Electronic Supplementary Information

A 3d-printed composite electrode for sustained electrocatalytic oxygen evolution

Si Liu,^a Rongji Liu,^a Dandan Gao,^a Ivan Trentin,^a Carsten Streb,^{*a,b}

^a Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11,
89081 Ulm, Germany. E-mail: carsten.streb@uni-ulm.de
^b Helmholtz Institute Ulm, Electrochemical Energy Storage, 89081 Ulm, Germany.

1. Instrumentation and Chemicals

3D printing: The 3D models were designed using the Autodesk Fusion360 software and sliced by Ultimaker Cura. The infill density was set to 70% using a line infill pattern. The mesh structure was achieved by removing the top and bottom layers in the slicing program. The samples were printed on a Prusa I3 Mk3S printer. The temperatures of extrusion and build plate were 200 °C and 80 °C, respectively. Yellow ABS filament was purchased from SainSmart, diameter 1.75 mm and it was used without modification. The printed samples were washed with water and ethanol and dried for several hours.

Scanning electron microscopy (SEM): SEM images were obtained using a Hitachi 5200 SEM.

X-ray diffraction: patterns were recorded on a Rigaku XRD-6000 diffractometer using the following conditions: 40 kV, 40 mA, Cu K α radiation (λ = 0.154 nm).

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was performed on a Spectro Arcos FHS12.

X-ray photoelectron spectroscopy (XPS): XPS measurements were performed using monochromatized AI Kα radiation on a PHI Quantera SXM system.

Electrochemical Characterization: All electrochemical experiments were performed on a CHI 760E electrochemical system (CH Instruments Inc.). 1 M aqueous KOH solution was used as the electrolyte. **Electrode 1** or **Electrode 2** were used as the working electrode, Pt wire as counter electrode and Hg/HgO (1 M KOH) as reference electrode. Linear sweep voltammetry was recorded at a scan rate of 2 mV/s with iR-correction. Chronopotentiometry was performed at constant current densities of 10 and 100 mA/cm². Tafel slopes were derived from LSV curves. Electrochemically active surface area analyses (ESCA) were examined from 10 mV/s to 70 mV/s and calculated in a reported method.¹ OER Faradic efficiency was measured by bulk electrolysis. An optical fluorescence O₂ sensing probe (PyroScience FireSting) was used to obtain O₂ concentration.

Chemicals: Tin chloride (SnCl₂•2H₂O, Alfa Aesar), Palladium chloride (PdCl₂), trisodium citrate (Na₃C₆H₅O₇ Merck), ammonium chloride (NH₄Cl, Sigma-Aldrich), sodium hypophosphite monohydrate NaH₂PO₂•H₂O, Acros Organics), aqueous ammonia solution (NH₃•H₂O, VWR), nickel nitrate (Ni(NO₃)₂•6H₂O Sigma-Aldrich), iron nitrate nonahydrate (Fe(NO₃)₃•9H₂O, VWR), potassium hydroxide (KOH, Sigma-Aldrich), Nickel (II) sulfate hexahydrate (Fluka), ethanol (CH₃CH₂OH), chloride acid (HCl, Acros Organics), sulfate acid (H₂SO₄, Sigma-Aldrich), Phosphoric acid (H₃PO₄, VWR), Manganese oxide (MnO₂,

MERCK). 2. Synthetic section

2.1 Chemical etching of the printed ABS meshes.

A modified literature procedure was used²: 60 mL H_2SO_4 (96%), 28 mL (85%) H_3PO_4 , 12 mL H_2O and 3.0 g MnO_2 were mixed and stirred for 4 h at 70 °C to prepare the etching solution (which can be re-used). The ABS mesh was immersed into 25 mL of the mixture at 60 °C for 40 min without stirring. Then, the ABS mesh was removed, washed with water and ethanol for several times and air-dried overnight.

2.2 Preparation of Electrode 1

The modified ABS substrate was immersed for 10 min in 20 mL aqueous HCl solution (0.24 M) containing 10 g/L (0.04 M) SnCl₂•2H₂O. After washing with water, the substrate was dipped in 10 mL aqueous HCl solution (0.24 M) containing 0.5 g/L PdCl₂ (3 mM). After 10 min, the mesh was removed from above solution and washed with water and ethanol and air-dried. The aqueous plating solution containing 32 g/L (0.122 M) NiSO₄•6H₂O, 20 g/L (0.068 M) trisodium citrate, 20 g/L (0.374 M) NH₄Cl and 33 g/L (0.375 M) NaH₂PO₂ was prepared. The pH was adjusted to pH 9.0 using aqueous ammonia solution. The ABS substrate was immersed in the plating solution without stirring for 40 min. The mesh was then removed, rinsed with water and ethanol and air-dried, giving **Electrode 1**.

