Supporting Information for:

Rapid Access to 3-Aminoindazoles from Nitriles with Hydrazines: A Strategy to Overcome the Basicity Barrier Imparted by Hydrazines

Chunyan Zhang,^{*,a} Haowen Zhao,^a Zehua Li,^a Zuyu Liang,^a Shuo Qi,^a Mingyu Cai,^a Sheng Zhang,^a Xiaofei Jia,^a Guoying Zhang,^{*,a} and Mao-lin Hu^{*,b}

^aKey Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, P.R. China.

^bCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China.

*E-mail: zhanggy@qust.edu.cn; maolin_hu@yahoo.com

CONTENTS

- 1 General experimental details and materials
- 2 Optimization of the reaction conditions
- **3** General procedure for the annulation reaction
- 4 Experimental characterization data for products
- 5 Gram scale experiments
- 6 Mechanistic studies
- 7 Reference
- 8 Copies for ¹H NMR and ¹³C NMR of the 3-aminoindazoles

1. General experiment details and materials

Experimental: All reactions and manipulations with air sensitive compounds being present were performed under dry argon (Ar 5.0) or nitrogen (N_2 5.0), using Schlenk and glove box techniques. Non-halogenated solvents were dried over sodium benzophenone, 2-methyltetrahydrofuran (2-Me-THF) was dried over calcium hydride, and halogenated solvents were dried over P_2O_5 . Deuterated solvents were bought from Cambridge Isotope Laboratories, distilled accordingly, and stored over molecular sieves (3 Å). Other chemicals were purchased from commercial vendors and used without further purification. NMR spectra were collected on a Varian INOVA 300 and 400 MHz spectrometer. Chemical shifts (δ) are reported in ppm relative to residual solvent signal. Coupling constants (J) are given in Hz (coupling patterns: s: singlet, s_br: broad singlet, d: doublet, t: triplet, q: quartet, m: multiplet). GC analyses were carried out using an Agilent Technologies 6890N system equipped with a Machinery-Nagel (MN) Optima 5 HT column (30 m, 320 µm, 0.25 µm) or an Agilent Technologies 6850 system equipped with a MN Optima 17 column (30 m, 320 µm, 0.25 µm). GC/MS analyses were carried out on an Agilent 7890A/MSD 5975C system equipped with a HP-5MS column (30 m, 320 µm, 0.25 µm). High resolution mass spectra (HRMS) were recorded on Bruker Micro TOF-QII mass (ESI). MN silica gel 60 (0.040 - 0.063 mm particle size) was used for flash column chromatography.

2. Optimization of the reaction conditions

Closed system:

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, base, phenyl hydrazine (2a) and solvent. After stirring of 5 minutes, 2-chlorobenzonitrile (1b) was added the mixture reaction. Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (design temperature). After design time the reaction was cooled, quenched with half-saturated brine and extracted with dichloromethane (4 x 15 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. A small aliquot of the organic phase was analyzed by GC or GC-MS to monitor product formation. Purification of the remainder by column chromatography on silica gel gave the corresponding products **4a** (pentane/ethyl ether = 15/1 - 5/1) in the reported yield.

Entry	Parameter
Table S1	Investigated nitriles and hydrazines.
Table S2	Screening the loading of t-BuOK
Table S3	The difference of base screening
Table S4	The difference of solvent screening
Table S5	The ratio of 1b and 2a screening
Table S6	Reaction temperature screening
Table S7	The reaction time screening
Table S8	Reaction system screening

Table S1. Investigated nitriles and hydrazines.^a

^{*a*} Reaction condition : **1** (1.0 mmol), **2** (3.0 mmol), *t*-BuOK (1.0 mmol), diglyme (2.0 mL), N₂, 130 °C (extern temperature), 1 h. Yield of **3a** or **4a** was determined by GC analysis using *n*-dodecane as the internal standard.

CI +	H NH ₂ —	t-BuOK
1b	2a	4a ^{NH} 2
Entry	t-BuOK (equiv)	4a (%)
1	0.1	<5
2	0.3	21
3	0.5	32
4	0.7	56
5	0.9	61
6	1.0	70
7	1.1	76
8	1.2	85
9	1.3	95
10	1.4	94
11	1.5	91
12	1.7	88
13	1.8	83
14	1.9	81
15	2.0	78
16	3.0	52

Table S2. Screening the loading of *t*-BuOK^{*a*}

^{*a*} Reaction condition : **1b** (1.0 mmol), **2a** (3.0 mmol), *t*-BuOK (1.3 mmol), diglyme (2.0 mL), N₂, 130 °C (extern temperature), 1 h. Yield of **4a** were determined by GC analysis using *n*-dodecane as the internal standard.

