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Methods and Instrumentation

All chemicals and solvents were purchased either from Tokyo Chemical Industries (TCl) or Sigma Aldrich and
used without any further purification. Powder X-ray diffraction (PXRD) data were recorded on a Rigaku
SmartLab X-ray diffractometer using Cu-K o radiation (A = 1.54178 A) by depositing powder on a glass
substrate, from 26 = 5° up to 40° with 0.02° increment. The TGA curves were obtained from a Rigaku TG 8120
analyzer (EVO2 TG/S-SL) using a heating rate of 5 °C min* under N; flow. Gas sorption of CO, and N, were
carried out using BEL-mini or BEL-18 (Microtrac BEL Corp., Japan) gas adsorption instruments. Xylene vapor
sorptions were measured by a BEL-max (Microtrac BEL Corp., Japan) gas adsorption instrument. Before all of
gas and vapor sorption experiments, samples were reactivated at 120 °C under vacuum for overnight. The
synchrotron PXRD data were collected using a synchrotron X-ray and multiple MYTHEN detectors of the

BLO2B2 beamline at Super Photon ring (SPring-8).

Vapor phase binary mixture selectivity: About 10 mg of activated samples of FePzNi and CoPzNi were placed
in 2 ml vial. This vial again placed in a one neck 30 ml glass tube which containing 2 ml equimolar binary
mixture of xylene isomers. To the glass tube, vacuum was applied to remove the moisture from empty space
and then placed at 35 °C. About one week later, the sample vial was taken out from the glass tube, and CDCl3
was added immediately. After soaking for 1 hr and sonication and centrifuge, a saturated solution was used
to measure H NMR spectra on Brucker models Ultrashild 500 Plus NMR spectrometer, where chemical shifts
(6 in ppm) were determined with a residual proton of the solvent as standard. For separation of a binary

mixture of components i and j, the adsorption selectivity (Sj) was calculated using the following equation:

Sij = Xi/Xj

, Where x; and xj denote the integrated areas of the each components in the NMR spectra.

In this work, the methyl groups of xylene isomers were considered.



Synthesis of Hofmann type PCPs

Preparation of [Fe(Pz)[Ni(CN)as]: Iron(ll)chloride tetrahydrate (FeCl,.4H,O of 0.002 M, 397 mg) and
potassium tetracyano nickelate(ll) (K;NiCN4 of 0.002 M, 481.5 mg) in ethanol/water (1:1, 20ml each) was
added simultaneously into stirring solution of pyrazine (0.002 M, 160 mg) taken in ethanol/water (1:1, 20ml).
After overnight stirring at room temperature, a fine orange yellow powder was isolated and washed with
ethanol/water mixture before use of further characterization. The obtained product from this reaction was

550 mg and calculated yield was 79%.

Preparation of [Co(Pz)[Ni(CN)4]: Cobalt(ll)chloride hexahydrate (CoCl,.6H,O of 0.002 M, 474 mg) and
potassium tetracyano nickelate(ll) ( KzNiCN4 of 0.002 M, 481.5 mg) in ethanol/water (1:1, 20ml each) was
added simultaneously into stirring solution of pyrazine (0.002 M, 160 mg) taken in ethanol/water (1:1, 20ml).
After overnight stirring at room temperature a light pink color powder was isolated and washed with
ethanol/water mixture before the use of further characterization. The obtained product from this reaction

was 500 mg and the calculated yield was 72%.

Preparation of [Ni(Pz)[Ni(CN)a]: Nickel(ll)chloride hexahydrate (NiCl,.6H,O of 0.002 M, 474 mg) and
potassium tetracyano nickelate(ll) ( KaNiCN4 of 0.002 M, 481.5 mg) in ethanol/water (1:1, 20ml each) was
added simultaneously into stirring solution of pyrazine (0.002 M, 160 mg) taken in ethanol/water (1:1, 20ml).
After overnight stirring at room temperature a slate blue color powder was isolated and washed with
ethanol/water mixture before use of further characterization. The obtained product from this reaction was

450 mg and the calculated yield 65%.



para-xylene meta-xylene ortho-xylene

Boiling point(K) 411.5 412.3 417.6
Freezing point(K) 286.4 222.5 248.0
Dipole moment(D) 0 0.36(liquid) 0.62(gas)
Polarizability(cm3) 13.7 14.2 14.9
Density at 198K (gcm3) 0.858 0.861 0.876

