Supplementary Information

Ultrasensitive analysis of microRNAs with gold nanoparticles-

decorated molybdenum disulfide nanohybrids-based multilayer

nanoprobes

Shao Su, [‡]a Qian Sun, [‡]a Jianfeng Ma, ^a Dan Zhu, ^a Fei Wang, ^b Jie Chao, ^a Chunhai Fan, ^b Qian Li*^b

and Lianhui Wang*a

^aKey Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

^bSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

E-mail: liqian2018@sjtu.edu.cn, iamlhwang@njupt.edu.cn.

Reagents and apparatus

Molybdenum (IV) sulfide powder (<2 μ m, 99%), gold (III) tetrachloride trihydrate (HAuCl₄·3H₂O, ≥99%) and 6-mercapto-1-hexanol (MCH, 97%) were purchased from Sigma-Aldrich (USA). Potassium hexacyanoferrate (III) (K₃Fe(CN)₆, ≥99.5%), potassium hexacyanoferrate (II) trihydrate (K₄Fe(CN)₆·3H₂O, ≥99.5%), potassium chloride (KCl, ≥99.5%), Boric acid (≥99.5%), tris (hydroxymethyl) aminomethane (Tris, 99.0%) and sodium chloride (NaCl, ≥99.5%) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). All solutions were prepared with Milli-Q water from a Milli-pore system. The buffer used in this work were listed as follows: DNA immobilization buffer: 0.5×TBE (44.5 mM Tris, 1 mM EDTA, 45 mM boric acid). Washing buffer: 10 mM Tris-HCl (pH 7.4). Electrochemical detection buffer: 10 mM Tris-HCl (pH 7.4) containing 5 mM K₃[Fe(CN)₆], 5 mM K₄[Fe(CN)₆] and 0.1 M KCl. The DNA and miRNA sequences used in the study were purchased from TaKaRa (Dalian, China, Table S2).

Construction of MoS₂-AuNPs-based single-layer nanoprobes (SLNPs)

MoS₂ nanosheet, MoS₂-AuNPs nanocomposite and SLNPs were prepared following previous literatures.^{1,2} Briefly, 20 μ L DNA3 solution (10 μ M) was added to 180 μ L (10 μ M) MoS₂-AuNPs suspension and incubated overnight at 25 °C with gentle shaking (molar ratio 1:1). Then, the mixture was centrifuged twice (5000 rpm, 30 min) and re-dispersed in 200 μ L 0.5×TBE to obtain DNA3/MoS₂-AuNPs (SLNPs) dispersion. Finally, the obtained SLNPs was purified and stored in 0.5×TBE at 4 °C.

Construction of MoS₂-AuNPs-based multilayer nanoprobes (MLNPs)

Nanoprobes DNA1/MoS₂-AuNPs (probe 1) and DNA2/MoS₂-AuNPs (probe 2) were prepared with the same procedure. After purification, probe 1 and probe 2 (molar ratio 1:1) were incubated at 37 °C overnight to form multilayer nanoprobes. The product was centrifuged twice (5000 rpm, 15 min) to retain a multilayer structure. After purification, 20 μ L DNA3 solution (10 μ M) was added to block the remaining active sites of MLNPs and capture the target miRNA-21. Finally, the product was purified and re-dispersed in 0.5×TBE for further use at 4 °C.

Preparation of electrochemical biosensors

5 μ L DNA4 (1 μ M) solution was dropped onto the cleaned gold electrode for 16 h at room temperature to obtain DNA4/Au electrode. After removing unbound DNA4 by Tris-HCl buffer, MCH was assembled on the surface of DNA4/Au to block the unspecific adsorption of miRNA-21.

Finally, the MCH/DNA4/Au was used to detect different concentrations of miRNA-21 in the presence of as-prepared MoS₂-based nanoprobes.

Fig. S1 ζ-potential values of (A) MoS₂-AuNPs, SLNPs, DNA1/MoS₂-AuNPs (probe 1), DNA2/MoS₂-AuNPs (probe 2) and MLNPs. (B-D) Size distribution of SLNPs, MLNPs and thermal denature of MLNPs (90 °C, 30 min), respectively.