	н	
C	+ NH ₂ base	
✓ CN	digiym	
1b	2a	4a NH ₂
entry	base	4a (%)
1	Cs ₂ CO ₃	0
2	K_2CO_3	0
3	Na ₂ CO ₃	0
4	KHCO ₃	0
5	K ₃ PO ₄	0
6	K_2HPO_4	0
7	CsOH	<5
8	КОН	9
9	NaOH	<5
10	LiOH	0
11	t-BuOK	95
12	t-BuONa	60
13	t-BuOLi	0
14	KHMDS	68
15	NaHMDS	10
16	LiHMDS	0
17	DBU	0
18	Et ₃ N	0
19	LEDA	0
20	<i>n</i> -BuLi	0
21	-	0

 Table S3. The difference of base screening ^a

^{*a*} Reaction condition : **1b** (1.0 mmol), **2a** (3.0 mmol), base (1.3 mmol), diglyme (2.0 mL), N₂, 130 °C (extern temperature), 1 h. Yield of **4a** were determined by GC analysis using *n*-dodecane as the internal standard.

	CI CN +	H N NH ₂ -	t-BuOK solvent ►	
Entry		Za		4a ^{NP2}
1		dialymo		4a (%)
1		1 4-diovan	x	87
2		1.2-Dimethoxye	thane	80
3		Anisole	unane	77
- - 5		THE		82
5		4-MeTHF		78
7		benzene		73
, 8		xylene		81
9		Toluene		85
10		DMSO		74
10		DMSC		52
11				53
12		MeOH		0
13		FtOH		0
14		i-PrOH		0
15				~5
10		t-AmOH		38
17		CH ₂ CN		0
10		CH-NO-		0
20			CH_2	~5
20			, U 115	\sim

Table S4. The difference of solvent screening^{*a*}

^{*a*} Reaction condition : **1b** (1.0 mmol), **2a** (3.0 mmol), *t*-BuOK (1.3 mmol), solvent (2.0 mL), N₂, 130 °C (extern temperature), 1 h. Yield of **4a** were determined by GC analysis using *n*-dodecane as the internal standard.

C	I + NH ₂	t-BuOK ────────────────────────────────────	
1b	2a		4a ^{NH} 2
Entry	1b	2a	4a (%)
1	2.0	1	24
2	1.8	1	49
3	1.6	1	50
4	1.4	1	54
5	1.2	1	67
6	1	1	70
7	1	1.1	73
8	1	1.2	78
9	1	1.3	82
10	1	1.4	84
11	1	1.5	84
12	1	2	87
13	1	3	95
14	1	4	94
15	1	5	92

Table S5. The ratio of 1a and 1b screening^{*a*}

^{*a*} Reaction condition : **1b** (x mmol), **2a** (x mmol), *t*-BuOK (1.3 mmol), diglyme (2.0 mL), N₂, 130 °C (extern temperature), 1 h. Yield of **4a** were determined by GC analysis using *n*-dodecane as the internal standard.

CI CN 1b	HNH₂ −B dig 2a	uOK lyme N 4a NH ₂
Entry	T/°C	4a (%)
1	20	<5
2	40	43
3	60	64
4	80	72
5	100	78
6	120	89
7	130	95
8	140	94

 Table S6. The reaction temperature screening^a

^{*a*} Reaction condition : **1b** (1.0 mmol), **2a** (3.0 mmol), *t*-BuOK (1.3 mmol), diglyme (2.0 mL), N₂, T (extern temperature), 1 h. Yield of **4a** were determined by GC analysis using *n*-dodecane as the internal standard.