Table S1: Representation of physicochemical properties of three xylene isomers.!
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Figure S1: PXRD comparison of as synthesized, activated, after gas sorption, after vapor sorption and after px-
soaked experiments obtained for FePzNi.
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Figure S2: PXRD comparison of as synthesized, activated, after gas sorption, after vapor sorption and px-
soaked experiments obtained for CoPzNi.
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Figure S3: PXRD comparison of as synthesized, activated, after gas sorption and vapor sorption experiments
obtained for NiPzNi.
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Figure S4: Thermogravimetric measurements of as synthesized (blue) and activated (red) phase of FePzNi. The
observed weight loss ~13 % were attributed to the loss of 2.5 H,0 molecules per formula unit and the thermal
stability was found up to ~250 °C, which is lower than both CoPzNi and NiPzNi. This is mainly attributed to
longer bond distances between the Fe and the N atom of the pyrazine (Dre..v = 2.212 A) and N atom of the
cyanide (Dre-.v = 2.117 A). The square planar metal center of Ni and C atom of the cyanide distance was Dyj...c
=1.864 A (Figure S20).
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Figure S5: Thermogravimetric measurements of as synthesized (blue) and activated (red) phase of CoPzNi. The
observed weight loss ~13.3 % were attributed to the loss of 2.5 H,O molecules per formula unit and the
thermal stability of CoPzNi was found up to ~280 °C which is slightly higher than FePzNi and lower than NiPzNi.
This is due to reduce in bond distances between the octahedral center of Co and the N atom of the pyrazine
(Deo-n=2.167 A) and N atom of the cyanide (Dco..nv = 2.089 A). Further, square planar center held with shorter
distance between Ni and C atom of the cyanide was Dy;..c = 1.858 A (Figure $22).
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Figure S6: Thermogravimetric measurements of as synthesized (blue) and activated (red) phase of NiPzNi. The
observed weight loss ~14 % were attributed to the loss of 2.5 H,O molecules per formula unit and the thermal
stability of NiPzNi was found up to ~350 °C which is higher than both FePzNi and CoPzNi. This increase in
stability due to much shorter bond distances in case of NiPzNi for example, distance between the octahedral
metal center of Ni and the N atom of the pyrazine was Dy;..w = 2.037 A and square planar center of Ni and the

C atom of the cyanide was Dy;...c = 1.825 A (Figure S21).
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Figure S7: Synchrotron PXRD collected for activated CoPzNi (red) using wavelength (0.700A), calculated PXRD
(blue) obtained after refinement of cell parameters and the difference in diffraction pattern represented in
black. Refinement was carried out using space group p4/mmm and obtained unit cell, a=7.199 (97), ¢ =7.128
(15) and v =369.504 (15), which slightly smaller than FePzNi. The refinement of the activated CoPzNi confirmed
that no phase change was observed, and the unit cell matched with previously reported crystal structure.
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Figure S8: Synchrotron PXRD collected for activated NiPzNi (red) using wavelength (0.700A), calculated PXRD
(blue) obtained after refinement of cell parameters and the difference in diffraction pattern represented in
black. Refinement was carried out using space group p4/m and obtained unit cell, a =7.146 (15), c =7.016 (24)
and v =359.39 (20), which same as NiPzNi as synthesized form. The refinement of the activated NiPzNi
confirmed that no phase change was observed, and the unit cell parameters matched with previously reported
crystal structure.
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Figure S9: Vapor sorption of px isomer at 308 K for FePzNi (red), CoPzNi (blue) and NiPzNi (green).
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Figure S10: Recyclability of px isomer sorption measured up to 5cycles at 298 K for FePzNi.
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Figure S11: Recyclability of px isomer sorption measured up to 5cycles at 298 K for CoPzNi.
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Figure S12: 'H NMR spectra of pure px isomer measured using CDCls.
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Figure S13: *H NMR spectra of pure mx isomer measured using CDCls.
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Figure S14: *H NMR spectra of pure ox isomer measured using CDCls.
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px sieving over px and mx mixture
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Figure S15: Magnified *H NMR spectra measured using the CDCl; extract of px/mx mixture from vapour

phase experiment with respect to FePzNi.
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px selectivity is 2 over px and ox mixture
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Figure S16: Magnified *H NMR spectra measured using the CDCls extract of px/ox mixture from vapor phase
experiment with respect to FePzNi.
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px selectivity is 1.2 over px and mx mixture
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Figure S17: Magnified *H NMR spectra measured using the CDClz extract of px/mx mixture from vapor phase
experiment with respect to CoPzNi.

22



px selectivity is 1.15 over px and ox mixture
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Figure S18: Magnified *H NMR spectra measured using the CDCls extract of px/ox mixture from vapor phase
experiment with respect to CoPzNi.
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Adsorbent px/mx px/ox

Cus(BTC) 0.9 1.4
Mil-53(Al)ht 0.8 0.3
MIL-47 2:9 0.7
FePzNi px-selective 2

CoPzNi 117 1.15

Table S2: Vapor phase binary mixture (px/mx and px/ox) selectivity comparison with the reported work.?
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Figure S20: Representation of coordination distances in activated phase of FePzNi structure.
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Figure S21: Representation of coordination distances in as synthesized phase of NiPzNi structure. The bond
distances in NiPzNi were much shorter compared to both FePzNi and CoPzNi, (Dwiz-niz = 10.027(4) A along
diagonal and Dyiz..via = 7.024(4) A in between the 2D layer); the distance between the octahedral Ni and N

atom of the pyrazine (Dni.-v= 2.037(7) A) and square planar Ni and the C atom of the cyanide (Dy;..c = 1.825(209)
A)).
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Figure S22: Representation of coordination distances in as synthesized phase of CoPzNi structure. The bond
distances in CoPzNi lie between those observed for the FePzNi and NiPzNi structures. For example, the Co-:-Co
distances along the diagonal and between the 2D layer (Dco1.-cos = 10.131(6) A, and Dcoz-cos = 7.107(6) A,
respectively) (Figure S22 and Table 1), the Co to N (cyanide) distance (Dco-n = 2.089(36) A), and Co to N
(pyrazine) distance (Dco-v= 2.167(64) A). The square planar Ni center was similar (Dco-.c= 1.858(43) A).
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As synthesised

Activated (120°C for 12hrs)

Figure S23: Images of as synthesized (above) and activated (below) samples of FePzNi, CoPzNi and NiPzNi.
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Computational Details

The experimentally observed adsorption isotherm of p-xylene (px) suggests that 0.5 molecules of px can
be adsorbed into one unit cell of three Hofmann-type PCPs (FePzNi, CoPzNi, NiPzNi). To locate the adsorption
position px, we carried out canonical Monte-Carlo (MC) simulations,® as implemented in RASPA,* using
Lennard-Jones (LJ) potentials to describe the Van der Waals interaction of px with PCP framework. The LJ
parameters were taken from the standard universal force field (UFF)®, where the Lorentz-Berthelot mixing
rules were used for different atoms. The electrostatic interaction was evaluated with the Ewald summation
method, where the DDEC atomic charges®’ were used. The MC simulation was carried out by placing 32 px
molecules in a simulation box of 4x4x4 supercell of PCPs. In the MC simulation, the first 2x10° cycles were
consumed for obtaining equilibration and then 5x10° cycles were used for obtaining positions of px molecules.
The final adsorption configuration was used to construct the initial structure for performing geometry
optimization with density functional theory (DFT).

The rotation barrier of pyrazine and binding energies of px into FePzNi, CoPzNi, and NiPzNi were
calculated using spin-polarized DFT method with periodic boundary conditions as implemented in the Vienna
Ab initio Simulation Package (VASP 5.4.4).2° The Perdew-Burke-Ernzerhof functional’® with Grimme’s semi-
empirical “D3” dispersion term®! (PBE-D3) was employed in these calculations. The plane wave basis sets with
an energy cutoff of 850 eV were used to describe valence electrons and the projector-augmented-wave
pseudopotentials’*!® were used to describe core electrons. The criterion of atomic force for geometry
optimization was set to be 0.01 eV/A. One unit cell was used in the calculation of the rotation barrier of
pyrazine and a 2x1x1 supercell was used in the calculation of binding energy. The Brillouin zone was sampled
by 3x3x3 and 1x3x3 Monkhorst-Pack!* meshes of k-points for one unit cell and 2x1x1 supercell , respectively.
Hubbard U correction® was applied to the d electrons of Fe, Co, and Ni atoms (Uess = 4.0, 3.3, and 6.4 eV for
Fe, Co, and Ni, respectively).'® In the optimization of the px adsorption structure, the lattice parameters of
PCPs were fixed because the experimental power X-ray diffraction suggested that that little change occurs in
the lattices by px adsorption.

