## Supporting Information

# The Mutagenesis of a Single Site for Enhancing or Reversing the Enantio- or <br> Regiopreference of Cyclohexanone Monooxygenases 

Yujing Hu ${ }^{\text {ab }}$, Weihua Xu ${ }^{\text {a }}$, Chenggong Huic ${ }^{\text {c }}$ Jian Xu ${ }^{\text {a }}$, Meilan Huang*, ${ }^{c}$, Xianfu Lin ${ }^{a}$, Qi Wu*, ${ }^{\text {a }}$
${ }^{\text {ad Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China }}$
${ }^{\mathrm{b}}$ College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
'School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9

5AG, United Kingdom

KEYWORDS: Baeyer-Villiger monooxygenase, directed evolution, stereoselectivity, chirality, biocatalysis.

## Table of Contents

1. Experimental methods p2
2. Additional tables and figures p4
3. Chiral GC and HPLC data of enantiopure lactones p12
4. References

## 1. Experimental methods

## Materials.

Substrates ( $\mathbf{1 a - 1 f}, \mathbf{3 a - 3 c}, \mathbf{6 a - 6 c}$ ) were purchased from Energy-Chemical (China). Substrates ( $\mathbf{1 g - 1 \mathbf { 1 } )}$ were prepared according to the methods reported in the literature. ${ }^{1}$ Hot Start DNA polymerase was purchased from TOKYO (Japan); Dpn I was purchased from Thermo Fischer Scientific Inc. All solvents and other reagents were analytical grade and used without further purification.

## Analytical methods.

Gas chromatographic analyses (GC) was conducted on a Shimadzu GC-1024C chromatograph equipped with a flame ionization detector (FID) and a CP-chirasil-DEX CB $25 \mathrm{~cm} \times 0.25 \mathrm{~cm}$ column (Agilent). Chiral HPLC was performed with Chiralpak AS-H column an OB-H column ( $250 \mathrm{~mm} \times 4.6 \mathrm{~mm}, n$-hexane/2propanol as the mobile phase) and a UV detector ( 220 nm ). The ${ }^{1} \mathrm{HNMR}$ spectra were recorded using a Bruker DRX 400 NMR spectrometer (Rheinstetten, Germany) and chemical shifts were expressed in ppm.

## Generation of mutant libraries

CHMO genes from Acinetobacter sp. NCIMB 9871 ${ }^{2 a}$ were cloned into vector pET-22b (+) in Sangon Biological Technology (China). CHMO gene from Rhodococcus sp. HI-31(chnB1) ${ }^{2 b}$, Rhodococcus sp. HI-31(chnB2) ${ }^{2 b}$ and Thermocrispum municipale ${ }^{2 c}$ were cloned into vector pET-22b ( + ) in TSINGKE Biological Technology (China).

PCR were performed using CHMOs genes (pET-22b (+)) as the template for mutagenesis. Table S1 (Supporting Information) provides the oligonucleotide primers used for the generation of mutant libraries. PCR mixtures ( $50 \mu \mathrm{~L}$ final volume) contained: $\mathrm{ddH}_{2} \mathrm{O}\left(25 \mu \mathrm{~L}\right.$ ), 10KOD buffer ( $5 \mu \mathrm{~L}$ ), $\mathrm{MgSO}_{4}(3 \mu \mathrm{~L}$, 25 mM ), dNTP ( $5 \mu \mathrm{~L}, 2 \mathrm{mM}$ each), forward and reverse primers ( $5 \mu \mathrm{~L}, 2.5 \mu \mathrm{M}$ each), template plasmid (1 $\mu \mathrm{L}, 50 \mathrm{ng} / \mu \mathrm{L}$ ) and $1 \mu \mathrm{~L}$ of KOD Hot Start DNA polymerase. The PCR mixtures were initially subjected to $94^{\circ} \mathrm{C}$ for 5 min , followed by 18 cycles of denaturing step at $94^{\circ} \mathrm{C}$ for 1 min , annealing at $60^{\circ} \mathrm{C}$ for 1 min and elongation at $72^{\circ} \mathrm{C}$ for 8 min . And final extension step at $72^{\circ} \mathrm{C}$ for 10 min was performed. To ensure the elimination of template plasmid, PCR mixtures were digested at $37^{\circ} \mathrm{C}$ overnight after adding $2 \mu \mathrm{~L}$ Dpn I ( $10 \mathrm{U} / \mu \mathrm{L}$ ). The digested product was purified with an Omega PCR purification spin column, and then an aliquot of $20 \mu \mathrm{~L}$ was used to transform electrocompetent E. coli BL21 (DE3) cells. The transformation mixture was shaken with 1 mL of LB medium at $37^{\circ} \mathrm{C}$ for 1 h , and spread on LB-agar plates containing 100 $\mu \mathrm{g} / \mathrm{mL}$ ampicillin.

## Expression of CHMO variants

Single colony was picked into 5.0 mL LB media with $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin, and then incubated at $37^{\circ} \mathrm{C}$ under shaking of 200 rpm for 12 h . After DNA sequencing, the target mutants were conserved at $-80^{\circ} \mathrm{C}$ with $30 \%$ glycerol aliquot. A fresh 20.0 mL of TB media in 50 mL erlenmeyer flasks containing $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin mixed with $200 \mu \mathrm{~L}$ preculture was inoculated at $37^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ until the $\mathrm{OD}_{600}$ reached between 0.6 and 0.7. Then isopropyl $\beta$-thiogalactopyranoside (IPTG) used to induce CHMO expression was added to a final concentration of 0.2 mM and the incubation was continued for additional 16 h at $17^{\circ} \mathrm{C}, 200 \mathrm{rpm}$. Then the cells were harvested by centrifugation ( $30 \mathrm{~min}, 5000 \mathrm{rpm}, 4^{\circ} \mathrm{C}$ ) and were flushed by 50 mM PBS ( pH 7.4 ) three times. The weighing wet cells were resuspended in the fresh 50 mM PBS ( pH 7.4 ) to obtain a final concentration of $0.1 \mathrm{~g} / \mathrm{mL}$.

## Mutant library screening

In the whole cell screening protocol, the reaction system contained 1 mL cell culture ( $0.1 \mathrm{~g} / \mathrm{mL}$ ), $7 \mu \mathrm{~L}$ of
a stock solution of 0.5 M ketones or sulfides in acetonitrile and D-glucose (3 equiv). The mixture in 10 mL glass tube with a sealed cap was shaken at 200 rpm and $17^{\circ} \mathrm{C}$. For the desymmetrization, the reaction time was $10-24 \mathrm{~h}$. For the oxidative kinetic resolution of ketones, the conversion was limited less than $50 \%$. The reaction was stopped by adding sodium chloride and the mixture was extracted with 1 mL ethyl acetate three times. The sample was analyzed by chiral gas chromatographic analyses (GC) or high performance liquid chromatography (HPLC) to determine the conversion and the enantiomeric excess of the residues and products.

## Determination of kinetic parameters

Kinetic parameters of $\mathrm{CHMO}_{\text {Acineto }}$ were measured by monitoring the decrease of NADPH following the absorbance at 340 nm using spectrophotometry method (SHIMADZU-UV-2550). The activity assay was performed in a mixture ( 0.5 mL ) containing 50 mM sodium phosphate buffer ( pH 7.4 ), an appropriate amount of the enzyme and varying concentration of 3-Phenylcyclobutan-1-one ( $0-5 \mathrm{mM}$ ) with $5 \%$ (final) acetonitrile as a cosolvent. NADPH was added to a final concentration of $150 \mu \mathrm{M}$ as the last component to start the reaction.

## Scaling-up reaction

The scaling-up reaction was performed with 0.5 L cell culture ( $0.1 \mathrm{~g} / \mathrm{mL}$ ), $2.9 \mathrm{~g} / \mathrm{L}$ 1a and D-glucose ( 3 equiv). The mixture was shaken at 200 rpm and $17^{\circ} \mathrm{C}$. The reaction was stopped after 16 h by adding sodium chloride and the mixture was extracted with 0.5 L ethyl acetate three times. The sample was analyzed by chiral gas chromatographic analyses (GC) and high performance liquid chromatography (HPLC) to determine the conversion and the enantiomeric excess of the residues and products.

## Computational modelling

The crystal structure of $\mathrm{CHMO}_{\text {Acineto }}$ was not reported so far. Recently, the structure of a CHMO mutant from Acinetobacter calcoaceticus (with $70 \%$ identity to $\mathrm{WT} \mathrm{CHMO}_{\text {Acineto }}$ ) has been obtained, ${ }^{3}$ however, considering 10 residues have been substituted, it remains uncertain whether this structure would be a good alternative for structural analysis. Here, $\mathrm{CHMO}_{\text {Thermo }}$ (from Thermocrispum municipale) ${ }^{4}$ and $\mathrm{CHMO}_{\text {Rhodo }}$ (from Rhodococcus sp. $\left.\mathrm{HI}-31(\mathrm{chnB})\right)^{5}$ both with a bound ligand were referred. The homology model of WT CHMO was built based on the crystal structure of CHMO from Rhodococcus sp. strain HI-31 (PDB code: 4RG3) ${ }^{5}$. The computational methods referred to the literature ${ }^{6}$.

## 2. Additional tables and figures

Table S1. List of Forward and Reverse Primers

|  | Primers | Sequence |
| :---: | :---: | :---: |
|  | Forward F277A | CAGGTGGCGGTGCTCGTTTCATGTTTG |
|  | Forward F277C | CAGGTGGCGGTTGTCGTTTCATGTTTG |
|  | Forward F277D | CAGGTGGCGGTGATCGTTTCATGTTTG |
|  | Forward F277E | CAGGTGGCGGTGAACGTTTCATGTTTG |
|  | Forward F277G | CAGGTGGCGGTGGTCGTTTCATGTTTG |
|  | Forward F277H | CAGGTGGCGGTCATCGTTTCATGTTTG |
|  | Forward F2771 | CAGGTGGCGGTATTCGTTTCATGTTTG |
|  | Forward F277K | CAGGTGGCGGTAAACGTTTCATGTTTG |
|  | Forward F277L | CAGGTGGCGGTCTTCGTTTCATGTTTG |
|  | Forward F277M | CAGGTGGCGGTATGCGTTTCATGTTTG |
| $\mathrm{CHMO}_{\text {Acineto }}$ | Forward F277N | CAGGTGGCGGTAATCGTTTCATGTTTG |
|  | Forward F277P | CAGGTGGCGGTCCGCGTTTCATGTTTG |
|  | Forward F277Q | CAGGTGGCGGTCAGCGTTTCATGTTTG |
|  | Forward F277R | CAGGTGGCGGTCGTCGTTTCATGTTTG |
|  | Forward F277S | CAGGTGGCGGTTCTCGTTTCATGTTTG |
|  | Forward F277T | CAGGTGGCGGTACACGTTTCATGTTTG |
|  | Forward F277V | CAGGTGGCGGTGTTCGTTTCATGTTTG |
|  | Forward F277W | CAGGTGGCGGTTGGCGTTTCATGTTTG |
|  | Forward F277Y | CAGGTGGCGGTTATCGTTTCATGTTTG |
|  | Reverse primer | GCGGCCGCTCTGGATCCATGC |
|  | Forward F282V | GATAAAGGTGGTGGTGTGCAGTTTATGTTTGG |
|  | Reverse F282V | CCAAACATAAACTGCACACCACCACCTTTATC |
|  | Forward F2821 | GGGATAAAGGTGGTGGTATTCAGTTTATGTTTGG |
|  | Reverse F282I | CCAAACATAAACTGAATACCACCACCTTTATCCC |
| $\mathrm{CHMO}_{\text {Rhodo2 }}$ | Forward F282P | GATAAAGGTGGTGGTCCGCAGTTTATGTTTGG |
|  | Reverse F282P | CCAAACATAAACTGCGGACCACCACCTTTATC |
|  | Forward F282W | GATAAAGGTGGTGGTTGGCAGTTTATGTTTGGTAC |
|  | Reverse F282W | GTACCAAACATAAACTGCCAACCACCACCTTTATC |
|  | Forward F279V | GATAAAGGCAATGGTGTGCGTTTTATGTTTGG |
|  | Reverse F279V | CCAAACATAAAACGCACACCATTGCCTTTATC |
|  | Forward F2791 | GGGATAAAGGCAATGGTATTCGTTTTATGTTTGGC |
| $\mathrm{CHMO}_{\text {Thermo }}$ | Reverse F2791 | GCCAAACATAAAACGAATACCATTGCCTTTATCCC |
|  | Forward F279P | GATAAAGGCAATGGTCCGCGTTTTATGTTTGG |
|  | Reverse F279P | CCAAACATAAAACGCGGACCATTGCCTTTATC |
|  | Forward F279W | GATAAAGGCAATGGTTGGCGTTTTATGTTTGGC |
|  | Reverse F279W | GCCAAACATAAAACGCCAACCATTGCCTTTATC |
| $\mathrm{CHMO}_{\text {Rhodo }}$ | Forward F279V | CATGGTGGTGGTGTGCGTTTTATGTTTG |
|  | Reverse F279V | CAAACATAAAACGCACACCACCACCATG |
|  | Forward F2791 | GATCATGGTGGTGGTATTCGTTTTATGTTTGG |
|  | Reverse F2791 | CCAAACATAAAACGAATACCACCACCATGATC |
|  | Forward F279P | CATGGTGGTGGTCCGCGTTTTATGTTTG |
|  | Reverse F279P | CAAACATAAAACGCGGACCACCACCATG |
|  | Forward F279W | CATGGTGGTGGTTGGCGTTTTATGTTTG |
|  | Reverse F279W | CAAACATAAAACGCCAACCACCACCATG 3' |

Table S2. The Desymmetrization of Ketones 1a by 277X Mutants of $\mathrm{CHMO}_{\text {Acineto }}{ }^{a}$

| Entry | Enzymes | $\mathrm{ee}_{\mathrm{p}} / \%^{b, c}$ | Conv. $/ \%^{d}$ |
| :---: | :---: | :---: | :---: |
| 1 | WT | $60(R)$ | 99 |
| 2 | 277 W | $99(R)$ | 99 |
| 3 | 277 Y | $38(R)$ | 99 |
| 4 | 277 A | $96(S)$ | 99 |
| 5 | $277 C$ | $92(S)$ | 99 |
| 6 | 277 D | $39(S)$ | 76 |
| 7 | 277 E | $40(S)$ | 83 |
| 8 | 277 G | $91(S)$ | 89 |
| 9 | 277 H | $42(S)$ | 60 |
| 10 | 2771 | $97(S)$ | 99 |
| 11 | 277 K | $44(S)$ | 40 |
| 12 | 277 L | $49(S)$ | 99 |
| 13 | 277 M | $36(S)$ | 99 |
| 14 | 277 N | $87(S)$ | 78 |
| 15 | $277 P$ | $93(S)$ | 99 |
| 16 | 2770 | $87(S)$ | 99 |
| 17 | 277 R | $93(S)$ | 99 |
| 18 | $277 S$ | $93(S)$ | 99 |
| 19 | $277 T$ | $86(S)$ | 83 |
| 20 | 277 V | $96(S)$ | 99 |

$\bar{a}$ The whole cell experiments are described in Experimental section. ${ }^{b}$ The enantiomeric excess (ee) values of lactones were calculated by HPLC data. ${ }^{c}$ The absolute configurations of lactones were confirmed by comparison with the literature ${ }^{7}$. ${ }^{d}$ The conversion was determined by GC. Note that the $R / S$ assignment is according to the Cahn-Ingold-Prelog convention.

Table S3 Kinetic data of WT-CHMO Acineto and its mutants, 3-phenylcyclobutan-1-one (1a) was used as substrate for the kinetic analysis

| Entry | Enzyme | $V_{\max }\left(\mu \mathrm{mol} \mathrm{s}^{-1}\right)$ | $K_{\mathrm{m}}(\mathrm{mM})$ | $k_{\text {cat }}\left(\mathrm{s}^{-1}\right)$ | $k_{\text {cat }} / K_{\mathrm{m}}\left(\mathrm{mM}^{-1} \mathrm{~s}^{-1}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | WT | $0.013 \pm 0.00037$ | $26.45 \pm 2.27$ | $4.26 \pm 0.40$ | $0.16 \pm 0.0014$ |
| 2 | 277 W | $0.020 \pm 0.003$ | $14.47 \pm 2.72$ | $9.78 \pm 1.51$ | $0.68 \pm 0.023$ |
| 3 | 2771 | $0.025 \pm 0.0018$ | $8.56 \pm 1.86$ | $12.54 \pm 0.92$ | $1.49 \pm 0.22$ |

Table S4 The Sulfoxidation of Sulfides $\mathbf{6 a - 6 c}$ by WT $\mathrm{CHMO}_{\text {Acineto }}$ and Selected Variants ${ }^{a}$.


| Entry | Sub | Enzymes | Major product | Conv. $/ \%^{b}$ | $\mathrm{ee}_{\mathrm{p}} / \%^{c}$ | Config. $^{d}$ | Sulfone $\mathbf{8 / \%}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{6 a}$ | WT(F277) | 7a | 92 | 60 | $R$ | $<1$ |
| 2 | 6a | F277V | 7a | 87 | 70 | $S$ | $<1$ |
| 3 | 6a | F277P | 7a | 85 | 64 | $S$ | $<1$ |
| 4 | 6a | F277I | 7a | 74 | 57 | $S$ | $<1$ |
| 5 | 6b | WT(F277) | 7b | 99 | 22 | $S$ | 2.9 |
| 6 | 6b | F277V | 7b | 88 | 43 | $R$ | 1.2 |
| 7 | 6b | F277P | 7b | 93 | 41 | $R$ | 2.5 |
| 8 | 6b | F277I | 7b | 82 | 25 | $R$ | $<1$ |
| 9 | 6c | WT(F277) | 7c | 99 | 94 | $R$ | $<1$ |
| 10 | 6c | F277V | 7c | 89 | 37 | $R$ | $<1$ |
| 11 | 6c | F277P | 7c | 80 | 34 | $R$ | $<1$ |
| 12 | 6c | F277I | 7c | 71 | 10 | $R$ | $<1$ |