CI CN 1b	$\frac{H}{NH_2} = \frac{t}{c}$	-BuOK diglyme
Entry	t/min	4a (%)
1	10	39
2	20	61
3	30	75
4	40	83
5	50	90
6	60	95
7	120	94
8	180	96

Table S8. The reaction time screening^{*a*}

^{*a*} Reaction condition : **1b** (1.0 mmol), **2a** (3.0 mmol), *t*-BuOK (1.3 mmol), diglyme (2.0 mL), N₂, 130 °C (extern temperature), t. Yield of **4a** were determined by GC analysis using *n*-dodecane as the internal standard.

Table S8: Reaction system screening^a

	$\begin{array}{c} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & 1b \end{array} + \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	t-BuOK diglyme ► N 4a NH ₂	
Entry	System	4a (%)	
1	Seal tube	N ₂ 95	
2	Seal tube	Ar 96	
3	Seal tube	air 73	
4	Seal tube	O ₂ <5	
5	Open-reflux	N ₂ 90	
6	Open-reflux	Ar 91	
7	Open-reflux	air 62	
8	Open-reflux	O ₂ <5	

^{*a*} Reaction condition : **1b** (1.0 mmol), **2a** (3.0 mmol), *t*-BuOK (1.3 mmol), diglyme (2.0 mL), 130 °C (extern temperature), 1 h. Yield of **4a** were determined by GC analysis using *n*-dodecane as the internal standard.

3. General procedure for the annulation reaction

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, base, hydrazines (2) and diglyme. After stirring of five minutes, nitriles (1) was added the mixture reaction. Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (design temperature). After design time the reaction was cooled, quenched with half-saturated brine and extracted with dichloromethane (4 x 15 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. A small aliquot of the organic phase was analyzed by GC or GC-MS to monitor product formation. Purification of the remainder by column chromatography on silica gel gave the corresponding products **3a** or **4a** (pentane/ethyl ether = 15/1 - 5/1) in the reported yield.

4. Experimental characterization data for products

1-phenyl-1H-indazol-3-amine (4a): Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (6/1, v/v) to give the desired product as a white solid (198 mg, 95%). ¹H NMR (500 MHz, CDCl₃) δ 7.71 - 7.64 (m, 3H), 7.61 (d, J = 8.0 Hz, 1H), 7.48 (m, 2H), 7.41 $(m, J = 7.5 \text{ Hz}, 1\text{H}), 7.24 (m, 1\text{H}), 7.13 (m, 1\text{H}), 4.22 (s, 2\text{H}); {}^{13}\text{C}$ **NMR** (101 MHz, CDCl₃) δ 149.1, 140.4, 139.5, 129.2, 127.7, 124.9, 121.2, 119.7, 119.6, 116.5, 110.1. HRMS (ESI) calcd. for

C₁₃H₁₂N₃ [M+H]: 209.0953, found: 209.0958.

1-(m-tolyl)-1H-indazol-3-amine (4b): Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl

acetate (6/1, v/v) to give the desired product as a white solid (205 mg, 92%).¹**H NMR** (500 MHz, CDCl₃) δ 7.67 (d, J = 8.5Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.49 (s, 1H), 7.46 (d, J = 8.0Hz, 1H), 7.43 – 7.38 (m, 1H), 7.36 (m, 1H), 7.12 (m, 1H), 7.07 (d, J = 7.5 Hz, 1H), 3.39 (s, 2H), 2.43 (s, 3H);¹³C NMR (101 MHz, CDCl₃) δ 149.0, 140.1, 139.2, 138.9, 128.7, 127.4, 125.4, 121.6, 119.6, 119.4, 117.9, 116.3, 109.9, 21.1. HRMS (ESI)

calcd. for C₁₄H₁₄N₃ [M+H]: 223.1188, found: 223.1189.

1-(3-fluorophenyl)-1H-indazol-3-amine(4c): Then the corresponding reaction mixture

was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (6/1, v/v) to give the desired product as a white solid (211 mg, 93%). ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.5 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.47 (m, J = 13.5, 8.0 Hz, 2H), 7.42 (m, 2H), 7.17 (m, 1H), 6.93 (m, 1H), 3.05 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.3, 161.9, 149.5, 142.0, 142.0, 139.49, 130.0, 130.0, 128.1, 120.2,

119.8, 117.0, 116.0, 116.0, 111.4, 111.2, 110.2, 108.3, 108.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -111.28 (s); **HRMS** (ESI) calcd. for C₁₃H₁₁FN₃[M+H]: 228.0937, found: 228.0940.

