This journal is © The Royal Society of Chemistry 2020

Supporting Information for:

Synthesis and Optical Properties of Mono- and Diaminocorannulenes

Feifei Xie, Nathaniel S. Finney*
School of Pharmaceutical Sciences and Technology, Health Sciences Platform, Tianjin University. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
Email: nfinney@tju.edu.cn

Page S1 1. Materials and instrumentations.

Page S1 2. Synthetic procedure and tabulated spectroscopic data.

Page S9 3. Optical data and spectra.

Page S13 4. References.

Page S14 5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.

1. Materials and instrumentation.

All commercial reagents were used without further purification. Solvents were purified using standard procedures. All reactions involving anhydrous and inert conditions were carried under an argon atmosphere, and the glassware was performed using the oven ($130{ }^{\circ} \mathrm{C}$) dried. Anhydrous solvents were obtained by filtration of reagent-grade solvent through an Innovative Technologies solvent drying system.
Column chromatographic purification was carried out on Merck silica gel 60 (particle size $0.040-0.063 \mathrm{~mm}$). Reactions were monitored by thin layer chromatography (TLC) and visualized by ultraviolet (UV) light ($\lambda=254 \mathrm{~nm}$ and $\lambda=365 \mathrm{~nm}$). Analytical TLC was performed with Merck TLC silica gel 60 F254.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker Ascend III 400 and Avance III 600 instruments at $298.6 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR chemical shifts were recorded in parts per million (ppm) relative to $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$ and $\mathrm{CD}_{3} \mathrm{OD}(\delta=3.31 \mathrm{ppm})$. Multiplicities are given as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), m (multiplet). ${ }^{13} \mathrm{C}$ NMR chemical shifts were recorded in parts per million (ppm) relative to $\mathrm{CDCl}_{3}(\delta=77.00 \mathrm{ppm})$, $\mathrm{CD}_{3} \mathrm{OD}(\delta=48.8 \mathrm{ppm})$, and DMSO- $\mathrm{d}_{6}(\delta=49.7 \mathrm{ppm})$.

MS data were obtained with Agilent Technologies TOF (6230B) in ESI ${ }^{+}$mode with TOF mass analyzer.
The UV absorption spectra were measured with Hitachi U-3900 spectrophotometer. Fluorescence measurements were carried out on Edinburgh FLS 980 and FLS 1000 spectrophotometer, using 450W Xenon lamp. Emission spectra were obtained by exciting at the longest wavelength excitation maximum. Absolute quantum yields were measured by using an integrating sphere detector from Edinburgh Instruments.

Abbreviations :
RT: Room Temperature
BINAP: (\pm)-2,2'-Bis(diphenylphosphino)-1,1'-binapthyl
$\mathrm{Pd}(\mathrm{dba})_{2}$: Bis(dibenzylidene-acetone) palladium
DCM: Dichloromethane
MeOH : Methanol
EtOAc: Ethylacetate
TEA: Triethylamine
THF: Tetrahydrofuran
DMF: N, N-Dimethylformamide

2. Synthetic procedures.

4a:

To a solution of monobromocorannulene ($20 \mathrm{mg}, 0.06 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(14 \mathrm{mg}, 0.12 \mathrm{mmol})$ in toluene (5 mL), under an argon atmosphere, propylamine (0.5 mL) was added, and the mixture was degassed three times by evacuating the flask and backfilling with Ar. $\mathrm{Pd}(\mathrm{OAc})_{2}(1.2 \mathrm{mg}, 0.006 \mathrm{mmol})$ and $\operatorname{BINAP}(3 \mathrm{mg}, 0.006 \mathrm{mmol})$
were added, and the mixture was heated to $50^{\circ} \mathrm{C}$. After 2 hours, the mixture was heated to $80^{\circ} \mathrm{C}$. After 10 hours, the reaction mixture was allowed to cool to RT, diluted with EtOAc (10 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30$ mL), and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : $\mathrm{EtOAc}=60: 1$) to afford 4a ($2 \mathrm{mg}, 0.007 \mathrm{mmol}, 11 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.75-7.87(\mathrm{~m}, 5 \mathrm{H}), 7.64-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.0,135.8,135.7,135.3,134.9,130.7,130.3,127.9,127.5$, 127.3, 127.2, 127.1, 126.9, 126.9, 126.5, 126.4, 126.3, 125.0, 122.9, 122.1, 55.4, 21.6, 11.5. MS-ESI: calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 308.1361$; found: 308.1187.

