# **Electronic Supplementary Information**

# A Light-operated Pillar[6]arene-based Molecular Shuttle

Tomoki Ogoshi,\* Daisuke Kotera, Shixin Fa, Shungo Nishida, Takahiro Kakuta,

Tada-aki Yamagishi and Albert M. Brouwer

## **Table of Contents**

| Experimental Section                                                                   | S2-S4      |
|----------------------------------------------------------------------------------------|------------|
| <sup>1</sup> H and <sup>13</sup> C NMR spectra                                         | S5-S7      |
| Job plot for a mixture of axle 1 and wheel 2                                           | <b>S</b> 8 |
| <sup>1</sup> H NMR titration of axle <b>1</b> with wheel <b>2</b> in $CDCl_3$          | S9         |
| <sup>1</sup> H- <sup>1</sup> H COSY and NOESY NMR of <i>E</i> -[2]Rotaxane <b>5</b>    | S10, S11   |
| Variable temperature <sup>1</sup> H NMR measurements of <i>E</i> -[2]Rotaxane <b>5</b> | S12        |
| EXSY measurements of <i>E</i> -[2]Rotaxane <b>5</b>                                    | S13        |
| <sup>1</sup> H- <sup>1</sup> H COSY and <sup>1</sup> H NMR of Z-Dumbbell <b>6</b>      | S14        |
| Variable temperature <sup>1</sup> H NMR measurements of Z-[2]Rotaxane <b>5</b>         | S15        |
| References                                                                             | S16        |

### **Experimental section**

**Materials.** All solvents and reagents were used as supplied. Axle 1, per-ethylated pillar[6]arene 2 and stopper 4 were synthesized according to the previous papers.<sup>S1-S3</sup>

**Measurements.** The <sup>1</sup>H NMR spectra were recorded at 500 MHz and <sup>13</sup>C NMR spectra were recorded at 125 MHz with a JEOL-ECA500 spectrometer. UV-Vis absorption spectra were recorded with a JASCO V-670. For UV-Vis absorption measurements, one centimeter quartz cuvets were used.

Axle 3. To a solution of azobenzene bis-propargyl ether 7<sup>S4</sup> (100 mg, 0.345 mmol), 1,4diazidobutane 8<sup>S3</sup> (1.00 g, 7.14 mmol) in chloroform (15 mL), TBTA (9.50 mg, 0.0179 mmol) was added. The reaction mixture was stirred at 25 °C for 1 h. To the mixture, Cu(CH<sub>3</sub>CN)<sub>4</sub>PF<sub>6</sub> (5.16 mg, 0.0138 mmol) was added, and the mixture was stirred at 25 °C for 24 h. The solution was poured into *n*-hexane and the precipitate was collected by filtration. Column chromatography (silica gel; ethyl acetate) afforded a solid (axle 3, 100 mg, 0.175 mmol, Yield: 51%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, ppm) :  $\delta$  = 7.88 (d, J = 9.2 Hz, 4H, azobenzene), 7.63 (s, 2H, triazole), 7.10 (d, J = 8.6 Hz, 4H, azobenzene), 5.30 (s, 4H, methylene), 4.42 (t, J = 6.9 Hz, 4H, methylene), 3.35 (t, J = 6.6 Hz, 4H, methylene), 2.03 (br, 4H, methylene), 1.61 (br, 4H, methylene) (Fig. S1a), <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz, ppm) :  $\delta$  = 160.2, 147.4, 144.0, 124.4, 122.6, 115.1, 62.3, 50.7, 49.8, 27.5, 26.0. (Fig S1b) ESI-HRMS: Calcd for C<sub>26</sub>H<sub>30</sub>N<sub>14</sub>NaO<sub>2</sub> (*m*/*z*): [M+Na]<sup>+</sup>, 593.2574, found 593.25686.