NH₂ 4d

1-(2-fluorophenyl)-1H-indazol-3-amine (4d): Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (8/1, v/v) to give the desired product as a white solid (140 mg, 62%). ¹H NMR (500 MHz, CDCl₃) δ 7.59 (m, 2H), 7.42 – 7.36 (m, 1H), 7.34 – 7.28 (m, 2H), 7.25 (m, 2H), 7.13 (m, 1H), 4.02 (s, 2H);¹³C NMR (101 MHz, CDCl₃) δ 156.7, 154.2, 149.8, 141.1, 127.7 (dd, J = 14.8, 9.7 Hz), 127.0 (d, J

= 1.1 Hz), 124.6 (d, J = 3.7 Hz), 119.7, 119.4, 116.6 (d, J = 19.8 Hz), 116.1, 110.36 (d, J = 5.9 Hz).;¹⁹F NMR (377 MHz, CDCl₃) δ -120.35 (s). HRMS (ESI) calcd. for C₁₃H₁₁FN₃[M+H]: 228.0937, found: 228.0939.

CI NH₂ 4e

1-(3-chlorophenyl)-1H-indazol-3-amine (4e): Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (6/1, v/v) to give the desired product as a white solid (221 mg, 91%).¹H NMR (500 MHz, CDCl₃) δ 7.69 (m, 2H), 7.62 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.45 (m, 1H), 7.40 (m, 1H), 7.22 – 7.13 (m, 2H), 2.68 (s, 2H);¹³C **NMR** (101 MHz, CDCl₃) δ 149.5, 141.6, 139.4, 134.8, 130.2, 128.1,

124.6, 121.0, 120.3, 119.8, 118.7, 117.0, 110.2. HRMS (ESI) calcd. for C₁₃H₁₁ClN₃ [M+H]: 243.0563, found: 243.0564.

1-(2-chlorophenyl)-1H-indazol-3-amine (4f): Then the corresponding reaction mixture

was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (5/1, v/v) to give the desired product as a white solid (133 mg, 55%). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 1H), 7.56 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.48 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.39 – 7.32 (m, 3H), 7.13 (m, 2H), 4.25 (s, 2H);¹³C NMR (101 MHz, CDCl₃) δ 149.5, 141.2, 137.1, 130.3, 128.9, 128.4, 127.2,

119.4, 115.6, 110.2. **HRMS** (ESI) calcd. for C₁₃H₁₁ClN₃ [M+H]: 243.0563, found: 243.0560.

1-(3,5-dichlorophenyl)-1H-indazol-3-amine (4g): Then the corresponding reaction

mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (8/1, v/v) to give the desired product as a white solid (250 mg, 90%). ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.5 Hz, 1H), 7.62 (m, 3H), 7.51 – 7.47 (m, 1H), 7.23 – 7.18 (m, 2H), 2.14 – 2.05 (m, 2H).; ¹³C NMR (101 MHz, DMSO) δ 152.3, 143.1, 139.2, 135.3, 129.2, 122.8, 121.8, 121.1, 118.9, 117.6,

111.1.**HRMS** (ESI) calcd. for $C_{13}H_{10}Cl_2N_3$ [M+H]: 278.0252, found: 278.0257.

1-(2,5-dichlorophenyl)-1H-indazol-3-amine (4h): Then the corresponding reaction

mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (8/1, v/v) to give the desired product as a white solid (141 mg, 51%). ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.5 Hz, 1H), 7.48 (m, 2H), 7.39 (m, 1H), 7.30 (dd, J = 8.5, 2.5 Hz, 1H), 7.18 – 7.09 (m, 2H), 4.34 (s, 2H).;¹³C NMR (126 MHz, CDCl₃) δ 149.9, 141.5, 138.5, 133.0, 131.4, 129.1, 128.8,

128.6, 127.7, 120.1, 119.5, 116.2, 110.7; **HRMS** (ESI) calcd. for C₁₃H10C₁₂N₃ [M+H]: 278.0252, found: 278.0258.