4b:

To a solution of monobromocorannulene ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) and KO'Bu ($48 \mathrm{mg}, 0.43 \mathrm{mmol}$) in toluene (5 mL), under an argon atmosphere, diethylamine ($40 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$) was added, and the mixture was degassed three times by evacuating the flask and backfilling with $\mathrm{Ar} . \mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\operatorname{BINAP}(10 \mathrm{mg}$, $0.02 \mathrm{mmol})$ were added, and the mixture was heated to $55^{\circ} \mathrm{C}$. After 2 hours, the mixture was heated to $70^{\circ} \mathrm{C}$. After 10 hours, the reaction mixture was allowed to cool to RT, diluted with EtOAc (20 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc (3 x $30 \mathrm{~mL})$. The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : $\mathrm{EtOAc}=60: 1)$ to afford $\mathbf{4 b}(5 \mathrm{mg}, 0.02 \mathrm{mmol}, 11 \%)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.81(\mathrm{~m}, 6 \mathrm{H}), 7.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{q}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}{ }^{3} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 150.6,137.6,136.3,136.0,135.8,132.4,131.4,130.8,130.8$, 130.4, 129.2, 127.2, 127.2, 127.0, 126.6, 126.2, 125.7, 108.2, 47.3, 12.1 .

MS-ESI: calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 322.1571$; found: 322.1361.

4c:

To a solution of monobromocorannulene ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{KO}^{\prime} \mathrm{Bu}(48 \mathrm{mg}, 0.43 \mathrm{mmol})$ in toluene (5 mL), under an argon atmosphere, tert-Butylamine (3 mL) was added, and the mixture was degassed three times by evacuating the flask and backfilling with argon. $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\operatorname{BINAP}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ were added, and the mixture was heated to $45^{\circ} \mathrm{C}$. After 2 hours, the mixture was heated to $60^{\circ} \mathrm{C}$. After 10 hours, the reaction mixture was allowed to cool to RT, diluted with EtOAc (30 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30$
mL), and the aqueous phase was extracted with EtOAc (3x 30 mL). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : $\mathrm{EtOAc}=60: 1$) to afford $4 \mathbf{c}(5 \mathrm{mg}, 0.02 \mathrm{mmol}, 11 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.55-7.86(\mathrm{~m}, 8 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 137.9,135.8,130.9,130.3,129.0,128.2,127.4,127.3,127.0$, 126.6, 126.5, 125.3, 125.0, 122.6, 103.9, 29.5, 21.5.

MS-ESI: calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 322.1517$; found: 322.1261.

4d:

To a solution of monobromocorannulene ($30 \mathrm{mg}, 0.09 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(28 \mathrm{mg}, 0.25 \mathrm{mmol})$ in toluene (5 mL), under an argon atmosphere, cyclohexylamine (2 mL) was added, and the mixture was degassed three times by evacuating the flask and backfilling with $\mathrm{Ar} . \mathrm{Pd}(\mathrm{OAc})_{2}(2 \mathrm{mg}, 0.01 \mathrm{mmol})$ and BINAP ($5 \mathrm{mg}, 0.01$ mmol) were added, and the mixture was heated to reflux. After 9 hours, the reaction mixture was allowed to cool to RT, diluted with EtOAc (20 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : $\mathrm{EtOAc}=60: 1)$ to afford $\mathbf{4 d}(12 \mathrm{mg}, 0.04 \mathrm{mmol}$, 39\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.64-7.90(\mathrm{~m}, 7 \mathrm{H}), 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 3.60$
$(\mathrm{s}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.19(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.0,135.8,135.1,130.9,130.4,127.4,127.1,126.5,123.3$, 122.4, 29.7, 25.8, 24.9.

MS-ESI: calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}+\mathrm{Na}]^{+}: 370.1647$; found: 370.1817.

