# Photoredox-catalyzed sulfonylation of difluoroenoxysilanes

# with the insertion of sulfur dioxide

Fu-Sheng He, Yanfang Yao, Wenlin Xie and Jie Wu\*

## **Supporting Information**

- 1. General experimental methods (S2).
- 2. General experimental procedure and characterization data (S2-S8).
- 3. Reference (S9)
- 4. <sup>1</sup>H , <sup>13</sup>C and <sup>19</sup>F NMR spectra of compounds **3** and **6** (S10-S63).

#### General experimental methods:

Unless otherwise stated, all commercial reagents were used as received. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (60-Å pore size, 32-63  $\mu$ m, standard grade). Analytical thin-layer chromatography was performed using glass plates precoated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~20 Torr at 25-35 °C. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the  $\delta$  scale. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub> on a Bruker DRX-400 spectrometer operating at 400 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quoted in Hz. High resolution mass spectrometry (HRMS) spectra were obtained on a micrOTOF II Instrument.

### General experimental procedure for the synthesis of difluoroenoxysilanes.<sup>1</sup>

To a mixture of TMSCI (4 equiv) and Mg (4 equiv) in dry THF (0.25 M) was cooled down to 0  $\,^{\circ}$ C under N<sub>2</sub> atmosphere, then trifluoroacetophenone (1 equiv) was added dropwise. The reaction mixture was stirred for additional 30 min. After evaporation of solvent, hexane was added to the residue, and the resulting salt was filtered. The filtrate was concentrated to give crude difluoroenoxysilane, which could be used directly without further purification.

General experimental procedure for the reaction of aryldiazonium tetrafluoroborates **1**, Na<sub>2</sub>S<sub>2</sub>O<sub>5</sub>, and difluoroenoxysilanes **2**.



Difluoroenoxysilanes **2** (0.2 mmol) was added to a mixture of  $Na_2S_2O_5$  (0.4 mmol), aryldiazonium tetrafluoroborate **1** (0.3 mmol),  $Ru(bpy)_3Cl_2\cdot 6H_2O$  (2 mol%) in  $CH_3CN$ 

(2.0 mL) under N<sub>2</sub> atmosphere. The mixture was stirred under blue LED irradiation (15 W) for 12 hours. After completion of reaction as indicated by TLC, the solvent was evaporated and the residue was purified directly by flash column chromatography (*n*-hexane/ethyl acetate = 8:1) to give the corresponding product **3**.

*Photoredox set-up*:







2,2-Difluoro-1-phenyl-2-tosylethan-1-one (3a)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.18 (d, *J* = 7.8 Hz, 2H), 7.89 (d, *J* = 7.7 Hz, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 2H), 7.44 (d, *J* = 7.8 Hz, 2H), 2.50 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 184.0 (t, *J* = 23.1 Hz), 147.7, 135.3, 132.1, 130.9, 130.8 (t, *J* = 3.1 Hz), 130.2, 129.4, 128.8, 116.5 (t, *J* = 300.7 Hz), 21.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -101.7 (s); HRMS (ESI) calcd for C<sub>15</sub>H<sub>12</sub>F<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 333.0373, found: 333.0373.



2,2-Difluoro-1-phenyl-2-(phenylsulfonyl)ethan-1-one (3b)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, *J* = 7.6 Hz, 2H), 8.03 (d, *J* = 7.6 Hz, 2H), 7.81 (t, *J* = 7.4 Hz, 1H), 7.73 – 7.62 (m, 3H), 7.54 (t, *J* = 7.5 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  183.7 (t, *J* = 23.2 Hz), 136.0, 135.4, 132.6, 132.0, 130.9, 130.8 (t, *J* = 3.1 Hz), 129.5, 128.9, 116.5 (t, *J* = 301.2 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -101.5 (s); HRMS (ESI) calcd for C<sub>14</sub>H<sub>10</sub>F<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 319.0216, found: 319.0219.



