Two-Component Supramolecular Hydrogels for Controlled Drug Release

Anna K. Patterson^a and David K. Smith^{a*}

Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK

david.smith@york.ac.uk

Contents

Two-Component Supramolecular Hydrogels for Controlled Drug Release	1
Materials and Methods	2
Synthesis and Characterisation of Gelator Molecules	2
Preparation of Gels	4
Imaging	5
Rheology	7
T _{gel} Values	10
Circular Dichroism Spectroscopy	12
Release studies	12

Materials and Methods

General Experimental Methods: All compounds required for synthesis and analysis were purchased from standard chemical suppliers and used without further purification. ¹H and ¹³C NMR were recorded on a Jeol 400 spectrometer (¹H 400 MHz, ¹³C 100 MHz), with the exception of the variable temperature NMR, which were recorded on a Bruker 500 (¹H 500 MHz). Coupling constants (*J*) are recorded in Hz. Mass spectrometry was performed by the University of York Mass Spectrometry Service. IR were recorded on a ThermoNicolet Avatar 370 FT-IR spectrometer. Melting points were recorded using a Stuart SMP3 apparatus. All rheological measurements were carried out using a Malvern Instruments Kinexus Pro+ rheometer. T_{gel} values were recorded using a high precision thermoregulated oil bath. Circular dichroism (CD) measurements were carried out using a Jasco J810 CD Spectrophotometer. UVvis absorbance was measured on a Shimadzu UV-2401 PC spectrophotometer.

Synthesis and Characterisation of Gelator Molecules

Synthesis and Characterisation of DBS-CONHNH₂

DBS-CONHNH₂ was synthesised using the previously reported method,¹ and all characterisation data were in agreement with the previously reported data.²

Synthesis and Characterisation of MBS-CO₂Me

Scheme S1. Synthesis of MBS-CO₂Me

D-Sorbitol (15.9 g, 87 mmol) was added to a three-necked round bottomed flask fitted with Dean-Stark apparatus. Methanol (20 ml) and cyclohexane (40 ml) were added, and the mixture was stirred, under nitrogen, at 50°C for 20 minutes. 4-methylcarboxybenzaldehyde (3.5 g, 21.3 mmol) and *p*-TsOH (0.55 g, 2.89 mmol) were dissolved in methanol (20 ml) and stirred for 20 minutes at room temperature. This solution was then added dropwise to the D-sorbitol mixture. This was then heated to 70°C. After two to three hours, most of the solvent was removed, giving a white paste. The paste was washed with methanol, and cold water. The white solid was dissolved in boiling water, and filtered while hot. The filtrate was left to cool, to give a white solid. If necessary, this was then washed with further cold water. Yield: 2.11 g (30%), M.p: 198-201 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.97 (m, 2H, Ar*H*₁), 7.63 (m, 2H, Ar*H*₂), 5.64 (s, 1H, Ar-CH), 4.74-4.70 (m, 2H, C-OH), 4.48-4.44 (m, 2H, C-OH), 3.85-3.82 (m, 4H, OCH₃, *H*₅), 3.71-3.69 (m, 3H, *H*₆, *H*₇, *H*₈), 3.60-3.55 (m, 3H, *H*₃, *H*₄, *H*₉/*H*₁₀), 3.43-3.42 (m, 1H, *H*₉/*H*₁₀); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.11 (CH₃COO), 143.53 (ArC₁), 129.75 (ArC₂), 128.94 (ArC₃), 126.89 (ArC₄), 99.27 (Ar-CH), 81.09 (CH₃OO), 79.46 (C), 69.11 (C), 62.72 (C₁₀), 61.62 (C), 61.01 (C₅), 52.27 (C₆); ESI-MS (*m*/*z*) calc. for C₁₅H₂₀O₈Na⁺ 351.1056; found 351.1049 (100 % [M+Na]⁺); v_{max} (cm⁻¹) (solid): 3293s, 2949w,

2877w, 1722s, 1616w, 1402m, 1340w, 1278s, 1218w, 1198w, 1151m, 1091s, 1077m, 1061m, 1031s, 1017s, 977m, 881m, 847m, 835m, 794m, 761s, 712s, 657m, 593m, 507m, 456w.