4e:

To a solution of monobromocorannulene ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}$ ($48 \mathrm{mg}, 0.43 \mathrm{mmol}$) in toluene (5 mL), under an argon atmosphere, isopropylamine (2 mL) was added, and the mixture was degassed three times by evacuating the flask and backfilling with Ar. $\mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\operatorname{BINAP}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ were added, and the mixture was heated to $30^{\circ} \mathrm{C}$. After 2 hours, the mixture was heated to $50^{\circ} \mathrm{C}$. After 10 hours, the reaction mixture was allowed to cool to RT, diluted with EtOAc (20 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : EtOAc $=60: 1$) to afford $\mathbf{4 e}$ (5 $\mathrm{mg}, 0.02 \mathrm{mmol}, 11 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.55-7.88(\mathrm{~m}, 8 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.41(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.4,136.1,135.9,135.2,131.0,130.5,128.7,127.4,127.1$, 126.6, 126.5, 125.1, 123.3, 122.3, 53.9, 22.4.

MS-ESI: calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$: 308.1361; found: 308.1117.
4f:

To a solution of monobromocorannulene ($30 \mathrm{mg}, 0.09 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(60 \mathrm{mg}, 0.18 \mathrm{mmol})$ in toluene (5 mL), pyrrolidine (3 mL) was added under an argon atmosphere, and the mixture was degassed three times by evacuating the flask and backfilling with argon. $\mathrm{Pd}(\mathrm{OAc})_{2}(5$ $\mathrm{mg}, 0.02 \mathrm{mmol})$ and BINAP ($10 \mathrm{mg}, 0.02 \mathrm{mmol}$) were added ${ }^{[51]}$, and the mixture was heated to reflux. After 9 hours, the reaction mixture was allowed to cool to RT, diluted with EtOAc (20 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(50$ mL). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether : EtOAc $=50: 1$) to afford $4 f(16 \mathrm{mg}, 0.05 \mathrm{mmol}, 56 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.86(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.15(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13}{ }^{1}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 149.6,136.8,136.1,135.6,135.4,133.8,130.9,130.8,129.3$, 128.2, 127.4, 127.3, 126.9, 126.8, 126.4, 126.2, 124.9, 124.7, 124.5, 101.0, 52.2, 26.1.

MS-ESI: calculated for $\mathrm{C}_{27} \mathrm{H}_{14} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 320.1361$; found: 320.1117.
4 g :

To a solution of monobromocorannulene ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{KO}^{\prime} \mathrm{Bu}(48 \mathrm{mg}, 0.43 \mathrm{mmol})$ in toluene (4 mL), morpholine ($40 \mu \mathrm{~L}$, 0.46 mmol) was added under an argon atmosphere, and the mixture was degassed three times by evacuating the flask and backfilling with $\mathrm{Ar} . \mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\operatorname{BINAP}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ were added, and the mixture was heated to reflux. After 9 hours, the reaction mixture was allowed to cool to RT, diluted with EtOAc (20 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : $\mathrm{EtOAc}=20: 1)$ to afford $\mathbf{4 g}(36 \mathrm{mg}, 0.11 \mathrm{mmol}, 70 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.81(\mathrm{~m}, 6 \mathrm{H}), 7.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 4.02-4.07(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 151.9,137.4,136.3,136.1,135.6,132.3,131.9,130.8,129.6$, 129.1, 127.3, 127.0, 126.8, 126.7, 126.1, 125.6, 108.1, 67.1, 53.5 .

MS-ESI: calculated for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+:}$358.1310; found: 358.3291.

