-1 3893.57 3822.22 3746.05 3612.02 2960.2 1846.51 1719.23 1637.27</td> <td>%T 94.4479 93.7219 93.6164 93.916 71.3495 94.3847 92.8667 90.8087</td> <td>No. 5 10 15 20 25 30 35 40 45</td> <td>cm-1 3885.86 3808.72 3737.37 3677.59 3588.88 2904.27 1794.44 1700.91 1598.7</td> <td>%T 94.6501 94.1836 92.0286 74.7918 94.1729 93.1537 86.6369</td> <td></td>	cm-1 3905.15 3840.54 3752.8 3703.62 3620.7 3449.06 2081.78 1735.62 1647.87	Auto (2 mm/sec) 3/14/2020 7:43PM 93.5321 94.118 92.9515 94.9403 93.0273 90.7729 93.1449 93.3663 92.266	No. 4 9 14 19 24 29 34 39 44	cm-1 3893.57 3822.22 3746.05 3612.02 2960.2 1846.51 1719.23 1637.27	%T 94.4479 93.7219 93.6164 93.916 71.3495 94.3847 92.8667 90.8087	No. 5 10 15 20 25 30 35 40 45	cm-1 3885.86 3808.72 3737.37 3677.59 3588.88 2904.27 1794.44 1700.91 1598.7	%T 94.6501 94.1836 92.0286 74.7918 94.1729 93.1537 86.6369	
Gain Date// Opera File N Samp Comm 1 6 11 16 21 26 31 36 41 46	Time ator lame ole Name nent 3934.07 3873.33 3780.76 3725.8 3650.59 3568.63 2372.98 1774.19 1686.44 1560.13	Auto (4) 3/14/2020 7: Memory#1 7 94.6007 7 94.6007 9 93.9543 9 93.9543 9 93.9543 9 92.1502 8 90.2521 9 92.2521 9 92.9713 9 93.9371 4 92.6216 8 89.0236	41PM No. 2 7 12 17 22 27 32 32 37 42 47	cm-1 3919.61 3855.01 3771.12 3771.26 3631.3 3547.41 3547.41 1554.71 1654.62 1542.77	%T 94.6149 91.8596 94.3943 93.7469 92.9733 90.6147 93.1141 93.8714 90.3996	No. 3 8 13 18 23 28 33 38 43	cm-1 3905.15 3840.54 3752.8 3752.8 3752.8 3752.8 3752.8 3752.0 2081.78 1735.62 1647.87 1755.62 1647.87	Auto (2 mm/sec) 3/14/2020 7:43PM 93.5321 94.118 92.9515 94.9403 93.0273 90.7729 93.1449 93.3663 92.266 87.8667	No. 4 9 14 19 24 29 34 39 44 49	cm-1 3893.57 3822.22 3746.05 3692.05 3612.02 2960.2 1846.51 1719.23 1637.27 1477.21	%T 94.4479 93.7219 95.0187 93.6164 93.916 71.3495 94.3847 92.8667 90.8087 79.8487	No. 5 10 15 20 25 300 35 40 45 50	cm-1 3885.86 3808.72 3737.37 3677.59 3588.88 2904.27 1794.44 1700.91 1598.7 1458.89	%T 94.6501 93.365 92.8017 92.0286 74.7918 94.1729 93.1537 85.6369 80.9123	
Gain Date/ Opera File N Samp Comm No. 1 6 11 16 21 26 31 36 41 46 51	Time ator Jame ole Name ment 3934.07 3873.33 3780.76 3725.8 3650.59 3650.59 3650.59 3658.63 2372.98 1774.19 1686.44 1560.13 1421.28	Auto (4) 3/14/2020 7: Memory#1 5 KTO_IV_191 7 94.6007 3 93.9543 5 95.0372 9 92.1502 3 90.2521 3 92.9713 9 92.9713 9 93.9371 4 92.6216 3 89.0236 3 78.8203	41PM No. 2 7 12 12 27 32 27 32 37 42 47 52	cm-1 3919.61 3855.01 3771.12 373.36 3631.3 3547.41 2345.98 1752.01 1752.01 1654.62.77 1388.5	%T 94.6149 91.8596 94.3943 93.7469 92.9733 90.6147 93.81141 93.8714 90.7684 90.3996 74.8941	Scanning S Update No. 3 8 13 13 18 23 28 33 32 8 33 38 43 43 48 53	cm-1 3905.15 3840.54 3752.8 3703.62 3620.7 3449.06 2081.78 1735.62 1647.87 1509.03 1509.03	Auto (2 mm/sec) 3/14/2020 7:43PM 93.5321 94.118 92.9515 94.9403 93.0273 90.7729 93.1449 93.3663 92.266 87.8667 74.1117	No. 4 9 14 19 24 29 34 39 44 49 54	cm-1 3893.57 3822.22 3746.05 3692.05 3612.02 2960.2 1846.51 1719.23 1637.27 1477.21 1348.96	%T 94.4479 93.7219 95.0187 93.6164 93.916 71.3495 94.3847 92.8667 90.8087 79.8487 77.7592	No. 5 10 15 20 25 30 35 40 45 50 55	cm-1 3885.86 3808.72 3737.37 3677.59 2588.88 2904.27 1794.44 1709.91 1598.7 1458.89 1270.86	% T 94,6501 94,1836 93,365 92,8017 92,0286 74,7918 94,1729 93,1537 86,6369 80,9123 33,789	

