Supporting Information

The influence of loops on the binding of the [Ru(phen)₂dppz]²⁺ Light-Switch Compound to i-motif DNA Structures revealed by Time-resolved Spectroscopy

Frederico R. Baptista,^a Stephen J. Devereux,^a Sarah P. Gurung,^{b,c} James P. Hall,^{b,d} Igor V. Sazanovich,^e Michael Towrie,^e Christine J. Cardin,^b John A. Brazier,^d John M. Kelly^f and Susan J. Quinn^a*

^{a.} School of Chemistry, University College Dublin, Dublin 4, Ireland.

- ^{b.} Department of Chemistry, University of Reading, Whiteknights, Reading, Berks, RG6 6AD, UK
- ^{c.} Diamond Light Source, Chilton, Didcot, Oxfordshire, UK
- ^{d.} School of Pharmacy, University of Reading, Whiteknights, Reading, Berks, RG6 6AD, UK.
- e. Central Laser Facility, Rutherford Appleton Laboratory, STFC, Harwell Campus, OX11 0QX, UK
- f. School of Chemistry, Trinity College Dublin, Dublin 2, Ireland

Experimental

Materials

The 5'-d(CCCT_n)₃CCC-3' (n = 5 to 8, C₃T₅, C₃T₆, C₃T₇ and C₃T₈) and 5'-d(CCCTAA)₃CCC-3' oligonucleotides were synthesised by Eurogentec (Liege, Belgium) and obtained in HPLC purified form. Oligonucleotides concentrations were determined spectrophotometrically and made up in D₂O in presence of 50 mM potassium phosphate buffer, pH 5 for the i-motifs and pH 8 for the disordered single-strand structures.

Synthesis of 1

Dichloro(1,5-cyclooctadiene)ruthenium(II), polymer [Ru(n4-COD)Cl2]n (1 equiv.) and 2 equiv. of 1,10-phenanthroline were suspended in DMF (20 mL) and degassed by bubbling with argon for 20 mins before being heated at 140 °C for 45 mins using microwave irradiation. The reaction mixture was cooled to room temperature before being poured into acetone (200 mL) and left for 24 hrs at -10 °C. A dark purple powder was collected by filtration and washed with cold acetone to yield the Ru(phen)₂Cl₂. Dipyrido[3,2-a:2',3'-c]phenazine (1.1 equiv.) was ground into a fine powder and suspended with Ru(phen)₂Cl₂ (1 equiv.) in a H₂O/EtOH mixture (1:1 v/v, 7 mL). The suspension was degassed by bubbling with argon for 20 min before being heated at 140 °C for 40 using microwave irradiation. The resulting orange solution was filtered before dropwise addition of conc. aq. NH4PF6 to precipitate the PF6- complex. The orange precipitate was isolated by centrifugation and the supernatant was decanted off. The precipitate was resuspended in water (5 mL) and isolated by a further centrifugation and decanting of the supernatant. The crude compound was purified by silica gel flash column chromatography, eluting with CH₃CN/H₂O/aq. NaNO₃(sat.) (40:4:1 v/v). To remove excess NaNO3 the solvent was removed under reduced pressure and resulting solid was stirred vigorously in the CH₃CN for 2 hrs. The resulting suspension was filtered through a double thickness of filter paper, the supernatant isolated and the solvent removed under reduced pressure. The nitrate salt of the complex was then dissolved in water and the PF6- complex was reformed and precipitated from water by dropwise addition of conc. aq. NH4PF6. The precipitate was washed with H2O (5 mL x 2) via centrifugation as above and was dried under vacuum. The chloride form of the complex was reformed by swirling a solution of the PF6- complex in MeOH (15 mL) in Amberlite ion exchange resin (chloride form) for 1 hr, filtered and dried under vacuum. ¹H NMR $(400 \text{ MHz}, \text{Acetonitrile}-d_3) \delta 9.65 (2H, dd, J = 8.2, 1.4 \text{ Hz}), 8.64 (4H, ddd, J = 8.3, 4.6, 1.3 \text{ Hz}), 8.54 - 8.42 (2H, dd, J = 8.4, 1.3 \text{ Hz}), 8.54 - 8.42 (2H, dd, J = 8.4, 1.3 \text{ Hz}), 8.54 - 8.44 (2H, dd, J = 8.4$ *J* = 8.2, 5.4 Hz), 7.67 (4H, ddd, *J* = 12.5, 8.3, 5.3 Hz).