4h:

To a solution of monobromocorannulene ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{KO}^{\prime} \mathrm{Bu}(48 \mathrm{mg}, 0.43 \mathrm{mmol})$ in toluene (5 mL), under an argon atmosphere, aniline (2 mL) was added, and the mixture was degassed three times by evacuating the flask and backfilling with $\mathrm{Ar} . \mathrm{Pd}(\mathrm{OAc})_{2}(4 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\operatorname{BINAP}(10 \mathrm{mg}, 0.02 \mathrm{mmol})$ were added, and the mixture was heated to reflux. After 9 hours, the reaction mixture was allowed to cool to RT, diluted with EtOAc (20 mL), and filtered through celite. The filtrate was washed with aqueous $\mathrm{HCl}(1 \mathrm{M}, 30 \mathrm{~mL}$), and the aqueous phase was extracted with EtOAc (3 x $30 \mathrm{~mL})$. The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : $\mathrm{EtOAc}=20: 1)$ to afford $\mathbf{4 h}(20 \mathrm{mg}, 0.06 \mathrm{mmol}, 39 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.72-7.84(\mathrm{~m}, 7 \mathrm{H}), 7.62(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.45(\mathrm{~m}, 5 \mathrm{H})$, 7.04 (dt, $J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 144.7,135.8,130.9,130.9,129.5,129.4,128.9,128.3,127.9$, $127.6,127.5,127.3,127.1,127.0,126.9,126.8,126.7,126.6,126.4,126.1,126.1,125.7,124.9$, 124.1, 123.3, 121.9, 117.7.

MS-ESI: calculated for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 342.1204$; found: 342.1251.

4i:

To a solution of monobromocorannulene ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(45 \mathrm{mg}, 0.40 \mathrm{mmol}$) in toluene (5 mL), diphenylamine (6 $\mathrm{mg}, 0.04 \mathrm{mmol}$) was added under an argon atmosphere, and the mixture was degassed three times by evacuating the flask and backfilling with $\mathrm{Ar} . \mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{mg}, 0.02 \mathrm{mmol})$ and BINAP (10 $\mathrm{mg}, 0.02 \mathrm{mmol}$) were added, and the mixture was heated to reflux. After 9 hours, the reaction mixture was allowed to cool to RT, diluted with EtOAc (20 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and the aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : $\mathrm{EtOAc}=20$: 1) to afford $\mathbf{4 i}(12 \mathrm{mg}, 0.03 \mathrm{mmol}, 78 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.69-7.86(\mathrm{~m}, 6 \mathrm{H}), 7.59(\mathrm{dd}, J=14.7,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\text {NMR }}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 149.0,146.4,137.5,136.2,135.9,135.8,133.2,131.8,131.7$, $130.9,130.8,130.2,129.3,127.3,127.1,127.1,126.9,126.7,125.7,124.0,122.8,121.8,120.4$. MS-ESI: calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 418.1517$; found: 418.1823.

Monobromocorannulene (566mg, 1.7 mmol$), \mathrm{Pd}(\mathrm{dba})_{2}{ }^{[52]}$ (98 $\mathrm{mg}, 0.17 \mathrm{mmol}$), BINAP ($105 \mathrm{mg}, 1.7 \mathrm{mmol}$), and $\mathrm{NaO}^{t} \mathrm{Bu}$ $(660 \mathrm{mg}, 6.9 \mathrm{mmol})$ were added to a dried sealed tube, toluene $(10 \mathrm{~mL})$ was added. After stirring at RT for 30 minutes, ethylenediamine (1 mL) was added. Then, the mixture was heated to $110{ }^{\circ} \mathrm{C}$. After 8 hours, the reaction mixture was allowed to cool to RT, diluted with DCM (50 mL), and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, and the aqueous phase was extracted with DCM (3 x 100 mL). The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: PE: TEA $=250: 1$ to $\mathrm{DCM}: \mathrm{MeOH}=5: 1$) to afford brown oil, and then precipitate in the mixed solvent of DCM and n-Hexane to give $\mathbf{4 j}$ ($204 \mathrm{mg}, 0.66 \mathrm{mmol}, 39 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 8.05(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.76-7.66(\mathrm{~m}, 3 \mathrm{H})$, $7.61(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta: 148.2,137.4,137.0,136.8,135.9,135.4,132.1,131.7,130.4$, 129.6, 128.2, 128.2, 127.4, 127.4, 127.1, 125.7, 124.6, 124.2, 100.2, 43.6, 39.7.

MS-ESI: calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 309.1313; found: 309.1391.

5a:

1,6-dibromo-2,5-dimethylcorannulene ($70 \mathrm{mg}, 0.16$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.05 \mathrm{mmol})$, BINAP $(30 \mathrm{mg}$, 0.05 mmol), and $\mathrm{KO}^{t} \mathrm{Bu}(72 \mathrm{mg}, 0.64 \mathrm{mmol})$ were added to a dried sealed tube, toluene (5 mL) and propylamine (2 mL) was added, and stirring at rt for 30 minutes. Then, the mixture was heated to $110{ }^{\circ} \mathrm{C}$. After 10 hours, the reaction mixture was allowed to cool to RT, diluted with DCM $(30 \mathrm{~mL})$, and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and the aqueous phase was extracted with DCM (3 x 40 mL). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(100$ mL). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : $\mathrm{EtOAc}=50: 1)$ to afford $\mathbf{5 a}(33 \mathrm{mg}, 0.08 \mathrm{mmol}, 53 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~s}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 4 \mathrm{H}), 2.61(\mathrm{~s}, 6 \mathrm{H}), 1.82-1.93(\mathrm{~m}, 4 \mathrm{H}), 1.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 143.6,136.2,135.4,130.5,130.4,1301,127.3,125.9,125.4$, 125.0, 116.1, 53.4, 24.7, 12.72, 11.7. MS-ESI: calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 339.2252; found: 339.2040.

5b:

1,6-dibromo-2,5-dimethylcorannulene ($70 \mathrm{mg}, 0.16 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.05 \mathrm{mmol}), \operatorname{BINAP}(30 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{KO}^{t} \mathrm{Bu}(72 \mathrm{mg}, 0.64 \mathrm{mmol})$ were added to a dried sealed tube, toluene (5 mL) and pyrrolidine (2 mL) was added, and stirring at RT for 30 minutes. Then, the mixture was heated to $110{ }^{\circ} \mathrm{C}$. After 10 hours, the reaction mixture was allowed to cool to RT, diluted with DCM
$(30 \mathrm{~mL})$, and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50$ mL), and the aqueous phase was extracted with DCM ($3 \times 40 \mathrm{~mL}$). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : $\mathrm{EtOAc}=50: 1$) to afford 5b ($37 \mathrm{mg}, 0.09 \mathrm{mmol}, 56 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2 H), $3.56(\mathrm{~s}, 8 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 8 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 144.4,137.9,136.0,132.2,131.9,131.6,131.3,129.7,125.7$, 125.2, 125.0, 53.0, 26.7, 14.2 .

MS-ESI: calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 417.2252$; found: 417.2026.

5c:

1,6-dibromo-2,5-dimethylcorannulene ($70 \mathrm{mg}, 0.16$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{BINAP}(30 \mathrm{mg}$, 0.05 mmol), and $\mathrm{KO}^{\prime} \mathrm{Bu}$ ($72 \mathrm{mg}, 0.64 \mathrm{mmol}$) were added to a dried sealed tube, toluene (5 mL) and morpholine (2 mL) was added, and stirring at RT for 30 minutes. Then, the mixture was heated to $110^{\circ} \mathrm{C}$. After 10 hours, the reaction mixture was allowed to cool to RT, diluted with DCM (30 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and the aqueous phase was extracted with DCM ($3 \times 40 \mathrm{~mL}$). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(100$ mL). The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether: $\mathrm{EtOAc}=50: 1)$ to afford $\mathbf{5 c}(27 \mathrm{mg}, 0.06 \mathrm{mmol}, 38 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~s}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.01(\mathrm{t}, J=4.5 \mathrm{~Hz}, 8 \mathrm{H}), 3.48(\mathrm{~s}, 8 \mathrm{H}), 2.87(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}^{\mathrm{CNMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 145.0,136.9,135.7,132.4,131.6,131.5,131.0,129.5,126.2$, 125.5, 67.9, 52.5, 14.3.

MS-ESI: calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 449.2152$; found: 449.1959.