Figure S1. ¹H NMR spectrum of MBS-CO₂Me

Figure S2. ¹³C NMR spectrum of MBS-CO₂Me

Preparation of Gels

Preparation of MBS-CO₂Me hydrogels. A known mass of MBS-CO₂Me was weighed into a sample vial, and 0.5 ml of deionised water added. This was sonicated for 5 minutes, followed by a heat-cool cycle. On cooling, transparent gels were formed rapidly. The same procedure was followed for the preparation of MBS-CO₂Me gels containing NPX, with NPX (0.5 mg) added to the sample vial with the gelator. The pH of the gel was ca. 6.7.

Preparation of MBS-CO₂Me and DBS-CONHNH₂ Hybrid Hydrogels. A known mass of both MBS-CO₂Me and DBS-CONHNH₂ were weighed into a sample vial, and 0.5 ml of deionised water added. This was sonicated for 10 minutes, followed by a heat-cool cycle. On cooling, translucent gels were formed rapidly. The same procedure was followed for hybrid hydrogels containing NPX, with NPX (0.5 mg) added to the sample vial with the gelators. The pH of the gel was ca. 6.7.

Figure S3: Images of hydrogels, (a) DBS-CONHNH₂ hydrogel (0.28% wt/vol), (b) DBS-CONHNH₂ hydrogel (0.28% wt/vol) with NPX, (c) MBS-CO₂Me (0.80% wt/vol) hydrogel, (d) MBS-CO₂Me (0.80% wt/vol) with NPX, (e) hybrid hydrogel (DBS-CONHNH₂ 0.20% wt/vol, MBS-CO₂Me 0.70% wt/vol), (f) hybrid hydrogel with NPX (DBS-CONHNH₂ 0.20% wt/vol, MBS-CO₂Me 0.70% wt/vol).

Preparation of MBS-CO₂Me and DBS-CONHNH₂ Hybrid Hydrogels for NMR Studies. MBS-CO₂Me (5.56 mg, 0.017 mmol) and DBS-CONHNH₂ (1.60 mg, 0.0034 mmol) were weighed into a sample vial and a 50:50 mix of D₂O and H₂O added (0.7 ml total), along with a DMSO standard (2 μ l). This was sonicated for 10 minutes, followed by a heat-cool cycle. Once all the solid was dissolved, the solution was transferred rapidly to a warm NMR tube. On cooling, translucent gels were rapidly formed.

Preparation of MBS-CO₂Me Hydrogels for Rheology. MBS-CO₂Me (8.50 mg) was added to a sample vial, and 1 ml of deionised water added. This was then sonicated for 5 minutes, followed by heating. While hot, the solution was transferred to a bottomless vial attached to a solid surface. On cooling, transparent gels were formed. The bottomless vial could then be removed, and the gel disc transferred to the rheometer. The same procedure was followed for MBS-CO₂Me hydrogels with NPX, with NPX (1 mg) added to the samples vial along with the gelator.

Preparation of MBS-CO₂Me and DBS-CONHNH₂ Hybrid Hydrogels for Rheology. MBS-CO₂Me (1.00 mg or 8.00 mg) and DBS-CONHNH₂ (2.40 mg or 2.80 mg) were added to a sample vial, and 1 ml of deionised water added. This was sonicated for 10 minutes, followed by heating. While hot, the solution was transferred to a bottomless vial fixed to a solid surface. On cooling, translucent gels formed. The bottomless vial could then be removed, and the gel disc transferred to the rheometer. The same procedure was followed for hybrid hydrogels containing NPX, with NPX (1 mg) added to the sample vial with the gelators.

Preparation of Samples for CD Studies. MBS-CO₂Me (5.74 mg) was added to a sample vial, and 1 ml deionised water added. This was sonicated for 5 minutes, followed by a heating. While hot, a portion of the solution (~0.7 ml) was transferred to a warm CD cuvette (path length 1 mm), then allowed to cool.

Imaging

Electron microscopy imaging was carried out by Meg Stark, at the Biology Technology Facility, Department of Biology, University of York. TEM imaging was carried out using the following method: A small portion of gel was transferred, by drop-casting, to a heat-treated copper support. Excess material was removed using a filter paper, and the samples air-dried for 20 minutes. TEM images were taken on a FEI Technai 12 G2. SEM images were obtained using the following method: A small portion of gel was transferred to a copper support, then freeze-dried by plunging into liquid nitrogen. The samples were then lyophilised for 12 hours, and any excess material removed. The dried sample was then sputter coated with a thin layer of gold/palladium, to prevent sample charging, and imaging carried out. SEM images were taken on either a JEOL JSM-7600f field emission SEM (DBS-CONHNH₂ hydrogels), or a JEOL JSM-6490LV (hybrid hydrogels).

Figure S4. TEM (left) and SEM (right) images of (a) DBS-CONHNH₂ hydrogels (0.40% wt/vol);³ (b) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.20% wt/vol and 0.10% wt/vol respectively). Scale bars for TEM: 100 nm, for SEM 1 μ m.

(a)

Figure S5. TEM (left) and SEM (right) images of (a) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.20% wt/vol and 0.80% wt/vol respectively) (b) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.28% wt/vol and 0.10% wt/vol respectively) (c) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.28% wt/vol and 0.80% wt/vol respectively) Scale bar for TEM 100 nm, for SEM 1 μ m.

Rheology

Without NPX

Figure S6. Elastic (G', blue squares) and loss (G'', red circles) moduli with increasing shear strain (left) and frequency (right) for (a) MBS-CO₂Me hydrogels (0.85% wt/vol) (b) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.28% wt/vol and 0.80% wt/vol respectively) (c) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.24% wt/vol and 0.80% wt/vol respectively).

Figure S7. Elastic (G', blue squares) and loss (G'', red circles) moduli with increasing shear strain (left) and frequency (right) for (a) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.28% wt/vol and 0.10% wt/vol respectively) (b) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.24% wt/vol and 0.10% wt/vol respectively).

With NPX

Figure S8. Elastic (G', blue squares) and loss (G'', red circles) moduli with increasing shear strain (left) and frequency (right) for (a) MBS-CO₂Me hydrogels with NPX, (b) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.28% wt/vol and 0.80% wt/vol respectively) with NPX, and (b) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.24% wt/vol and 0.80% wt/vol respectively) with NPX

Figure S9. Elastic (G', blue squares) and loss (G'', red circles) moduli with increasing shear strain (left) and frequency (right) for (a) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.28% wt/vol and 0.10% wt/vol respectively) with NPX, and (b) DBS-CONHNH₂ and MBS-CO₂Me hybrid hydrogels (0.24% wt/vol and 0.10% wt/vol respectively) with NPX.

T_{gel} Values

All hydrogels were prepared as described above. The method for determining the T_{gel} value was the reproducible tube inversion method. The temperature was recorded when the gels were no longer self-supporting under gravity.

MBS-CO ₂ Me / % wt/vol	T _{gel} / °C
0.75	53
0.80	54
0.85	56
0.90	57
0.95	57
1.00	59

Table S1. T_{gel} values for MBS-CO₂Me hydrogels at varying concentrations of gelator.

Table S2. T_{gel} values for MBS-CO₂Me hydrogels with NPX at varying concentrations of gelator.

MBS-CO ₂ Me / % wt/vol	T _{gel} / °C
0.75	34
0.80	51
0.85	53
0.90	56
0.95	56
1.00	61

Table S3. Selected T_{gel} values for the hybrid hydrogels, with varying proportions of MBS-CO₂Me. Total gelator concentration for all gels is 0.48 % wt/vol.