1-(3-bromophenyl)-1H-indazol-3-amine (4i): Then the corresponding reaction mixture

was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (8/1, v/v) to give the desired product as a white solid (253 mg, 88%). ¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.68 (d, *J* = 8.5 Hz, 1H), 7.62 (m, 2H), 7.44 (m, 1H), 7.37 – 7.30 (m, 2H), 7.16 (m, *J* = 7.5 Hz, 1H), 3.79 (s, 2H).; ¹³C NMR (126 MHz, CDCl₃) δ 149.5, 141.7, 139.5, 130.5, 128.2, 127.6, 124.0,

122.9, 120.4, 119.8, 119.2, 117.0, 110.2;**HRMS** (ESI) calcd. for C₁₃H₁₁BrN₃ [M+H]: 288.0136, found: 288.0140.

1-(naphthalen-1-yl)-1H-indazol-3-amine (4j): Then the corresponding reaction mixture

was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (6/1, v/v) to give the desired product (150 mg, 58%). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (dd, J = 14.5, 8.0 Hz, 2H), 7.83 (d, J = 8.5 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.56 (m, 3H), 7.46 (m, 1H), 7.34 – 7.29 (m, 1H), 7.17 – 7.11 (m, 2H), 4.28 (s, 2H).;¹³C NMR (101 MHz, CDCl₃) δ 149.0, 142.3, 136.1, 134.6, 129.8, 128.07 (d, J = 2.6 Hz), 127.4, 126.6,

126.4, 125.3, 123.9 (d, J = 10.3 Hz), 119.5 (d, J = 4.3 Hz), 115.6, 110.2; **HRMS** (ESI) calcd. for C₁₇H₁₄N₃ [M+H]: 260.1188, found: 260.1191.

1-(pyridin-2-yl)-1H-indazol-3-amine (4k): Then the corresponding reaction mixture

was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (5/1, v/v) to give the desired product as a white solid (183 mg, 87%). ¹H NMR (500 MHz, CDCl₃) δ 8.77 (d, *J* = 8.5 Hz, 1H), 8.44 (d, *J* = 4.0 Hz, 1H), 7.80 (d, *J* = 8.5 Hz, 1H), 7.76 – 7.69 (m, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.50 (m, 1H), 7.20 (m, 1H), 7.00 (dd, *J* = 6.5, 5.5 Hz, 1H), 4.32 (s, 2H).; ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 149.8, 147.5, 139.8,

137.8, 128.5, 121.1, 118.8, 118.0, 117.6, 115.3, 111.9; **HRMS** (ESI) calcd. for C₁₂H₁₀N₄ [M+H]:211.0984, found: 211.0988.

1-(benzo[d]thiazol-2-yl)-1H-indazol-3-amine (4l): Then the corresponding reaction

mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (8/1, v/v) to give the desired product as a white solid (186 mg, 70%). ¹H NMR (500 MHz, DMSO) δ 8.67 (d, J = 8.5 Hz, 1H), 8.11 (m, 2H), 7.96 (d, J = 8.0 Hz, 1H), 7.81 (m, 1H), 7.60 (m, J = 7.5 Hz, 1H), 7.49 (m, J = 7.5 Hz, 1H), 7.43 (m, 1H), 6.83 (s, 2H).;¹³C NMR (126 MHz, DMSO) δ 160.9, 153.7, 152.4, 139.2, 131.7, 130.2,

126.8, 123.6 ,123.2, 122.2, 121.8, 121.1, 120.1, 114.1,; **HRMS** (ESI) calcd. for $C_{14}H_{11}N_4S[M+H]$: 267.0704, found: 267.0710.

I-indazol-3-amine(5b): Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (5/1, v/v) to give the desired product as a white solid (209 mg, 94%).¹**H** NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.46 (m, 2H), 7.37 (s, 1H), 7.25 – 7.19 (m, 2H), 3.91 (s, 2H), 2.46 (s, 3H).;¹³**C** NMR (101 MHz, CDCl₃) δ 148.6, 140.6, 138.2, 129.6, 129.20 (d, *J* = 12.5 Hz), 124.5, 120.8, 118.8, 116.8, 109.9, 20.99. **HRMS** (ESI) calcd. for C₁₄H₁₄N₃ [M+H]: 223.1188,

found: 223.1186.