${ }^{a}$ The whole cell experiments are described in Experimental section. ${ }^{b}$ The conversion was calculated by HPLC data. ${ }^{c}$ The enantiomeric excess (ee) values of lactones were calculated by HPLC data. ${ }^{d}$ The absolute configurations of lactones were confirmed by comparison with the literature ${ }^{8}$. Note that the $R / S$ assignment is according to the Cahn-Ingold-Prelog convention.

Table S5. The Conversation of Baeyer-Villiger Oxidation of Ketones 1a-1f by CHMOs and Their Variants ${ }^{a, b}$.

| CHMOs | Variants | 1a | 1b | 1c | 1d | 1e | 1 f |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CHMO}_{\text {Thermo }}$ | WT(F279) | 99 | 99 | 99 | 99 | 99 | 99 |
|  | F279W | 99 | 99 | 99 | 99 | 99 | 99 |
|  | F279P | 99 | 99 | 99 | 99 | 99 | 99 |
|  | F279V | 99 | 99 | 99 | 99 | 99 | 99 |
|  | F2791 | 99 | 99 | 99 | 99 | 99 | 99 |
| $\mathrm{CHMO}_{\text {Rhodo }}$ | WT(F279) | 99 | 99 | 99 | 99 | 99 | 99 |
|  | F279W | 99 | 99 | 99 | 99 | 46 | 40 |
|  | F279P | 99 | 99 | 99 | 99 | 76 | 99 |
|  | F279V | 99 | 99 | 99 | 99 | 73 | 99 |
|  | F2791 | 99 | 99 | 99 | 99 | 69 | 99 |
| $\mathrm{CHMO}_{\text {Rhodo2 }}$ | WT(F282) | 99 | 99 | 99 | 99 | 85 | 99 |
|  | F282W | 99 | 99 | 99 | 99 | 25 | 59 |
|  | F282P | 99 | 99 | 99 | 99 | 79 | 93 |
|  | F282V | 99 | 99 | 99 | 99 | 83 | 91 |
|  | F282I | 99 | 99 | 99 | 99 | 70 | 80 |

${ }^{a}$ The whole cell experiments are described in Experimental section. ${ }^{b}$ The conversion was calculated by HPLC or GC data.


Figure S1. Protein structure alignment of $\mathrm{CHMO}_{\text {Rhodo }}$ (PDB ID: 4RG3, 276-280 (274-278 numbered in $\mathrm{CHMO}_{\text {Acineto }}$ ), pale gray cartoon) and PAMO (PDB ID: 2YLT, 282-286, blue cartoon).


Figure S2. Superposition of active sites and ligands in $\mathrm{CHMO}_{\text {Thermo }}$ (PDB ID: 5 M 10 ) ${ }^{4}$ and $\mathrm{CHMO}_{\text {Rhodo }}$ (PDB ID: 4RG3) ${ }^{5}$. (A) The active sites of $\mathrm{CHMO}_{\text {Rhodo }}$ shown with surface; (B) The active sites of $\mathrm{CHMO}_{\text {Thermo }}$ (pale orange carbon atoms) and $\mathrm{CHMO}_{\text {Rhodo }}$ (pale gray carbon atoms). The unit of the critical distance is $\AA$.


Figure S3. Comparison of MD structures of WT CHMO and its mutants. (A) F277W complexed with (R)2a; (B) F277V complexed with (S)-2a; (C), (D) A rotation about 90 degrees into the page from the perspective of $(A)$, $(B)$. WT is shown with pale gray cartoon as a reference; Ligand $\mathbf{2 a}$ is shown with ball and sticks (yellow carbon atoms); The crucial position 277 is shown with sticks and surface. The unit of distances is in $\AA$.


Figure S4. The reshaped binding pocket (surface) caused by the mutagenesis of F277 (pink). (A) WT; (B) F277W; (C) F277V.


Figure S5. Protein sequence alignment of $\mathrm{CHMO}_{\text {Acineto }}$ and other BVMOs.

． CHMO $_{\text {Rhodo }} \quad 58$ SDTESH YR SFDRDLQESTWKTTYITQDEIEYLEDVV RFDLRRHEKFGTEVTSA Y







． CHMO $_{\text {Rhodo }} 178$ G RVGVIGTGSTG QVITS APEVEHLTVEVR PQYSVPVGNRPVNPEQ METKAD DET



 ．CHMO ${ }_{\text {Rhodo }} 241$ 而 QVRNSSVAMGFEEST ETFSVSAEERER FQEAWDKGGGFQEMFGTFCDIATDEANE ． CHMO $_{\text {Thermo }} 238$ 酉 QVRSSTVAFGFEESTVEAMSVSESER R FQQAAWDKGNGFRFMFGTFCDIATNPEANA ． CHMO $_{\text {Acineto }} 236$ W
 ．CHMORhodo2 301 ERAKEIRRKI EIVQDPETARKITPTD YA RPLCDSG YEA NRPNVSLVNVKENPIVR ．CHMO Thermo 298 A AAARERSKIAEIVKDPETARKITPTDLYAKRPLCNEGYYET NRDNVSLVS KETPIE国


 ． CHMO $_{\text {Thermo }} 358$ TVPQGVRTSDGV HELDVLVFATGFDAVDGNYRAMN RGRDGRHIN HWTEGPTSYLGVT

．CHMO Rhodo $^{2} 418$ TAANENNEM LGPNGPFTNLPPSIETQVEWISDTIGY盆ERNGVRAEPTPEAEAEWTETC ．CHMORhodo2 421 ITSGPNMFM LGPNGPFTNLPF IEAQVE I DTIRKVAATETGRIDLRPEAEA WTETC
 ． CHMO $_{\text {Ac ineto }} 416$ VNN PNMFM LGPNGPFTNLPPSIESQVEWISDTIQYTVENNEETEATKEAEEQTRTG
．CHMO ${ }_{\text {Rhodo }} 478$ TEIANATLFTK DSWIFGANIPGKKPSVLFYLGGLRNYRA AM VAADGYRGF VVSAEM




```
.CHMO Rhodo 538 VTV------------------
.CHMORhodo2 541 P|GMAHPKRTSQPFRTATQH
.CHMOThermo 538 QAVA
.CHMOAcineto 536 D||KQPANA-------------
```

Figure S6．Protein sequence alignment of $\mathrm{CHMO}_{\text {Acineto }}$ and other CHMOs ．The red arrow points the position 277 of $\mathrm{CHMO}_{\text {Acineto }}$ and corresponding positions of other CHMOs ．The amino acid sequences were fetched from the NCBI database．CLUSTERALW was used to perform the alignment and the BoxShade server was used to edit it．Sequence similarity to $\mathrm{CHMO}_{\text {Acineto }}$ ： $\mathrm{CHMO}_{\text {Rhodo }}$（ $50.1 \%$ ）， $\mathrm{CHMO}_{\text {Rhodo2 }}$（50．6\％）， $\mathrm{CHMO}_{\text {Thermo }}$（56．7\％）．

## 3. Chiral GC and HPLC data of enantiopure lactones.

4-phenyldihydrofuran-2(3H)-one (2a):
(l) F277W: (R), 99\% ee; F277P: (S), 93\% ee. The ee value was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 220$ $\mathrm{nm}), \mathrm{t}_{r}(R)=17.421 \mathrm{~min}, \mathrm{t}_{r}(S)=19.148 \mathrm{~min}$.
2a


## 5-methyloxepan-2-one (2b):

 12.195 min .

2b


## 5-ethyloxepan-2-one (2c):



2c

WT: $(S), 98 \%$ ee; $\mathrm{F} 282 \mathrm{P}\left(\mathrm{CHMO}_{\text {Rhodo2 }}\right)$ : $(R), 80 \%$ ee. The ee value was determined by chiral GC using CP-chirasil-DEX CB $25^{*} 0.25$ column $\left(110^{\circ} \mathrm{C}\right.$, iso $110^{\circ} \mathrm{C}, 20 \mathrm{~min}, 2^{\circ} \mathrm{C} / \mathrm{min}$ to $\left.200^{\circ} \mathrm{C}\right), \mathrm{t}_{r}(\mathrm{~S})=22.643 \mathrm{~min}, \mathrm{t}_{r}(R)=23.156 \mathrm{~min}$.