[2]Rotaxane 5. Axle 3 (80.0 mg, 0.140 mmol) and pillar[6]arene 2 (748 mg, 0.700 mmol) were dissolved in chloroform (5 mL). To the mixture, stopper 4 (157 mg, 0.420 mmol) and TBTA (3.70 mg, 6.97 µmol) was added. The reaction mixture was stirred at 25 °C for 24 h. To the mixture, Cu(CH<sub>3</sub>CN)<sub>4</sub>PF<sub>6</sub> (2.00 mg, 5.37 µmol) was added, and the mixture was stirred at 25 °C for 24 h. The solvent was removed by vacuum, to obtain the residue. Column chromatography (silica gel; dichloromethane : ethyl acetate = 3: 1) afforded a solid ([2]rotaxane 5, 130 mg, 0.0545 mmol, Yield: 39%). <sup>1</sup>H NMR  $(CDCl_3, 500 \text{ MHz}, \text{ppm})$  :  $\delta = 7.89 \text{ (d, J} = 8.3 \text{ Hz}, 4\text{H}, \text{azobenzene}), 7.25-7.10 \text{ (m, 38H}, 10.25 \text{ Hz})$ trityl and azobenzene), 6.90 (d, J = 8.6 Hz, 2H, trityl), 6.65 (br, 12H, phenyl of pillar[6]arene), 5.21 (s, 4H, methylene), 5.12 (s, 4H, methylene), 3.87-3.62 (br, 36H, methylene bridge and methylene of pillar[6]arene), 1.25 (br, 36H, methyl of pillar[6]arene) (Fig. S2a), <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz, ppm) :  $\delta = 160.4$ , 156.5, 156.2, 150.5, 147.2, 177.0, 147.9, 132.3, 132.1, 131.3, 131.1, 130.8, 123.0, 115.1, 115.0, 113.6, 113.5, 113.3, 64.4, 64.3, 64.2, 63.9, 61.9, 61.2, 48.7, 31.8, 26.8, 26.6, 26.5, 15.2 (Fig. S2a). ESI-HRMS: Calcd for C<sub>148</sub>H<sub>157</sub>N<sub>14</sub>NaO (*m*/*z*): [M+Na]<sup>+</sup>, 2410.1878, found 2410.1874.



**Dumbbell 6.** Axle **3** (48.0 mg, 0.0842 mmol) was dissolved in chloroform (8 mL). To the mixture, stopper **4** (180 mg, 0.481 mmol) and TBTA (2.54 mg, 4.79 μmol) was added. The reaction mixture was stirred at 25 °C for 1 h. To the mixture, Cu(CH<sub>3</sub>CN)<sub>4</sub>PF<sub>6</sub> (1.80 mg, 4.83 μmol) was added, and the mixture was stirred at 25 °C for 24 h. The solvent was removed by vacuum, to obtain the residue. The residue was washed with *n*-hexane. Column chromatography (silica gel; dichloromethane : methanol = 9 : 1) afforded a solid (Dumbbell **6**, 103 mg, 0.0781 mmol, Yield: 93%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, ppm) :  $\delta$  = 7.86 (d, J = 8.6 Hz, 4H, azobenzene), 7.58 (s, 2H, triazole), 7.56 (s, 2H, triazole), 7.24-7.16 (m, 30H, trityl), 7.12 (d, J = 9.2 Hz, 4H, azobenzene), 7.07 (d, J = 8.6 Hz, 4H, phenyl), 6.86 (d, J = 8.6 Hz, 4H, phenyl), 5.27 (s, 4H, methylene), 5.16 (s, 4H, methylene), 4.39 (br, 8H, methylene), 1.95 (br, 8H, methylene) (Fig. S3a), <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz, ppm) :  $\delta$  = 160.2, 156.3, 147.4, 147.0, 139.8, 132.4, 131.2, 127.5, 126.0, 124.5, 122.8, 115.1, 113.6, 64.4, 62.3, 62.1, 49.5, 27.1 (Fig S3b), APCI-HRMS. Calcd for C<sub>82</sub>H<sub>74</sub>N<sub>14</sub>O<sub>4</sub> (*m/z*): [M + H]<sup>+</sup>, 1319.6090, Found: 1319.6098.



Fig. S1 (a)  $^{1}$ H and (b)  $^{13}$ C NMR spectra (298 K, CDCl<sub>3</sub>) of axle 3.

S5



Fig. S2 (a)  $^{1}$ H and (b)  $^{13}$ C NMR spectra (298 K, CDCl<sub>3</sub>) of *E*-[2]rotaxane 5.



Fig. S3 (a)  $^{1}$ H and (b)  $^{13}$ C NMR spectra (298 K, CDCl<sub>3</sub>) of Dumbbell 6.

### Job plot for a mixture of axle 1 and pillar[6]arene 2



Fig. S4 Job plot between axle 1 (guest) and wheel 2 (host) was collected by plotting the  $\Delta\delta$  in chemical shift of the proton signal of methylene moiety of axle 1 observed by <sup>1</sup>H NMR spectroscopy (298 K, CDCl<sub>3</sub>) against the change in the mole fraction of the wheel 2. Concentration: [axle 1] + [wheel 2] = 5 mM. The plot indicates a 1:1 binding between the host and guest.

**Determination of association constants**. In axle 1-pillar[6]arene 2 complex in CDCl<sub>3</sub>, chemical exchange between free and complexed species was fast on an NMR timescale. Thus, NMR titrations were done with solutions which had a constant concentration of axle 1 (1 mM) and varying concentrations of pillar[6]arene 2. By the non-linear curve-fitting method,<sup>S4</sup> the association constant *K* for the host-guest complex between pillar[6]arene 2 and axle 1 was calculated as  $K = 1.6 \pm 0.1$  M<sup>-1</sup>.