2.3 Preparation of Electrode 2

The aqueous electrodeposition solution contains 3 mM Ni(NO₃)₂•6H₂O and 3 mM Fe(NO₃)₃•9H₂O.³ The electrodeposition was performed in a three-electrode system, **Electrode 1** was used as the working electrode, Pt wire as the counter electrode and Ag/AgCI (3 M KCI) as reference electrode. The electrodeposition was carried out in 25 mL electrodeposition solution at a constant potential of -1.7 V for 300 s at room temperature. After deposition, the working electrode was removed, rinsed with water and ethanol and air-dried. The average catalyst amount was 1.3 mg per electrode (based on the weight difference of **Electrode 1** and **2**, based on three electrode measurements).

$$-\left(-CH_2-CH=CH-CH_2\right)_{n} + 4 \operatorname{MnO}_2 + 8 \operatorname{H}^+ \longrightarrow k\left(CH_3-C\right)_{m} + 4 \operatorname{Mn}^{2+} + 4 \operatorname{H}_2O\right) \qquad \text{eq. S1}$$

 \dot{OH} eq. S2 Sn ²⁺+ Pd ²⁺ \longrightarrow Sn ⁴⁺+ Pd

Ni²⁺+ H₂PO₂⁻ + H₂O
$$\longrightarrow$$
 Ni + H₂PO₃⁻ + 2H⁺ eq. S3

Scheme S1: Proposed oxidative etching of ABS by MnO₂.

Fig. S1: photograph of as-printed ABS mesh, Electrode 1 and Electrode 2

Fig.S2: SEM image of Printed ABS mesh (a), etched ABS (b), Electrode 1(c) and Electrode 2 (d),

Fig. S3: XPS spectra of printed ABS (a, b) and etched ABS (c, d)

Fig. S5 XPS survey spectrum for Electrode 2

Fig. S6 SEM-EDX mapping images of Electrode 2

Fig. S7 (a) CV curves of **Electrode 1** measured at scan rates from 10 to 70 mV/s, (b) The corresponding linear fitting plots of differences in current density ($\Delta j = j_a - j_c$) at 0.98 V vs scan rate for **Electrode 1**, (c) CV curves of **Electrode 2** measured at different scan rates and (d) The corresponding linear fitting plots of differences in current density ($\Delta j = j_a - j_c$) at 0.98 V vs scan rate for **Electrode 2**. J_a : anodic current density; J_c : cathodic current density.

Fig. S8: LSV curves of Electrode 2 with different electrodeposition time (50 - 400 s).

Fig. S9 XPS spectra of Electrode 2 after 10 h electrolysis at 100 mA/cm²

Fig. S10 SEM analysis of Electrode 2 after 10 h electrolysis at 100 mA/cm²

Fig. S11 Faradic efficiency of oxygen production using Electrode 2

Table S1: Comparison of OER performances of 3D printed electrode in in	1M aqueous
КОН	

Catalyst	Support	3D printing technology	Overpotential (mV) at		Tafel slope mV/dec	Ref
			10 mA/ cm ²	100 mA/ cm ²		
NiCo ₂ S ₄	stainless steel	SLM	226	277	38.7	4
-	stainless steel	SLM	470	-	53	5
IrO ₂	stainless stee	SLM	320	~400	92	
NiFe	stainless steel	SLM	290 ^a	-	37/76	6
NiFe	Polymer	SLA	197	~210	51	7
NiFe	ABS	FDM	250	300	53	This work

a: at 20 mA /cm²

SLM: selective laser melting

SLA: stereolithography apparatus FDM: fused deposition modeling

3. References

- 1 D. Gao, R. Liu, J. Biskupek, U. Kaiser, Y. Song and C. Streb, *Angew. Chemie Int. Ed.*, 2019, **58**, 4644–4648.
- 2 W. Zhao, J. Ding and Z. Wang, *Langmuir*, 2013, **29**, 5968–5973.
- 3 A. Sahasrabudhe, H. Dixit, R. Majee and S. Bhattacharyya, *Nat. Commun.*, 2018, **9**, 2014.
- 4 S. Chang, X. Huang, C. Y. Aaron Ong, L. Zhao, L. Li, X. Wang and J. Ding, *J. Mater. Chem. A*, 2019, **7**, 18338–18347.
- 5 A. Ambrosi and M. Pumera, *Adv. Funct. Mater.*, 2018, **28**, 1700655.
- 6 A. Ambrosi and M. Pumera, ACS Sustain. Chem. Eng., 2018, **6**, 16968–16975.
- X. Su, X. Li, C. Y. A. Ong, T. S. Herng, Y. Wang, E. Peng and J. Ding, *Adv. Sci.*, 2019, 6, 1801670.