4-methyl-1-phenyl-1H-indazol-3-amine (5c): Then the corresponding reaction mixture

was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (5/1, v/v) to give the desired product as a white solid (205 mg, 92%). ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 8.0 Hz, 2H), 7.47 (m, 3H), 7.23 (m, 2H), 6.82 (d, J = 7.0 Hz, 1H), 3.93 (s, 2H), 2.72 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 140.3 (d, J = 19.6 Hz), 132.0, 129.2, 127.9, 125.0, 121.6, 120.9, 115.9, 107.9, 19.1; HRMS (ESI) calcd. for C₁₃H₁₃N₃ [M+H]: 224.1188, found: 224.1190.

6-methoxy-1-phenyl-1H-indazol-3-amine (5d): Then the corresponding reaction

mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (6/1, v/v) to give the desired product as a white solid (172 mg, 72%).¹¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.55 – 7.41 (m, 3H), 7.28 – 7.23 (m, 1H), 7.02 (m, 1H), 6.77 (dd, J = 9.0, 2.0 Hz, 1H), 4.02 (s, 2H), 3.85 (s, 3H).;¹³C NMR (101 MHz, DMSO) δ

160.7, 151.3, 141.3, 140.6, 129.9, 124.4, 122.4, 120.6, 112.2, 110.7, 92.6, 55.8; HRMS (ESI) calcd. For C₁₄H₁₄N₃O [M+H]: 240.1137, found: 240.1142.

4-fluoro-1-phenyl-1H-indazol-3-amine (5e): Then the corresponding reaction mixture

was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (6/1, v/v) to give the desired product as a white solid (127 mg, 56%). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.0 Hz, 2H), 7.53 – 7.43 (m, 3H), 7.26 (m, 2H), 7.02 (d, J = 7.5 Hz, 1H), 4.68 (s, 2H).; ¹³C NMR (101 MHz, CDCl₃) & 148.8, 141.0, 140.0, 129.4, 128.5, 127.0, 125.8, 122.0, 121.7, 120.1, 113.7, 109.0; ¹⁹F NMR (377 MHz, CDCl₃) δ -61.63

(s). **HRMS** (ESI) calcd. For C₁₃H₁₁FN₃ [M+H]: 228.0937, found: 228.0944.

5-chloro-1-phenyl-1H-indazol-3-amine(5f): Then the corresponding reaction mixture

Br

was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (5/1, v/v) to give the desired product as a white solid (207 mg, 85%). ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 2H), 7.55 (m, 2H), 7.47 (m, 2H), 7.31 (dd, J = 9.0, 2.0 Hz, 1H), 7.24 (m, 1H), 4.26 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 148.26 (s), 140.06 (s), 138.08 (s), 129.37 (s), 128.21 (s), 125.46 (s), 125.14 (s), 121.41 (s), 119.04 (s),

117.37 (s), 111.34 (s), 77.25 (s), 76.87 (d, *J* = 32.0 Hz), 76.65 – 76.41 (m). **HRMS** (ESI) calcd. for C₁₃H₁₁ClN₃ [M+H]: 244.0642, found: 244.0645.

5-bromo-1-phenyl-1H-indazol-3-amine (5g): Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (8/1, v/v) to give the desired product as a white solid (216 mg, 75%).¹H NMR (500 MHz, $CDCl_3$) δ 7.75 (d, J = 1.5 Hz, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 9.0 Hz, 1H), 7.50 – 7.45 (m, 3H), 7.28 (d, J = 8.0 Hz, 1H), 3.54 $\dot{N}H_2$ (s, 2H).; ¹³C NMR (101 MHz, DMSO) δ 150.6, 140.7, 138.0, 130.8, 5g

129.9, 124.9, 124.1, 120.6, 119.3, 112.5, 111.4.; **HRMS** (ESI) calcd. for C₁₃H₁₁BrN₃ [M+H]: 288.0136, found: 288.0143.

5-iodo-1-phenyl-1H-indazol-3-amine (5h): Then the corresponding reaction mixture

was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (8/1, v/v) to give the desired product as a white solid (17 8mg, 53%).¹**H** NMR (500 MHz, DMSO) δ 8.43 (s, 1H), 7.82 – 7.69 (m, 4H), 7.64 (m, 2H), 7.37 (m, 1H), 6.16 (s, 2H).;¹³C NMR (101 MHz, DMSO) δ 150.2, 140.7, 138.2, 136.0, 130.2, 129.9, 124.9, 120.6, 120.1, 112.8, 82.3; **HRMS** (ESI) calcd. for C₁₃H₁₁IN₃ [M+H]: 335.9998, found:

336.0000.