5d:

Dibromocorannulene ($70 \mathrm{mg}, 0.16 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($11 \mathrm{mg}, 0.05 \mathrm{mmol}$), BINAP ($30 \mathrm{mg}, 0.05 \mathrm{mmol}$), and $\mathrm{KO}^{\prime} \mathrm{Bu}$ ($72 \mathrm{mg}, 0.64 \mathrm{mmol}$) were added to a dried sealed tube, toluene (5 mL) and aniline (2 mL) was added, and stirring at RT for 30 minutes. Then, the mixture was heated to $110^{\circ} \mathrm{C}$. After 10 hours, the reaction mixture was allowed to cool to RT, diluted with DCM (30 mL), and filtered through celite. The filtrate was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$, and the aqueous phase was extracted with DCM ($3 \times 40 \mathrm{~mL}$). The combined organic phase was washed with saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: petroleum ether to petroleum ether : EtOAc =50 : 1) to afford $\mathbf{5 d}$ ($37 \mathrm{mg}, 0.08 \mathrm{mmol}, 50 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.83(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{q}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.23-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.06$ ($\mathrm{s}, 4 \mathrm{H}$), $6.91(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 135.4,132.6,130.2,129.4,126.7,125.4,125.2,115.8,29.7$. MS-ESI: calculated for $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 461.1939; found: 461.1623.

5e:

1,6-dibromo-2,5-dimethylcorannulene (23 mg , $0.05 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(3 \mathrm{mg}, 0.005 \mathrm{mmol})$, BINAP ($3 \mathrm{mg}, 0.005 \mathrm{mmol}$), and $\mathrm{NaO}^{t} \mathrm{Bu}$ (21 $\mathrm{mg}, 0.22 \mathrm{mmol})$ were added to a dried sealed tube, toluene (3 mL) was added. After stirring at RT for 30 minutes, ethylenediamine ($24 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$) was added. Then, the mixture was heated to $110^{\circ} \mathrm{C}$. After 12 hours, the reaction mixture was allowed to cool to RT, diluted with DCM (20 mL), and filtered through celite. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and the aqueous phase was extracted with $\operatorname{DCM}(3 \times 30 \mathrm{~mL})$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography (eluent: $\mathrm{DCM}: \mathrm{MeOH}: \mathrm{TEA}=150: 30: 1$) to afford brown oil, and then precipitate in the mixed solvent of methanol and cyclopentane to give $\mathbf{5 e}(3 \mathrm{mg}, 0.008$ mmol, 15%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 7.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.83(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.17(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.65(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$) $\delta: 143.7,134.6,130.4,129.8,129.7,127.3,126.1,125.8,125.5$, 117.1, 52.1, 48.8, 13.1.

MS-ESI: calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 395.2157$; found: 395.2240.

2,5-dimethylorannulene:

A solution of 1,6-dibromo-2,5-dimethylcorannulene ($105 \mathrm{mg}, 0.24 \mathrm{mmol}$) in anhydrous THF (5 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere using an acetone dry-ice bath, $n-\operatorname{BuLi}(3 \mathrm{M}, 0.1 \mathrm{~mL})$ was added dropwise. Anhydrous DMF (0.03 mL) was added slowly to the reaction mixture after stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 hour. After 1 h at $-78^{\circ} \mathrm{C}$, the mixture was brought back to RT and the reaction was quenched by carefully adding aqueous $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$, and washed with saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$, and the aqueous phase was extracted with DCM $(3 \times 50 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the crude product was purified by chromatography on silica gel with petroleum ether to afford 2,5dimethylcorannulene ${ }^{[53,54]}$ ($30 \mathrm{mg}, 0.11 \mathrm{mmol}, 45 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.94(\mathrm{~s}, 2 \mathrm{H}), 7.71(\mathrm{dd}, J=23.9,8.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.56(\mathrm{~s}, 2 \mathrm{H}), 2.84$ (s, 6H);
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.6,136.0,135.4,134.9,131.5,130.6,129.9,127.0,126.2$, 125.7, 124.8, 18.8.

3. Optical data and spectra

Fig. S1 Excitation spectra of 4a-i in $\mathrm{CH}_{3} \mathrm{CN}$ (a), DCM (b), MeOH (c), THF (d) at RT.

Fig. S2 UV spectra of 4a-i and Cor in DCM at RT.