% MBS-CO₂Me	T _{gel} / °C
26	100
29	100
51	69
56	64
61	51
70	33

Table S4. T_{gel} values for MBS-CO₂Me hydrogels, DBS-CONHNH₂ hydrogels, and hybrid hydrogels.

DBS-CONHNH ₂ / % wt/vol	MBS-CO₂Me / % wt/vol	T _{gel} / °C
0.28	-	80
-	0.90	57
0.36	0.12	100
0.34	0.14	100
0.24	0.24	69
0.21	0.27	64
0.19	0.29	51
0.14	0.34	33
0.20	0.11	27
0.24	0.11	53
0.16	0.20	49
0.28	0.11	62
0.20	0.22	58
0.32	0.10	66
0.16	0.30	50
0.28	0.20	63
0.36	0.13	100
0.20	0.29	74
0.40	0.10	100
0.32	0.19	99
0.23	0.29	79
0.36	0.19	100
0.39	0.19	100
0.28	0.31	100
0.32	0.31	100
0.25	0.39	51
0.36	0.30	100
0.40	0.25	100

Table S5. T_{gel} values for the hybrid hydrogels with NPX, with varying proportions of MBS-CO₂Me. Total gelator concentration for samples is 0.48% wt/vol.

% MBS-CO₂Me	T _{gel} / °C
30	100+
39	100+
43	100+
50	84
56	100+
62	63
71	79

Circular Dichroism Spectroscopy

All CD experiments were carried out using the following settings: Data Pitch = 0.5 nm, Scanning Mode = continuous, Scan Speed = 100 nm min⁻¹, Response = 1 s, Bandwidth = 2 nm, Accumulation = 5. Quartz cuvettes (pathlength 1 mm) were used. The loading of MBS-CO₂Me was 0.57% wt/vol.

Figure S10. Variable temperature CD spectrum for MBS-CO₂Me.

Release studies

Gel samples with NPX, at a volume of 1 ml, were prepared following the methods outlined above. Samples contained DBS-CONHNH₂ (2 mg) and MBS-CO₂Me (7 mg), along with NPX (1 mg). 6 ml of one i) pH 5.5 phosphate-citrate buffer, ii) pH 7 phosphate buffer,was pipetted carefully onto the gel, and release of NPX monitored by UV-vis absorption at 329 nm. The samples were incubated at 37 °C for the duration of the release study. The concentration of NPX in the supernatant was quantified using calibration curves. For each pH, the experiment was carried out in triplicate, and control samples containing no NPX were also monitored.

Additional studies, with varying concentrations of gelator, were also carried out (see below).

Figure S11. Release of NPX, at pH 7, with varying concentrations of gelator. All have 1 mg NPX. Green squares: DBS-CONHNH₂ 0.20% wt/vol, MBS-CO₂Me 0.70% wt/vol. Blue diamonds: DBS-CONHNH₂ 0.20% wt/vol, MBS-CO₂Me 0.60% wt/vol. Purple circles: DBS-CONHNH₂ 0.20% wt/vol, MBS-CO₂Me 0.10% wt/vol.

Figure S12. Release of NPX, at pH 5.5, with varying concentrations of gelator. All have 1 mg NPX. Orange circles: DBS-CONHNH₂ 0.20% wt/vol, MBS-CO₂Me 0.70% wt/vol. Pink Squares: DBS-CONHNH₂ 0.28% wt/vol, MBS-CO₂Me 0.70% wt/vol.

References

- 1. B. O. Okesola and D. K. Smith, Chem. Commun., 2013, 49, 11164-11166
- 2. P. R. A. Chivers, J. A. Kelly, M. J. S. Hill and D. K. Smith, React. Chem. Eng. 2020, 5, 1112-1117.
- 3. V. M. P. Vieira, A. C. Lima, M. de Jong and D. K. Smith, Chem-Eur. J., 2018, 24, 15112-15118