Unexpected Discovery of Calcium Cryptates with Exceptional Stability

Markus F. K. Trautnitz,^a Tobias Haas,^a Hartmut Schubert,^a and Michael Seitz*^a

^a Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany Email: michael.seitz@uni-tuebingen.de

Supplementary Information

Table of Contents

1.	Materials and Methods	S2
2.	Synthetic Procedures and Analytical Data	S2
3.	Single Crystal X-ray Diffraction	S6
4.	Competition Experiments	S8
5.	Deuteration of 3-Ca during the Competition Experiments	S14
6.	References	S15

1. Materials and Methods

General

NMR spectra were recorded on a Bruker AVII+400 spectrometer (¹H: 400.0 MHz, ¹³C: 100.6 MHz, ¹⁹F: 376.5 MHz) using CD₃OD (\geq 99.8% D) or D₂O (99.9% D) as the solvent. H₄DOTA (Chematech), NaOD (40 wt.% in D₂O, Sigma-Aldrich), Ca(OTf)₂ (min. 99 %, Alfa Aesar), La(OTf)₃ (98 %, abcr) and Lu(OTf)₃ (98 %, Sigma-Aldrich) were obtained from commercial suppliers and used as received. Na₂CaDOTA was synthesized as described in ref. S1.

RP-HPLC

RP-HPLC was performed using Lichrospher RP-18e columns (Merck, preparative: 250 mm \times 10 mm, 10 µm particle size; analytical: 125 mm \times 4 mm, 5 µm particle size) on a Knauer AZURA P6.1L system. The purity of the isolated fractions was checked by analytical runs. Flow rates of 3.0 mL·min⁻¹ and 1.0 mL·min⁻¹ were used for preparative and analytical runs, respectively. The substances were detected by UV absorption at 300 nm.

Mobile phases (both preparative and analytical):

A: H₂O (+1% CF₃COOH, v/v); B: CH₃CN (HPLC gradient grade)

-	
Crow	diante
Giau	ien.

min	%A	%B
0	85	15
5	85	15
19	45	55
25	45	55
40	85	15
50	85	15

2. Synthetic Procedures and Analytical Data

Serendipitous discovery 3-Ca(CF₃COO⁻)

The sodium cryptate **1-Na** was synthesized as described previously and "purified" (see manuscript text) by silica gel chromatography.^{S2} Upon reacting the material with LnCl₃ · 6 H₂O (Ln = Eu, Nd) in boiling CH₃CN and purification via preparative RP-HPLC as described previously, two major products were isolated (Figure S1, reaction with EuCl₃ · 6 H₂O is shown).^{S2,S3} Subsequent experiments revealed that transformation of **1-Na** to **3-Ca** also occurred under those conditions without the addition of any lanthanoid salt. The yield of **3-Ca** varied drastically from batch to batch indicating strong fluctuations in the Ca²⁺ content of the material. Through various control experiments, the purification via silica gel was determined to be the source of the calcium contamination.

Figure S1. Preparative RP-HPLC (Lichrospher- RP-18e, 250 mm × 10 mm - 10 μ m, 3 mL·min⁻¹ flow, H₂O+1% CF₃COOH/CH₃CN) of the purification of **2-Eu** showing the desired product (grey rectangle) and the "byproduct" **3-Ca** (red rectangle).

Analytical properties of **3-Ca**(CF₃COO⁻):

¹H NMR (400 MHz, CD₃OD): δ = 8.12 - 8.19 (m, 6 H), 8.10 (dd, *J* = 8.0, 2.0 Hz, 2 H), 8.06 (dd, *J* = 7.9, 1.9 Hz, 2 H), 7.92 - 8.01 (m, 6 H), 7.72 (dd, *J* = 6.4, 2.2 Hz, 2 H), 4.42 (d, *J* = 12.7 Hz, 2 H), 4.33 (d, *J* = 12.2 Hz, 2 H), 4.04 (d, *J* = 14.2 Hz, 2 H), 3.92 (d, *J* = 14.2 Hz, 2 H), 3.82 (d, *J* = 12.3 Hz, 2 H), 3.74 (d, *J* = 12.7 Hz, 2 H) ppm.