The rotational barrier of the pyrazine ligand was calculated by scanning the potential energy surface
against the rotation of the pyrazine ligand along the c axis. The binding energy (BE) of px with PCP was
calculated with equation S1;

BE = E(PCP -px)— E(PCP) - E(px) (S1)

where E(PCP-px) is the total energy of PCP (PCP = FePzNi, CoPzNi, NiPzNi) with I molecule of px in equilibrium
structure, E(PCP) and E(px) are the total energies of empty PCP and one free px molecule, respectively.

Table S3. PBE-D3-calculated binding energy, interaction energy between px and PCPs and deformation energy
of PCP framework upon px adsorption.

BE Eint Edef
FePzNi -18.3 -20.8 2.5
CoPzNi -16.1 -18.8 2.7
NiPzNi -13.8 -17.0 3.2
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Coordinates for optimized adsorption structures of px in three Hofmann-type PCPs.

0.2492800307416019
0.7493584232768100
0.9990909171265798
0.4997352198380014
0.1028587497042253
0.3956541261527491
0.3927025019318506
0.1059532375068883
0.9951105723061318
0.9943621902504134
0.6034263861280067
0.8952639867709706
0.8931333710658720
0.6055854501910076
0.5051523205532433
0.5045217815655008
0.1594178116885274
0.3391010506446293
0.3373399890567654
0.1612532431815410
0.4263717320594367
0.0731923731183954
0.0735878727542882
0.4260327268078257
0.6600249013697521
0.8386900571031290
0.8372304698577793
0.6615085609724574
0.9158692853663268
0.5837480113373346
0.5841519656983252
0.9154071059251692
0.2209059155944217
0.3142281361141173

0.4996121285171213
0.4997243040121830
0.9996217466023936
0.9998130529531153
0.7902389466989490
0.2088280795153068
0.7987649308211644
0.2005730759454281
0.9948012906280539
0.0065382931585987
0.7913747059877139
0.2078712085102339
0.7962423937344099
0.2032964215315047
0.9933520073657149
0.0049656987494728
0.6749676057220952
0.3241302591491717
0.6815291041336593
0.3178821712459055
0.9963383002513240
0.0035823190719100
0.9910828804033827
0.0087501622853097
0.6767025012173846
0.3225949274138387
0.6800204285696481
0.3194710523591766
0.0033036902519754
0.9966605646149063
0.9954361404179508
0.0045447980768358
0.6395183028337641
0.6176238444014501

px@FepzNi
1.00000000000000
14.5223999023000001 0.0000000000000000 0.0000000000000000
0.0000000000000000 7.2401199341000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 7.2791900634999998
Ni Fe N C H
2 2 12 24 18
Direct

0.9998170479944619
0.9998268439521141
0.0233849348391715
0.9763874214797355
0.0383670826650118
0.9609995965955065
0.9962304665695783
0.0039580782477415
0.3311433244178659
0.7142831002448986
0.9739720801775462
0.0258374198173073
0.0178404647532489
0.9818307160445201
0.2853996093633953
0.6685691721099118
0.0337233050363892
0.9657443259791378
0.0058310821527030
0.9940921442516881
0.3809426233323236
0.6188517523518868
0.4279547847437541
0.5718400834671726
0.9832319918437307
0.0164982781057219
0.0112876525752910
0.9883739664374147
0.4265352725945561
0.5730746494279586
0.3819291690727766
0.6176595983817137
0.6153433531881873
0.5754942684578879
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0.3460503231807621
0.2794445136888939
0.1861375805051679
0.1543023914975095
0.4471946082166127
0.0531438384015317
0.3627438717618716
0.1367805579220160
0.1374597889652733
0.3621852074159335
0.8525359869017848
0.6471291462009461
0.6479036344594178
0.8516255210949097
0.2001490791765406
0.3640541547472083
0.3001951764596171
0.1363238408900855
0.4841073812099452
0.4596927304666494
0.4786287035999237
0.0405677915666800
0.0163051943434169
0.0217043421146101

px@ CopzNi

1.00000000000000

0.4788565125211832
0.3604009373258279
0.3822103675969046
0.5210437202170581
0.4612055408044782
0.5387179536927889
0.9875761285069800
0.0124397612624207
0.9774735831749624
0.0222694981254747
0.0082194112665945
0.9918854546178508
0.9947482436225741
0.0053742725462769
0.7488882349629549
0.7070128130947779
0.2511096194442217
0.2926854074491274
0.3952076730755891
0.3808914075411778
0.5976413974071733
0.6190799736502797
0.6046640929716602
0.4022749551666251