5-propyloxepan-2-one (2d):
$\left\langle\begin{array}{l}\mathrm{WT}:(S), 94 \% \text { ee; F277V: }(R) \text {, } 98 \% \text { ee. The ee value was determined by chiral GC using } \\ \mathrm{CP} \text {-chirasil-DEX CB } 25^{*} 0.25 \text { column }\left(110^{\circ} \mathrm{C} \text {, iso } 110^{\circ} \mathrm{C}, 20 \mathrm{~min}, 2^{\circ} \mathrm{C} / \mathrm{min} \text { to } 200^{\circ} \mathrm{C}\right), \mathrm{t}(\mathrm{S})\end{array}\right.$ $=30.186 \mathrm{~min}, \mathrm{t}_{r}(R)=31.061 \mathrm{~min}$.
2d


## 5-pentyloxepan-2-one (2e):



F277W: (-), 99\% ee; F277V: (+), 98\% ee. The ee value was determined by chiral GC using CP-chirasil-DEX CB $25^{*} 0.25$ column ( $110^{\circ} \mathrm{C}, 2 / \mathrm{min} 200^{\circ} \mathrm{C}, 10 \mathrm{~min}$ ), $\mathrm{t}_{r}(-)=23.497 \mathrm{~min}, \mathrm{t}_{r}$ $(+)=23.652 \mathrm{~min}$.

2e


5-phenyloxepan-2-one (2f):


WT: (S), 98\% ee; F277V: (R), 99\% ee. The ee value was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}$, $220 \mathrm{~nm}), \mathrm{t}_{r}(R)=11.657 \mathrm{~min}, \mathrm{t}_{r}(S)=14.113 \mathrm{~min}$.


## 5-(m-tolyl)oxepan-2-one (2g):



WT: (-), 88\% ee; F277V: (+), 98\% ee. The ee value was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$ ), $\mathrm{t}_{r}(+)=12.470 \mathrm{~min}, \mathrm{t}_{r}(-)=15.170 \mathrm{~min}$.


## 5-(p-tolyl)oxepan-2-one (2h):



WT: (-), 97\% ee; F277V: (+), 96\% ee. The ee value was determined by HPLC analysis using a chiralcel AS-H column (hexane $/ 2$-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$, $220 \mathrm{~nm}), \mathrm{t}_{\mathrm{r}}(+)=15.834 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(-)=18.173 \mathrm{~min}$.


## 5-(3-fluorophenyl)oxepan-2-one (2i):



WT: (-), 96\% ee; F277V: (+), 99\% ee. The ee value was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}$ ), $\mathrm{t}_{r}(+)=18.610 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(-)=25.128 \mathrm{~min}$.


## 5-(4-fluorophenyl)oxepan-2-one (2j):



WT: (-), 93\% ee; F277I: (+), 99\% ee. The ee value was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=80 / 20,1.0$ $\mathrm{mL} / \mathrm{min}, 220 \mathrm{~nm}), \mathrm{t}_{r}(+)=23.175 \mathrm{~min}, \mathrm{t}_{r}(-)=27.330 \mathrm{~min}$.


## 5-(4-methoxyphenyl)oxepan-2-one (2k):



WT: (-), 60\% ee; F277V: (+), 99\% ee. The ee value was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=90 / 10,1.0$ $\mathrm{mL} / \mathrm{min}, 220 \mathrm{~nm}), \mathrm{t}_{r}(+)=92.594 \mathrm{~min}, \mathrm{t}_{r}(-)=98.827 \mathrm{~min}$.


## 5-(4-chlorophenyl)oxepan-2-one (21):



WT: (-), 85\% ee; F277V: (+), 99\% ee. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane $/ 2$-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, 220$ $\mathrm{nm}), \mathrm{t}_{\mathrm{r}}(+)=23.384 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}(-)=28.708 \mathrm{~min}$.


## 5-phenyltetrahydro-2H-pyran-2-one (4a), 4-phenyltetrahydro-2H-pyran-2-one (5a):



WT: $87 \%$ ee $(R)$ of 4a; F277V: $99 \%$ ee $(S)$ of 5 a. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane $/ 2$-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$, $220 \mathrm{~nm}), \mathrm{t}_{r}(4 \mathrm{a}, R)=20.919 \mathrm{~min}, \mathrm{t}_{r}(4 \mathrm{a}, \mathrm{S})=22.237 \mathrm{~min}, \mathrm{t}_{r}(5 \mathrm{a}, R)=28.357 \mathrm{~min}, \mathrm{t}_{r}(5 \mathrm{a}$, S) $=32.463 \mathrm{~min}$.


## 7-phenyloxepan-2-one (4b):



4b

WT: $(R), 97 \%$ ee. The ee value was determined by chiral GC using CP-chirasil-DEX CB $25^{*} 0.25$ column $\left(110^{\circ} \mathrm{C}, 1^{\circ} \mathrm{C} / \mathrm{min}\right.$ to $\left.200^{\circ} \mathrm{C}\right), \mathrm{t}_{r}(S)=44.581 \mathrm{~min}, \mathrm{t}_{r}(R)=45.283 \mathrm{~min}$.