¹³C NMR (100.6 MHz, CD₃OD): δ = 159.1, 157.3, 149.6, 149.2, 145.5, 142.2, 133.3, 132.9, 132.4, 132.2, 130.4, 129.2, 127.4, 124.5, 121.6, 62.5, 56.8, 56.6 ppm.

¹⁹F NMR (376.5 MHz, CD₃OD): δ = -77.0 ppm.

HR-MS (ESI, pos. mode): m/z (%, assignment, ∆m_{rel}) = 339.10032 (100, [**3-Ca**]²⁺, 0.21 ppm), 661.22728 (26, [**1-Na**]⁺, 1.4 ppm), 791.18488 (12, [**3-Ca** + CF₃COO]⁺, 1.5 ppm).

Anal. Calcd. (Found) for $[3-Ca](CF_3CO_2)_2 \cdot 2 CF_3CO_2H \cdot 3 H_2O = C_{44}H_{38}CaF_{12}N_8O_{15}$ (M_r = 1186.89): C, 44.53 (44.21); H, 3.23 (3.33); N, 9.44 (9.60).

Figure S2. Analytical RP-HPLC (Lichrospher- RP-18e, 125 mm × 4 mm - 5 μ m, 1 mL·min⁻¹ flow, H₂O+1% CF₃COOH/CH₃CN) of isolated **3-Ca** (CF₃COO⁻) from the reaction described above.

Optimized synthesis of 3-Ca(⁻OTf)

A suspension of 6,6'-bis(aminomethyl)-2,2'-bipyridine trihydrobromide hydrate^{S4} (150 mg, 316 µmol, 1.0 equiv.), 6,6'-bis(bromomethyl)-2,2'-bipyridine-*N*,*N*'-dioxide^{S5} (236 mg, 631 µmol, 2.0 equivs.) and Na₂CO₃ (334 mg, 3.15 mmol, 10.0 equivs.) in CH₃CN (300 mL, HPLC grade) was heated under reflux (100 °C bath temperature) for 21 h. Heating was discontinued, the hot solution was filtered, and all volatiles were removed from the filtrate *in vacuo*. Column chromatography (activated neutral aluminium oxide 90, activity I, CH₂Cl₂/CH₃OH 25:1) yielded **1-Na** (Ca-free) as colorless, iridescent platelets (134 mg, 186 µmol, 57 %).

To ensure that this material is indeed free of undesired Ca²⁺, 10 mg were dissolved in CH₃CN (10 mL) and heated under reflux (100 °C bath temperature) for 48 h. The solvent was removed *in vacuo*. No sign of conversion into **3-Ca** was observed by TLC control or NMR spectroscopy proving that no free Ca²⁺ was present in this material.

The analytical properties match those obtained previously.^{S2} TLC: $R_f = 0.25$ (neutral Al₂O₃, CH₂Cl₂/CH₃OH 25:1, UV detection).

1-Na (Ca-free, 40 mg, 54.0 µmol, 1.0 equiv.) and Ca(OTf)₂ (18.3 mg, 54.1 µmol, 1.0 equiv.) were dissolved in CH₃CN (20 mL) and heated under reflux (100 °C bath temperature). Shortly after reaching boiling temperature, a fine, colorless precipitate began to form. The reaction mixture was heated for 20 h, additional Ca(OTf)₂ (9.4 mg, 27.8 µmol, 0.5 equivs.) was added, and heating was continued for 8 h. The heating bath was removed, and the hot solution was filtered over a PTFE filter (0.2 µm pore size). All volatiles were removed from the filtrate *in vacuo* yielding a colorless solid, which was subjected to column chromatography (activated neutral aluminium oxide 90, activity I, CH₂Cl₂/CH₃OH 9:1). The product was obtained as a colorless solid (36.5 mg, 37.4 µmol, 69 %).

¹H NMR (400 MHz, CD₃OD): δ = 8.10 - 8.20 (m, 8 H), 8.07 (dd, *J* = 7.9, 1.9 Hz, 2 H), 7.93 - 8.01 (m, 6 H), 7.74 (dd, *J* = 6.7, 1.8 Hz, 2 H), 4.42 (d, *J* = 12.7 Hz, 2 H), 4.33 (d, *J* = 12.3 Hz, 2 H), 4.04 (d, *J* = 14.2 Hz, 2 H), 3.95 (d, *J* = 14.2 Hz, 2 H), 3.86 (d, *J* = 12.3 Hz, 2 H), 3.78 (d, *J* = 12.8 Hz, 2 H) ppm.

¹³C NMR (100.6 MHz, CD₃OD): δ = 159.0, 157.2, 149.4, 149.1, 145.3, 142.1, 133.2, 132.7, 132.3, 132.1, 130.2, 129.0, 127.3, 124.4, 121.4, 62.4, 56.6, 56.4 ppm.

¹⁹F NMR (376.5 MHz, CD₃OD): δ = -80.0 ppm.

MS (ESI, pos. mode): m/z (%) = 339.08 (100, [**3-Ca**]²⁺).

TLC: $R_f = 0.25$ (neutral Al₂O₃, CH₂Cl₂/MeOH 9:1, UV detection).

Figure S3. Analytical RP-HPLC (Lichrospher- RP-18e, 125 mm × 4 mm - 5 μ m, 1 mL·min⁻¹ flow, H₂O+1% CF₃COOH/CH₃CN) of directly synthesized **3-Ca** ($^{-}$ OTf).

3. Single Crystal X-ray Diffraction

Single crystals of **3-Ca**(CF₃COO⁻) were obtained by slow evaporation of a dichloromethane solution at room temperature, those of **3-Ca**(⁻OTf) were obtained by layering a methanol solution with diethyl ether. X-ray data were collected with a Bruker Smart APEX II diffractometer with graphite-monochromated Mo K_a radiation or a Bruker APEX II Duo diffractometer with a Mo IµS microfocus tube and a TRIUMPH monochromator. The programs used were Bruker's APEX2 v2011.8-0, including SADABS for absorption correction and SAINT for data reduction.^{S6} The structure was solved within the Wingx (Version 2018.3) package^{S7} using direct methods (SHELXT^{S8a} and SIR2014^{S8b}) and expanded using Fourier techniques (SHELXL-2018).^{S8a,S9} All non-hydrogen atoms were refined isotropically. The hydrogen atoms attached to carbon atoms were positioned geometrically but not refined. All hydrogens were constrained to ride on their parent carbon atoms. U_{iso}(H) values were set at 1.2 times U_{eq}(C).

Compound	3-Ca (CF ₃ COO ⁻) 3-Ca (⁻ OTf)	
Empirical formula	C40H30CaF6N8O8	$C_{38}H_{30}CaF_6N_8O_{10}S_2$
M _r [g mol ⁻¹]	904.80	976.90
Crystal appearance	colorless block	colorless prism
Т [К]	100(2)	100(2)
λ [Å]	0.71073 (Mo K _α)	0.71073 (Mo K _α)
Crystal system	monoclinic	monoclinic
Space group	C2/c	C2/c
Z	4	4
a [Å]	27.4699(11)	27.2841(9)
b [Å]	9.5594(4)	9.7632(3)
c [Å]	18.4011(7)	17.9917(5)
β [°]	129.344(2)	127.373(1)
V [Å ³]	3736.9(3)	3808.7(2)
D _{calc} [g cm ⁻³]	1.608	1.704
μ [mm ⁻¹]	0.267	0.378
F(000)	1856	2000
Crystal size [mm × mm × mm]	$0.24 \times 0.21 \times 0.20$	$0.22\times0.19\times0.17$
θ range [°]	2.22-28.98	3.04-29.70
Limitting indices	-37 ≤ h ≤ 37	-36 ≤ h ≤ 38
	-12 ≤ k ≤ 12	-11 ≤ k ≤ 13
	-23 ≤ l ≤ 24	-25 ≤ l ≤ 25
Collected refl.	26677	14347
Independent refl.	4883	5370
Absorption corr.	empirical	empirical
Transm. (max., min.)	0.746, 0.650	0.746, 0.699
Parameters/restraints	285 / 0	294 / 0
R ₁ [I > 2σ(I)] ^a	0.1028	0.0438
$wR_2[I > 2\sigma(I)]^b$	0.2560	0.1211
R1 (all data) ^a	0.1415	0.0492
wR ₂ (all data) ^b	0.2847	0.1175
GOF on F ²	0.970	1.054
$\Delta \rho_{\text{max,min}}$ [e Å ⁻³]	2.836 /-1.121	1.356 /-0.521
^a R ₁ factor definition: R ₁ = Σ (F ₀ - F _c) / ^b wR ₂ factor definition: wR ₂ = [Σ w(F ₀ ² - F _c ²] / 3	$\Sigma ~ F_0 = F_c^{-2})^2 ~/~\Sigma ~w(F_0^{-2})]^{1/2}.$ Weighting scheme	: w = 1 / $[\sigma^2(F_0)^2 + (np)^2]$, p = $[F_0^2 + 2]$