0.4585376336266833
0.3844742202621134
0.4243937694831317
0.5412800498739969
0.4169255579676800
0.5826997484776371
0.3024660125189769
0.6974398233367438
0.3507354289493350
0.6491540483553067
0.3463740431880211
0.6531178012949965
0.3029216994532078
0.6965502136093491
0.7088349431570506
0.6423810622626434
0.2909207192376542
0.3576690490823324
0.5316474104682598
0.2917967461388074
0.3966328865911564
0.7077672734119531
0.4678482002261433
0.6029572944035664

14.3107795714999995 0.0000000000000000 0.0000000000000000
0.0000000000000000 7.1716899871999997 0.0000000000000000
0.0000000000000000 0.0000000000000000 7.1558299065000002

Ni  Co N C H
2 2 12 24 18

Direct

0.2499834060954313
0.7499588521043918
0.9988863885190540
0.5009100417649179
0.1020598607529521
0.3979001188168141
0.3969176866577939
0.1031043913350445
0.9957503042185891
0.9945635260288057

0.4999539449056343
0.4999968766072698
0.9998428656763281
0.0001154872193965
0.7941833720646301
0.2058768409235086
0.7985610537427590
0.2011577177067494
0.9949431816526868
0.0051865196260579

0.9999832837096392
0.9999787195244281
0.0345091798392403
0.9650018467487911
0.0439752333711638
0.9558253669255592
0.9840384961316460
0.0153890239373808
0.3396544392252991
0.7282231317787549
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0.6029499777017122
0.8970285250606693
0.8961399540407413
0.6037463769145006
0.5049414068896212
0.5037985064106962
0.1595495372611992
0.3404054682148114
0.3403032215525812
0.1596872423170197
0.4248786060135359
0.0746176485832279
0.0752606229336337
0.4242615163266805
0.6600936334291987
0.8398397942399569
0.8391938801040126
0.6606940535988528
0.9151549751316921
0.5843778417320848
0.5850620572628173
0.9144556592399269
0.2214166320500439
0.3156411878158423
0.3469081884911347
0.2785240006861827
0.1842952652614898
0.1530277718219821
0.4492369960984490
0.0507061527561348
0.3606621635358920
0.1388281402787825
0.1399979197603400
0.3595395188233752
0.8510814604119261
0.6484348750032751
0.6497002598004045
0.8497858119091148
0.2015472567883094
0.3668938959621926
0.2983998051071808
0.1330319830904259
0.4873172684371880
0.4611758156414112

0.7951840540292991
0.2050127782913123
0.7971573746763312
0.2027904963431979
0.9941876876550140
0.0051836324075509
0.6780609736513838
0.3219835722829245
0.6818345864718651
0.3179889941028620
0.9961620637761612
0.0034040454739639
0.9909478679981163
0.0090699279515292
0.6792524901349708
0.3208809550695051
0.6806712161695074
0.3192707180875658
0.0023647312578561
0.9973961200729633
0.9968980866172927
0.0024957081401737
0.6421291446033592
0.6192915039413265
0.4780170900805487
0.3578513394634939
0.3806929802758390
0.5219536832746101
0.4602046873038788
0.5397098605074149
0.9860859916105156
0.0131879335864937
0.9773763700236842
0.0230414318430476
0.0072233568197504
0.9925851717111343
0.9971604130483058
0.0018422285171766
0.7536861676631261
0.7095480513028889
0.2462728432421954
0.2904201611816788
0.3923823670881745
0.3804352345001050

0.9634630761422613
0.0359415182571041
0.0304242643481771
0.9693316710428519
0.2713642007101313
0.6598419702330105
0.0382712445188957
0.9616313580561808
0.0005108213803950
0.9992231041149893
0.3674989762842884
0.6320810920399325
0.4378747036224340
0.5616934182440900
0.9763143509968586
0.0233979787437377
0.0194797721589026
0.9804103233793597
0.4358970330326670
0.5635870641912817
0.3692832898638088
0.6302441262824843
0.6166990132919992
0.5726954184581459
0.4543506637104144
0.3830693023840652
0.4270606849397680
0.5454367631831616
0.4093449552951398
0.5905922524417733
0.2868099597775711
0.7127942543488288
0.3591791099797419
0.6404076265584635
0.3537790476404581
0.6457272658864213
0.2887969056622808
0.7106568581097790
0.7112963192757249
0.6381450001629645
0.2885071613902213
0.3616334741190173
0.5245225768319486
0.2810241674124967
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0.4810975107209856
0.0388238778714083
0.0125602856935885
0.0189029119863378

