Cation- and anion-ordered rutile-type derivative LiTeO₃(OH) Electronic Supplementary information (ESI)

Kotaro Fujii,^a Yume Yoshida,^b Yue Jin Shan,^b Keitaro Tezuka,^b Yoshiyuki

Inaguma,^c Masatomo Yashima^{a,*}

- a Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
- b Department of Applied Chemistry, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
- c Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
- * Corresponding author (M. Y.): yashima@cms.titech.ac.jp

(A) Structure map for MX₂ compounds

In 1981, Burdett et al. reported the structure map for MX_2 compounds based on the atomic radii of M and X atoms.²⁴ Here, we revised this map using the ionic radii (Fig. S1). r_M and r_X are the ionic radii of cation M and anion X, respectively. LiTeO₃(OH) exists in the region of rutile-type structure (Red cross mark in Fig. S1).

Fig. S1. Structure map for MX_2 compounds. r_M and r_X are ionic radii of cation M and anion X, respectively. Ionic radii after Shannon (R. D. Shannon, Acta Crystallogr. A, 32, 751-767, 1976)) were used.

OH⁻ content in LiTeO₃(OH) was estimated by the following method. 6.6% weight loss was observed for LiTeO₃(OH) during the heating up to 600 °C by thermogravimetric (TG) analysis. After heating at 600 °C, LiTeO₃(OH) was decomposed into Li₂TeO₄ and TeO₂, which were confirmed from X-ray powder diffraction measurements. Therefore, the following reaction occurred by heating at 600 °C,

2 LiTeO₃(OH) \rightarrow Li₂TeO₄ + TeO₂ + 1/2 O₂ + H₂O,

because the weight loss in this reaction 6.51% agreed well with the observed weight loss 6.6%.

(C) SHG measurement

The optical second harmonic generation (SHG) response was measured for LiTeO₃(OH) powders at ambient temperature using a Continuum Minilite II YAG : Nd laser ($\lambda = 1064$ nm). The details of the apparatus are described in our previous work*. As shown in Fig. S2, SHG signal was observed.

* Y. Inaguma, A. Aimi, Y. Shirako, D. Sakurai, D. Mori, H. Kojitani, M. Akaogi and M. Nakayama, J. Am. Chem. Soc., 2014, **136**, 2748-2756.

(D) Refined structural parameters of LiTeO₃(OH)

Table S1. Crystallographic data of L11eO ₃ (OH)						
	ND		SCXRD			
Chemical formula		LiTeO ₃ (OH)				
Temperature / °C	27		24			
<i>d</i> range / Å	0.7 - 6.0	Wavelength / Å	0.71073			
Space group		$P2_{1}$				
<i>a</i> / Å	5.320533(3)		5.3284(4)			
b / Å	4.891622(2)		4.8924(3)			
c / Å	5.341556(2)		5.3418(5)			
lpha / °	90		90			
eta / °	109.497811(5)		109.455(9)			
γ / °	90		90			
$V/Å^3$	131.0473(4)		131.303(19)			
Calculated density / $g \text{ cm}^{-3}$	5.057		5.047			
		Crystal size / µm	$13 \times 10 \times 5$			
$R_{ m wp}$	0.0139	$R_{ m int}$	0.0427			
$R_{ m p}$	0.0119	$R_{ m sigma}$	0.0479			
$R_{ m B}$	0.0325	wR_2	0.0663			
R_F	0.0398	$R_1 (I > 2\sigma(I))$	0.0299			
Goodness of fit	2.363		1.117			
	× 1, 1 0 44/14					

Table S1. Crystallographic data of LiTeO₃(OH)

The Flack parameter³³ was refined to be 0.44(17) for the SCXRD data using the twin matrix $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, which indicated both structures related by the inversion center exist equally in the crystal of LiTeO₃(OH) (i.e. racemic twin).

Table S2. Refined structural parameters of LiTeO₃(OH) using the ND data taken at 27 °C. All atoms are located at the Wyckoff general site 2*a*. Isotropic atomic displacement parameters (ADPs) were constrained to be $U_{iso}(O1) = U_{iso}(O2)$, and $U_{iso}(O3) = U_{iso}(O4)$, because these are related by the pseudo-inversion center.

Site label	Atom	<i>g</i> *	x	у	Z	$U_{\rm iso}$ **	BVS***
Li	Li	1	0.73073(2)	0.97042(3)	0.48934(18)	0.02591320(10)	1.04
Te	Te	1	0.74531(6)	0.47459(10)	-0.01025(5)	0.0022003(2)	6.00
01	0	1	0.59455(7)	0.1643(8)	0.11791(5)	0.005379(19)	2.05
O2	0	1	0.91107(6)	0.78974(8)	-0.11018(5)	$= U_{iso}(O1)$	2.00
O3	0	1	0.64606(6)	0.34405(7)	-0.34382(5)	0.0077343(2)	2.11
O4	0	1	0.85143(7)	0.60982(7)	0.35631(5)	$= U_{iso}(O3)$	1.85
Н	Н	1	0.76335(6)	0.5****	0.45625(5)	0.01952314(5)	0.98

* *g*: occupancy factor

** Uiso: Isotropic atomic displacement parameter

*** BVS : Bond valence sum

**** y of H atom was fixed to 0.5 because the space group is $P2_1$.

			-		· · ·	0	
Site label	Atom	g	x	у	Z	$U_{ m iso}$	BVS
Li	Li	1	0.756(5)	0.96(3)	0.500(3)	0.019(4)	1.04
Te	Te	1	0.75204(14)	0.456(4)	0.00683(11)	0.00557(16)	5.90
01	0	1	0.5925(16)	0.1435(18)	0.1155(12)	0.0068(8)	2.02
O2	0	1	0.9081(16)	0.7709(18)	-0.1174(12)	0.0068(8)	1.99
O3	0	1	0.6477(17)	0.3258(16)	-0.3471(12)	0.0075(8)	1.72
O4	0	1	0.8549(15)	0.5922(16)	0.3526(12)	0.0075(8)	2.19
Н	Н	1	0.76335	0.5	0.45625	0.019	0.98

Table S3. Refined structural parameters of LiTeO₃(OH) using the SCXRD data taken at 24 °C.

(E) Details and results of the DFT calculations

The generalized gradient approximation (GGA) electronic calculation was carried out with Vienna Ab initio Simulation Package (VASP), in order to study the optimized structure of LiTeO₃(OH) using projector augmented-wave (PAW) potentials for Li, H, Te, and O atoms. A plane-wave basis set with a cutoff of 500 eV was used. The Perdew-Burke-Ernzerhof (PBE) GGA was employed for the exchange and correlation functionals. Sums over occupied electronic states were performed using the Monkhorst-Pack scheme on a $7 \times 7 \times 7$ set of a *k*-point mesh. Unit-cell parameters and atomic coordinates were optimized with the convergence condition of 0.02 eV Å⁻¹. The positions of all atoms were relaxed in the space group *P*2₁. The calculated Born effective charge tensor is shown in Table S5. The calculated band structure of LiTeO₃(OH) showed the direct band gap (Fig. S3).

Site label	Atom	x	у	Ζ
Li	Li	0.73734	0.98771	0.51201
Te	Te	0.74608	0.46829	0.98719
01	Ο	0.59412	0.16207	0.12276
O2	Ο	0.90629	0.78957	0.88401
03	Ο	0.64336	0.34264	0.64222
O4	Ο	0.85374	0.60657	0.34637
Н	Н	0.7656	0.49626	0.45669

Table S4. Optimized structural parameters of LiTeO₃(OH) by the DFT calculation. Optimized lattice parameters: a = 5.4008 Å, b = 4.9830 Å, c = 5.4074 Å, a = 90 °, $\beta = 109.38$ °, $\gamma = 90$ °, V = 137.29 Å³.

				e			,		
<i>Z</i> *	xx	уу	ZZ	xy	XZ	yх	yz	ZX	zy
Te	6.179	5.704	4.037	0.838	-0.222	-0.850	-1.375	0.031	0.244
Li	1.028	1.225	1.376	-0.082	0.113	-0.249	-0.096	0.144	0.215
01	-2.392	-2.207	-1.369	-1.023	0.031	-0.999	0.119	0.030	0.157
O2	-2.426	-2.241	-1.268	-1.014	-0.163	-0.983	0.047	-0.142	0.064
03	-1.675	-1.563	-2.109	-0.061	0.353	0.140	0.075	0.385	0.037
04	-1.612	-1.359	-2.030	-0.213	0.380	0.087	-0.043	0.590	0.250
Н	0.898	0.441	1.363	0.522	-0.492	0.102	-0.102	-1.038	-0.843

Table S5. Calculated Born effective charge tensor for LiTeO₃(OH)

Fig. S3. Calculated band structure of LiTeO₃(OH).

(F) Comparison of the distortion parameters

The polarization value of LiTeO₃(OH) is calculated to be $1.36(15) \ \mu\text{C} \ \text{cm}^{-2}$ along the *b* axis. Contributions of Li⁺, Te⁶⁺, and H⁺ cations to the polarization value are 0.96, -1.21, and 1.62 $\ \mu\text{C} \ \text{cm}^{-2}$, respectively (average position of four oxygen atoms were set to the origin in this calculation). It is known that displacements of cation M (M = Ti or Nb) from the center of MO_6 octahedra are important for large polarizations for some materials such as LiNbO₃-type ZnTiO₃ and LiNbO₃.²⁷ In the present case, however, the distortion of LiO₄(OH)₂ and TeO₅OH octahedra are smaller than those of TiO₆ and NbO₆ in LiNbO₃-type ZnTiO₃ and LiNbO₃, respectively. Degrees of distortions of MO_6 octahedra were calculated using following octahedral distortion parameter Δ .^{**}

$$\Delta = \frac{1}{6} \sum_{i=1}^{6} \left\{ \frac{(d_i - d_{\text{ave}})}{d_{\text{ave}}} \right\}^2$$

Here, d_i is the atomic distance of M-O, and d_{ave} is the average of six d_i . Δ of LiO₄(OH)₂ and TeO₅OH octahedra are calculated to be 13×10^{-4} , and 8×10^{-4} , respectively. These are smaller than those of TiO₆ octahedra ($\Delta = 47 \times 10^{-4}$) in LiNbO₃-type ZnTiO₃, and NbO₆ octahedra ($\Delta = 40 \times 10^{-4}$) in LiNbO₃-type LiNbO₃, which are known to have polar structures by the second-order Jahn-Teller effect.²⁷

* Y. Inaguma, A. Aimi, Y. Shirako, D. Sakurai, D. Mori, H. Kojitani, M. Akaogi and M. Nakayama, *J. Am. Chem. Soc.*, 2014, **136**, 2748-2756.
** I. D. Brown, R. D. Shannon, *Acta Crystallogr., Sect. A* 1973, **29**, 266-282.

(G) Results of the BVE calculations for Li^+ , H^+ , and O^{2-}

In order to investigate the possibility of LiTeO₃(OH) as an ionic conductor, the BVE calculations were performed using the refined crystal structure from the neutron diffraction data of LiTeO₃(OH). Table S6 summarized the BVE barriers for the Li⁺, H⁺, and O^{2–} migrations along the *a*, *b* and *c* axes. The BVE barrier for Li⁺ migration is significantly larger than the others. Therefore, LiTeO₃(OH) is not good candidate for the Li⁺ conductor. The high BVE barrier for Li⁺ migration is ascribed to the small bottleneck size of the Li⁺ migration path. As shown in Fig. S4, the bottleneck of Li⁺ migration along the *b* aixs is at the center of the O1-O3-O3 triangle (sky-blue triangle). The critical radius of the O1-O3-O3 triangle is 0.26 Å, which is significantly smaller than the ionic radius of Li⁺ (0.76 Å for CN = 6). Therefore, Li⁺ is difficult to migrate in the crystal structure of LiTeO₃(OH). The BVE barrier for the H⁺

migration along the *b* axis (0.38 eV) is lower than those of along the *a* and *c* axes, suggesting one dimensional proton conduction would occur in LiTeO₃(OH). The BVE barriers for the O^{2-} migration along the *a*, *b*, and *c* axes are comparable and range from 0.79 to 1.01 eV. Thus, LiTeO₃(OH) is also a good candidate for oxide-ion conductor, with three dimensional oxide-ion migration path.

	<i>a</i> axis (eV)	<i>b</i> axis (eV)	<i>c</i> axis (eV)
Li^+	3.05	2.80	5.60
H^+	0.69	0.38	0.64
O^{2-}	1.01	0.79	0.84

b

Fig. S4. Bond-valence-based energy (BVE) landscape for a Li^+ in $LiTeO_3(OH)$ with black isosurfaces at 2.8 eV. Yellow arrows indicate the possible Li^+ migration path along the *b*-axis. Light-blue triangle represents the bottleneck for the Li^+ migration.

Table S6. BVE barriers for the Li⁺, H⁺, and O^{2–} migrations along the *a*, *b* and *c* axes