Infrared Spectroscopy: Infrared spectra were recorded in a Nicolet Avatar spectrometer. Samples were loaded into a demountable Harrick cell (Harrick Scientific Products Inc., New York) assembled with 25 mm diameter CaF_2 plates (Crystran, Ltd, UK), separated by a 50 μ m Teflon spacer in D₂O and recorded in a N₂ flushed Transmission Accessory. Each spectrum is the average of 32 scans.

Time Resolved Spectroscopy:

rac-[Ru(phen)₂(dppz)]²⁺ was synthesized according to published methods.¹ The samples for transient spectroscopy measurements were prepared by placing approximately 30 μ L of sample in D₂O into a demountable liquid cell (Harrick Scientific Products, Inc., New York) assembled with 25 mm CaF₂ plates (Crystran, Ltd, UK) separated by a 50 μ m Teflon spacer. ns-TrA/TRIR experiments were recorded using 400 nm excitation at 1 μ J pulse energy and a pulse width of 150 fs. The TRIR measurements were recorded using the LIFEtime apparatus and the ns-TA measurements were performed using the ULTRA laser system at the Central Laser Facility (STFC Rutherford Appleton Laboratories, Harwell).²⁻⁴ Samples were checked before and after the experiment by UV/vis spectroscopy. Kinetic analysis was carried out at single wavenumbers by fitting to multi-exponential growth/decay functions from 1 ns to 2000 ns.

Figure S1: UV visible spectra 0.5 mM of *rac*-[Ru(phen)₂dppz]²⁺ in presence of 0.625 mM of (a)
C₃T₅ (b) C₃T₆ (c) C₃T₇ and (d) C₃T₈ in 50 mM potassium phosphate buffer, pH 5, in D₂O.

Figure S2. (a) ns-TA spectrum of 0.5 mM of *rac*-[Ru(phen)₂dppz]²⁺ in presence of 0.625 mM of C₃T₅ and 50 mM potassium phosphate buffer, pH 5, in aerated D₂O. Excitation at 400 nm. Kinetic analysis for (b) transient decay and (c) bleach recovery fitted to bi-exponential profile.

Figure S3. (a) ns-TA spectrum of 0.5 mM of *rac*-[Ru(phen)₂dppz]²⁺ in presence of 0.625 mM of C₃T₆ and 50 mM potassium phosphate buffer, pH 5, in aerated D₂O. Excitation at 400 nm. Kinetic analysis for (b) transient decay and (c) bleach recovery fitted to bi-exponential profile.

Figure S4. (a) ns-TA spectrum of 0.5 mM of *rac*-[Ru(phen)₂dppz]²⁺ in presence of 0.625 mM of C₃T₇ and 50 mM potassium phosphate buffer, pH 5, in aerated D₂O. Excitation at 400 nm. Kinetic analysis for (b) transient decay and (c) bleach recovery fitted to bi-exponential profile.

Figure S5. Comparison of ns-TA kinetics for transient decay monitored at 598 nm of 0.5 mM of 1 in presence of 0.625 mM of **single-stranded** and **i-motif structures** in aerated 50 mM potassium phosphate buffer, pH 5 and at pH 8, in D₂O. Excitation at 400 nm.

Figure S6. ns-TRIR spectrum of 0.5 mM of *rac-*[Ru(phen)₂dppz]²⁺ in presence of 0.625 mM of (a-d) C₃T₅₋₈ and 50 mM potassium phosphate buffer, pH 5, in D₂O. Excitation at 400 nm.

Figure S7. ns-TRIR spectrum recorded at 35 ps after excitation of 0.5 mM of *rac*-[Ru(phen)₂dppz]²⁺ in presence of 0.625 mM of (a) i-C₃T₈, (b) i-C₃T₇, (c) i-C₃T₆ and (d) i-C₃T₅ in 50 mM potassium phosphate buffer, pH 5, in D₂O.

Figure S8. Comparative TRIR of the DNA carbonyl vibrations for **i**-C₃T₅₋₈ spectra of 0.5 mM of **1** in presence of 0.625 mM of C₃T₈ in 50 mM potassium phosphate buffer, pH 5, in D₂O (λ_{ex} = 400 nm, 150 fs).

Figure S9. Decay of the transient '*bright*' state band at 1395 cm⁻¹ monitored for **1** in presence of 0.625 mM of **C₃T₅₋₈** and aerated 50 mM potassium phosphate buffer, pH 5, in D₂O after excitation at 400 nm.

Figure S10. ns-TRIR spectrum of 0.5 mM of **1** in presence of 0.625 mM of human telomer i-motif (**CCCTAA**)₃**CCC** and 50 mM potassium phosphate buffer, pH 5, in D₂O. Excitation at 400 nm.

Figure S11. Comparative TRIR spectra of ns-TRIR spectra of 0.625 mM of 1 in presence of (a) (CCCTAA)₃CCC and (b) i-C₃T₈ potassium phosphate buffer, pH 5, in D₂O.

Figure S12. Decay of the transient '*bright*' state band at 1395 cm⁻¹ monitored for **1** in presence of 0.625 mM of (**CCCTAA**)₃**CCC** and aerated 50 mM potassium phosphate buffer, pH 5, in D₂O after excitation at 400 nm.

i-motif	рН	τ ₁ (ns)	\mathbf{A}_1	τ ₂ (ns)	\mathbf{A}_2
i-C3T5	5	22 ± 2	0.47	190 ± 13	0.53
ss-C ₃ T ₅	8	12 ± 1	0.50	158 ± 18	0.50
i-C3T6	5	27 ± 2	0.41	233 ± 16	0.59
ss-C ₃ T ₆	8	12 ± 1	0.50	151 ± 16	0.50
i-C3T7	5	59 ± 6	0.41	408 ± 32	0.59
ss-C ₃ T ₇	8	10 ± 1	0.50	144 ± 10	0.50
i-C ₃ T ₈	5	92 ± 6	0.41	603 ± 44	0.59
ss-C ₃ T ₈	8	12 ± 8	0.49	158±12	0.51

Table S1. Comparison of the kinetics for the decay of the 598 nm excited state measured by ns-TA of $[Ru(phen)_2dppz]^{2+}$ in the presence of single stranded and i-motif structures.

Table S2. Comparison of the kinetics for the decay of the 598 nm excited state measured by ns-TA and the "bright" excited-state at 1395 cm⁻¹ measured by TRIR, of $[Ru(phen)_2dppz]^{2+}$ in the presence of i-C₃T₅, i-C₃T₆, i-C₃T₇ and i-C₃T₈ i-motifs, pH 5.

i-motif	λ (nm) or $\mathbf{\bar{v}}$ (cm ⁻¹)	τ_1 (ns)	\mathbf{A}_1	τ ₂ (ns)	\mathbf{A}_2
i-C ₃ T ₅	598 nm	22 ± 2	0.47	190 ± 13	0.53
i-C ₃ T ₅	1395 cm ⁻¹	13 ± 2	0.31	189 ± 14	0.69
i-C3T6	598 nm	27 ± 2	0.41	233 ± 16	0.59
i-C3T6	1395 cm ⁻¹	37 ± 6	0.41	278 ± 16	0.59
i-C3T7	598 nm	59 ± 6	0.41	408 ± 32	0.59
C3T7	1395 cm ⁻¹	51 ± 14	0.33	484 ± 83	0.67
C3T8	598 nm	92 ± 6	0.41	603 ± 44	0.59
C ₃ T ₈	1395 cm ⁻¹	63 ± 21	0.24	515 ± 66	0.76

References

1. C. Hiort, P. Lincoln and B. Norden, J. Am. Chem. Soc., 1993, 115, 3448-3454.

2. G. M. Greetham, P. Burgos, Q. Cao, I. P. Clark, P. S. Codd, R. C. Farrow, M. W. George, M. Kogimtzis, P. Matousek, A. W. Parker, M. R. Pollard, D. A. Robinson, Z. J. Xin, M. Towrie, *Appl. Spectrosc.* 2010, **64**, 1311.

3. G. M. Greetham, D. Sole, I. P. Clark, A. W. Parker, M. R. Pollard, M. Towrie, *Rev. Sci. Instrum.* 2012, **83**, 103107.

4. G. M. Greetham, P. M. Donaldson, C. Nation, I. V. Sazanovich, I. P. Clark, D. J. Shaw, A. W. Parker,
M. Towrie, *Appl. Spectrosc.* 2016, **70**, 645–653.