0.5980733476396338
0.6196018424692582
0.6073536207606764
0.4018355224365067

0.3894742267340234
0.7188454319678144
0.4754102969614920
0.6107141773830946

0.0000000000000000
0.0000000000000000
7.0425500870000004

px@NipzNi
1.00000000000000
14.2415800094999998 0.0000000000000000
0.0000000000000000 7.1592798233000003
0.0000000000000000 0.0000000000000000
Ni N C H
4 12 24 18

Direct

0.2496683408271565
0.9984816416923152
0.7496945229891665
0.5008738001915916
0.1005912073215214
0.3988045771445243
0.3971114761004344
0.1021946850859763
0.9951505302777193
0.9944141345519384
0.6015600400895238
0.8977160240565283
0.8963479529183687
0.6030788989719298
0.5050419994989710
0.5042516490868891
0.1581819426402475
0.3411638365253893
0.3403254236392570
0.1590065242529022
0.4246672635304733
0.0747822921855175
0.0752258189840305
0.4241968201159949
0.6589335096337763
0.8404013011909726
0.8394242580025448
0.6599842634545041
0.9141565088275314
0.5852565970545598
0.5857454104411914

0.4997327902453250
0.9997402110959328
0.4997692819476356
0.9997054033817605
0.7947836565383497
0.2047910339062327
0.7999486986957649
0.1995654697092419
0.9954662649387060
0.0056492159323582
0.7954800635118815
0.2038563392435009
0.7987680014779954
0.2006950201418078
0.9937752053496780
0.0040117027369604
0.6781265273526103
0.3213773886672655
0.6825025722727958
0.3169601954756658
0.9944553603154631
0.0049506401678698
0.9922800889378038
0.0072073623355493
0.6791041569496343
0.3203364040702468
0.6813927595244564
0.3181271287430150
0.0023257869272157
0.9970906044675232
0.9971621318896453

0.9997694642568007
0.0238052933485093
0.9995175940223362
0.9756430820432698
0.0359119209858818
0.9635325668838632
0.9928017532779165
0.0068410229809359
0.3262880691337173
0.7201423666176723
0.9734666367867604
0.0260128200550653
0.0196682046102268
0.9797022396870716
0.2793627315023883
0.6732195206961435
0.0342057101803732
0.9652563089147250
0.0058373171088064
0.9937923135664875
0.3769501904224839
0.6225480952444258
0.4251826611283036
0.5743196372003183
0.9824629537299430
0.0167853980561716
0.0124954855669444
0.9865961930892411
0.4239726973851106
0.5755735800031658
0.3781745430556072
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0.9137002908383423
0.2201108241989473
0.3152575539308842
0.3481514230966809
0.2801916864328717
0.1850631939079150
0.1521632802467323
0.4515364767223105
0.0487756916463908
0.3602311799062434
0.1392301055433762
0.1400506461692288
0.3593608466224936
0.8498250548255797
0.6495641373104419
0.6504817860124348
0.8489929316934379
0.1993283581771124
0.3660615575471056
0.3009787151915617
0.1342853918432212
0.4878683121918428
0.4651862171959422
0.4842398725225436
0.0350519876043833
0.0124372161963322
0.0161511822165181

0.0022868883785137
0.6448852336247128
0.6203075237109914
0.4761341570916926
0.3545909049158524
0.3790761275540078
0.5232815863165428
0.4575201748095736
0.5418429426945579
0.9829874219434132
0.0162334577183927
0.9789144376257042
0.0205370323417782
0.0064780169414078
0.9928070731121252
0.9984580157930196
0.0010539242717087
0.7584076176139547
0.7114783215194720
0.2411894770033314
0.2877994203639247
0.3876223443431002
0.3795832132566588
0.5954900681631017
0.6201602613061610
0.6112914926690891
0.4038581155855070

0.6213862831981203
0.6135666461544318
0.5743512306400120
0.4592253594372835
0.3860365160982724
0.4253141082547032
0.5403929846418123
0.4194926705924971
0.5800416762461040
0.2950694045637405
0.7044353899091220
0.3445925081662153
0.6548838341791168
0.3405072016542761
0.6590991432790148
0.2958400375650854
0.7037928754508584
0.7065850312779034
0.6418094260751843
0.2929370760860053
0.3579973216709078
0.5378459582070931
0.2885548933129201
0.4033933156643030
0.7107201917695676
0.4614188516841509
0.5965779366833104
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