Supporting Information

Deaminative Carbonylative Coupling of Alkylamines with Styrenes under Transition-Metal-Free Conditions

Fengqian Zhao, Chong-Liang Li, and Xiao-Feng Wu*
Leibniz-Institut für Kataly se an der Universität Rostocke. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Phone: (+49)-0381-1281-343; E-Mail: xiao-feng.wu @catalysis.de

Table of Contents

1. General information S1
2. Optimization studies S1
3. General procedure for the synthesis of various substrates S3
4. General procedure for the synthesis of α, β-unsaturated ketones. S10
5. Reference S20
6. NMR spectra of products: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR S21

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. Flash column chromatography was performed using 200-300 mesh silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on 300 or 400 MHz spectrophotometers. Chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard $\left(\mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}\right.$, DMSO-d6: $\delta=2.50 \mathrm{ppm}) .{ }^{13} \mathrm{C}$ NMR was recorded at 75 MHz or 101 MHz : chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta=77.00 \mathrm{ppm}\right.$, DMSO-d6: $\delta=39.52 \mathrm{ppm}$). Electron impact (EI) mass spectra were recorded on AMD 402 mass spectrometer (70 eV). High resolution mass spectra (HR-MS) were recorded on Agilent 6210. The data were given as mass units per charge (m / z). Gas chromatography a nalysis was performed on an Agilent HP-5890 instrument with a FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, $30 \mathrm{~m}, 0.32 \mathrm{~mm}$ i.d., $0.25 \mu \mathrm{~m}$ film thickness) using argon as carrier gas.

2. Optimization studies

Table S1 Optimization of the reaction conditions

Entry	2a (equiv)	Base (equiv)	Additive (equiv)	T (${ }^{\circ} \mathrm{C}$)	3aa (\%) ${ }^{\text {a }}$
1	2.0	DBU (2.0)	/	100	54
2	2.0	DBN (2.0)	1	100	53
3	2.0	TBD (2.0)	1	100	54
4	2.0	DABCO (2.0)	1	100	1
5	2.0	DIPEA (2.0)	1	100	2
6	2.0	DBU (4.0)	1	100	62
7	2.0	DBU (2.0)	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.0)$	100	58
8	2.0	DBU (2.0)	$\mathrm{K}_{2} \mathrm{CO}_{3}(1.0)$	100	58
9	2.0	DBU (2.0)	KOH (1.0)	100	55
10	2.0	DBU (2.0)	$\mathrm{K}_{2} \mathrm{HPO}_{4}(1.0)$	100	41
11	2.0	DBU (2.0)	t-BuOK (1.0)	100	64
12	2.0	DBU (2.0)	t-BuONa (1.0)	100	50
13	2.0	DBU (2.0)	t-BuOLi(1.0)	100	66
14	2.0	DBU (2.0)	NaOMe (1.0)	100	57

15	2.0	$\operatorname{DBU}(2.0)$	$\operatorname{LiOMe}(1.0)$	100	68
16	2.0	$\operatorname{DBU}(2.0)$	$\operatorname{LiOH}(1.0)$	100	59
17	2.0	$\operatorname{DBU}(2.0)$	$\operatorname{Li}_{2} \mathrm{CO}_{3}(1.0)$	100	40
18	2.0	$/$	$\operatorname{LiOMe}(1.0)$	100	2
19	1.0	$\operatorname{DBU}(2.0)$	$\operatorname{LiOMe}(1.0)$	100	48
20	1.5	$\operatorname{DBU}(2.0)$	$\operatorname{LiOMe}(1.0)$	100	60
21	3.0	$\operatorname{DBU}(2.0)$	$\operatorname{LiOMe}(1.0)$	100	58
22	2.0	$\operatorname{DBU}(2.0)$	$\operatorname{LiOMe}(1.0)$	80	70
23	2.0	$\operatorname{DBU}(2.0)$	$\operatorname{LiOMe}(1.0)$	70	59
24^{b}	2.0	DBU (2.0)	$\operatorname{LiOMe}(1.0)$	80	$76(74)^{c}$

Reaction conditions: $1 \mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.2 \mathrm{mmol})$, base, additive, THF, CO (50 bar), 15 h . ${ }^{a}$ Determined by GC using hexadecane as the internal standard. ${ }^{b}$ THF $(2.0 \mathrm{~mL}) .{ }^{c}$ isola ted yield.

Unsuccessful Katritzky salts:

Unsuccessful styrenes:

3. General procedure for the synthesis of various substrates

3.1 General procedure for synthesize Katritzky salts

Katritzky salts $\mathbf{1 a - 1} \mathbf{g}, \mathbf{1 k}$ were all synthesized as described previously. ${ }^{1}$

1a

1b

1c

1d

1h

$1 f$

1g

$1 i$

$1 e$

1j

1k

$\mathbf{1} \mathbf{h}, \mathbf{1}$ and $\mathbf{1} \mathbf{j}$ were prepared following a procedure by Glorus et al. ${ }^{\text {ld }} \mathrm{A}$ flask was charged with amine (1.2 equiv), DCM (0.5 M) and acetic acid (0.5 equiv), the mixtures was stirred at room temperature for $15-30 \mathrm{mins}$. Subsequently, 2,4,6-Triphenylpyrylium tetrafluoroborate (1.0 equiv) was added and stirred at room temperature for 6 h . If precipitation occurred during the reaction, the solid was collected by filtration and washed with EtOH and $\mathrm{Et}_{2} \mathrm{O}$. If no precipitation occurred, $\mathrm{Et}_{2} \mathrm{O}$ was added and the crude mixture was stirred for 1 h . The resulting solid was collected by filtration and washed with $\mathrm{Et}_{2} \mathrm{O}$. If precipitation did still not take place, the solvent was removed under reduced pressure and the crude product was purified by column chromatography (DCM: a cetone gradient).

1-(1-(4-Methoxyphenyl)propan-2-yl)-2,4,6-triphenylpyridin-1-iumtetrafluoroborate (1h):

1h
Prepared in a ccordance to the general procedure to afford $\mathbf{1 h}(263 \mathrm{mg}, 48 \%$ yield $)$ as white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 8.38(\mathrm{~s}, 2 \mathrm{H}), 8.28-8.18(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.56(\mathrm{~m}, 13 \mathrm{H}), 6.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 6.57 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.05-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=13.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.8,8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.27$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , DMSO) $\delta 158.8,157.9,153.9,134.3,133.3,133.0,131.4,130.1$, 123.0, 129.2, 128.6, 114.5, 68.7, 55.5, 41.7, 21.4. HRMS (ESI), m/z: [M-BF4] calculated for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}: 456.2332$, found $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}: 456.2324$.

1-(1-(Ethoxycarbonyl)piperidin-4-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate(1i):

Prepared in accordance to the general procedure to afford $\mathbf{1 i}(220 \mathrm{mg}, 40 \%$ yield $)$ as white solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.69(\mathrm{~m}, 6 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.45(\mathrm{~m}, 7 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.75(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,155.3,155.0,133.9,133.7,131.9,131.0,129.5,129.3,128.9,128.2,128.1$,
 463.2388 .

1-(1-(4-Methoxyphenyl)propan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate ($\mathbf{1} \mathbf{j}$):

${ }^{1 j} \quad$ Prepared in accordance to the general procedure to afford $\mathbf{1 j}(120 \mathrm{mg}, 22 \%$ yield $)$ as yellow solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 9.23(\mathrm{~s}, 1 \mathrm{H}), 8.37(\mathrm{~s}, 2 \mathrm{H}), 8.27-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.56(\mathrm{~m}, 13 \mathrm{H}), 6.73(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.84-4.69(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.39(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz, DMSO) $\delta 157.2,155.7,153.3,133.9,132.9,132.4,130.8,129.6,129.4$, $128.9,128.7,115.3,66.0,37.5,30.8,21.9$. HRMS (ESI), m/z: $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$calculated for $\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{NO}_{2}$: 456.2332, found $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}: 456.2330$.