1-phenyl-1H-indazole-3,6-diamine (5i): Then the corresponding reaction mixture was

purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (8/1, v/v) to give the desired product as a white solid (213 mg, 95%). ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 1H), 7.18 (t, *J* = 7.5 Hz, 1H), 6.85 (s, 1H), 6.51 (d, *J* = 8.5 Hz, 1H), 4.11 (s, 4H).; ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 147.3, 141.1, 140.6, 128.9 , 124.1, 120.7, 120.5, 110.7, 109.8, 93.0;

HRMS (ESI) calcd. for C₁₃H₁₃N₄ [M+H]: 225.1140, found: 225.1143.

1-phenyl-5-(trifluoromethyl)-1H-indazol-3-amine (5j): Then the corresponding

reaction mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (5/1, v/v) to give the desired product as a white solid (247 mg, 89%).¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (s, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.64 (d, *J* =8.0 Hz, 2H), 7.58 (d, *J* =9.0 Hz, 1H), 7.50 (m, 2H), 7.30 (m, 1H), 4.28 (s, 2H).; ¹³**C NMR** (101 MHz, CDCl₃) δ 149.7, 140.4, 139.7, 129.4, 125.9, 124.3 (d, *J* = 3.2 Hz), 121.8 (d, J = 10.2 Hz), 118.0 (d, J = 4.4 Hz), 115.8, 110.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -60.76 (s); HRMS (ESI) calcd. for C₁₄H₁₁F3N₃ [M+H]: 278.0905, found: 278.0910.

1-phenyl-6-(trifluoromethyl)-1H-indazol-3-amine (5k): Then the corresponding

reaction mixture was purified by flash column chromatography on a silica gel column petroleum ether/ethyl acetate (5/1, v/v) to give the desired product as a white solid (180 mg, 65%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (s, 1H), 7.71 (d, *J* = 8.5 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.52 (m, 2H), 7.33 (m, 2H), 4.30 (s, 2H).; ¹³**C NMR** (101 MHz, CDCl₃) δ 148.9, 139.7, 138.6, 129.5, 126.0, 121.8, 120.7, 118.1, 116.3 (d, *J* = 3.3 Hz), 107.8 (q,

J = 4.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -61.63 (s).; HRMS (ESI) calcd. for C₁₄H₁₁F₃N₃ [M+H]: 278.0905, found: 278.0909.

5. Gram scale experiments

Open system:

10 mmol scale:

Using a nitrogen-filled glove box, an oven-dried Schleck tube (250 mL volume) was charged with a magnetic stirring bar, *t*-BuOK (13 mmol, 1.46 g), phenyl hydrazine (30 mmol, 3.244 g) and diglyme (40 mL). After stirring of 5 minutes, 2-chlorobenzonitrile (10 mmol, 1.376 g) was added the mixture reaction, the tube was sealed, taken out of the glove box and a reflux condenser was attached under argon stream. The mixture was heated to a gentle reflux for an hours under inert atmosphere in an open system at 130 °C (oil bath). After cooling, quenched with half-saturated brine and extracted with dichloromethane (4 x 200 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the corresponding reaction mixture was purified by flash column chromatography on a silica gel column (pentane/ethyl ether = 5/1) to give the desired products **4a** in 94 % yield (1.96 g).

100 mmol scale:

Using a nitrogen-filled glove box, an oven-dried Schleck tube (2.5 L volume) was charged with a magnetic stirring bar, *t*-BuOK (0.13 mmol, 14.6 g), phenyl hydrazine (0.3 mol, 32.44 g) and diglyme (0.5 L). After stirring of 5 minutes, 2-chlorobenzonitrile (0.1 mol, 13.76 g) was added the mixture reaction, the tube was sealed, taken out of the glove box and a reflux condenser was attached under argon stream. The mixture was heated to a gentle reflux for an hours under inert atmosphere in an open system at 130 °C (oil bath). After cooling, quenched with half-saturated brine and extracted with dichloromethane (4 x 200 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. A small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Then the corresponding reaction mixture was purified by recrystallized to give the desired product (diethyl ether/DCM) to give the desired products **4a** in 90 % yield (18.81 g).