Figure S44: IR (KBr) spectrum of $[Co_2CH_3]^+$

Figure S45: UV-Vis spectrum of $[Co_2CN]^+$ in THF. The intense feature at 265 nm is observed across previously characterized ³PDI₂ macrocyclic systems¹ and is assigned as a ligand $\pi \rightarrow \pi^*$ transition. The lower energy absorptions between 400 and 600 nm are similarly observed in the isoelectronic $[Co_2Cl]^+$ complex and are assigned as MLCT transitions.

Figure S46: UV-Vis spectrum of [Co₂CN]²⁺ in MeCN.

Figure S47: UV-Vis spectrum of [Co4(CN)2][OTf]2 in MeCN.

Figure S48: Cyclic voltammogram of $[Co_2CN]^+$ in 1,2-difluorobenzene at 100 mV/s. Conditions: 1 mM of analyte in 0.1 M [ⁿBu₄N][PF₆] in 1,2-difluorobenzene, glassy carbon working electrode, Pt auxiliary electrode, 0.1 M AgBAr^F₄/Ag reference electrode.

Figure S49: X-ray structure of cationic portion of [C04(CN)₂][OTf]₂. Hydrogen atoms and ambiguous/disordered triflates were removed for clarity.

Empirical formula	$C_{48}H_{75}Co_2F_4N_6O_3PS$
Formula weight	1041.03
Temperature/K	100
Crystal system	monoclinic
Space group	$P2_1/n$
a	11.1401(12)Å
b	18.761(2)Å
c	26.561(3)Å
β	90.032(6)°
Volume	5551.2(10)Å ³
Ζ	4
d _{calc}	1.246 g/cm ³
μ	0.719 mm ⁻¹
F(000)	2200.0
Crystal size, mm	0.5 imes 0.12 imes 0.03
2θ range for data collection	2.658 - 55.078°
Index ranges	$\text{-13} \le h \le 14, \text{-24} \le k \le 24, \text{-34} \le l \le 34$
Reflections collected	120138
Independent reflections	12780[R(int) = 0.0516]
Data/restraints/parameters	12780/0/570
Goodness-of-fit on F ²	1.029
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0496, \mathrm{wR}_2 = 0.1284$
Final R indexes [all data]	$R_1 = 0.0578, wR_2 = 0.1335$
Largest diff. peak/hole	0.98/-1.23 eÅ ⁻³

Table S2: Summary of Structure Determination of Compound [Co₂CN]⁺

Empirical formula	$C_{97}H_{150}Co_4F_8N_{14}O_6P_4S_2$
Formula weight	2184.02
Temperature/K	100
Crystal system	monoclinic
Space group	Cm
a	22.620(4)Å
b	21.110(4)Å
c	12.650(2)Å
β	115.833(5)°
Volume	5436.8(17)Å ³
Z	2
d _{calc}	1.334 g/cm ³
μ	0.766 mm ⁻¹
F(000)	2300.0
Crystal size, mm	0.45 imes 0.1 imes 0.08
2θ range for data collection	2.78 - 55.16°
Index ranges	$\text{-}29 \leq h \leq 29, \text{-}27 \leq k \leq 27, \text{-}16 \leq l \leq 10$
Reflections collected	82772
Independent reflections	10823[R(int) = 0.0371]
Data/restraints/parameters	10823/287/748
Goodness-of-fit on F ²	1.023
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0354, wR_2 = 0.0892$
Final R indexes [all data]	$R_1 = 0.0387, wR_2 = 0.0912$
Largest diff. peak/hole	0.88/-0.50 eÅ ⁻³
Flack parameter	0.004(3)

Table S3: Summary of Structure Determination of Compound [Co₂CN]²⁺

Empirical formula	$C_{41}H_{64}Co_2F_6N_7O_6P_2S_2$
Formula weight	1108.91
Diffractometer	Rigaku XtaLAB Synergy-S (Dectris Pilatus3 R 200K)
Temperature/K	100
Crystal system	monoclinic
Space group	C2/c
a	20.5654(6)Å
b	12.3627(3)Å
с	20.3762(6)Å
β	108.773(3)°
Volume	4904.9(2)Å ³
Z	4
d_{calc}	1.502 g/cm^3
μ	0.902 mm ⁻¹
F(000)	2308.0
Crystal size, mm	0.68 imes 0.23 imes 0.2
2θ range for data collection	4.184 - 54.962°
Index ranges	$-24 \le h \le 26, -15 \le k \le 16, -26 \le l \le 26$
Reflections collected	45191
Independent reflections	5619[R(int) = 0.0486]
Data/restraints/parameters	5619/6/315
Goodness-of-fit on F ²	1.056
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0378, wR_2 = 0.1004$
Final R indexes [all data]	$R_1 = 0.0418, wR_2 = 0.1024$
Largest diff. peak/hole	2.04/-0.43 eÅ ⁻³