Fig. S3 Excitation spectra of $\mathbf{5 a}-\mathbf{d}$ in $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{a}), \mathrm{DCM}(\mathrm{b}), \mathrm{MeOH}$ (c), THF (d) at RT.

Fig. S4 UV spectra of 5a-d and 2,5-dimethylcorannulene in DCM at RT.

Fig. S5 (a) UV spectra of $\mathbf{4 j}$ and 5 a in $\mathrm{H}_{2} \mathrm{O}$ at $\sim 10^{-5} \mathrm{M}$. (b) Excitation spectra of $\mathbf{4 j}$ (dashed lines) and 5e (solid lines) at RT.

Fig. S6 Emission spectra of 4a-i in $\mathrm{CH}_{3} \mathrm{CN}$ (a), DCM (b), MeOH (c), THF (d) at RT.

Fig. S7 Emission spectra of 5a-d and 2,5-dimethylcorannulene in $\mathrm{CH}_{3} \mathrm{CN}$ (a), DCM (b), MeOH (c), THF (d) at RT.

Table S1. Optical properties of 4a-j, 5a-e. ${ }^{\text {a-d }}$

	$-\mathrm{NR}^{1} \mathrm{R}^{2}$	$\lambda_{\text {max }}(\mathrm{abs})^{\text {e }}$	$\varepsilon_{\text {max }}$	$\lambda_{\max }(\mathrm{ex})$	$\lambda_{\max }(\mathrm{em})$	$\Phi(\%)$	Stokes shift
Cor	-	288	4.9	289	436	1	147
4 a	NHPr	291	1.2	290	494	15	204
4b	NEt_{2}	292	3.4	293	517	13	224
4c	$\mathrm{NH}^{t} \mathrm{Bu}$	292	1.4	291	497	18	206
4d	NHCy	292	6.9	291	501	7	210
4e	$\mathrm{NH}^{i} \mathrm{Pr}$	290	0.4	291	499	17	208
4 f	pyr	293	2.4	290	518	17	228
4 g	morph	294	2.1	294	502	18	208
4h	NHPh	295	0.2	295	465	18	170
4i	NPh_{2}	296	2.4	298	502	25	204
4j	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	288	1.3	289	517	9	228
CorMe 2	$-$	292	3.1	294	423	2	129
5a	NHPr	292	2.2	303	552	14	249
5b	pyr	294	1.6	297	562	6	265
5c	morph	299	1.7	299	516	8	217
5d	NHPh	292	6.4	295	518	17	223
5e	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$	297	1.5	297	560	11	263

${ }^{\text {a }}$ All λ values in nm. ${ }^{\text {b }}$ All measurements made at $\sim 10^{-5} \mathrm{M} .{ }^{\mathrm{c}}$ All measurements made in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, except $\mathbf{4} \mathbf{j}$ and $\mathbf{5 e}$, which was measured in $\mathrm{H}_{2} \mathrm{O}$ for solubility reasons. ${ }^{\mathrm{d}} \mathbf{C o r}=$ corannulene; CorMe $2=2,5$-dimethylcorannulene; Cy $=$ cyclohexyl; pyr $=$ pyrrolidinyl; morph $=$ morpholinyl. ${ }^{\mathrm{e}} \lambda_{\max }(\mathrm{abs})$ are the longest λ well-resolved absorbances.${ }^{f}$ $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \times 10^{4}$.

Table S2. Lifetime of 4a-i, 5a-d, and 2,5-dimethylcorannulene. ${ }^{\text {a,b }}$

	$\mathbf{4 a}$	$\mathbf{4 b}$	$\mathbf{4 c}$	$\mathbf{4 d}$	$\mathbf{4 e}$	$\mathbf{4 f}$	$\mathbf{4 g}$	$\mathbf{4 h}$	$\mathbf{4 i}$	$\mathbf{C o r M e}_{2}{ }^{\text {c }}$	$\mathbf{5 a}$	$\mathbf{5 b}$	$\mathbf{5 c}$	$\mathbf{5 d}$
τ_{f}	6.3	7.8	7.5	7.6	5.6	6.1	6.9	5.0	8.3	6.6	7.9	4.0	4.2	7.3
χ^{2}	1.11	1.12	1.05	1.11	0.92	1.15	0.96	1.08	0.96	1.09	0.97	1.01	1.03	1.10

${ }^{a}$ Lifetime in ns. ${ }^{b}$ All measurements made in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at RT. ${ }^{c}$ CorMe2 $=2,5$-dimethylcorannulene.