2,2-Difluoro-1-phenyl-2-(*m*-tolylsulfonyl)ethan-1-one (**3**c) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, J = 7.8 Hz, 2H), 7.86 – 7.79 (m, 2H), 7.70 (t, J = 7.3 Hz, 1H), 7.63 – 7.49 (m, 4H), 2.48 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  183.8 (t, J = 22.9 Hz), 140.0, 136.8, 135.3, 132.4, 132.0, 131.1, 130.8 (t, J = 3.2 Hz), 129.3, 128.8, 128.1, 116.5 (t, J = 301.0 Hz), 21.2; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -101.5 (s); HRMS (ESI) calcd for C<sub>15</sub>H<sub>12</sub>F<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 333.0373, found: 333.0371.



2,2-Difluoro-1-phenyl-2-(*o*-tolylsulfonyl)ethan-1-one (**3d**)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (d, *J* = 7.8 Hz, 2H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 6.6 Hz, 2H), 2.77 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  183.8 (t, *J* = 23.0 Hz), 142.0, 135.8, 135.3, 133.3, 133.2, 130.7 (t, *J* = 3.1 Hz), 128.8, 128.6, 128.0, 126.9, 120.2, 117.2, 114.2, 20.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -101.0 (s); HRMS (ESI) calcd for C<sub>15</sub>H<sub>12</sub>F<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 333.0373, found: 333.0372.



MeO

2,2-Difluoro-2-((4-methoxyphenyl)sulfonyl)-1-phenylethan-1-one (**3e**) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (d, *J* = 7.7 Hz, 2H), 7.93 (d, *J* = 8.5 Hz, 2H), 7.69 (t, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.08 (d, *J* = 8.6 Hz, 2H), 3.92 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  184.1 (t, *J* = 23.3 Hz), 165.8, 135.3, 133.3, 132.1, 130.8 (t, *J* = 3.2 Hz), 128.8, 123.3, 116.5 (t, *J* = 300.1 Hz), 114.9, 55.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -101.9 (s); HRMS (ESI) calcd for C<sub>15</sub>H<sub>12</sub>F<sub>2</sub>O<sub>4</sub>SNa [M+Na]<sup>+</sup>: 349.0322, found: 349.0323.



2-((4-Chlorophenyl)sulfonyl)-2,2-difluoro-1-phenylethan-1-one (3f)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (d, *J* = 7.8 Hz, 2H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.63 (d, *J* = 7.9 Hz, 2H), 7.55 (t, *J* = 7.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  183.6 (t, *J* = 23.0 Hz), 143.3, 135.5, 132.3, 131.9, 131.0, 130.7 (t, *J* = 3.2 Hz), 130.0, 128.9, 116.4 (t, *J* = 301.6 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -101.3 (s); HRMS (ESI) calcd for C<sub>14</sub>H<sub>9</sub>ClF<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 352.9827, found: 352.9832.



2,2-Difluoro-1-phenyl-2-((4-(trifluoromethyl)phenyl)sulfonyl)ethan-1-one (**3g**) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (t, *J* = 8.5 Hz, 4H), 7.93 (d, *J* = 7.9 Hz, 2H), 7.72 (t, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  183.3 (t, *J* = 22.9 Hz), 137.4 (q, *J* = 33.5 Hz), 136.3, 135.6, 131.8, 131.6, 130.7 (t, *J* = 3.1 Hz), 129.0, 126.6 (q, *J* = 3.6 Hz), 122.8 (q, *J* = 273.6 Hz), 116.4 (t, *J* = 302.4 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$ -63.5 (s), -101.0 (s); HRMS (ESI) calcd for C<sub>15</sub>H<sub>9</sub>F<sub>5</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 387.0090, found: 387.0094.



2,2-Difluoro-2-((2-(methylthio)phenyl)sulfonyl)-1-phenylethan-1-one (**3h**) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 (d, *J* = 7.8 Hz, 2H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.73 – 7.61 (m, 2H), 7.54 (t, *J* = 7.4 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 2.49 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  183.7 (t, *J* = 23.1 Hz), 145.1, 135.7, 135.2, 134.3, 132.1, 130.8 (t, *J* = 3.1 Hz), 129.2, 128.8, 126.6, 124.7, 117.4 (t, *J* = 302.8 Hz), 16.0; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -100.2 (s); HRMS (ESI) calcd for C<sub>15</sub>H<sub>13</sub>F<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M+H]<sup>+</sup>: 343.0274, found: 343.0277.



2-((3,5-Dimethylphenyl)sulfonyl)-2,2-difluoro-1-phenylethan-1-one (**3i**) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.18 (d, *J* = 7.9 Hz, 2H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.62 (s, 2H), 7.54 (t, *J* = 7.5 Hz, 2H), 7.40 (s, 1H), 2.43 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 183.8 (t, J = 23.0 Hz), 139.7, 137.8, 135.3, 132.2, 132.1, 130.8 (t, J = 3.2 Hz), 128.8, 128.3, 116.6 (t, J = 301.0 Hz), 21.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -101.5 (s); HRMS (ESI) calcd for C<sub>16</sub>H<sub>14</sub>F<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 347.0529, found: 347.0531.



2,2-Difluoro-2-(naphthalen-1-ylsulfonyl)-1-phenylethan-1-one (**3**j) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.89 (d, *J* = 8.7 Hz, 1H), 8.38 (d, *J* = 7.5 Hz, 1H), 8.26 (d, *J* = 8.2 Hz, 1H), 8.21 (d, *J* = 7.8 Hz, 2H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.73 – 7.62 (m, 3H), 7.55 (t, *J* = 7.5 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  183.7 (t, *J* = 23.0 Hz), 137.8, 135.3, 134.8, 134.2, 132.1, 130.8 (t, *J* = 3.1 Hz), 130.5, 129.4, 129.0, 128.9, 128.6, 127.5, 124.9, 124.3, 117.3 (t, *J* = 302.2 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -100.8 (s); HRMS (ESI) calcd for C<sub>18</sub>H<sub>12</sub>F<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 369.0373, found: 369.0377.



2,2-Difluoro-2-(phenylsulfonyl)-1-(p-tolyl)ethan-1-one (3k)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.08 (d, *J* = 8.1 Hz, 2H), 8.02 (d, *J* = 7.7 Hz, 2H), 7.80 (t, *J* = 7.5 Hz, 1H), 7.65 (t, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 2.45 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 183.0 (t, *J* = 22.8 Hz), 146.9, 135.8, 132.5, 130.9, 130.8, 129.5, 129.4, 116.5 (t, *J* = 301.1 Hz), 21.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -101.4 (s); HRMS (ESI) calcd for C<sub>15</sub>H<sub>23</sub>F<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 311.0553, found: 311.0555.



2-((4-Chlorophenyl)sulfonyl)-2,2-difluoro-1-(p-tolyl)ethan-1-one (3I)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, *J* = 8.1 Hz, 2H), 7.95 (d, *J* = 8.6 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 2.46 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  182.8 (t, *J* = 22.7 Hz), 147.1, 143.1, 132.2, 130.9, 130.8, 129.8, 129.6, 129.3, 116.4 (t, *J* = 301.5 Hz), 21.9; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -101.3 (s); HRMS (ESI) calcd for C<sub>15</sub>H<sub>11</sub>ClF<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 366.9983, found: 366.9987.



Methyl 3-((1,1-difluoro-2-oxo-2-phenylethyl)sulfonyl)thiophene-2-carboxylate (**3m**) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (d, *J* = 7.8 Hz, 2H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 2H), 3.90 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  183.5 (t, *J* = 23.2 Hz), 159.2, 140.6, 135.3, 134.3, 132.5, 132.0, 130.6 (t, *J* = 3.0 Hz), 129.8, 128.9, 117.1 (t, *J* = 303.9 Hz), 53.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -98.7 (s); HRMS (ESI) calcd for C<sub>14</sub>H<sub>11</sub>F<sub>2</sub>O<sub>5</sub>S<sub>2</sub> [M+H]<sup>+</sup>: 361.0016, found: 361.0020.



1-(4-Chlorophenyl)-2,2-difluoro-2-(phenylsulfonyl)ethan-1-one (**3n**) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.13 (d, *J* = 8.4 Hz, 2H), 8.02 (d, *J* = 7.9 Hz, 2H), 7.82 (t, *J* = 7.5 Hz, 1H), 7.66 (t, *J* = 7.8 Hz, 2H), 7.52 (d, *J* = 8.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 182.6 (t, *J* = 23.5 Hz), 142.3, 136.1, 132.2, 132.1, 130.8, 130.2, 129.5, 129.2, 116.4 (t, *J* = 300.8 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -101.8 (s); HRMS (ESI) calcd for  $C_{14}H_9ClF_2O_3SNa [M+Na]^+$ : 352.9827, found: 352.9830.