Fable S1. Selected cr	vstallographic d	ata for 3-Ca (CF ₃ COO ⁻) and 3-Ca (-OTf).
	/ ./ .				- /

Figure S4. Thermal ellipsoid plot for the dicationic calcium complex in $3-Ca(CF_3COO^-)$ (Ortep 3 for Windows,^{S10} 50% probability level). The trifluoroacetate counterions and hydrogen atoms in the cryptate are omitted for clarity.

Interatomic distances [Å]: Ca1-N1 2.828(3), Ca1-N1' 2.828(3), Ca1-N2 2.702(4), Ca1-N2' 2.702(4), Ca1-O1 2.381(3), Ca1-O1' 2.381(3), Ca1-O2 2.306(3), Ca1-O2' 2.306(3). Angles [°]: O2-Ca1-O2' 179.15(17), O2-Ca1-O1 108.74(11), O2-Ca1-O1' 72.01(11), O1-Ca1-O1' 65.35(15), O2-Ca1-N2 85.48(11), O2-Ca1-N2' 93.79(11), O1-Ca1-N2 121.46(10), O1-Ca1-N2' 157.26(10), N2-Ca1-N2' 61.85(15), O2-Ca1-N1 71.12(10); O2-Ca1-N1' 108.94(10), O1-Ca1-N1 68.30(10), O1-Ca1-N1' 104.67(10), N2-Ca1-N1 63.63(10), N2-Ca1-N1' 124.25(10). Dihedral angles [°]: N4-C18-C12'-N3' 58.2, N2-C6-C6'-N2' 37.5.

Figure S5. Thermal ellipsoid plot for the dicationic calcium complex in **3-Ca**(⁻OTf) (Ortep 3 for Windows, ^{S10} 50% probability level). The triflate counterions and hydrogen atoms in the cryptate are omitted for clarity.

Interatomic distances [Å]: Ca1-N1 2.8329(13), Ca1-N1' 2.8329(13), Ca1-N2 2.6451(15), Ca1-N2' 2.6451(15), Ca1-O2' 2.4096(13), Ca1-O2 2.4096(13), Ca1-O1 2.3205(12), Ca1-O1' 2.3205(12). Angles [°]: O1-Ca1-O1' 178.61(6), O1-Ca1-O2' 106.89(4), O1-Ca1-O2 71.88(4), O2'-Ca1-O2 64.70(6), O1-Ca1-N2 85.67(4), O1-Ca1-N2' 95.52(4), O2'-Ca1-N2 121.45(4), O2'-Ca1-N2' 157.33(4), N2-Ca1-N2' 62.50(6), O1-Ca1-N1 71.23(4); O1-Ca1-N1' 108.65(4), O2'-Ca1-N1 66.98(4), O2'-Ca1-N1' 104.53(4), N2-Ca1-N1' 63.94(4), N2-Ca1-N1' 125.53(4). Dihedral angles [°]: N3-C12-C13-N4 61.2, N2-C6-C6'-N2' 26.9.

4. Competition Experiments

4.1 3-Ca vs. DOTA4-

For 3-Ca(-OTf), competition experiments with three different ratios 3-Ca/DOTA⁴⁻ were performed. In a 5 ml volumetric flask, H₄DOTA · 1.5 H₂O (431.4 mg, 1.00 mmol) was dissolved in dilute NaOD in D₂O (0.4 wt%, 2.0 mL). Concentrated NaOD in D₂O (40 wt% NaOD, 280 µL, 410 mg, 4.00 mmol NaOD) was added and the flask was filled with D₂O/NaOD (0.4 wt% NaOD). The pD of this solution was determined to be 14±0.2 using a glass electrode in combination with a Ag/AgCl reference electrode. Appropriate amounts of 3-Ca(-OTf) were dissolved in the Na₄DOTA/NaOD/D₂O mixture (500 µL) prepared above. The resulting clear, colorless solution was filtered through a syringe filter (PTFE, pore size 0.2 µm) into a guartz NMR tube (Qtz500-5-7, Deutero GmbH). In order to obtain a signal of constant integral for each experiment, a sealed capillary tube filled with a reference compound (MeO^tBu in CD₃OD) was inserted into the tube before each measurement and was removed immediately after the measurement. For each competition experiment, NMR spectra were recorded immediately after mixing of the compounds (< 30 min at r.t. before the first spectrum was recorded) and after the specified intervals of heating at 100 °C. At the end of each experiment, the activity of the solution with respect to rapid complexation of free Ca²⁺ was demonstrated by addition of the appropriate amounts of 1 M Ca(OTf)₂ in D₂O. Relative concentrations of the reactants **3-Ca** and **DOTA⁴⁻** in the solutions determined by integration are given below for each set of experiments.

Note: The acquisition of the spectra after the final additon of $Ca(OTf)_2$ were complicated by precipitation of $Ca(OD)_2$ and Ca[CaDOTA].

Experiment 1 (see Figure S6): Molar ratio of reactants **3-Ca/DOTA**⁴⁻ = 1.2 to 1 Experiment 2 (see Figure S7): Molar ratio of reactants **3-Ca/DOTA**⁴⁻ = 1 to 16 Experiment 3 (see Figure S8): Molar ratio of reactants **3-Ca/DOTA**⁴⁻ = 1 to 77

Figure S6. ¹H NMR spectra (NaOD/D₂O, 400 MHz) of competition experiment 1 described above (**3-Ca/DOTA**⁴⁻ = 1.2 to 1).

Figure S7. ¹H NMR spectra (NaOD/D₂O, 400 MHz) of competition experiment 2 described above (**3-Ca/DOTA⁴⁻** = 1 to 16). Remark: The small peak growing in over time at ca. 8.35 ppm is an unknown impurity in commercial H₄DOTA.

Figure S8. ¹H NMR spectra (NaOD/D₂O, 400 MHz) of competition experiment 3 described above (**3-Ca/DOTA**⁴⁻ = 1 to 77). Remark: The small peak growing in over time at ca. 8.35 ppm is an unknown impurity in commercial H₄DOTA.

4.2 1-Na vs. [Ca(DOTA)]²⁻

In a 5 mL volumetric flask, Na₂[CaDOTA] • H₂O (27.2 mg, 53.9 µmol) was dissolved in D₂O. 11 µL of 0.4wt% NaOD in D₂O were added and the flask was filled with D₂O. The pD of this solution was determined to be 8.0 ± 0.2 using a glass electrode in combination with a Ag/AgCl reference electrode. **1-Na** (Ca-free, 4.0 mg, 5.4 µmol, 1.0 equiv.) was dissolved in the solution of Na₂[CaDOTA] (500 µL, 1.0 equiv.) prepared above resulting in a 1:1 mixture of the two reactants. The mixture was heated at 100°C (bath temperature). After 380 h, analytical RP-HPLC was used to detect and quantify **3-Ca** (Figure S9).

Figure S9. Competition **1-Na** vs. $[Ca(DOTA)]^{2-}$ after 380 h at 100°C in D₂O: Analytical RP-HPLC trace (Lichrospher- RP-18e, 125 mm × 4 mm - 5 µm, 1 mL·min⁻¹ flow, H₂O+1% CF₃COOH/CH₃CN).

4.3 $1-Na + Ca(OTf)_2 + Ln(OTf)_3$ (Ln = La, Lu)

1-Na (Ca-free, 15.0 mg, 20.2 µmol, 1.0 equiv.), $Ca(OTf)_2$ (13.8 mg, 40.4 µmol, 2.0 equivs.) and $La(OTf)_3$ (30.3 mg, 40.4 µmol, 2.0 equivs.) were dissolved in CH₃CN (15 mL, HPLC grade). The mixture was heated under reflux (bath temperature 100 °C) for 3h 40 min, cooled to room temperature and the solvent was removed under reduced pressure. The remaining colorless solid was thoroughly homogenized. A sample was taken, dissolved in D₂O, and a ¹H NMR spectrum was recorded which showed the exclusive formation of **3-Ca** and no sign of **2-La**.

1-Na (Ca-free, 5.0 mg, 6.75 μ mol, 1.0 equiv.), Ca(OTf)₂ (4.6 mg, 13.5 μ mol, 2.0 equivs.) and Lu(OTf)₃ (10.8 mg, 13.5 μ mol, 2.0 equivs.) were dissolved in CH₃CN (5 mL, HPLC grade). The mixture was heated under reflux (bath temperature 100 °C) for 15 min, cooled to room temperature and the solvent was removed under reduced pressure. The colorless solid was thoroughly homogenized. A sample was taken, dissolved in D₂O and an NMR spectrum was recorded. The relative amounts of **3-Ca** and **2-Lu** were determined by integration of the cleanly separated doublets at 7.58 (**3-Ca**) and 7.70 (**2-Lu**) ppm. Based on this evaluation, a product ratio **3-Ca/2-Lu** of 97:3 was found.

4.4 3-Ca + Lu(OTf)₃

3-Ca($^{-}$ OTf) (5.0 mg, 5.1 µmol, 1.0 equiv.) and Lu(OTf)₃ (40.1 mg, 50.1 µmol, 10.0 equivs.) were dissolved in CH₃CN (10 mL, HPLC grade) and heated under reflux (bath temperature 100 °C). After selected heating intervals, samples were taken and the solvent was removed. The colourless residue was dissolved in D₂O and a ¹H NMR spectrum was recorded. The last spectrum was recorded after 8 days of heating and none of the spectra showed any sign of formation of **2-Lu**.

5. Deuteration of 3-Ca during the Competition Experiments

Figure S10. Isotope pattern of the mass spectrum (ESI, pos mode) of $[D_x]$ -3-Ca (x \approx 14-17).

6. References

- ^{S1} H. Gries, U. Speck, H.-J. Weinmann, H. P. Niendorf and W. Seifert, Ger. Pat., DE3640708, 1986.
- ^{S2} C. Doffek and M. Seitz, *Angew. Chem. Int. Ed.*, 2015, **54**, 9719.
- ^{S3} M. F. K. Trautnitz, C. Doffek and M. Seitz, *ChemPhysChem*, 2019, **20**, 2179.
- ^{S4} Z. Wang, J. Reibenspies, R. J. Motekaitis and A. E. Martell, *J. Chem. Soc. Dalton Trans.*,1995, 1511.
- ^{S5} J.-M. Lehn and C. O. Roth, *Helv. Chim. Acta*, 1991, **74**, 572.
- ^{S6} a) *Bruker AXS Inc. Madison, Wisconsin, USA,* 2007; b) G. M. Sheldrick, *SADABS, University of Göttingen, Germany,* 2008.
- ^{S7} a) L. J. Farrugia, *J. Appl. Crystallogr.*, 1999, **32**, 837; b) L. J. Farrugia, *J. Appl. Crystallogr.*, 2012, **45**, 849.
- ^{S8} a) G. M. Sheldrick, *Acta Crystallogr. A*, 2008, **64**, 112; b) M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, *J. Appl. Crystallogr.*, 2015, **48**, 306.
- ^{S9} G. M. Sheldrick, *Acta Cryst.*, *Sect. C*, 2015, **71**, 3.
- ^{S10} L. J. Farrugia, *J. Appl. Crystallogr.*, 1997, **30**, 565.