## 6-phenyloxepan-2-one (4c), 4-phenyloxepan-2-one (5c):



WT: 45\% ee (S) of 4c; F277V: 99\% ee (S) of 5c. The ee was determined by HPLC analysis using a chiralcel AS-H column (hexane/2-propanol $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$, $220 \mathrm{~nm}), \mathrm{t}_{r}(4 \mathrm{c}, R)=18.113 \mathrm{~min}, \mathrm{t}_{r}(4 \mathrm{c}, \mathrm{S})=19.306 \mathrm{~min}, \mathrm{t}_{r}(5 \mathrm{c}, \mathrm{S})=27.472 \mathrm{~min}, \mathrm{t}_{r}(5 \mathrm{c}$, $R)=36.050 \mathrm{~min}$.


## ((methylsulfinyl)methyl)benzene (7a), ((methylsulfonyl)methyl)benzene (8a):



7a

WT: 60\% ee (R) of 7a; F277V: 70\% ee (S) of 7a. The ee was determined by HPLC analysis using a chiralcel OB-H column (hexane/2-propanol = $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}), \mathrm{t}_{r}(7 \mathrm{a}, \mathrm{S})=8.530 \mathrm{~min}, \mathrm{t}_{r}(7 \mathrm{a}, R)=10.385$ $\mathrm{min}, \mathrm{t}_{\mathrm{r}}(8 \mathrm{a})=41.005 \mathrm{~min}$.



WT: 22\% ee (S) of 7b; F277V: 43\% ee (R) of 7b. The ee was determined by HPLC analysis using a chiralcel OB-H column (hexane/2-propanol = $70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}), \mathrm{t}_{r}(7 \mathrm{~b}, \mathrm{~S})=7.336 \mathrm{~min}, \mathrm{t}_{r}(7 \mathrm{~b}, R)=9.958 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}(\mathbf{8 b})=30.959 \mathrm{~min}$.


## (methylsulfinyl)benzene (7c), (methylsulfonyl)benzene (8c):



7c


8c

WT: 94\% ee ( $R$ ) of 7c; F277V: 34\% ee ( $R$ ) of 7c. The ee was determined by HPLC analysis using a chiralcel OB-H column (hexane/2-propanol = 70/30, $1.0 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm}), \mathrm{t}_{r}(7 \mathrm{c}, \mathrm{S})=8.217 \mathrm{~min}, \mathrm{t}_{r}(7 \mathrm{c}, R)=13.411 \mathrm{~min}, \mathrm{t}_{r}(8 \mathrm{c})=$ 45.156 min .


## 4. References

1 Y. Zhang and G. B. Schuster, J. Org. Chem., 1994, 59, 1855.
$2(a)$ N. A. Donoghue, D. B. Norris and P. W. Trudgill, Eur. J. Biochem., 1976, 63,175; (b) I. A. Mirza, B. J. Yachnin, S. Wang, S. Grosse, H. Bergeron, A. Imura, H. Iwaki, Y. Hasegawa, P. C. K. Lau and A. M. Berghuis, J. Am. Chem. Soc., 2009, 131, 8848; (c) F. Korn-Wendisch, F. Rainey, R. M. Kroppenstedt, A. Kempf, A. Majazza, H. J. Kutzner, E. Stackebrandt, Int. J. Syst. Bacteriol., 1995, 45, 67.
3 Y. Zhang, Y.-Q. Wu, N. Xu, Q. Zhao, H.-L. Yu, J.-H. Xu, ACS Sustain. Chem. Eng., 2019, 7, 7218.
4 E. Romero, J. R. G. Castellanos, A. Mattevi and M. W. Fraaije, Angew. Chem., Int. Ed., 2016, 55, 15852.
5 B. J. Yachnin, M. B. McEvoy, R. J. D. MacCuish, K. L. Morley, P. C. K. Lau and A. M. Berghuis, ACS Chem. Biol., 2014, 9, 2843.
6 Y. Hu, J. Wang, Y. Cen, H. Zheng, M. Huang, X. Lin and Q. Wu, Chem. Commun., 2019, 55, 2198.
7 L. Zhou, X. Liu, J. Ji, Y. Zhang, X. Hu, L. Lin and X. Feng, J. Am. Chem. Soc., 2012, 134, 17023.
8 Z. G. Zhang, R. Lonsdale, J. Sanchis and M. T. Reetz, J. Am. Chem. Soc., 2014, 136, 17262.