Fig. S5 <sup>1</sup>H NMR titration of Axle 1 (methylene protons) with pillar[6]arene 2 in CDCl<sub>3</sub> at 298 K.

# <sup>1</sup>H-<sup>1</sup>H COSY and NOESY NMR of *E*-[2]Rotaxane 5

# (a) <sup>1</sup>H-<sup>1</sup>H COSY NMR



### (b) 2D NOESY NMR



**Fig. S6** (a) <sup>1</sup>H-<sup>1</sup>H COSY and (b) NOESY NMR of E-[2]rotaxane **5** at 213 K in CDCl<sub>3</sub>. In (b), cross peaks in green circles indicate EXSY between complex and un-complex stations. Cross peaks in purple circles indicate NOE between pillar[6]arene ring and axle in E-[2]rotaxane **5**.

#### Determination of the Rate of the Ring Shuttling of E-[2]Rotaxane 5

#### From Variable Temperature <sup>1</sup>H NMR Measurements

The free energy of activation for the exchange  $\Delta G^{\ddagger}$  was estimated by using the approximate expression<sup>S5,6</sup>:

 $\Delta G^{\ddagger} = 8.314 T_c [22.96 + \log(T_c/\delta v)]$ 

where  $\delta v$  is the chemical shift difference between the proton signals from complexed and un-complexed species. The coalescence temperature  $T_c$  was estimated on the coalescence signal.

The extrapolated value of k at 298 K was obtained from the Eyring equation:

 $\Delta \mathbf{G}^{\ddagger} = -RT \ln(kh/k_B T)$ 

where R is the gas constant, h is Plank's constant and  $k_B$  is Boltzmann's constant.



**Fig. S7** Partial variable temperature <sup>1</sup>H NMR spectra of E-[2]rotaxane **5** around coalescence temperatures in CDCl<sub>3</sub>. Proton signals of trityl stopper (signals b and B) of E-[2]rotaxane **5** were used.

#### From EXSY Measurements

The EXSY measurements were carried out with a phase-sensitive NOESY pulse sequence. The exchange rate constant k of the ring shuttling was determined by the following equations:<sup>S7</sup>

$$k = \frac{1}{I?_m} \ln \frac{I3 + 1}{I3 - 1}$$

where  $\tau_m$  is mixing time and  $\gamma$  is defined by the following equation:

$$I3 = \frac{4X_A X_B (I_{AA} + I_{BB})}{I_{AB} + I_{BA} - (X_A - X_B)^2}$$

where  $X_A$  and  $X_B$  are integration of proton signals (H<sub>i</sub>, H<sub>I</sub>) of uncomplex and complex stations, respectively,  $I_{AA}$  and  $I_{BB}$  are the intensities of the diagonal peaks,  $I_{AB}$  and  $I_{BA}$  are the intensities of the cross peaks, respectively.



**Fig. S8** Plots of  $\ln [(\gamma + 1)/(\gamma - 1)]$  as a function of mixing time  $\tau_m$ .







**Fig. S9** <sup>1</sup>H NMR Spectra (293 K, CDCl<sub>3</sub>) of (a) *E*-Dumbbell **6** and (b) Z-dumbbell **6** (E/Z = 14/86) and (c) <sup>1</sup>H-<sup>1</sup>H COSY of *Z*-Dumbbell **6**.



VT <sup>1</sup>H NMR Spectra of [2]Rotaxane 5 in Z Isomer

Fig. S10 Variable temperature <sup>1</sup>H NMR spectra of Z-[2]Rotaxane 5 (E/Z = 10/90) in CDCl<sub>3</sub>.

#### **References**

S1) T. Ogoshi, R. Iizuka, D. Kotera and T. Yamagishi, Org. Lett., 2015, 17, 350.

S2) D. Cao, Y. Kou, J. Liang, Z. Chen, L. Wang and H. Meier, *Angew. Chem. Int. Ed.*, 2009, **48**, 9721.

S3) M. V. Skorobogatyi, A. A. Pchelintseva, A. L. Petrunina, I. A. Stepanova, V. L. Andronava, G. A. Galegov, A. D. Malakhov and V. A. Korshun, *Tetrahedron*, 2006, **62**, 1279.

S4) V. Chandrasekaran and T. K. Lindhorst, Chem. Commun., 2012, 48, 7519.

S5) I. O. Sutherland, Annu. Rep. NMR Spectrosc., 1971, 4, 71.

S6) J. Sandstorm, In *Dynamic NMR Spectroscopy*; Academic Press: London, New York, 1982; pp 93-123.

S7) (a) C. L. Perrin and T. J. Dwyer, *Chem. Rev.*, 1990, **90**, 935; (b) T. Ogoshi, D. Yamafuji, T. Aoki and T. Yamagishi, *J. Org. Chem.*, 2011, **76**, 9497.