1-(4-Chlorophenyl)-2-((4-chlorophenyl)sulfonyl)-2,2-difluoroethan-1-one (**3o**) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.12 (d, *J* = 8.3 Hz, 2H), 7.96 (d, *J* = 8.1 Hz, 2H), 7.64 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 8.3 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 182.5 (t, *J* = 23.3 Hz), 143.5, 142.5, 132.3, 132.1 (t, *J* = 3.2 Hz), 131.6 (t, *J* = 3.1 Hz), 130.0, 129.4, 129.2, 127.2 (t, *J* = 6.0 Hz), 116.3 (t, *J* = 301.2 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -101.6 (s); HRMS (ESI) calcd for C<sub>14</sub>H<sub>8</sub>Cl<sub>2</sub>F<sub>2</sub>O<sub>3</sub>SNa [M+Na]<sup>+</sup>: 386.9437, found: 386.9435.



2,2-Difluoro-2-(phenylsulfonyl)-1-(thiophen-2-yl)ethan-1-one (**3p**) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.15 (d, *J* = 2.1 Hz, 1H), 8.02 (d, *J* = 7.7 Hz, 2H), 7.91 (d, *J* = 4.9 Hz, 1H), 7.81 (t, *J* = 7.5 Hz, 1H), 7.66 (t, *J* = 7.9 Hz, 2H), 7.28 – 7.25 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 175.6 (t, *J* = 24.3 Hz), 138.4, 138.1 (t, *J* = 4.8 Hz), 136.0, 132.2, 130.8,

129.5, 129.2, 116.0 (t, J = 300.2 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -103.9 (s); HRMS (ESI) calcd for C<sub>12</sub>H<sub>9</sub>F<sub>2</sub>O<sub>3</sub>S<sub>2</sub> [M+H]<sup>+</sup>: 302.9961, found: 302.9964.



2-((4-Chlorophenyl)sulfonyl)-2,2-difluoro-1-(thiophen-2-yl)ethan-1-one (**3q**) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.20 – 8.12 (m, 1H), 8.00 – 7.91 (m, 3H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.30 – 7.22 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  175.5 (t, *J* = 24.4 Hz), 143.4, 138.7, 138.1 (t, *J* = 5.1 Hz), 137.8, 132.3, 130.0, 129.4, 129.1, 115.9 (t, *J* = 300.5 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -103.8 (s); HRMS (ESI) calcd for C<sub>12</sub>H<sub>7</sub>F<sub>2</sub>O<sub>3</sub>S<sub>2</sub>Na [M+Na]<sup>+</sup>: 358.9391, found: 358.9394.



2-(((2,3-Dihydrobenzofuran-3-yl)methyl)sulfonyl)-2,2-difluoro-1-phenylethan-1-one (6)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, *J* = 7.7 Hz, 2H), 7.72 (t, *J* = 7.4 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 2H), 7.26 (d, *J* = 5.9 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 4.76 (t, *J* = 9.2 Hz, 1H), 4.58 (dd, *J* = 9.7, 5.7 Hz, 1H), 4.25 – 4.15 (m, 1H), 3.73 (d, *J* = 14.0 Hz, 1H), 3.60 – 3.49 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  184.4 (t, *J* = 22.8 Hz), 159.7, 130.6 (t, *J* = 3.2 Hz), 129.8, 129.0, 126.1, 124.4, 121.2, 116.2 (t, *J* = 302.5 Hz), 110.3, 75.5, 54.2, 35.7; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -103.6 (d, *J* = 17.2 Hz); HRMS (ESI) calcd for C<sub>17</sub>H<sub>14</sub>F<sub>2</sub>O<sub>4</sub>SNa [M+Na]<sup>+</sup>: 375.0479, found: 375.0482.

Reference

(a) Y.-B. Wu, G.-P. Lu, B.-J. Zhou, M.-J. Bu, L. Wan and C. Cai, *Chem. Commun.*, 2016,
52, 5965; (b) G. K. S. Prakash, J. Hu, M. M. Alauddin, P. S. Conti and G. A. Olah, *J. Fluorine Chem.*, 2003, 121, 239.



























![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_56_Figure_0.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_61_Figure_0.jpeg)

![](_page_62_Figure_0.jpeg)