Fig. S2 AFM images of (A) MoS₂, (B) MoS₂-AuNPs and (C) MLNPs. (D) Statistical histogram of MLNPs' height. N in Figure 2D represent the statistical numbers of MLNPs.

Fig. S3 TEM image of MoS_2 -AuNPs nanocomposites. Inset: statistical diameter of surface-loaded gold nanoparticles on MoS_2 nanosheets.

Fig. S4 EIS curves of (a) Au, (b) DNA4/Au, (c) MCH/DNA4/Au; (d) MLNPs incubated with MCH/DNA4/Au, (e) miRNA-21/MCH/DNA4/Au; (f) SNLPs/miRNA-21/MCH/DNA4/Au, (g) MLNPs/miRNA-21/MCH/DNA4/Au in 10 mM Tris-HCl buffer (pH 7.4) containing 5 mM K_3 [Fe(CN)₆], 5 mM K_4 [Fe(CN)₆] and 0.1 M KCl.

Fig. S5 EIS curves of (a) MCH/DNA4/Au, (b) miRNA-21/MCH/DNA4/Au, (c) 1-layer LBL probes/miRNA-21/MCH/DNA4/Au, (d) 2-layer LBL probes/miRNA-21/MCH/DNA4/Au, (e) 3-layer LBL probes/miRNA-21/MCH/DNA4/Au and (f) 4-layer LBL probes/miRNA-21/MCH/DNA4/Au.

Fig. S6 (A) EIS curves of SLNPs-amplified electrochemical biosensor incubated with different concentrations of miRNA-21 ($a \rightarrow l$, 0.01 fM, 0.1 fM, 1 fM, 10 fM, 100 fM, 1 pM, 10 pM, 100 pM, 1 nM, 10 nM, 100 nM, 1 μ M). (B) EIS curves of MLNPs-amplified electrochemical biosensor incubated with different concentrations of miRNA-21 ($a \rightarrow l$, 0.01 fM, 0.1 fM, 1 fM, 10 fM, 100 fM, 1 pM, 10 pM, 100 pM, 1 nM, 10 nM, 100 nM, 1 μ M).

Fig. S7 (A) EIS curves of (a) MCH/DNA4/Au and the SLNPs-amplified electrochemical biosensor incubated with (b) miRNA-486, (c) SM-miRNA and (d) miRNA-21, respectively. (B) EIS curves of (a) MCH/DNA4/Au and the MLNPs-amplified electrochemical biosensor incubated with (b) miRNA-486, (c) SM-miRNA and (d) miRNA-21, respectively. The concentrations of all miRNAs were 100 pM.

Fig. S8 EIS curves of miRNA-21 analysis in lysates of HeLa cells ($b \rightarrow g$, 10, 10², 10³, 10⁴, 10⁵, 10⁶) and L-O2 cells (a, 10⁵) by using MLNPs-amplified electrochemical biosensor.

Table S1. Analysis results of the MLNPs electrochemical biosensor for miRNA-21 detection in human serum samples (n=3).

Sample	Added (pM)	Found (pM)	Recovery (%)	RSD (%)
1	1	0.91, 1.35, 0.64	96.69	1.39
2	10	9.02, 10.12, 9.64	95.90	0.55
3	100	96.56, 108.34, 103.00	100.03	5.89

Table S2. The DNA and miRNA sequences used in the study.

Name	Sequence (5'-3')
DNA1	HS-(CH ₂) ₆ -GAGGACATCGCTCATCTC
DNA2	GAGATGAGCGATGTCCTC-(CH ₂) ₆ -HS
DNA3	TCTGATAAGCTATTTTT-(CH ₂) ₆ -HS
DNA4	HS-(CH ₂) ₆ -TTTTTTCAACATCAG
microRNA-21	UAGCUUAUCAGACUGAUGUUGA
single-base mismatch microRNA (SM-miRNA)	UAGCCUAUCAGACUGAUGUUGA
microRNA-486	UCCUGUACUGAGCUGCCCCGAG

References

- S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan and L. Wang, *ACS Appl. Mater. Interfaces* 2014, **6**, 18735-18741.
 S. Su, H. Sun, W. Cao, J. Chao, H. Peng, X. Zuo, L. Yuwen, C. Fan and L. Wang, *ACS Appl. Mater. Interfaces* 2016, **8**, 6826-6833.