3.2 General procedure for synthesize styrenes

General procedure $\mathbf{A}:{ }^{2}$ The Grignard solution in THF (4.0 mmol) was added dropwise to a solution of acetophenone ($2.0 \mathrm{mmol}, 1.0$ equiv) in dry THF (10 mL) under a nitrogen atmosphere at room temperature. The reaction mixture was stirred for 0.5 h and the diethyl phosphite (2.4 mmol) was added. The mixture was stirred for 5 h. Then, the reaction mixture was added water and extracted with diethyl ether. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by flash chromatography using n-Pentane.

1-Methyl-2-(1-phenylvinyl)benzene (2b): ${ }^{3}$

${ }^{\mathbf{2 b}} \quad$ Prepared in accordance to the general procedure A to afford $\mathbf{2 b}(217 \mathrm{mg}, 56 \%$ yield $)$ as colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.81(\mathrm{dd}, J=1.5,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=1.5$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.4,141.6,140.6,136.1,130.0,130.0,128.3$, $127.5,127.5,126.5,125.6,114.8,20.1$. GC-MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=115(20), 179(100), 194(20)$.

1-Methyl-3-(1-phenylvinyl)benzene (2c): ${ }^{4}$

2c
Prepared in accordance to the general procedure A to afford $\mathbf{2 c}\left(208 \mathrm{mg}, 54 \%\right.$ y ield) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,141.6,141.5,137.7,128.9,128.4,128.2,128.1,128.0,127.6,125.4,114.1$, 21.4. GC-MS (EI, 70 eV): m/z (\%) = 179 (100), 194(80).

1-Methyl-4-(1-phenylvinyl)benzene (2d): ${ }^{5}$

Prepared in accordance to the general procedure A to afford $\mathbf{2 d}\left(259 \mathrm{mg}, 67 \%\right.$ y ield) as colorless oil. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.32(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.9,141.7,138.6,137.5,128.8,128.3,128.1$, 128.1, 127.6, 113.6, 21.2. GC-MS (EI, 70 eV): m/z (\%) = 179 (100), 197(80).

1-Methoxy-4-(1-phenylvinyl)benzene (2e): ${ }^{3}$

2e Prepared in accordance to the general procedure A to afford $\mathbf{2 e}(340.6 \mathrm{mg}, 81 \%$ yield $)$ as white solid. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.17(\mathrm{~m}, 7 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.3,149.5,141.8,134.0,129.4,128.3,128.1,127.6,113.5,112.9$, 55.3. GC-MS (EI, 70 eV): m/z (\%) = 152 (50), 165 (75), 195 (80), 210 (100).

1-(1-Phenylvinyl)-4-(trifluoromethyl)benzene (2g): ${ }^{3}$

${ }^{2 g} \quad$ Prepared in accordance to the general procedure A to afford $\mathbf{2 g}(352.1 \mathrm{mg}, 74 \%$ yield $)$ as colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.57(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.52(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.9,145.1,140.6,128.6,128.4,128.1,128.1,125.2$ $(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.2(\mathrm{q}, J=272.2 \mathrm{~Hz}), 115.9 .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.5 . \mathbf{G C}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=$ 179 (100), 233 (40), 248 (100).

1-Fluoro-4-(1-phenylvinyl)benzene (2h): ${ }^{6}$

${ }^{2 h} \quad$ Prepared in accordance to the general procedure A to afford $\mathbf{2 h}(277.5 \mathrm{mg}, 70 \%$ yield $)$ a s colorless oil. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}$,

1H). ${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.5(\mathrm{~d}, J=244.5 \mathrm{~Hz}), 149.0,141.3,137.5,129.9(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 128.2,128.2$, $127.8,115.0(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 114.2(\mathrm{~d}, J=1.5 \mathrm{~Hz}) .{ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.8 . \operatorname{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}$ $(\%)=177(40), 183(100), 198(100)$.

1-Chloro-4-(1-phenylvinyl)benzene (2i): ${ }^{5}$

${ }^{2 i} \quad$ Prepared in accordance to the general procedure A to afford $\mathbf{2 i}(283.4 \mathrm{mg}, 66 \%$ yield $)$ as colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 4 \mathrm{H}), 5.50(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, 1H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 149.0,141.0,139.9,133.6,129.5,128.3,128.2,128.2,127.9,114.7$. GC-MS (EI, 70 eV): m/z (\%) = 178 (100), 199 (20), $214(60)$.

1-Bromo-4-(1-phenylvinyl)benzene ($\mathbf{2 j} \mathbf{j}$: ${ }^{6}$

${ }^{2 \mathrm{j}} \quad$ Prepared in accordance to the general procedure A to afford $\mathbf{2 j}$ ($283.6 \mathrm{mg}, 55 \%$ yield) as colorless oil.
$\left.{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\right) \delta 7.48(\mathrm{dt}, J=8.7,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{dt}, J=8.7,2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.49(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,140.9,140.4,131.3,129.9$, $128.3,128.2,127.9,121.8,114.7$. GC-MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=178(100), 258(50)$.

4,4'-(Ethene-1,1-diyl)bis(methylbenzene) (21): ${ }^{3}$

${ }^{21}$ Prepared in accordance to the general procedure A to afford $\mathbf{2 l}$ ($299.5 \mathrm{mg}, 72 \%$ yield) as white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~m}, 4 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.7,138.8,137.4,128.8,128.2,113.0,21.2 . \operatorname{GC-MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=115(30), 178(80)$, 193 (100), 208(100).

4,4'-(Ethene-1,1-diyl)bis(methoxybenzene) (2m): ${ }^{4}$

2m
Prepared in accordance to the general procedure A to afford $\mathbf{2 m}(398.0 \mathrm{mg}, 62 \%$ yield) as white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{dt}, J=10.8,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.89(\mathrm{dt}, J=10.4,2.8 \mathrm{~Hz}, 4 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,148.9,134.3,129.4,113.4,111.6,55.2 . \operatorname{GC}-\mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}$ $(\%)=153(40), 165(50), 182(30), 209(40), 225(80), 240(100)$.

2-(1-Phenylvinyl)naphthalene (2p): ${ }^{7}$

${ }^{2 p} \quad$ Prepared in accordance to the general procedure A to afford $\mathbf{2 p}(320.0 \mathrm{mg}, 35 \%$ yield $)$ as colorless oil. ${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.79(\mathrm{~m}, 4 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.62(\mathrm{dd}, J=0.9,0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=0.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,141.5,138.9,133.3,133.0,128.4$, $128.2,128.2,127.8,127.7,127.6,127.3,126.4,126.1,126.0,114.8 . \operatorname{GC-MS}(E I, 70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=215(70), 230$ (100).

3-(1-Phenylvinyl)thiophene (2r): ${ }^{8}$

${ }^{2 r} \quad$ Prepared in accordance to the general procedure A to afford $\mathbf{2 r}(80 \mathrm{mg}, 25 \%$ yield $)$ as yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~d}, J=28.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.20(\mathrm{~m}, 6 \mathrm{H}), 5.57(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.0,148.6,146.8,140.2,137.2,135.7,128.4$, 128.2, 128.0, 123.1. GC-MS (EI, 70 eV): m/z (\%) = 152 (30), 166 (30), 180 (100), 181 (70).

3-(1-Phenylvinyl)thiophene (2s): ${ }^{9}$

${ }^{2 s} \quad$ Prepared in accordance to the general procedure A to afford $2 \mathbf{s}\left(189.0 \mathrm{mg}, 50 \%\right.$ yield) as yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{dd}, J=4.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ $(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.6$, $142.5,141.5,128.2,128.1,127.8,127.2,125.4,123.3,113.4$ GC-MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=152$ (30), 171 (60), 186 (100).

General procedure B: ${ }^{\mathbf{1 0}} \mathrm{A} 10 \mathrm{~mL}$ round bottomed flask equipped with a magnetic stir bar was charged with alkyne $(2.0 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{Pin}_{2}\left(1.0 \mathrm{mmol}, 0.5\right.$ equiv), arylboronic acid ($2.0 \mathrm{mmol}, 1.0$ equiv), $\mathrm{PCy}_{3}(2 \mathrm{~mol} \%), \mathrm{Pd}(\mathrm{OAc})_{2}(1$ $\mathrm{mol} \%), \mathrm{H}_{2} \mathrm{O}(4.0 \mathrm{mmol}, 2.0$ equiv $)$ and THF $(8 \mathrm{~mL})$. The mixture was stirred for 4 h at $80^{\circ} \mathrm{C}$. After the completion of the reaction, the reaction mixture was concentrated under reduced pressure. The crude residue was purified by fla sh chromatography using n-Pentane.

1-(tert-Butyl)-4-(1-phenylvinyl)benzene (2f): ${ }^{5}$

$2 f \quad$ Prepared in a ccordance to the general procedure B to afford $\mathbf{2 f}(168.5 \mathrm{mg}, 71 \%$ yield $)$ a s colorless oil. ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.26(\mathrm{~m}, 9 \mathrm{H}), 5.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.7,149.8,141.7,138.4,128.3,128.1,127.8,127.6,125.0,113.7,34.6,31.3$. GCMS (EI, 70 eV): m/z (\%) = 103 (50), 221 (100), $236(50)$.

1-(1-Phenylvinyl)naphthalene (2q): ${ }^{3}$

${ }^{2 q} \quad$ Prepared in accordance to the general procedure A to afford $\mathbf{2 q}(504.4 \mathrm{mg}, 55 \%$ yield $)$ as white solid. ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-$ $7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.05(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,141.0,139.8,133.7,131.8,128.4,128.2,127.9,127.7,127.2,126.6,126.4,125.8,125.6$, 125.4, 116.2. GC-MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=152(50), 229(100), 230(80)$.

General procedure C: The Grignard solution in THF (10.0 mmol) was added dropwise to a solution of 1-(4-bromophenyl)ethan-1-one (5.0 mmol) in dry THF (20 mL) under a nitrogen atmosphere at room temperature. The reaction mixture was stirred for 0.5 h and the diethyl phosphite (6.0 mmol) was added. The mixture was stirred for 5 h. Then, the reaction mixture was added water and extracted with diethyl ether. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. 1-bromo-4-(1-(4methoxyphenyl)vinyl)benzene was obtained by flash chromatography using n-Pentane/Ethyl acetate.
1-bromo-4-(1-(4-methoxyphenyl)vinyl)benze (3.0 mmol) was dissolved in THF (12 mL) under a nitrogen atmosphere and cooled down to $-78^{\circ} \mathrm{C}$. The n-BuLi ($6.3 \mathrm{mmol}, 2.1$ equiv) was added dropwise over 10 min . The reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ before DMF (15.0 mmol) was added at once. The solution was allowed to room temperature slowly and stirred for 5 h . After the completion of the reaction, the mixture was added water and extracted with diethyl ether. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by flash chromatography using n-Pentane/Ethyl acetate to afford $2 n$.
4-(1-(4-Methoxyphenyl)vinyl)benzaldehyde (2n)

2n
Prepared in accordance to the general procedure C to afford $\mathbf{2 n}(364.1 \mathrm{mg}, 51 \%$ yield) as white solid. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$
$(\mathrm{dt}, J=8.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{dt}, J=8.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, 3H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 191.8,159.5,148.6,147.9,135.5,132.9,129.6,129.3,128.8,115.0,113.7,55.2$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$239.1072, Found: 239.1073.

General procedure D: To an oven dried 25 mL schlenk tube equipped with a magnetic stir bar, I_{2} and activated magnesium tumings ($7 \mathrm{mmol}, 1.4$ equiv) was added. The equipment was sealed with rubber septum, evacuated, and back filled with nitrogen. To the funnel was added the solution of 4 -bromo-1,2-dimethoxybenzene ($5.0 \mathrm{mmol}, 1.0$ equiv) in THF (5 ml) by syringe. The above solution was added dropwise at room temperature within 30 mins . After reaction at room temperature for 2 h , the Grignard solution in THF (5.0 mmol) was added dropwise to a solution of 1-(3,4,5-trimethoxyphenyl)ethan-1-one (2.5 mmol) in dry THF (10 mL) under a nitrogen atmosphere at room temperature. The reaction mixture was stirred for 0.5 h and the diethyl phosphite (3.0 mmol) was added. The mixture was stirred for 5 h . Then, the reaction mixture was added water and extracted with diethyl ether. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by flash chromatography using n-Pentane/Ethyl a cetate to afford $\mathbf{2 0}$.

5-(1-(3,4-Dimethoxyphenyl)vinyl)-1,2,3-trimethoxybenzene (20):

20
Prepared in accordance to the general procedure D to afford $\mathbf{2 0}(780.0 \mathrm{mg}, 47 \%$ yield) a s colorless oil. ${ }^{1} H$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.93-6.91(\mathrm{~m}, 1 \mathrm{H}) 6.89(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}$, $2 \mathrm{H}), 5.38(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 152.8,149.7,148.9,148.5,137.8,137.3,134.0,121.0,112.7,111.4,110.7,105.6,60.9$, 56.1,55.9, 55.9. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 331.1545$, Found: 331.1549.

General procedure E: ${ }^{11}$ A 10 mL round bottomed flask equipped with a magnetic stir bar was charged with butyl acry late (2.0 mmol), iodobenzene (3.1 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{~mol} \%), \mathrm{AgOAc}(4.2 \mathrm{mmol})$ and acetic acid $(6 \mathrm{~mL})$. The mixture was stirred for 6 h at $110^{\circ} \mathrm{C}$. After the completion of the reaction, the reaction mixture was diluted with water and extracted with ethylacetate. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by flash chromatography using n-Pentane/Ethyl acetate to afford 2 t .

3-(1-Phenylvinyl)thiophene (2t): ${ }^{11}$

Prepared in accordance to the general procedure E to afford $\mathbf{2 t}(100 \mathrm{mg}, 24 \%$ yield $)$ as colorless oil. ${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{t}, J$ $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.2,156.2,140.8,139.0,129.3,129.0,128.3,128.2,128.0,127.8,117.5,64.0,30.4,19.0,13.6$ GC-MS (EI, 70 $\mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=178(100), 207(80), 223(50), 280(30)$.

4. General procedure for the synthesis of α, β-unsaturated ketones

A 4 mL screw-cap vial was charged with Katritzky salts (0.1 mmol), LiOMe (0.1 mmol) and an oven-dried stirring bar. The vial was closed by Teflon septum and phenolic cap and connected with atmosphere with a needle. After flashed the vials with argon and vacuum three times, styrenes (0.2 mmol), DBU (0.2 mmol) and dry THF (2 mL) were injected by syringe. The vial was fixed in an alloy plate and put into Paar 4560 series autoclave (500 mL) under argon atmosphere. At room temperature, the autoclave was flushed with carbon monoxide for three times and 50 bar of carbon monoxide was charged. The autoclave was reacted at $80^{\circ} \mathrm{C}$ for 15 h . Afterwards, the pressure was carefully released. After removal of solvent under reduced pressure, pure product was obtained by column chromatography.

1-Cyclohexyl-3,3-diphenylprop-2-en-1-one (3aa):

3aa
Light cyan oil ($21.5 \mathrm{mg}, 74 \%$ yield), $\mathrm{R}_{f}=0.4(n$-Pentane $/ \mathrm{EtOAc}=50 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.39-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{tt}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.63-$ $1.59(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.8,153.4,141.2,139.2$, $129.4,129.2,128.4,128.3,128.3,128.1,125.4,50.8,28.7,25.8,25.7$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 290.1671, Found: 290.1672.

1-Cyclohexyl-3-phenyl-3-(o-tolyl)prop-2-en-1-one(3ab):

3 Light cyan oil $\left(20.1 \mathrm{mg}, 66 \%\right.$ yield, E / Z isomer: $85: 15$ based on NMR), $\mathrm{R}_{f}=0.4(n-\mathrm{Pentane} / \mathrm{EtOAc}=$ $50 / 1) .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 0.85 \mathrm{H})$,
$6.25(\mathrm{~s}, 0.15 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 0.45 \mathrm{H}), 2.06(\mathrm{~s}, 2.55 \mathrm{H}), 1.82-1.60(\mathrm{~m}, 5 \mathrm{H}), 1.39-1.19$ $(\mathrm{m}, 3 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 203.9,152.9,139.8,138.7,135.6,130.6,130.0,129.7$, $129.3,129.2,128.7,128.5,128.3,128.1,127.9,127.4,125.7,125.6,125.2,51.0,50.7,28.7,28.3,25.8,25.7,20.4$, 19.6. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 305.1905$, Found: 305.1901.

1-Cyclohexyl-3-phenyl-3-(m-tolyl)prop-2-en-1-one (3ac):

3ac Light cyan oil ($19.7 \mathrm{mg}, 65 \%$ y ield, E / Z isomer: $50: 50$ based on NMR), $\mathrm{R}_{f}=0.4$ (n-Pentane/EtOAc $=$ $50 / 1) .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.97(\mathrm{~m}$, $1 \mathrm{H}), 6.61(\mathrm{~s}, 0.5 \mathrm{H}), 6.59(\mathrm{~s}, 0.5 \mathrm{H}), 2.35(\mathrm{~s}, 1.5 \mathrm{H}), 2.33(\mathrm{~s}, 1.5 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.63-$ $1.57(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.2,204.9,153.7,153.5$, $141.35,141.31,139.3,139.1,138.0,137.7,130.0,123.0,129.3,129.13,129.14,128.9,128.4,128.3,128.21,128.22$, $128.01,128.03,126.5,125.7,125.6,125.3,50.8,50.6,28.8,28.7,25.8,25.7,21.4$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 305.1905$, Found: 305.1905.

1-Cyclohexyl-3-phenyl-3-(p-tolyl)prop-2-en-1-one(3ad):

3ad Light cyan oil ($24.9 \mathrm{mg}, 82 \%$ y ield, E / Z isomer. $57: 43$ based on NMR), $\mathrm{R}_{f}=0.4(n$-Pentane/EtOAc $=$ $50 / 1) .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 0.57 \mathrm{H})$, $6.58(\mathrm{~s}, 0.43 \mathrm{H}), 2.39(\mathrm{~s}, 1.3 \mathrm{H}), 2.36(\mathrm{~s}, 1.7 \mathrm{H}), 2.34-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.38-$ $1.26(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.9,204.8,153.8,153.6,141.6,139.5,139.4$, $138.4,138.3$, 136.2, 129.4, 129.3, 129.1, 129.0, 128.8, 128.5, 128.31, 128.34, 128.2, 128.1, 125.1, 124.6, 50.80, 50.82, 28.7, 25.8, 25.7, 21.3, 21.2. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 305.1905$, Found:305.1906.

1-Cyclohexyl-3-(4-methoxyphenyl)-3-phenylprop-2-en-1-one (3ae):

3ae Light cyan oil ($23.3 \mathrm{mg}, 75 \%$ yield, E / Z isomer: $50: 50$ based on NMR), $\mathrm{R}_{f}=0.2$ (n-Pentane/EtOAc $=50 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.70$ $(\mathrm{m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 0.5 \mathrm{H}), 6.41(\mathrm{~s}, 0.5 \mathrm{H}), 3.72(\mathrm{~s}, 1.5 \mathrm{H}), 3.69(\mathrm{~s}, 1.5 \mathrm{H}), 2.21-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.52$ $-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.13(\mathrm{~m}, 3 \mathrm{H}), 1.05-0.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.9,204.6,160.6,159.9$, $153.6,153.4,141.9,139.4,133.6,131.2,131.1,129.8,129.3,129.1,128.6,128.21,128.23,128.1,124.9,123.5$,
$113.7,113.4,55.3,55.2,50.9,50.7,28.8,25.80,25.81$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 321.1855$, Found: 321.1855.

3-(4-(tert-Butyl)phenyl)-1-cyclohexyl-3-phenylprop-2-en-1-one (3af):

3af Light cyan oil $(24.8 \mathrm{mg}, 72 \%$ yield, E / Z isomer: $58: 42$ based on NMR $), \mathrm{R}_{f}=0.4$ (n-Pentane/EtOAc $=$ 50/1). ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}$, $1 \mathrm{H}), 6.66(\mathrm{~s}, 0.58 \mathrm{H}), 6.58(\mathrm{~s}, 0.42 \mathrm{H}), 2.30-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.53(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 3.5 \mathrm{H}), 1.34(\mathrm{~s}, 5.5 \mathrm{H}), 1.31-$ $1.27(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.02(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.5,204.7,153.6,153.5,152.7,151.6,141.5$, $139.3,138.2,136.0,129.4,129.3,129.1,128.5,128.3,128.2,128.11,128.13,125.7,125.3,125.0,124.6,50.8,50.6$, $34.7,34.6,31.3,31.2,28.9,28.7,25.80,25.81,25.82,25.7$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 347.2375$, Found: 347.2368.

1-Cyclohexyl-3-phenyl-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (3ag):

3ag Yellow solid $\left(26.4 \mathrm{mg}, 74 \%\right.$ yield, E / Z isomer: $50: 50$ based on NMR), $\mathrm{R}_{f}=0.3$ (n-Pentane/EtOAc $=$ $50 / 1) .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.25(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 0.5 \mathrm{H})$, $6.63(\mathrm{~s}, 0.5 \mathrm{H}), 2.38(\mathrm{tt}, J=11.1,3.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.26(\mathrm{tt}, J=11.4,3.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.59(\mathrm{~m}$, $1 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.8,203.4,152.6,151.5,144.8$, $143.0,140.4,138.3,131.1,130.7,130.2,129.8,129.6,129.5,129.3,128.7,128.6,128.5,128.3,128.2,127.1,125.9$, $125.3(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 125.2,125.1(\mathrm{q}, ~ J=3.8 \mathrm{~Hz}), 122.3,51.4,50.8,28.6,28.5,25.8,25.70,25.71 .{ }^{19} \mathbf{F}$ NMR (282 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.5,-62.7 . \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 359.1623$, Found: 359.1624.

1-Cyclohexyl-3-(4-fluorophenyl)-3-phenylprop-2-en-1-one (3ah):

3ah Light cyan oil ($21.6 \mathrm{mg}, 70 \%$ yield, E / Z isomer: $50: 50$ based on NMR), $\mathrm{R}_{f}=0.3$ (n-Pentane/EtOAc $=$ $50 / 1) .{ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 0.5 \mathrm{H})$, $6.57(\mathrm{~s}, 0.5 \mathrm{H}), 2.39-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.10(\mathrm{~m}$, 2H). ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.7$, 204.2, 165.0, 164.4, 161.7, 161.1, 152.8, 152.4, 141.2, 139.0, 137.3, 135.0, $134.9,131.3,131.2,130.3,130.2,129.4,129.3,128.5,128.40,128.41,128.2,125.21,125.22,115.5,115.20,115.21$,
$115.0,51.1,50.8,28.7,28.6,25.80,25.81,25.7 .{ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-111.9,-113.2$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{FO}[\mathrm{M}+\mathrm{H}]^{+}: 309.1655$, Found: 309.1653 .

3-(4-Chlorophenyl)-1-cyclohexyl-3-phenylprop-2-en-1-one (3ai):

3ai Light cyan oil $\left(22.5 \mathrm{mg}, 69 \%\right.$ yield, E / Z isomer. $50: 50$ based on NMR), $\mathrm{R}_{f}=0.4$ (n-Pentane/EtOAc $=$ 50/1). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 0.5 \mathrm{H})$, $6.51(\mathrm{~s}, 0.5 \mathrm{H}), 2.27(\mathrm{tt}, J=11.6,3.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.16(\mathrm{tt}, J=11.6,3.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.82-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.16-0.99(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.7,203.9,152.7,152.1,140.9$, 139.7, 138.7, 137.5, 135.3, 134.2, 130.7, 129.6, 129.5, 129.3, 128.50, 128.51, 128.4, 128.31, 128.32, 128.2, 125.6, 125.1,51.2,50.8, 28.63, 28.61, 25.7. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{OCl}[\mathrm{M}+\mathrm{H}]^{+}: 325.1359$, Found: 325.1359.

3-(4-Bromophenyl)-1-cyclohexyl-3-phenylprop-2-en-1-one (3aj):

3aj Light cyan oil ($25.7 \mathrm{mg}, 70 \%$ yield, E / Z isomer. $50: 50$ based on NMR), $\mathrm{R}_{f}=0.4$ (n-Pentane/EtOAc $=$ 50/1). ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}$, $2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 0.5 \mathrm{H}), 6.45(\mathrm{~s}, 0.5 \mathrm{H}), 2.21(\mathrm{tt}, J=12.0,3.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.09(\mathrm{tt}, J=11.4,3.3 \mathrm{~Hz}$, $0.5 \mathrm{H}), 1.74-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.06-0.96(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 204.7,203.8,152.7,152.1,140.8,140.2,138.6,138.0,131.5,131.3,131.0,129.9,129.5,129.3,128.5$, $128.4,128.3,128.2,125.7,125.0,123.6,122.5,51.2,50.8,28.62,28.61,25.83,25.81,25.7,25.6$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+}: 369.0854$, Found: 369.0849 .

3-(2-Bromophenyl)-1-cyclohexyl-3-phenylprop-2-en-1-one (3ak):

3ak Light cyan oil ($30.0 \mathrm{mg}, 81 \%$ y ield, E / Z isomer. 89:11 based on NMR), $\mathrm{R}_{f}=0.3(n-$ Pentane/EtOAc $=$ $50 / 1){ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.05(\mathrm{~m}$, $1 \mathrm{H}), 6.79(\mathrm{~s}, 0.89 \mathrm{H}), 6.23(\mathrm{~s}, 0.11 \mathrm{H}), 2.31(\mathrm{tt}, J=11.1,3.3 \mathrm{~Hz}, 0.91 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 0.14 \mathrm{H}), 1.83-1.67(\mathrm{~m}, 4 \mathrm{H})$, $1.59-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.03(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.7,151.8,140.3$, $138.9,132.8,130.3,129.5,129.1,128.6,127.5,127.2,125.1,122.3,51.2,28.63,28.62,28.2,25.82,25.81,25.7$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{OBr}[\mathrm{M}+\mathrm{H}]^{+}: 369.0854$, Found: 369.0858.

1-Cyclohexyl-3,3-di-p-tolylprop-2-en-1-one (3al):

3al \quad White solid ($22.9 \mathrm{mg}, 72 \%$ yield $), \mathrm{R}_{f}=0.3(n-\mathrm{Pentane} / \mathrm{EtOAc}=50 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.22-7.11(\mathrm{~m}, 6 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{tt}, J=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85$ $-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.17-1.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.8$, $153.9,139.4,138.7,138.1,136.3,129.4,129.0,128.7,128.4,124.3,50.8,28.8,25.82,25.81,21.3,21.2$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 318.1984$, Found: 318.1982.

1-Cyclohexyl-3,3-bis(4-methoxyphenyl)prop-2-en-1-one (3am):

3 am
Light cyan solid ($21.7 \mathrm{mg}, 62 \%$ yield), $\mathrm{R}_{f}=0.3$ (n-Pentane/EtOAc $=20 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.18$ $(\mathrm{tt}, J=11.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.16(\mathrm{~m}, 3 \mathrm{H}), 1.10-0.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.7,160.6,159.8,153.6,134.2,131.5,131.1,130.1,123.1,113.6,113.4,55.3,55.2$, 50.8,28.8, 25.82, 25.81. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 351.1960$, Found: 351.1955.

4-(3-Cyclohexyl-1-(4-methoxyphenyl)-3-oxoprop-1-en-1-yl)benzaldehyde (3an):

3an \quad Yellow oil ($23.5 \mathrm{mg}, 67 \%$ y ield, E / Z isomer: 57:43 based on NMR), $\mathrm{R}_{f}=0.4$ (n-Pentane/EtOAc $=20 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.04(\mathrm{~s}, 0.57 \mathrm{H}), 10.03(\mathrm{~s}, 0.43 \mathrm{H}), 7.91-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H})$, $7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 0.57 \mathrm{H}), 6.58(\mathrm{~s}, 0.43 \mathrm{H})$, $3.84(\mathrm{~s}, 1.13 \mathrm{H}), 3.82(\mathrm{~s}, 1.85 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.20(\mathrm{~m}, 3 \mathrm{H})$, 1.17 - $1.14(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9,203.1,191.9,191.6,161.0,160.1,152.7,151.6,147.8$, $146.4,136.4,135.6,132.4,131.1,130.3,129.7,129.6,129.5,129.2,128.7,126.9,122.9,114.0,113.7,55.4,55.3$, $51.4,50.9,28.7,28.5,25.82,25.81,25.7$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 349.1804$, Found: 349.1806.

1-Cyclohexyl-3-(3,4-dimethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (3ao):

3 ao
Light cyan oil ($40.0 \mathrm{mg}, 91 \%$ yield, E / Z isomer. 55:45 based on NMR), $\mathrm{R}_{f}=0.3$ ($n-$ Pentane/EtOAc = 5/1). ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 0.6 \mathrm{H}), 6.50(\mathrm{~s}, 0.4 \mathrm{H})$, $6.48(\mathrm{~s}, 0.88 \mathrm{H}), 6.48(\mathrm{~s}, 0.55 \mathrm{H}), 6.46(\mathrm{~s}, 0.45 \mathrm{H}), 6.40(\mathrm{~s}, 1.11 \mathrm{H}), 3.91(\mathrm{~s}, 1.38 \mathrm{H}), 3.89(\mathrm{~s}, 1.38 \mathrm{H}), 3.88(\mathrm{~s}, 1.68 \mathrm{H})$, $3.86(\mathrm{~s}, 1.66 \mathrm{H}), 3.83(\mathrm{~s}, 1.69 \mathrm{H}), 3.80(\mathrm{~s}, 1.31 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.66(\mathrm{~m}, 4 \mathrm{H})$, $1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.00(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.5,205.3,153.2$, $152.92,152.90,152.8,150.3,149.4,148.7,148.4,139.2,138.2,137.0,134.7,133.4,131.3,124.9,124.3,122.8$, $122.0,112.8,111.0,110.6,110.5,106.9,106.0,61.0,60.9,56.12,56.11,55.92,55.91,55.90,55.8,50.5,50.4,29.0$, 28.9, 25.8, 25.7. HRMS (ESI) ca lcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 441.2277$, Found: 441.2273.

1-Cyclohexyl-3-(naphthalen-2-yl)-3-phenylprop-2-en-1-one (3ap):

3ap Light cyan oil ($27.9 \mathrm{mg}, 82 \%$ yield, E / Z isomer. $50: 50$ based on NMR $), \mathrm{R}_{f}=0.3(n$-Pentane $/ \mathrm{EtOAc}=$ $50 / 1) .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 0.5 \mathrm{H}), 6.64(\mathrm{~s}, 0.5 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.58(\mathrm{~m}$, $4 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.9$, 204.7, $153.6,153.4,141.4,139.2,138.5,136.7,133.6,133.1,133.0,129.5,129.3,128.7,128.6,128.42,128.41,128.21$, $128.20,128.0,127.7,127.62,127.61,127.4,126.9,126.41,126.40,126.2,125.9,125.6,125.3,51.0,50.8,28.72$, 28.71, 25.82, 25.81, 25.7, 25.6. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 341.1905$, Found: 341.1901.

1-Cyclohexyl-3-(naphthalen-1-yl)-3-phenylprop-2-en-1-one (3aq):

${ }^{3}$ aq Light cyan oil ($23.1 \mathrm{mg}, 68 \%$ y ield, E / Z isomer. 77:23 based on NMR), $\mathrm{R}_{f}=0.3$ (n-Pentane/EtOAc $=$ $50 / 1) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.87(\mathrm{~m}, 2.26 \mathrm{H}), 7.68-7.65(\mathrm{~m}, 0.74 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-$ $7.27(\mathrm{~m}, 8 \mathrm{H}), 7.00(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 0.77 \mathrm{H}), 6.47(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 0.23 \mathrm{H}), 2.36(\mathrm{tt}, J=11.6,3.6 \mathrm{~Hz}, 0.23 \mathrm{H}), 2.13(\mathrm{tt}, J=$ $11.6,2.8 \mathrm{~Hz}, 0.77 \mathrm{H}), 1.96-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.11-0.78(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 205.7,204.1,152.0,151.6,140.4,140.1,139.6,136.9,133.8,133.5,131.6,131.2,129.4,129.3$, $129.0,128.8,128.62,128.61,128.4,128.3,128.1,127.51,127.50,127.3,127.0,126.6,126.4,126.3,125.92,125.91$,
125.7, 125.6, 125.2, 125.1, 51.0, 50.5, 28.9, 28.7, 28.2, 25.8, 25.7, 25.6, 25.5. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 341.1905$, Found:341.1901.

1-Cyclohexyl-3-phenyl-3-(pyridin-3-yl)prop-2-en-1-one (3ar):

Light cyan oil ($17.9 \mathrm{mg}, 61 \%$ yield, E / Z isomer: $50: 50$ based on NMR), $\mathrm{R}_{f}=0.2$ (n-Pentane $/ \mathrm{EtOAc}=$ $10 / 1)$. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.54(\mathrm{~s}, 1.3 \mathrm{H}), 8.34(\mathrm{~s}, 0.6 \mathrm{H}), 7.51-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.27-$ $7.17(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 0.5 \mathrm{H}), 6.55(\mathrm{~s}, 0.5 \mathrm{H}), 2.33(\mathrm{tt}, J=11.2,3.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.19(\mathrm{tt}, J=11.2$, $3.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.16-1.00(\mathrm{~m}$, 3H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,203.2,150.4,150.0,149.3,148.9,148.8,140.4,138.0,137.2,135.7$, 129.7, 129.3, 128.8, 128.6, 128.4, 128.2, 126.6, 125.7, 51.4, 50.8, 28.6, 28.4, 25.8, 25.7, 25.6. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 292.1701$, Found: 292.1702.

1-Cyclohexyl-3-phenyl-3-(thiophen-3-yl)prop-2-en-1-one (3as):

${ }^{\text {3as }} \quad$ Light cyan oil ($23.9 \mathrm{mg}, 81 \%$ yield, E / Z isomer: $85: 15$ based on NMR), $\mathrm{R}_{f}=0.2(n$-Pentane/EtOAc $=$ $50 / 1) .{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}$, $2 \mathrm{H}), 6.98$ (dd, $J=3.0,1.5 \mathrm{~Hz}, 0.85 \mathrm{H}$), 6.92 (dd, $J=4.8,1.5 \mathrm{~Hz}, 0.15 \mathrm{H}$), 6.62 (s, 0.85 H), 6.48 ($\mathrm{s}, 0.15 \mathrm{H}$), $2.32-2.26$ $(\mathrm{m}, 0.15 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 0.9 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.13-0.99(\mathrm{~m}$, 3H). ${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.0,204.5,147.8,143.1,141.5,139.1,129.2,128.7,128.32,128.31,128.11$, 128.10, 127.7, 126.8, 126.2, 125.8, 125.0, 123.5,50.9, 50.7, 28.8, 28.7, 25.82, 25.81, 25.80, 25.7. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 297.1313$, Found: 297.1312.

1-Cycloheptyl-3,3-diphenylprop-2-en-1-one (3at):

Colorless oil ($27.0 \mathrm{mg}, 69 \%$ yield), $\mathrm{R}_{f}=0.2(n$-Pentane/EtOAc $=50 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.41-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 4 \mathrm{H}), 3.97(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.94(\mathrm{tt}, J=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 4 \mathrm{H})$, $1.57-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.04(\mathrm{~m}, 3 \mathrm{H}), 0.98-0.87(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.0,167.3,151.7,140.3,139.6,134.3,130.0,129.5,129.2,129.0,128.4,128.2,65.0$, $50.8,30.1,28.8,25.7,25.6,18.8,13.6$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 391.2273$, Found: 391.2270.

1-Cyclohexyl-3-(4-methoxyphenyl)but-2-en-1-one(3au):

${ }^{\text {3au }} \quad$ Light cyan oil $\left(11.0 \mathrm{mg}, 43 \%\right.$ yield), $\mathrm{R}_{f}=0.3$ (n-Pentane $\left./ E t O A c=50 / 1\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.47(\mathrm{dt}, J=9.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dt}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 2.43(\mathrm{tt}, J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.23$ $(\mathrm{m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.5,160.4,153.6,134.9,127.9,122.0,113.9,55.4,52.2,28.8,26.0,25.9$, 18.2. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 259.1698$, Found: 259.1700 .

1-Cycloheptyl-3,3-diphenylprop-2-en-1-one (3ba):

${ }^{\text {3ba }} \quad$ Light cyan oil ($20.4 \mathrm{mg}, 74 \%$ yield), $\mathrm{R}_{f}=0.4(n-\mathrm{Pentane} / E t O A c=50 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.44-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 2.91-2.76(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.48(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 204.2,153.3,141.3,139.1,129.4,129.2,128.4,128.32,128.31,128.1,125.8,51.7,29.4,26.1$ HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 277.1592$, Found: 277.1593 .

1-Cycloheptyl-3,3-diphenylprop-2-en-1-one (3ca):

${ }^{3 c a} \quad$ Light cyan oil $(10.7 \mathrm{mg}, 35 \%$ yield $), \mathrm{R}_{f}=0.3$ (n-Pentane $/ E t O A c=50 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.40-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{tt}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1,85-1,78(\mathrm{~m}, 2 \mathrm{H}), 1.70-$ $1.62(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.4$, 153.3, 141.3, 139.2, 129.4, 129.2, 128.4, 128.3, 128.2, 125.8, 52.0, 30.2, 28.2, 26.8. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 305.1905$, Found: 305.1905.

4-Methyl-1,1-diphenylpent-1-en-3-one (3da):

3da Light cyan oil $(14.6 \mathrm{mg}, 58 \%$ yield $), \mathrm{R}_{f}=0.5(n-\mathrm{Pentane} / E t O A c=50 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.39-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.4,153.6,141.3,139.1,129.4,129.2,128.41,128.40,128.1,125.0,40.9,18.4$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 251.1436$, Found:251.1433.

4-Methyl-1,1-diphenylnon-1-en-3-one (3ea):

${ }^{3 e a} \quad$ Light cyan oil ($23.1 \mathrm{mg}, 69 \%$ yield), $\mathrm{R}_{f}=0.4(n-\mathrm{Pentane} / E t O A c=50 / 1) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.39-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 2.49-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.16(\mathrm{~m}, 7 \mathrm{H})$, $1.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.5,153.5,141.3,139.1,129.4$, $129.2,128.41,128.40,128.1,125.5,46.2,33.3,31.8,27.0,22.5,16.3,14.0$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 307.2062, Found: 307.2062.

4-Cyclohexyl-1,1-diphenylpent-1-en-3-one (3fa):

3fa Yellow oil ($19.6 \mathrm{mg}, 62 \%$ y ield $), \mathrm{R}_{f}=0.3(n$-Pentane $/ E t O A c=50 / 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39$ $-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.52(\mathrm{~m}, 7 \mathrm{H}), 1.28-1.05(\mathrm{~m}, 4 \mathrm{H})$, $0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.2,153.3,141.4,139.2,129.4,129.2,128.41$, 128.40, $128.3,128.1,125.9,51.9,40.5,31.8,29.3,26.5,26.4,12.9$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 319.2062$, Found: 319.2062.

4-Methyl-1,1,6-triphenylhex-1-en-3-one (3ga):

${ }^{3}$ ga \quad Yellow oil ($30.4 \mathrm{mg}, 89 \%$ yield), $\mathrm{R}_{f}=0.3$ ($n-$ Pentane $\left./ E t O A c=50 / 1\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31$ $-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 5 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 3 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.58-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.8,154.0,141.9,141.2,139.0,129.4$, $129.3,128.42,128.41,128.40,128.3,128.1,125.8,125.3,45.6,34.8,33.5,16.4$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 341.1905$, Found: 341.1910.

5-(4-Methoxyphenyl)-4-methyl-1,1-diphenylpent-1-en-3-one (3ha):

${ }_{3}$ ha \quad Light cyan liquid ($14.3 \mathrm{mg}, 40 \%$ yield), $\mathrm{R}_{f}=0.2$ (n-Pentane/EtOAc $=50 / 1$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 2.84(\mathrm{dd}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 205.5,158.0,153.4,141.2,139.1,131.9,123.0,129.5,129.2,128.51,128.50,128.3$, 128.2, 126.1, 113.7, 55.2, 48.1, 38.7, 16.5. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 357.1855$, Found: 357.1853.

Acetic 4-(3,3-diphenylacryloyl)piperidine-1-carboxylic anhydride (3ia):

${ }^{3 i a} \quad$ Light cyan liquid ($27.0 \mathrm{mg}, 74 \%$ yield), $\mathrm{R}_{f}=0.4$ (n-Pentane $/ E t \mathrm{OAc}=10 / 1$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.40-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.17-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.58(\mathrm{~m}$, $2 \mathrm{H}), 2.36(\mathrm{tt}, J=11.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.7,155.4,154.5,140.8,139.0,129.5,129.3,128.6,128.41,128.40,128.2,124.7,61.2,48.2,43.3$, 27.6, 14.6. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 364.1913$, Found: 364.1912.

6-(4-Hy droxyphenyl)-4-methyl-1,1-diphenylhex-1-en-3-one (3ja):

${ }^{3} \mathbf{j a} \quad$ Light cyan liquid $(16.6 \mathrm{mg}, 47 \%$ yield $), \mathrm{R}_{f}=0.4$ (n-Pentane $\left./ \mathrm{EtOAc}=5 / 1\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{dt}, J=8.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.6,205.5,154.3,153.9,153.9,141.2,139.0,133.9,133.8,129.41,129.40,128.52,128.51$, $128.4,128.2,125.3,115.3,45.6,35.2,32.6,16.5$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 357.1855$, Found: 357.1858.

1-(4-Hydroxycyclohexyl)-3,3-diphenylprop-2-en-1-one (3ka):

Major isomer: $\mathrm{R}_{f}=0.2(n$-Pentane $/ \mathrm{EtOAc}=2 / 1),{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.16(\mathrm{~m}$, $2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{tt}, J=8.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{tt}, J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) 204.3,154.0,141.0,139.0,129.4,129.3$, $128.5,128.41,128.40,128.2,125.3,70.0,49.4,34.7,26.9$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 307.1698$, Found: 307.1697.

Minor isomer: $\mathrm{R}_{f}=0.3$ (n-Pentane/EtOAc $=2 / 1$), ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.28(\mathrm{~m}, 8 \mathrm{H}), 7.21-7.16(\mathrm{~m}$, $2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{tt}, J=4.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{tt}, J=9.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.54(\mathrm{~m}$, $2 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 204.0,153.7,141.2,139.1,129.4,129.3,128.42$, 128.41, 128.1, 125.0, 66.4, 49.1, 32.1, 22.9. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 307.1698$, Found: 307.1700.

GC-MS (EI, 70 eV$): \mathrm{m} / \mathrm{z}(\%)=77(20), 103(40), 131(100), 214(15)$.

5. Reference:

1. a)C. H. Basch, J. Liao, J. Xu, J. J. Piane and M. P. Watson, J. Am. Chem. Soc., 2017, 139, 5313; b) F. J. R. Klauck, M. J. James and F. Glorius, Angew. Chem. Int. Ed., 2017, 56, 12336; c) S. Plunkett, C. H. Basch, S. O. Santana and M. P. Watson, J. Am. Chem. Soc., 2019, 141, 2257; d) F. Sandfort, F. Strieth-Kalthoff, F. J. R. Klauck, M. J. James and F. Glorius, Chem. Eur. J., 2018, 24, 17210; d) S. A. Said and A. Fiksdahl, Tetrahedron Asymm., 2001, 12, 1947.
2. T. Wang, Y.Hu and S.Zhang, Org. Biomol. Chem., 2010, 8, 2312.
3. D. Ganapathy and G. Sekar, Org. Lett., 2014, 16, 3856.
4. H. Tan, I. Houpis, R.Liu, Y. Wang and Z. Chen, Org. Lett., 2015, 17, 3548.
5. J. C. L. Walker and M. Oestreich, Org. Lett., 2018, 20, 6411.
6. T. Vom Stein, M. Perez, R. Dobrovetsky, D. Winkelhaus, C. B. Caputo and D. W. Stephan, Angew. Chem. Int. Ed., 2015, 54, 10178.
7. Z. Cheng, W. Jin and C. Liu, Org. Chem. Front., 2019, 6, 841.
8. M.D. Ritz, A. M. Parsons, P.N. Palermo and W. D. Jones, Polyhedron, 2020, 180, 114416.
9. C. Lei, Y. J. Yip and J. S. Zhou, J. Am. Chem. Soc., 2017, 139, 6086.
10. S. Rao, M. N. Joy and K. R. Prabhu, J. Org. Chem., 2018, 83, 13707.
11. D. Xu, C. Lu and W. Chen, Tetrahedron, 2012, 68, 1466.

6. NMR Spectra of products: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR

1	190	18	1	160	1	(1)	130	120	110	100	90	80	70	60	50	40	30	10	10	0	0
					1	140		120													

200408．f307．11．fid－Fengqian Zhao zd－330－11－C13CPD CDC13 \｛C：\Bruker\TopSpin3．6．0\} 20047

tobot	\square	\pm
NN゚が心	$\underset{\text { J }}{ }$	m
\！		

$\begin{array}{lllllll}134 & 133 & 132 & 131 & 130 & 129 & 128\end{array}$ f1（ppm）

200420.f350.11.fid - Fengqian Zhao zd-415-3 - C13CPD DMSO \{C:\Bruker\TopSpin3.6.0\} 200450

1j
13C NMR (75 MHz , DMSO)

200414.f313.10.fid — Fengqian Zhao zd-293-3 — PROTON CDC13 \{C:\Bruker\TopSpin3.6.0\} 200413

2b
1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200414.f313.11.fid - Fengqian Zhao zd-293-3 - C13CPD CDC13 \{C:\Bruker\TopSpin3.6.0\} 200413

	$\begin{aligned} & \text { JO } \\ & \text { N } \end{aligned}$	$\stackrel{\sim}{\sim}$
$\underbrace{\text { cosel }}_{\text {c- }}$		

2b
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	0	10	0	-10

2d
$1 \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200128.f313.10.fid - Fengqian Zhao zd-293-1 - C13CPD CDC13 \{C:\Bruker\TopSpin3.6.0\} 200113

		$\stackrel{+}{\sim}$
	N犬	$\stackrel{\text { N }}{ }$
1		

2d
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200219.314.11.fid - Fengqian Zhao zd-335-1 —Au13C CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200214

$2 f$
${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-11
										f1 (p											
										S2											

$\begin{array}{llllll}125.6 & 125.4 & 125.2 & 125.0 & 124.8 & 124.6\end{array}$ f1 (ppm)
200219.f317.11.fid - Fengqian Zhao zd-293-8 - 19F(H-entk) CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200217

2g
$19 \mathrm{FNMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200128.f315.10.fid—Fengqian Zhao zd-293-5 — C13CPD CDC13 \{C: \Bruker\TopSpin3.6.0\} 200115

2h
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200128.f315.11.fid - Fengqian Zhao zd-293-5 - 19F(H-entk) CDC13 \{C:\Bruker\TopSpin3.6.0\} 200115

2h
19F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200213.404.11.fid - Fengqian Zhao zd-335-3 - Au13C CDCl3 \{C:\Bruker\TopSpin3.5pl6\} 20024

2i
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

			170			1		120				80					10		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										ppm									

200128.f316.10.fid - Fengqian Zhao zd-293-6 - C13CPD CDC13 \{C:\Bruker\TopSpin3.6.0\} 200116

2j
${ }_{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

			170											60				20			11
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	11

200302.418.11.fid - Fengqian Zhao zd-375 - Au13C CDC13 \{C:\Bruker\TopSpin3.5pl6\} 200318

2n
$13 \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2p
1 H NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200408.f308.11.fid - Fengqian Zhao zd-313-7 - C13CPD CDC13 \{C:\Bruker\TopSpin3.6.0\} 20048

	\bigcirc
- -	

2p
${ }^{13 \mathrm{C}} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

133	132	131	130 $\mathrm{f}(\mathrm{ppm})$	129	128	127	126

$2 q$
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |
| |

$$
\begin{aligned}
& \text { 200303.422.10.fid - Zhao/ zd-313-4 —Au1H CDC13 \{C:\Bruker\TopSpin3.5p16\} } 200322
\end{aligned}
$$

200303.422.11.fid — Zhao/ zd-313-4 - Au13C CDCl3 \{C:\Bruker\TopSpin3.5pl6\} 200322
Ros

$2 r$
13C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
										f1											

2s
${ }_{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3aa
${ }_{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ab
${ }^{13 \mathrm{C}} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200207.f338.10.fid - Fengqian Zhao zd-314 - C13CPD CDC13 \{C:\Bruker\TopSpin3.6.0\} 200238

3ac
${ }_{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ad
$13 \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ae
1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ae ${ }^{13 \mathrm{C}} \mathrm{CMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200219.306.10.fid-Fengqian Zhao zd-336 - Au1H CDCl3 \{C:1Bruker1TopSpin36.0\} 20026

3af
1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3af
${ }^{13 \mathrm{C}} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
200204.f312.10.fid - Zhao/zd-318 — PROTON CDCl3 {C:\Bruker\TopSpin3.6.0} 2002 12
```


3ag
1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ag
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ag
19F NMR（ $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

								70	1							150					
10	0	－10	－20	－30	－40	－50	－60	－70	－80		$\begin{aligned} & -100 \\ & \text { (ppm } \end{aligned}$	-110	-120	－130	－140	－150	－160	－170	－180	－190	－200

200204．f310．10．fid－Zhao／zd－316 — PROTON CDC13 \｛C：BrukerlTopSpin3．6．0\} 200210

3ah
1H NMR（ $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）


```
200217.304.10.fid - Fengqian Zhao zd-316 - Au13C CDCl3 {C:\Bruker\TopSpin3.6.0} 20024
```


3ah
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200207.f340.11.fid - Fengqian Zhao zd-316 - 19F(H-entk) CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200240

3ah
19F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
\qquad

[^0]200302.417.10.fid - Fengqian Zhao zd-337 - Au1 CDC13 \{C:BrukerlTopSpin3.5p16\} 200317

3ai
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3aj

3ak
$13 \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3al
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3am
${ }_{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ap
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)


```
200302.416.10.fid - Fengqian Zhao zd-359 - Au1H CDCl3 {C:\Bruker\TopSpin3.5pl6} 2003 16
```


3 aq
$1 \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200302.416.11.fid - Fengqian Zhao zd-359 - Au13C CDC13 \{C: \backslash Bruker \backslash TopSpin3.5pl6\} 200316

$3 a q$
${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ar
1 H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3ar
13C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3as
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

f1 (ppm)

3at
1H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3at
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ba
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{llll}129.5 & 129.0 & 128.5 & 128.0\end{array}$ f1 (ppm)

| 230 | 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -11 |
| :--- |

200407.414.11.fid - Fengqian Zhao zd-418 - Au13C CDCl3 \{C:\Bruker\TopSpin3.5pl6\} 200414

3ca
13C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1 \\ \text { f1 (ppm) }\end{array}\right)$

仿

3da
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3 fa
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	200																					
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											(ppm											

200324.f313.11.fid - Fengqian Zhao / zd-402 - C13CPD CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200313

$\stackrel{\infty}{ }$	9						
+̇	n	$\dot{\text { ¢ }} \dot{\sim}$	$\begin{aligned} & \text { HO } \\ & \text { N } \end{aligned}$	6 $\stackrel{y}{*}$	$\begin{array}{ll} \infty & n \\ \dot{\sim} & m \\ m \end{array}$	\pm	
	\\|	1			$1 /$		

3ga
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{llllll}130.0 & 129.5 & 129.0 & 128.5 & 128.0\end{array}$ f1 (ppm)

3ja
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ka (major)
IH NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ka (minor) ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

191118.306.10.fid - Fengqian, 2d-8 - Au1H CDCl3 \{C:\Bruker\TopSpin3.6.0\} 19116

1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}$)

[^0]:

