All-inorganic open frameworks based on gigantic four-shell

Ln@W₈@Ln₈@(SiW₁₂)₆ clusters

Jin-Hua Liu,^a Li-Dan Lin,^a Guo-Qiang Wang,^b Ling-Yun Li,^b Yan-Qiong Sun,^a Xin-Xiong Li,^{*ac} and Shou-Tian Zheng^{*a}

^aState Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.

^bCollega of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.

^cState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350108, China.

This file includes:

Section S1 Synthesis and Methods

Section S2 Additional Table

Section S3 Additional Figures

Section S4 References

Section S1 Synthesis and Methods

Materials and General methods: Na₁₀[α -SiW₉O₃₄]·16H₂O was synthesized on the basis of literature method and proved by IR spectroscopy.¹ Other reactants and solvents were obtained from commercial sources and used for reactions without further purification. Powder XRD patterns were obtained using a RIGAKU-Miniflex II diffractometer with Cu $K\alpha$ radiation (λ = 1.54056 Å). IR spectra were recorded on PerkinElmer Spectrum One FT-IR infrared spectrophotometer with pressed KBr pellets in the range of 4000-400 cm⁻¹. Thermal analyses were performed in a dynamic air atmosphere with a heating rate of 10 °C/min, using a NETZSCH STA 449C thermal analyzer. UV-vis spectra were performed on a SHIMADZU UV-2600 UV-visible spectrophotometer by using the same solvent as the blank.

Adsorption Analysis: Single-component gas measurements were performed with an Accelerated Surface Area and Porosimetry 2020 (ASAP 2020) surface area analyzer. All gases were used in the adsorption experiment of 99.999% purity or higher. The samples of **1-Ln** (300 mg) were activated by degassed under high vacuum at 333 K for 8 h to obtain the evacuated samples.

Ionic conductivity experiments: Ac impedance measurements were carried out with a zennium/IM6 impedance analyzer over the frequency range from 0.1 Hz to 5 MHz with an applied voltage of 50mV. The relative humidity was controlled by a STIK Corp. CIHI-150B incubator. The sample was pressed to form a cylindrical pellet of crystalline powder sample (~1.5 mm thickness ×5 mm φ) coated with Cpressed electrodes. Two silver electrodes were attached to both sides of pellet to form four end S3 terminals (quasi-four-probe method). The bulk conductivity was estimated by semicircle fittings of Nyquist plots.

Synthesis of $H_9[La_9W_8(\mu_4-O)_{12}(\mu_2-O)_{24}(H_2O)_{24}]$ (Si $W_{12}O_{40}$)₃·60H₂O (1-La): LaCl₃·6H₂O (0.64 mmol, 220 mg), Na₁₀[α -Si W_9O_{34}]·16H₂O (0.11 mmol, 300 mg), In(NO₃)₃·4.5H₂O (0.52 mmol, 200 mg) and H₅IO₆ (0.65 mmol, 150 mg) were dissolved in 4 mL H₂O in a 20 mL vial, and then the mixture was heated to 100 °C for 4 days and cooled to room temperature. The pH values before and after the reaction were 2.0 and 1.8, respectively. White cube crystals of **1-La** suitable for X-ray diffraction experiments were obtained by filtration, washed with H₂O and air-dried. Yield: about

42.3 % (based on LaCl₃·6H₂O). Elemental analysis (%) calcd for H₁₇₇Si₃La₉W₄₄O₂₄₀ (13441.63): W, 60.18; La, 9.30; Si, 0.63; Found: W, 59.54; La, 10.06; Si, 0.85. IR (KBr pellet, *v*/cm⁻¹): 3270(vs), 1635(s), 1000(w), 947(w), 876(w), 675(w), 506(m).

Synthesis of H₉[Pr₉W₈(μ_4 -O)₁₂(μ_2 -O)₂₄(H₂O)₂₄](SiW₁₂O₄₀)₃·60H₂O (1-Pr): The reaction process of 1-Pr is similar to 1-La except that PrCl₃·6H₂O (0.84 mmol, 300 mg) was used to replace LaCl₃·6H₂O (0.22 mmol, 100 mg). The pH values before and after the reaction were 2.0 and 1.8, respectively. Light green cube crystals of 1-Pr suitable for X-ray diffraction experiments were obtained by filtration, washed with H₂O and air-dried. Yield: 36.5 % (based on PrCl₃·6H₂O). Elemental analysis (%) calcd for H₁₇₇Si₃Pr₉W₄₄O₂₄₀ (13459.64): W, 60.10; Pr, 9.42; Si, 0.63; Found: W, 58.87; Pr, 9.01; Si, 0.52. IR:3257(vs), 1622(vs), 993(w), 947(w), 882(w), 676(w), 500(w).

Synthesis of $H_9[Nd_9W_8(\mu_4-O)_{12}(\mu_2-O)_{24}(H_2O)_{24}](SiW_{12}O_{40})_3\cdot 60H_2O$ (1-Nd): The reaction process of 1-Nd is similar to 1-La except that NdCl₃·6H₂O (0.75 mmol, 270 mg) was used to replace LaCl₃·6H₂O (0.22 mmol, 100 mg). The pH values before and after the reaction were 2.0 and 1.8, respectively. Light purple cube crystals of 1-Nd suitable for X-ray diffraction experiments were obtained by filtration, washed with H₂O and air-dried. Yield: 28.9 % (based on NdCl₃·6H₂O). Elemental analysis (%) calcd for H₁₇₇Si₃Nd₉W₄₄O₂₄₀ (13489.65): W, 59.96; Nd, 9.62; Si, 0.62; Found: W, 58.12; Nd, 8.89; Si, 0.50. IR: 3283(vs), 1623(vs), 1012(w), 954(w), 876(w), 636(w), 513(w).

Single-crystal structure analysis: Single-crystal X-ray diffraction data of **1-La** was collected on Bruker Apex Duo CCD diffractometer with a graphite-monochromatized Mo K α radiation (λ = 0.71073 Å) operating at 175 K. The structures of **1-La** was solved through direct methods and refined by full-matrix least-squares refinements based on F^2 adopting the SHELX-2014 program package. The contribution of disordered solvent molecules to the overall intensity data of structures were treated using the SQUEEZE method in PLATON. The W(2) ions in **1-La** were disordered and split over two positions. All non-H atoms were located with successive difference Fourier syntheses and refined anisotropically. The H atoms of the free water molecules and coordinated water molecule have not been included in the final refinement. Crystallographic data and structure refinements for **1-La** is summarized in Table S1. CCDC 1967584 contains supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Solvent stability test: The crystals of **1-La** (30 mg) were soaked in different solvents (5 mL CH_2Cl_2 = dichloromethane, CH_3CN = acetonitrile, CH_3COCH_3 = acetone, CH_3OH = methanol, EtOH = ethanol, DMF = N,N'-dimethylformamide, NMF = N-Methylformamide) for 24 hours. Then, the crystals were filtered, dried at ambient temperature and grinded for PXRD measurements.

Dye adsorption: Freshly prepared **1-La** (50 mg) were added into to aqueous solutions (5 mL) containing rhodamine B (RhB) ($2.0 \times 10^{-5} \text{ mol/dm}^3$), methylene blue (MB) ($2.0 \times 10^{-5} \text{ mol/dm}^3$), crystal violet (CV) ($2.0 \times 10^{-5} \text{ mol/dm}^3$) and methyl orange (MO) ($6.0 \times 10^{-5} \text{ mol/dm}^3$) on 20 mL sealed glass in the dark at room temperature, respectively. UV/Vis spectra were employed to measure the adsorption ability of **1-La** after certain time intervals.

Dye separation: **Freshly** prepared **1-La** (80 mg) were added into to aqueous solutions (5 mL) containing RhB & MB (concentration ratio: 1:1) and MB & MO (concentration ratio: 1:3) on 20 mL sealed glass in the dark at room temperature. The UV/Vis spectra and photographs were employed to measure the selective adsorption abilities of **1-La** after certain time intervals. The following equations are used to calculate the adsorption efficiency and the quantity:

$$dye \ removal(\%) = \frac{C_0 - C_t}{C_0} \times 100$$
$$Q(quantity) = \frac{C_0 - C_t}{m} \times V \times M$$

In which C_0 is the initial concentration of dye solution and the C_t represents the concentration of **1-La** that adsorbs the dyes at *t* min, *V* is the volume of the solution (L), *m* and *M* are the mass of adsorbent **1-La** and the molar mass of dyes, respectively.

Section S2 Additional Table

	1-La	
Empirical formula	$La_9O_{240}Si_3W_{44}H_{129}$	
Formula weight	13393.88	
Crystal system	Cubic	
Space group	Fm ³ c ((#. 226)	
<i>a</i> (Å)	37.5612(3)	
b (Å)	37.5612(3)	
<i>c</i> (Å)	37.5612(3)	
V (ų)	52993.0(13)	
Ζ	8	
F(000)	46880	
crystal size / mm ³	0.26 × 0.25 × 0.24	
ϑ range / °	2.425 to 25.031	
	$-32 \leq h \leq 44$	
limiting indices	$-43 \le k \le 41$	
	-35 ≤ ≤ 42	
$ ho_{calcd}({ m g~cm^{-3}})$	3.358	
Temperature (K)	175(2)	
μ(mm ⁻¹)	20.543	
Refl. Collected	38112	
Independent relf.	2067	
Parameters	112	
R _{int}	0.0337	
GOF on F ²	1.099	
Final <i>R</i> indices ($I= 2\sigma(I)$)	R_1 = 0.0319, wR_2 = 0.0900	
R indices (all data)	R_1 = 0.0346, wR_2 = 0.0916	

Table S1 Crystal Data and Structure Refinement for 1-La

 ${}^{a}\mathsf{R}_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|, {}^{b}w\mathsf{R}_{2} = [\Sigma w(F_{o}{}^{2} - F_{c}{}^{2})^{2}/w(F_{o})^{2}]^{1/2}, w = 1/[\sigma^{2}(F_{o}{}^{2}) + (xP)^{2} + yP], P = (F_{o}{}^{2} + 2F_{c}{}^{2})/3$

Compounds	Amount (cm ³ g ⁻¹)	Ref.
1-La	124.98	This work
1-Pr	114.79	This work
1-Nd	109.80	This work
$K_3[Cr_3O(OOCH)_6(H_2O)_3][R-SiW_{12}O_{40}]$	130	S2
$Cu_{6}(Trz)_{10}(H_{2}O)_{4}[H_{2}SiW_{12}O_{40}]\cdot 8H_{2}O$	118	S3
$[Cu_4(dpdo)_{12}][H(H_2O)_{27}(CH_3CN)_{12}][PW_{12}O_{40}]_3$	65.1	S4
$K_{2}[Cr_{3}O(OOCH)_{6}(mepy)_{3}]_{2}[\alpha-PMo_{12} O_{40}]\cdot 5H_{2}O$	56.8	S5
$H_{14}[Na_{6}(H_{2}O)_{12}]_{4}[K_{42}Ge_{8}W_{72}O_{272}(H_{2}O)_{60}]$ solvent	52	S6
[Cu ₃ (L) ₂ (H ₂ O) ₄][Cu(dmf) ₄ (SiW ₁₂ O ₄₀)]•9H ₂ O	51.7	S7
H[Ni(Hbpdc)(H2O) ₂] ₂ [PW ₁₂ O ₄₀]·8H ₂ O}	31	S8
[Co(pn) ₃] ₄ [PNb ₁₂ O ₄₀ (VO) ₆][OH] ₅ ·20H ₂ O	19.72	S9
(DODA) ₂₃ [Mo ₁₅₄ O ₄₆₂ H ₅]·70H ₂ O	16.6	S10
Cs _{3.6} K _{0.4} [PW ₁₁ O ₃₉ (Sn-OH)]·8H ₂ O	0.31	S11
$K_2[Cr_3O(OOCH)_6(mepy)_3]_2[a-SiW_{12}O_{40}]\cdot 2H_2O\cdot CH_3OH$	0.03	S12
$Cs_2[Cr_3O(OOCC_2H_5)_6(H_2O)_3]_2[R-SiW_{12}O_{40}]\cdot 4H_2O$	0.022	S13, S14
$Cs_{3}H_{0.3}[SiW_{12}O_{40}]_{0.83}$ ·3H ₂ O	0.020	S15

Table S2 A summary of known vapor adsorption capacities of polyoxometalate materials

Trz: 1,2,4-triazole; dpdo: 4,4'-bipyridine-N,N'-dioxide; mepy: 4-methylpyridine; L: *N*,*N*-bis[(2-hydroxy-3-methoxyphenyl) methylidene] hydrazine hydrate; dmf: N,N-Dimethylformamide; H_2 bpdc: 2,2'-bipyridyl-3,3'-dicarboxylicacid; pn: 1,2-diaminopropane; DODA: dimethyldioctadecylammonium.

Section S3 Additional Figures

Fig. S1. View of the coordination environments of La³⁺ and W⁶⁺ ions in 1-La.

Fig. S2. View of the geometric arrangements of a La³⁺ ion, 8 W³⁺ ions, 8 La³⁺ ions and 6

 ${SiW_{12}O_{40}}^{4-}$ cluster in the four-shell structure, respectively.

Fig. S3. The topology of 1-La.

Fig. S4. The cubic-type cage made up of $La@W_8@La_8$ clusters as vertices and $SiW_{12}O_{40}$

clusters as edges.

Fig. S5. The square channels of $\sim 1.1 \times 1.1 \text{ nm}^2$ along the a/b/c axis.

Fig. S6. Crystal morphology of 1-Ln under an optical microscope.

Fig. S7. X-ray photoelectron spectroscopy of the La (3d) and W (4f).

Fig. S8. The simulated and experimental PXRD patterns of 1-Ln.

Fig. S9. PXRD patterns of 1-La after being soaked different organic solvent.

Fig. S10. PXRD patter after proton conduction for 1-La.

Fig. S11. TG curves of 1-Ln.

Fig. S12. The pore size distributions of 1-Ln.

Fig. S13 a) Nyquist plots for **1-La** at different relative humidity (RH) and $T = 25 \ \text{eC}$. b) and c) Nyquist plots for **1-La** at different temperature and 98 % RH. d) Arrhenius plots of the conductivity of **1-La**.

Fig. S14. UV/vis absorption spectra for a) RhB, c) MB and e) CV adsorption by 50 mg of **1-La** in 5 mL of aqueous solutions of dye. b) RhB, d) MB and f) CV its removal efficiency with time.

Fig. S15. UV/vis absorption spectra for a) MO adsorption by 50 mg of 1-La in 5 mL of aqueous

solutions of dye. b) its removal efficiency with time.

Crystal morphology of 1-La after adsorption of cationic dyes

Fig. S16. Crystal morphology of 1-La after dye adsorption under optical microscope.

Fig. S17. Calibration plots of standard RhB, MB and CV (a & c & e) by UV-Vis spectra in aqueous solutions and their fitting of Abs. vs concentration of respective dye values (b & d & f).

Fig. S18. The removal efficiency of 1-La versus time in solution of mixed dyes, a) RhB & MB. b) MO & MB.

Section S4 References

- S1 A. Tézé, G. Hervé, R. G. Finke, D. K. Lyon, *Inorg. Synth.* 1990, **27**, 85-135.
- S2 S. Uchida, R. Kawamoto, N. Mizuno, *Inorg. Chem.* 2006, **45**, 5136-5144.
- S3 E. L. Zhou, C. Qin, P. Huang, X. L. Wang, W. C. Chen, K. Z. Shao, Z. M. Su, *Chem. Eur. J.* 2015, **21**, 11894-11898.
- S4 M. Wei, L. Chen, X. Duan, J. *Coord. Chem.* 2014, **67**, 2809-2819.
- S5 R. Kawahara, S. Uchida, N. Mizuno, *Chem. Mater.* 2015, **27**, 2092-2099.
- S6 Z. Li, L. D. Lin, H. Yu, X. X. Li, S. T. Zheng, *Angew. Chem. Int. Ed.* 2018, **57**, 15777-15781.
- S7 M. L. Wei, J. J. Sun, X. Y. Duan, Eur. J. Inorg. Chem. 2014, 345-351.
- S8 M. Wei, X. Wang, J. Sun, X. Duan, J. Solid State Chem. 2013, 202, 200-206.
- S9 J. Hu, Y. Xu, D. Zhang, B. Chen, Z. Lin, C. Hu, *Inorg. Chem.* 2017, **56**, 10844-10847.
- S10 S. Noro, R. Tsunashima, Y. Kamiya, K. Uemura, H. Kita, L. Cronin, T. Akutagawa, T. Nakamura, Angew. Chem. Int. Ed. 2009, 48, 8703-8706; Angew. Chem. 2009, 121, 8859-8862.
- S11 Y. Miura, H. Imai, T. Yokoi, T. Tastumi, Y. Kamiya, *Microporous Mesoporous Mater.* 2013, **174**, 34-43.
- S12 S. Uchida, R. Eguchi, N. Mizuno, *Angew. Chem. Int. Ed.* 2010, **49**, 9930-9934; *Angew. Chem.* 2010, **122**, 10126-10130.
- S13 A. Lesbani, R. Kawamoto, S. Uchida, N. Mizuno, *Inorg. Chem.* 2008, **47**, 3349-3357.
- S14 C. Jiang, A. Lesbani, R. Kawamoto, S. Uchida, N. Mizuno, *J. Am. Chem. Soc.* 2006, **128**, 14240-14241.
- S15 Y. Ogasawara, S. Uchida, T. Maruichi, R. Ishikawa, N. Shibata, Y. Ikuhara, N. Mizuno, *Chem. Mater.* 2013, **25**, 905-911.