Table S4: Summary of Structure Determination of Compound $[Co_4(CN)_2][BAr^F_4]_2$

Empirical formula	$C_{136}H_{134}B_2Co_4F_{48}N_{14}P_2$
Formula weight	3195.84
Temperature/K	100
Crystal system	orthorhombic
Space group	C2221
a	10.4664(6)Å
b	35.353(2)Å
c	39.212(2)Å
Volume	14509.3(15)Å ³
Z	4
d _{calc}	1.463 g/cm ³
μ	0.586 mm ⁻¹
F(000)	6512.0
Crystal size, mm	$0.5\times0.12\times0.02$
2θ range for data collection	5.118 - 55.052°
Index ranges	$\text{-13} \le h \le 13, \text{-45} \le k \le 45, \text{-50} \le l \le 50$
Reflections collected	128906
Independent reflections	16697[R(int) = 0.1138]
Data/restraints/parameters	16697/5487/1824
Goodness-of-fit on F ²	1.048
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0692, wR_2 = 0.1677$
Final R indexes [all data]	$R_1 = 0.0988, wR_2 = 0.1885$
Largest diff. peak/hole	1.01/-0.64 eÅ ⁻³
Flack parameter	0.32(2)

Empirical formula	$C_{72}H_{110}Co_4N_{14}P_2$
Formula weight	1469.39
Temperature/K	100
Crystal system	monoclinic
Space group	P2/n
a	10.0438(18)Å
b	10.802(2)Å
c	42.393(8)Å
β	91.568(5)°
Volume	4597.4(14)Å ³
Z	2
d _{calc}	1.061 g/cm ³
μ	0.784 mm ⁻¹
F(000)	1556.0
Crystal size, mm	0.3 imes 0.15 imes 0.12
2θ range for data collection	5.828 - 55.124°
Index ranges	$\text{-13} \le h \le \text{13}, \text{-14} \le k \le \text{14}, \text{-55} \le \text{1} \le \text{55}$
Reflections collected	164721
Independent reflections	10575[R(int) = 0.0848]
Data/restraints/parameters	10575/72/458
Goodness-of-fit on F ²	1.094
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0622, wR_2 = 0.1401$
Final R indexes [all data]	$R_1 = 0.0823, wR_2 = 0.1496$
Largest diff. peak/hole	1.02/-0.73 eÅ ⁻³

Table S5: Summary of Structure Determination of Compound [C04(CN)2][OTf]2

References

- 1. Q. Wang, S. Zhang, P. Cui, A. B. Weberg, L. M. Thierer, B. C. Manor, M. R. Gau, P. J. Carroll and N. C. Tomson, *Inorg. Chem.*, 2020, **59**, 4200–4214.
- 2. M. A. Schwindt, T. Lejon and L. S. Hegedus, Organometallics, 1990, 9, 2814–2819.
- 3. M. L. Luetkens, A. P. Sattelberger, H. H. Murray, J. D. Basil, J. P. Fackler, R. A. Jones and D. E. Heaton, in *Inorg. Synth.*, John Wiley & Sons, Ltd, 2007, pp. 305–310.
- 4. N. A. Yakelis and R. G. Bergman, Organometallics, 2005, 24, 3579–3581.
- 5. B. E. Love and E. G. Jones, J. Org. Chem., 1999, 64, 3755–3756.
- 6. C. Zoski, Handbook of Electrochemistry, Elsevier Science, Amsterdam, 2007.
- 7. L. Kaplan, W. L. Kester and J. J. Katz, J. Am. Chem. Soc., 1952, 74, 5531–5532.
- 8. C. P. Rosenau, B. J. Jelier, A. D. Gossert and A. Togni, *Angew. Chem. Int. Ed.*, 2018, **57**, 9528–9533.
- 9. D. F. Evans, J. Chem. Soc., 1959, 2003–2005.
- 10. Bruker SAINT v8.38A; Bruker AXS Inc.: Madison, WI, 2014.
- 11. CrysAlisPro 1.171.40.53: Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, UK, 2019.
- 12. L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *J. Appl. Crystallogr.*, 2015, **48**, 3–10.
- 13. SCALE3 ABSPACK v1.0.7: An Oxford Diffraction Program; Oxford Diffraction Ltd: Abingdon, UK, 2005.
- 14. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2015, 71, 3-8.
- 15. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.
- 16. G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8.
- 17. A. L. Spek, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 9–18.