6. Mechanistic investigations

6.1 Control experiments

	CI CN + CI 1b	H NNH₂ diglyme 2a	4a ^{NH} 2
Entry	Reaction condition		4 a (%)
1	98% t-BuOK	new seal tube	95
2	99.99% t-BuOK	new seal tube	96
3		new seal tube	0

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, *t*-BuOK (1.3 mmol), phenyl hydrazine (3.0 mmol) and diglyme (2.0 mL). After stirring of 5 minutes, 2-chlorobenzonitrile (1.0 mmol) was added the mixture reaction. Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (design temperature). After design time the reaction was cooled, quenched with half-saturated brine and extracted with dichloromethane (4 x 15 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. A small aliquot of the organic phase was analyzed by GC to monitor product formation.

6.2 Control experiments with transition metal additives

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, *t*-BuOK (1.3 mmol), phenyl hydrazine (3.0 mmol), additives (0.05 mmol) and diglyme (2.0 mL). After stirring of 5 minutes, 2-chlorobenzonitrile (1.0 mmol) was added the mixture reaction. Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (design temperature). After design time the reaction was cooled, quenched with half-saturated brine and extracted with dichloromethane (4 x 15 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. A small aliquot of the organic phase was analyzed by GC to monitor product formation.

6.3 Control experiments with radical scavenger

	CI + CN + 1b	H NNH₂ t-BuOK diglyme 2a	Aa NH ₂
Entry	Reaction condition	Radical scavenger	4a (%)
1	99.99% t-BuOK	TEMPO (1 equiv)	91
2	99.99% t-BuOK	Ph ₂ C=CH ₂ (1 equiv)	90
3	99.99% t-BuOK	TEMPO (2 equiv)	90
4	99.99% t-BuOK	Ph ₂ C=CH ₂ (2 equiv)	89

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, *t*-BuOK (1.3 mmol), phenyl hydrazine (3.0 mmol), radical scavengers and diglyme (2.0 mL). After stirring of 5 minutes, 2-chlorobenzonitrile (1.0 mmol) was added the mixture reaction. Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (design temperature). After design time the reaction was cooled, quenched with half-saturated brine and extracted with dichloromethane (4 x 15 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. A small aliquot of the organic phase was analyzed by GC to monitor product formation.

6.4 Control experiments with 18-crown-6 additive

Using a nitrogen-filled glove box, an oven-dried pressure tube (38 mL volume) was charged with a magnetic stirring bar, *t*-BuOK (1.3 mmol), phenyl hydrazine (3.0 mmol), 18-crown-6 (2.0 mmol) and diglyme (2.0 mL). After stirring of 5 minutes, 2-chlorobenzonitrile (1.0 mmol) was added the mixture reaction. Then the seal tube was closed tightly with a teflon cap, removed from the glove box and immersed into a pre-heated oil bath (design temperature). After design time the reaction was cooled, quenched with half-saturated brine and extracted with dichloromethane (4 x 15 mL). The combined organic phase was dried over Na₂SO₄ and concentrated. A small aliquot of the organic phase was analyzed by GC to monitor product formation.

7. References

- Vasudevan, A.; Souers, A. J.; Freeman, J. C.; Verzal, M. K.; Gao, J.; Mulhern, M. M.; Wodka, D.; Lynch, J. K.; Engstrom, K. M.; Wagaw, S. H.; Brodjian, S.; Dayton, B.; Falls, D. H.; Bush, E.; Brune, M.; Shapiro, R. D.; Marsh, K. C.; Hernandez, L. E.; Collins, C. A.; Kym, P. R. *Bioorg. Med. Chem. Lett.* 2005, *15*, 5293.
- Kruger, A. W.; Rozema, M. J.; Chu-Kung, A.; Gandarilla, J.; Haight, A. R.; Kotecki, B. J.; Richter, S. M.; Schwartz, A. M.; Wang, Z. Org. Process. Res. Dev. 2009, 13, 1419.
- Antonysamy, S.; Hirst, G.; Park, F.; Sprengeler, P.; Stappenbeck, F.; Steensma, R.; Wilson, M.; Wang, M. *Bioorg. Med. Chem. Lett.* 2009, 19, 279.

8. Copies for ¹H NMR and ¹³C NMR of the 3-aminoindazoles

S74