Table S3. Photophysical parameters of $\mathbf{4 j}$ and 5e. ${ }^{\text {a }}$

S^{b}	$\lambda_{\max }(\mathrm{em})^{\mathrm{c}}$		$\Phi(\%)$	$\tau_{\mathrm{f}}{ }^{\mathrm{d}}$			χ^{2}	
	$\mathbf{4 j}$	$\mathbf{5 e}$						
MeOH	501	544	11	10	8.0	8.6	1.08	0.89
DMSO	533	571	23	17	12.8	12.7	1.13	0.93
$\mathrm{H}_{2} \mathrm{O}$	517	560	9	11	11.2	11.3	0.98	1.19

${ }^{\mathrm{a}}$ Room temperature. ${ }^{\mathrm{b}} \mathrm{S}=$ solvent, ${ }^{\mathrm{c}} \lambda$ values in $\mathrm{nm} .{ }^{\mathrm{d}}$ Lifetime in ns.

4. References

S1. Sun, N.; Chen, H.; Li, X.; Xu, M.; Gan, Y.; Zhang, L.; Liu, Y. J. Org. Chem., 2017, 82, 10051.
S2. Abel, A. S.; Averin, A. D.; Cheprakov, A. V.; Roznyatovsky, V. A.; Denat, F.; BessmertnykhLemeune, A.; Beletskaya, I. P. Org. Biomol.Chem., 2019, 17, 4243.
S3. Seiders, T. J.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc., 1996, 118, 2754.
S4. Seiders, T. J.; Elliott, E. L.; Grube, G. H.; Siegel, J. S. J. Am. Chem. Soc., 1999, 121, 7804.

5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{CNMR}$ spectra

Compound 4a $\left(\mathrm{CDCl}_{3}\right)$:

Compound 4b $\left(\mathrm{CDCl}_{3}\right)$:

Compound $\mathbf{4 c}\left(\mathrm{CDCl}_{3}\right)$:

Compound 4d $\left(\mathrm{CDCl}_{3}\right)$:

Compound $\mathbf{4 e}\left(\mathrm{CDCl}_{3}\right)$:

ompound $\mathbf{4 f}\left(\mathrm{CDCl}_{3}\right)$:

Compound $\mathbf{4 g}\left(\mathrm{CDCl}_{3}\right)$:

Compound 4h $\left(\mathrm{CDCl}_{3}\right)$:

${ }^{13}$ C NMR ($\left.151 \mathrm{MHz}, \operatorname{CDC}\right) \delta 144.66,135.84,130.91$,
$130.88,129.54,129.41,128.26,127.55,127.51,127.12,127.03$, $26.99,126.83,126.65,126.40,126.14,125.68,124.87,124.05$ 23.33, 121.93, 117.72, 77.21, 77.00, 76.79.

		1	1	1	1	1	1	1	1	1	1	1		
140	130	120	110	100	90	80		60	50	40	30	20	10	0

Compound 4i $\left(\mathrm{CDCl}_{3}\right)$:

Compound $\mathbf{4 j}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$:

管曼

Compound 5a $\left(\mathrm{CDCl}_{3}\right)$:

Compound 5b ($\left.\mathrm{CDCl}_{3}\right)$:

Compound 5c $\left(\mathrm{CDCl}_{3}\right)$:

${ }^{13}$ C NMR (101 MHz , CDC6 $6145.00,136.87,135.67,132.35,131.62$
$131.49,131.00,129.53,126.18,125.50,67.90,52.48,14.34$.

Compound 5d (CDCl_{3}):

Compound 5e (${ }^{1} \mathrm{H}$ NMR: $\mathrm{CD}_{3} \mathrm{OD} ;{ }^{13} \mathrm{C}$ NMR : DMSO- d_{6}):

2,5-dimethylcorannulene $\left(\mathrm{CDCl}_{3}\right)$:

