Electronic Supplementary Information

P^{III}-Mediated Intramolecular Cyclopropanation and Metal-Free Synthesis of Cyclopropane-Fused Heterocycles

Jiayong Zhang, Jiahang Hao, Zhiqiang Huang, Jie Han,^{*} and Zhengjie He^{*} State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, P. R. China <u>hanjie@nankai.edu.cn</u>; zhengjiehe@nankai.edu.cn

Table of contents

I. General Information	S1
II. Preparation of Substrates 1, 3, and 5	S1
III. Optimization of the Reaction Conditions	S22
IV. General Procedures for P(NMe ₂) ₃ -Mediated Reductive Intramolecular Cyclopropanation	າs S24
V. Characterization Data of Compounds 2, 4 and 6	S25
VI. Synthesis of Compounds 7–10	S41
VII. X-Ray Crystallographic Data of 2k , 2x , 4a and 6g	S43
VIII. A Plausible Mechanism for Formation of 6f	S48
IX. NMR Spectra of New Compounds 1–10	S49
X. Chiral HPLC Analysis of Chiral-2b and 4k	. S157

I. General Information

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. The solvents were purified by distillation or dried according to the conventional procedures. Other chemicals from commercial sources were used without further purification. Column chromatography was performed on silica gel (200-300 mesh) as stationary phase eluted with a mixture of petroleum ether (PE) (60-90 °C) and ethyl acetate (EA). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at ambient temperature in CDCl₃. Chemical shifts were reported in parts per million (ppm) with tetramethylsilane (TMS) used as the internal standard. HRMS spectra were acquired in the ESI mode with the mass analyzer of TOF. Chiral phosphines **P1**^{1a} and **P2**^{1b} were prepared according to the reported procedures.

II. Preparation of Substrates 1, 3, and 5

1. Preparation of Substrates 1

General Procedure A:

General Procedure B:

Starting materials $S1^2$ and $S2^3$ were prepared according to known literature procedures.

General procedure A for preparation of substrates 1a-1w, 1ab: To a solution of S1 (1.0 mmol) in acetone (10 mL) was added potassium carbonate (2.0 mmol, 2.0 equiv) and the bromide S2 (1.1 mmol, 1.1 equiv). The resulting mixture was stirred at rt and monitored by TLC until S1 was consumed. The reaction mixture was then filtered through a plug of celite and washed with acetone (10 mL \times 3). The filtrate was concentrated under reduced pressure

and the crude product was purified by column chromatography with PE/EA (10:1, v/v) to afford pure substrate (1a-1w, 1ab).

General procedure B for preparation of substrates 1x-1z, 1aa: To a solution of S1 (1.0 mmol) in acetone (15 mL) was added cesium carbonate (2.0 mmol, 2.0 equiv) and the bromide S2 (1.1 mmol, 1.1 equiv). The resulting mixture was stirred at rt and monitored by TLC until S1 was consumed. The reaction mixture was then filtered through a plug of celite and washed with acetone (10 mL × 3). The filtrate was concentrated under reduced pressure and the crude product was purified by column chromatography with PE/EA (10:1–5:1, v/v) to afford pure substrate (1x–1z, 1aa).

Ethyl (E)-4-(2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1a):⁴ Following the general

procedure A, the known compound **1a** was obtained as yellow oil (272.6 mg, 89% yield). $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89 (dd, J = 7.8, 1.8 Hz, 1H), 7.58 (ddd, J = 8.5, 7.4, 1.8 Hz, 1H), 7.15 – 7.09 (m, 1H), 7.03 (dt, J = 15.8, 4.3

Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 6.15 (dt, J = 15.8, 2.0 Hz, 1H), 4.78 (dd, J = 4.4, 2.0 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 4.22 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.5, 165.7, 165.0, 158.6, 140.7, 136.1, 131.2, 123.4, 123.0, 122.0, 112.9, 67.6, 62.1, 60.8, 14.2, 14.0; HRMS (ESI): m/z calcd for C₁₆H₂₂NO₆ [M+NH₄]⁺ 324.1447, found 324.1441.

Benzyl (E)-4-(2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1b): Following the general

procedure A, the substrate **1b** was obtained as yellow oil (291.5 mg, 79% yield). $R_f = 0.20$ (PE:EA 8:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.87 (dd, J = 7.8, 1.8 Hz, 1H), 7.56 (ddd, J = 8.9, 7.4, 1.8 Hz, 1H), 7.40 – 7.31 (m, 5H), 7.13 – 7.02 (m, 2H), 6.92

(d, J = 8.4 Hz, 1H), 6.19 (d, J = 15.8 Hz, 1H), 5.20 (s, 2H), 4.76 (dd, J = 4.3, 2.0 Hz, 2H), 4.30 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.5, 165.5, 165.0, 158.6, 141.5, 136.2, 135.7, 131.2, 128.6, 128.4, 128.3, 123.4, 122.6, 122.1, 112.9, 67.6, 66.6, 62.1, 14.0; HRMS (ESI): m/z calcd for C₂₁H₂₁O₆ [M+H]⁺ 369.1333, found 369.1335.

Phenyl (E)-4-(2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1c): Following the general procedure A, the substrate **1c** was obtained as yellow oil (257.8 mg, 73% yield). $R_f = 0.35$

(PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89 (dd, J = 7.8, 1.8 Hz, 1H), 7.59 (ddd, J = 8.5, 7.4, 1.8 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.26 – 7.19 (m, 2H), 7.15 – 7.10 (m, 3H), 6.97 (d, J = 8.4 Hz, 1H), 6.36 (dt, J = 15.8, 2.0 Hz, 1H), 4.84 (dd,

J = 4.2, 2.0 Hz, 2H), 4.39 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.5, 165.0, 164.1, 158.5, 150.5, 143.1, 136.2, 131.3, 129.5, 126.0, 123.4, 122.2, 122.0, 121.5, 113.0, 67.6, 62.2, 14.1; HRMS (ESI): m/z calcd for C₂₀H₁₉O₆ [M+H]⁺ 355.1176, found 355.1181.

Cyclohexyl (E)-4-(2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1d): Following the

general procedure A, the substrate **1d** was obtained as yellow oil (305.2 mg, 85% yield). $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.88 (dd, J = 7.8, 1.7 Hz, 1H), 7.62 – 7.53 (m, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.01 (dt, J = 15.8, 4.4 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.13

(dt, J = 15.8, 1.7 Hz, 1H), 4.88 - 4.81 (m, 1H), 4.77 (dd, J = 4.4, 1.9 Hz, 2H), 4.36 (q, J = 7.2 Hz, 2H), 1.92 - 1.85 (m, 2H), 1.74 (m, 2H), 1.59 - 1.52 (m, 1H), 1.49 - 1.40 (m, 3H), 1.39 - 1.35 (t, J = 7.2 Hz, 3H), 1.33 - 1.14 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.5, 165.1, 165.0, 158.7, 140.4, 136.2, 131.1, 123.5, 123.3, 122.0, 112.9, 73.1, 67.7, 62.1, 31.6, 25.3, 23.8, 14.0; HRMS (ESI): m/z calcd for C₂₀H₂₅O₆ [M+H]⁺ 361.1646, found 361.1642.

Butyl (E)-4-(2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1e): Following the general

procedure A, the substrate **1e** was obtained as yellow oil (296.7 mg, 89% yield). $R_f = 0.28$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89 (dd, J = 7.8, 1.7 Hz, 1H), 7.58 (ddd, J = 8.9, 7.5, 1.8 Hz, 1H), 7.13 (t, J = 8.2, 1H), 7.04 (dt, J

= 15.8, 4.4 Hz, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.16 (dt, J = 15.8, 1.9 Hz, 1H), 4.79 (dd, J = 4.3, 1.9 Hz, 2H), 4.36 (q, J = 7.2 Hz, 2H), 4.18 (t, J = 6.7 Hz, 2H), 1.70 – 1.61 (m, 2H), 1.46-1.40 (m, 2H), 1.38 (t, J = 7.2 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.5, 165.8, 165.0, 158.6, 140.7, 136.1, 131.2, 123.4, 123.0, 122.0, 112.9, 67.6, 64.7, 62.1, 30.6, 19.1, 14.0, 13.7; HRMS (ESI): m/z calcd for C₁₈H₂₆NO₆ [M+NH₄]⁺ 352.1760, found 352.1757.

4-Ethylphenyl (*E*)-4-(2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1f): Following the general procedure A, the substrate 1f was obtained as yellow oil (320.9 mg, 84% yield). $R_f =$

0.40 (PE:EA 8:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.60 (ddd, *J* = 8.6, 7.4, 1.8 Hz, 1H), 7.24 – 7.12 (m, 4H), 7.05 – 7.00 (m, 2H), 6.97 (d, *J* = 8.5 Hz, 1H), 6.36 (dt, *J* = 15.8, 2.0 Hz, 1H), 4.84 (dd, *J* = 4.2, 2.0 Hz, 2H), 4.39 (q, *J* = 7.2 Hz,

2H), 2.65 (q, J = 7.6 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.4, 165.0, 164.3, 158.5, 148.4, 142.8, 142.0, 136.1, 131.3, 128.8, 123.5, 122.2, 122.1, 121.1, 112.9, 67.6, 62.2, 28.3, 15.6, 14.1; HRMS (ESI): m/z calcd for C₂₂H₂₃O₆ [M+H]⁺ 383.1489, found 383.1494.

Allyl (E)-4-(2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1g): Following the general

procedure A, the substrate **1g** was obtained as colorless oil (228.5 mg, 72% yield). $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86 (dd, J = 7.7, 1.6 Hz, 1H), 7.61 – 7.51 (m, 1H), 7.14 – 6.99 (m, 2H), 6.92 (d, J =

8.4 Hz, 1H), 6.21 – 6.10 (m, 1H), 5.96 – 5.88 (m, 1H), 5.29 (ddd, J = 13.8, 11.1, 0.9 Hz, 2H), 4.77 (dd, J = 4.2, 1.9 Hz, 2H), 4.65 (d, J = 5.7 Hz, 2H), 4.34 (q, J = 7.2 Hz, 2H), 1.35 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.5, 165.3, 165.0, 158.6, 141.3, 136.1, 131.9, 131.2, 123.4, 122.6, 122.1, 118.6, 112.9, 67.6, 65.4, 62.1, 14.0; HRMS (ESI): m/z calcd for C₁₇H₁₉O₆ [M+H]⁺ 319.1176, found 319.1174.

Butyl (E)-4-(2-(2-(allyloxy)-2-oxoacetyl)phenoxy)but-2-enoate (1h): Following the general

procedure A, the substrate **1h** was obtained as colorless oil (238.8 mg, 69% yield). $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86 (dd, J = 7.8, 1.8 Hz, 1H), 7.55 (m, 1H), 7.12 – 7.06 (m, 1H), 7.02 – 6.96 (m, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.11 (dt, J = 15.8, 2.0 Hz, 1H), 5.98 – 5.90 (m,

1H), 5.38 (dd, J = 17.2, 1.4 Hz, 1H), 5.27 (dd, J = 10.4, 1.2 Hz, 1H), 4.75 (m, 4H), 4.14 (t, J = 6.7 Hz, 2H), 1.65 – 1.60 (m, 2H), 1.36 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.1, 165.8, 164.6, 158.7, 140.7, 136.2, 131.2, 131.0, 123.1, 122.0, 119.6, 113.0, 67.7, 66.4, 64.7, 30.6, 19.1, 13.7; HRMS (ESI): m/z calcd for C₁₉H₂₃O₆ [M+H]⁺ 347.1489, found 347.1492.

Ethyl (*E*)-4-(2-(2-ethoxy-2-oxoacetyl)-4-ethylphenoxy)but-2-enoate (1i): Following the general procedure A, the substrate 1i was obtained as yellow oil (284.5 mg, 81% yield). $R_f =$

0.30 (PE:EA 8:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.70 (d, J = 2.3 Hz, 1H), 7.40 (dd, J = 8.5, 2.3 Hz, 1H), 7.02 (dt, J = 15.8, 4.3 Hz, 1H), 6.86 (d, J = 8.5 Hz, 1H), 6.14 (dt, J = 15.8, 2.0 Hz, 1H), 4.75 (dd, J = 4.3, 2.0 Hz, 2H), 4.35 (q, J = 7.2 Hz, 2H), 4.22 (q, J = 7.1 Hz, 2H), 2.64 (q, J = 7.6 Hz,

2H), 1.37 (t, J = 7.2 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.7, 165.8, 165.2, 156.9, 141.1, 138.0, 135.8, 130.0, 123.1, 122.8, 113.0, 67.8, 62.0, 60.7, 27.8, 15.5, 14.2, 14.0; HRMS (ESI): m/z calcd for C₁₈H₂₆NO₆ [M+NH₄]⁺ 352.1755, found 352.1757.

Methyl (E)-4-(4-ethyl-2-(2-methoxy-2-oxoacetyl)phenoxy)but-2-enoate (1j): Following

the general procedure A, the substrate **1j** was obtained as yellow oil (238.0 mg, 78% yield). $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.69 (d, J = 2.3 Hz, 1H), 7.40 (dd, J = 8.5, 2.3 Hz, 1H), 7.03 (dt, J = 15.8, 4.3

Hz, 1H), 6.89 (d, J = 8.6 Hz, 1H), 6.16 (dt, J = 15.8, 1.9 Hz, 1H), 4.75 (dd, J = 4.3, 2.0 Hz, 2H), 3.89 (s, 3H), 3.76 (s, 3H), 2.63 (q, J = 7.6 Hz, 2H), 1.22 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.4, 166.2, 165.5, 156.8, 141.3, 137.9, 135.9, 129.8, 122.9, 122.3, 113.1, 67.7, 52.5, 51.8, 27.7, 15.4; HRMS (ESI): m/z calcd for C₁₆H₁₉O₆ [M+H]⁺ 307.1176, found 307.1179.

Methyl (*E*)-4-(4-(*tert*-butyl)-2-(2-methoxy-2-oxoacetyl)phenoxy)but-2-enoate (1k):

Following the general procedure A, the substrate **1k** was obtained as yellow oil (297.3 mg, 89% yield). $R_f = 0.28$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.88 (d, J = 2.4 Hz, 1H), 7.61 (dd, J = 8.8, 2.6 Hz, 1H), 7.04 (dt, J = 15.8, 4.3 Hz, 1H), 6.88 (d, J = 8.8 Hz, 1H),

6.16 (d, J = 15.8 Hz, 1H), 4.76 (dd, J = 4.0, 1.8 Hz, 2H), 3.89 (s, 3H), 3.77 (s, 3H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.5, 166.2, 165.6, 156.6, 145.1, 141.3, 133.6, 127.6, 122.6, 122.4, 112.7, 67.7, 52.6, 51.9, 34.4, 31.2; HRMS (ESI): m/z calcd for C₁₈H₂₃O₆ [M+H]⁺ 335.1489, found 335.1489.

Methyl(E)-4-(4-(tert-butyl)-2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate(11):Following the general procedure A, the substrate 11 was obtained as yellow oil (275.1 mg,79% yield). $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.88 (d, J =

2.6 Hz, 1H), 7.60 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.04 (d, *J* = 15.8 Hz, 1H), 6.88 (d, *J* = 8.8 Hz, 1H), 6.16 (dt, *J* = 15.8, 2.0 Hz, 1H), 4.77 (dd, *J* = 4.3, 2.0 Hz, 2H), 4.35 (q, *J* = 7.2 Hz, 2H), 3.76 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.32 (s,

9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.7, 166.2, 165.3, 156.6, 145.0, 141.4, 133.5, 127.6, 122.6, 122.4, 112.7, 67.6, 62.0, 51.8, 34.3, 31.2, 14.0; HRMS (ESI): *m/z* calcd for C₁₉H₂₅O₆ [M+H]⁺ 349.1646, found 349.1646.

Ethyl (E)-4-(2-(2-ethoxy-2-oxoacetyl)-4-methoxyphenoxy)but-2-enoate (1m):⁴ Following

the general procedure A, the known compound **1m** was obtained as yellow oil (241.3 mg, 72% yield). $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.37 (d, J = 3.2 Hz, 1H), 7.14 (dd, J = 9.1, 3.2 Hz, 1H),

7.02 (d, J = 15.8 Hz, 1H), 6.90 (d, J = 9.1 Hz, 1H), 6.13 (d, J = 15.8, 2.0 Hz, 1H), 4.72 (dd, J = 4.3, 2.0 Hz, 2H), 4.35 (q, J = 7.1 Hz, 2H), 4.22 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.2, 165.7, 165.1, 154.5, 153.3, 141.2, 123.7, 123.6, 122.8, 115.1, 113.1, 68.5, 62.1, 60.7, 55.9, 14.2, 14.0; HRMS (ESI): m/z calcd for C₁₇H₂₁O₇ [M+H]⁺ 337.1282, found 337.1280.

Ethyl (*E*)-4-(2-(2-ethoxy-2-oxoacetyl)-5-methoxyphenoxy)but-2-enoate (1n): Following the general procedure A the substrate 1n was obtained as

the general procedure A, the substrate **1n** was obtained as yellow oil (228.0 mg, 68% yield). $R_f = 0.30$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.81 (d, J = 8.8 Hz, 1H), 6.94 (dt, J = 15.8, 4.4 Hz, 1H), 6.55 (dd, J =

8.8, 1.8 Hz, 1H), 6.33 (d, J = 1.9 Hz, 1H), 6.08 (d, J = 15.8 Hz, 1H), 4.68 (dd, J = 4.2, 1.4 Hz, 2H), 4.27 (q, J = 7.1 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 184.9, 166.6, 165.7, 165.6, 160.6, 140.6, 133.1, 123.1, 116.1, 107.3, 99.1, 67.5, 61.8, 60.7, 55.8, 14.2, 14.0; HRMS (ESI): m/z calcd for C₁₇H₂₁O₇ [M+H]⁺ 337.1282, found 337.1284.

Methyl (E)-4-((6-(2-ethoxy-2-oxoacetyl)benzo[d][1,3]dioxol-5-yl)oxy)but-2-enoate (10):

Following the general procedure A, the substrate **10** was obtained as yellow oil (252.1 mg, 75% yield). $R_f = 0.30$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.30 (s, 1H), 7.00 (dt, 15.8, 4.4 Hz, 1H), 6.48 (s, 1H), 6.14

(d, J = 15.8 Hz, 1H), 6.04 (s, 2H), 4.71 (dd, J = 4.3, 1.8 Hz, 2H), 4.31 (q, J = 7.2 Hz, 2H), 3.76 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 184.6, 166.0, 165.6, 157.2, 154.9, 143.1, 141.0, 122.7, 116.1, 108.1, 102.7, 95.6, 68.7, 61.8, 51.8, 13.9; HRMS (ESI): m/z calcd for C₁₆H₁₇O₈ [M+H]⁺ 337.0918, found 337.0917.

Phenyl (E)-4-((2-(2-ethoxy-2-oxoacetyl)naphthalen-1-yl)oxy)but-2-enoate (1p): Following

the general procedure A, the substrate **1p** was obtained as yellow oil (330.5 mg, 82% yield). $R_f = 0.28$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.06 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.6 Hz, 2H), 7.75 – 7.55 (m, 3H), 7.40 (t, J = 7.9Hz, 2H), 7.33 (dt, J = 15.7, 3.7 Hz, 1H), 7.24 (t, J = 7.4 Hz,

1H), 7.17 (d, J = 7.6 Hz, 2H), 6.64 (dt, J = 15.6, 1.9 Hz, 1H), 4.81 (dd, J = 3.5, 2.2 Hz, 2H), 4.41 (q, J = 7.2 Hz, 2H), 1.40 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.7, 165.6, 164.3, 158.3, 150.6, 144.0, 138.4, 129.9, 129.5, 128.8, 127.5, 126.9, 126.0, 125.7, 124.4, 123.0, 122.9, 121.6, 121.0, 75.1, 62.4, 14.1; HRMS (ESI): m/z calcd for C₂₄H₂₄NO₆ [M+NH₄]⁺ 422.1598, found 422.1595.

Methyl (E)-4-((3-(2-ethoxy-2-oxoacetyl)-[1,1'-biphenyl]-4-yl)oxy)but-2-enoate (1q):

Following the general procedure A, the substrate 1q was obtained as colorless oil (264.3 mg, 72% yield). $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.10 (d, J = 2.4 Hz, 1H), 7.79 (dd, J = 8.6, 2.5 Hz, 1H), 7.57 – 7.54 (m, 2H), 7.44 (t, J = 7.5 Hz, 2H),

7.37 (d, J = 7.3 Hz, 1H), 7.06 (dt, 15.8, 4.3 Hz, 1H), 7.01 (d, J = 8.7 Hz, 1H), 6.19 (d, J = 15.8 Hz, 1H), 4.82 (dd, J = 4.3, 2.0 Hz, 2H), 4.37 (q, J = 7.2 Hz, 2H), 3.77 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.5, 166.2, 165.0, 157.9, 141.0, 139.1, 135.3, 134.6, 129.5, 129.0, 127.6, 126.8, 123.6, 122.6, 113.4, 67.7, 62.2, 51.9, 14.0; HRMS (ESI): m/z calcd for C₂₁H₂₁O₆ [M+H]⁺ 369.1333, found 369.1331.

Methyl (E)-4-(5-chloro-2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1r): Following the

general procedure A, the substrate **1r** was obtained as yellow oil (286.9 mg, 88% yield). $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.82 (d, J = 8.4 Hz, 1H), 7.11 (dd, J = 8.4, 1.7 Hz, 1H), 7.02 (dt, J = 15.8,

4.4 Hz, 1H), 6.94 (d, J = 1.7 Hz, 1H), 6.16 (dt, J = 15.8, 1.9 Hz, 1H), 4.78 (dd, J = 4.3, 1.9 Hz,

2H), 4.35 (q, J = 7.2 Hz, 2H), 3.78 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.3, 165.9, 164.6, 158.8, 142.2, 140.2, 132.2, 122.9, 122.6, 121.9, 113.6, 67.9, 62.2, 51.9, 13.9; HRMS (ESI): m/z calcd for C₁₅H₁₆ClO₆ [M+H]⁺ 327.0630, found 327.0632.

Methyl (E)-4-(5-bromo-2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1s): Following the

general procedure A, the substrate **1s** was obtained as yellow oil (300.7 mg, 81% yield). $R_f = 0.30$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.73 (d, J = 8.3 Hz, 1H), 7.31 – 7.24 (m, 1H), 7.12 (s, 1H), 7.01 (dt, J = 15.8, 4.3 Hz,

1H), 6.16 (d, J = 15.8 Hz, 1H), 4.78 (dd, J = 4.1, 1.6 Hz, 2H), 4.35 (q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.5, 165.9, 164.6, 158.6, 140.3, 132.2, 130.7, 125.5, 122.8, 122.3, 116.5, 67.9, 62.2, 51.9, 13.9; HRMS (ESI): m/z calcd for C₁₅H₁₆BrO₆ [M+H]⁺ 371.0125, found 371.0123.

Ethyl (E)-4-(5-chloro-2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1t):⁴ Following the

general procedure A, the known compound **1t** was obtained as yellow oil (285.7 mg, 84% yield). $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.82 (d, J = 8.4Hz, 1H), 7.11 (dd, J = 8.4, 1.7 Hz, 1H), 7.01 (dt, J = 15.8,

4.4 Hz, 1H), 6.94 (d, J = 1.6 Hz, 1H), 6.14 (dt, J = 15.8, 1.8 Hz, 1H), 4.77 (dd, J = 4.4, 1.9 Hz, 2H), 4.35 (q, J = 7.2 Hz, 2H), 4.23 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.3, 165.5, 164.6, 158.9, 142.2, 139.9, 132.2, 123.4, 122.5, 121.9, 113.6, 67.9, 62.2, 60.8, 14.2, 14.0; HRMS (ESI): m/z calcd for C₁₆H₁₈ClO₆ [M+H]⁺ 341.0786, found 341.0787.

Ethyl (E)-4-(5-bromo-2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1u): Following the general procedure A, the substrate 1u was obtained as

general procedure A, the substrate **1u** was obtained as colorless oil (298.7 mg, 78% yield). $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.74 (dd, J = 8.3, 1.8 Hz, 1H), 7.32 – 7.23 (m, 1H), 7.12 (s, 1H), 7.06 – 6.95

(m, 1H), 6.14 (dd, J = 15.8, 1.9 Hz, 1H), 4.89 – 4.67 (m, 2H), 4.42 – 4.29 (q, J = 7.1 Hz, 2H), 4.28 – 4.17 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1, 1.8 Hz, 3H), 1.31 (t, J = 7.1, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.6, 165.5, 164.6, 158.7, 140.0, 132.2, 130.7, 125.5, 123.3,

122.3, 116.5, 67.9, 62.3, 60.8, 14.2, 14.0; HRMS (ESI): m/z calcd for C₁₆H₁₈BrO₆ [M+H]⁺ 385.0281, found 385.0280.

Ethyl (E)-4-(2-(2-ethoxy-2-oxoacetyl)-5-fluorophenoxy)but-2-enoate (1v): Following the

general procedure A, the substrate **1v** was obtained as yellow oil (256.0 mg, 79% yield). $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.83 (dd, J = 8.7, 6.7 Hz, 1H), 6.92 (dt, J = 15.8, 4.4 Hz, 1H), 6.76 – 6.71 (m, 1H), 6.58

(dd, J = 10.4, 2.1 Hz, 1H), 6.09 - 6.03 (m, 1H), 4.69 (dd, J = 4.4, 1.8 Hz, 2H), 4.27 (q, J = 7.1 Hz, 2H), 4.14 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 185.0, 168.9, 166.4, 165.2 (d, J = 61.6 Hz), 160.3 (d, J = 11.1 Hz), 139.9, 133.4 (d, J = 11.5 Hz), 123.4, 119.7 (d, J = 2.8 Hz), 109.5 (d, J = 23.2 Hz), 101.0 (d, J = 26.3 Hz), 67.9, 62.1, 60.8, 14.2, 13.9; 19 F NMR (376 MHz, CDCl₃): δ (ppm) - 98.6; HRMS (ESI): m/z calcd for C₁₆H₁₈FO₆ [M+H]⁺ 325.1082, found 325.1082.

Methyl (E)-4-(4-bromo-2-(2-ethoxy-2-oxoacetyl)phenoxy)but-2-enoate (1w): Following

the general procedure A, the substrate **1w** was obtained as colorless oil (307.1 mg, 83% yield). $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.94 (d, J = 2.5 Hz, 1H), 7.64 (dd, J = 8.9, 2.6 Hz, 1H), 7.00 (dt, J = 15.8,

4.3 Hz, 1H), 6.83 (d, J = 8.9 Hz, 1H), 6.12 (dt, J = 15.8, 1.8 Hz, 1H), 4.75 (dd, J = 4.3, 2.0 Hz, 2H), 4.34 (q, J = 7.2 Hz, 2H), 3.76 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.2, 166.0, 164.2, 157.4, 140.5, 138.4, 133.6, 125.0, 122.8, 114.8, 114.5, 67.9, 62.4, 51.9, 14.0; HRMS (ESI): m/z calcd for C₁₅H₁₆BrO₆ [M+H]⁺ 371.0125, found 371.0129.

Ethyl (E)-4-((6-(2-ethoxy-2-oxoacetyl)benzo[d][1,3]dioxol-5-yl)oxy)-3-(3-nitrophenyl)-

but-2-enoate (1x): Following the general procedure B, the substrate 1x was obtained as yellow oil (366.6 mg, 78% CO_2Et yield). $R_f = 0.30$ (PE:EA 8:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.29 - 8.26 (m, 1H), 8.23 - 8.18 (m, 1H), 7.76 (dd, J = 7.8, 0.9 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 7.20 (s, 1H), 6.64 (s, 1H), 6.35 (s, 1H), 6.00 (s, 2H), 5.58 (s, 2H),

4.25 (q, J = 7.1 Hz, 2H), 4.06 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 184.5, 165.1, 165.0, 157.1, 154.8, 150.0, 148.3,

142.9, 139.2, 133.3, 129.9, 124.2, 123.4, 121.9, 115.8, 108.4, 102.6, 95.3, 65.7, 61.5, 61.2, 14.2, 14.0; HRMS (ESI): *m/z* calcd for C₂₃H₂₂NO₁₀ [M+H]⁺ 472.1238, found 472.1240.

Ethyl (E)-4-((2-(2-ethoxy-2-oxoacetyl)naphthalen-1-yl)oxy)-3-(3-nitrophenyl)but-2-

enoate (1y): Following the general procedure B, the substrate 1y was obtained as yellow oil (338.3 mg, 71% yield). $R_f = 0.20$ (PE:EA 8:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.47 (s, 1H), 8.27 (d, J = 8.3 Hz, 1H), 8.04 – 7.96 (m, 2H), 7.87 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.6 Hz, 1H), 7.68 – 7.61 (m, 3H), 7.57 – 7.51 (m, 1H), 6.27 (s, 1H), 5.72 (s, 2H), 4.24 (q, J = 7.1 Hz,

2H), 4.14 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 187, 164.9, 164.4, 158.7, 150.2, 148.3, 140.1, 137.9, 133.7, 129.6, 129.5, 128.4, 127.5, 127.0, 125.0, 124.9, 123.8, 123.5, 123.2, 123.1, 122.6, 72.9, 62.1, 60.9, 14.1, 14.0; HRMS (ESI): m/z calcd for C₂₆H₂₄NO₈ [M+H]⁺ 478.1496, found 478.1493.

Ethyl (E)-3-(4-bromophenyl)-4-(2-(2-ethoxy-2-oxoacetyl)-5-methoxyphenoxy)but-2-

enoate (1z): Following the general procedure B, the substrate 1z was obtained as yellow oil (373.2 mg, 76% yield). $R_f = 0.20$ (PE:EA 8:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.81 (d, J = 8.7 Hz, 1H), 7.49 (d, J = 8.7 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H), 6.64 – 6.49 (m, 2H), 6.32 (s, 1H), 5.56 (s, 2H), 4.22 (q, J = 7.1 Hz, 2H), 4.00 (q, J = 7.2 Hz, 2H), 3.83 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H),

1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.0, 166.6, 165.4, 165.3, 161.0, 150.6, 136.7, 132.9, 131.9, 128.6, 124.1, 121.6, 115.8, 107.3, 98.8, 64.8, 61.4, 60.8, 55.8, 14.2, 13.9; HRMS (ESI): m/z calcd for C₂₃H₂₄BrO₇ [M+H]⁺ 491.0700, found 491.0703.

Ethyl (E)-4-(2-(2-ethoxy-2-oxoacetyl)phenoxy)-3-methylbut-2-enoate (1aa): Following the

general procedure B, the substrate **1aa** was obtained as yellow oil (262.5 mg, 82% yield). $R_f = 0.20$ (PE:EA 8:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86 (dd, J = 7.8, 1.8 Hz, 1H), 7.56 (ddd, J = 8.6, 7.4, 1.8 Hz, 1H), 7.21 – 7.05 (m, 1H), 6.92 (d, J = 8.4 Hz, 1H), 5.98 (dd, J = 2.8, 1.4 Hz, 1H), 4.58 (s, 2H), 4.34 (q,

J = 7.2 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 2.20 (d, J = 1.1 Hz, 3H), 1.35 (t, J = 7.2 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.5, 166.1, 164.9, 158.7,

151.3, 136.2, 131.0, 123.3, 121.9, 116.5, 113.1, 72.7, 62.0, 60.0, 15.6, 14.2, 14.0; HRMS (ESI): m/z calcd for $C_{17}H_{21}O_6[M+H]^+$ 321.1333, found 321.1335.

Ethyl (*E*)-4-(((8*R*, 9*S*, 13*S*, 14*S*)-2-(2-ethoxy-2-oxoacetyl)-13-methyl-17-oxo-7, 8, 9, 11, 12,13, 14, 15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl)oxy)but-2-enoate (1ab):

Following the general procedure A, the substrate **1ab** was obtained as white solid (357.1 mg, 74% yield); m.p. 118–121°C; $R_f = 0.20$ (PE:EA 8:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80 (s, 1H), 7.02 (dt, J = 15.8, 4.3 Hz, 1H), 6.64 (s, 1H), 6.14

(dt, J = 15.8, 1.8 Hz, 1H), 4.74 (dd, J = 4.2, 1.9 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 4.22 (q, J = 7.1 Hz, 2H), 3.01 - 2.86 (m, 2H), 2.56 - 2.42 (m, 2H), 2.28 - 2.41 (m, 1H), 2.18 - 2.10 (m, 1H), 2.08 - 1.94 (m, 3H), 1.63 - 1.43 (m, 6H), 1.36 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 0.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 220.4, 186.2, 165.8, 165.4, 156.6, 146.5, 141.1, 134.0, 128.1, 122.8, 120.9, 113.0, 67.6, 61.9, 60.7, 50.3, 47.9, 43.7, 37.9, 35.8, 31.4, 30.2, 26.1, 25.7, 21.6, 14.2, 14.0, 13.8; HRMS (ESI): m/z calcd for C₂₈H₃₅O₇ [M+H]⁺ 483.2377, found 483.2377.

2. Preparation of Substrates 3

General procedure:

Starting from the commercially obtained isatin, the corresponding tosylated derivative S3 was smoothly prepared according to a literature procedure.⁵ The alcoholysis of S3 (1.0 mmol) was carried out in the specified alcohol R¹OH (10 mL) at 80 °C for 12 h to deliver the pure intermediates S4 after column chromatographic isolation (PE/EA 10:1–5:1, v/v).

To a solution of S4 (1.0 mmol) in acetone (10 mL) were added potassium carbonate (2.0 mmol, 2.0 equiv) and (*E*)-4-bromobut-2-enoate S2 (1.1 mmol, 1.1 equiv). The resulting mixture was stirred at 50 °C for 6 h and monitored by TLC until S4 was consumed. The reaction mixture was filtered through a plug of celite and washed with acetone (10 mL \times 3). The filtrate was concentrated under reduced pressure and the crude product was isolated by

column chromatography (PE/EA 10:1–5:1, v/v) to afford **3**.

Ethyl (E)-4-((N-(2-(2-ethoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)but-2-

enoate (3a): Following the general procedure, the substrate 3a was obtained as white solid (390.2 mg, 85% yield); m.p. 126–128°C; $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.91 (dd, J = 7.4, 1.9 Hz, 1H), 7.49 – 7.41 (m, 2H), 7.31 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 6.91 (dt, J = 15.7 Hz,

6.8 Hz, 1H), 6.60 (dd, J = 7.7, 1.2 Hz, 1H), 5.86 (d, J = 15.7 Hz, 1H), 4.49 (q, J = 7.2 Hz, 2H), 4.28 (s, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.42 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.3, 165.4, 164.1, 144.6, 141.1, 139.0, 135.8, 133.3, 133.0, 131.3, 129.6, 128.7, 128.3, 127.2, 124.8, 62.7, 60.6, 52.5, 21.6, 14.2, 14.0; HRMS (ESI): m/z calcd for C₂₃H₂₆NO₇S [M+H]⁺ 460.1424, found 460.1424.

Methyl (E)-4-((N-(2-(2-ethoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)but-2-

enoate (3b): Following the general procedure, the substrate 3b was obtained as white solid (338.3 mg, 76% yield); m.p. 132–135°C; $R_f = 0.25$ (10:1 v/v, PE:EA); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.95 – 7.85 (m, 1H), 7.50 – 7.39 (m, 2H), 7.30 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 6.91 (dt, J = 15.7,

6.8 Hz, 1H), 6.58 (dd, J = 7.7, 1.3 Hz, 1H), 5.86 (dt, J = 15.7, 1.4 Hz, 1H), 4.48 (q, J = 7.2 Hz, 2H), 4.17 (s, 2H), 3.68 (s, 3H), 2.41 (s, 3H), 1.48 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.3, 165.8, 164.2, 144.6, 141.4, 138.9, 135.8, 133.3, 132.8, 131.3, 129.6, 128.7, 128.3, 127.0, 124.5, 62.7, 52.3, 51.8, 21.6, 14.0; HRMS (ESI): m/z calcd for C₂₂H₂₃NNaO₇S [M+Na]⁺ 468.1087, found 468.1085.

Benzyl (E)-4-((N-(2-(2-ethoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)but-2-

enoate (3c): Following the general procedure, the substrate 3c was obtained as yellow solid (354.4 mg, 68% yield); m.p. 108–110°C; $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84 (d, J = 7.4 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.29 – 7.25 (m, 4H), 7.23 (d, J = 8.3 Hz, 2H), 7.19 (s, 1H), 7.13 (d, J = 8.0

Hz, 2H), 7.01 - 7.25 (m, 1H), 6.52 (d, J = 7.7 Hz, 1H), 5.85 (d, J = 15.7 Hz, 1H), 5.07 (s, 2H), 4.38 (q, J = 7.2 Hz, 2H), 4.21 (s, 2H), 2.33 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.3, 165.2, 164.1, 144.6, 141.9, 139.0, 135.8, 135.7, 133.3, 133.1,

131.4, 129.6, 128.7, 128.6, 128.3, 128.2, 128.1, 127.2, 124.5, 66.4, 62.7, 52.6, 21.6, 14.0; HRMS (ESI): *m/z* calcd for C₂₈H₂₈NO₇S [M+H]⁺ 522.1581, found 522.1581.

Cyclohexyl (*E*)-4-((*N*-(2-(2-ethoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)

but-2-enoate (3d): Following the general procedure, the substrate **3d** was obtained as white solid (364.4 mg, 71% yield); m.p. 135–137°C; $R_f = 0.30$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.91 (dd, J = 7.4, 1.9 Hz, 1H), 7.53 – 7.40 (m, 2H), 7.33 (d, J = 8.2 Hz, 2H), 7.24 (d, J

= 8.2 Hz, 2H), 6.90 (dt, J = 15.6, 6.8 Hz, 1H), 6.71 – 6.51 (m, 1H), 5.86 (d, J = 15.7 Hz, 1H), 4.84 – 4.70 (m, 1H), 4.49 (q, J = 7.1 Hz, 2H), 4.26 (s, 2H), 2.42 (s, 3H), 1.85 – 1.79 (m, 2H), 1.75 – 1.67 (m, 2H), 1.49 (t, J = 7.1 Hz, 3H), 1.45 – 1.33 (m, 4H), 1.32 – 1.23 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.3, 164.8, 164.1, 144.5, 140.8, 139.1, 135.8, 133.3, 131.3, 129.6, 128.7, 128.3, 127.4, 125.4, 72.9, 62.6, 52.7, 31.6, 25.4, 23.6, 21.6, 14.0; HRMS (ESI): m/z calcd for C₂₇H₃₂NO₇S [M+H]⁺ 514.1894, found 514.1896.

4-Ethylphenyl (*E*)-4-((*N*-(2-(2-ethoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)

but-2-enoate (3e): Following the general procedure, the substrate **3e** was obtained as yellow solid (436.4 mg, 82% yield); m.p. 145–148°C; $R_f = 0.35$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96 – 7.88 (m, 1H), 7.52 – 7.43 (m, 2H), 7.35 (d, J = 8.3 Hz, 2H), 7.24 (s,

2H), 7.18 (d, J = 8.6 Hz, 2H), 7.15 – 7.07 (m, 1H), 6.98 (d, J = 8.5 Hz, 2H), 6.76 – 6.59 (m, 1H), 6.07 (d, J = 15.7 Hz, 1H), 4.58 – 4.43 (q, J = 7.2 Hz, 2H), 4.32 (s, 2H), 2.64 (q, J = 7.6 Hz, 2H), 2.42 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H), 1.22 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.2, 164.0, 163.9, 148.4, 144.6, 143.3, 141.9, 139.1, 135.8, 133.4, 133.1, 131.4, 129.6, 128.8, 128.7, 128.3, 127.3, 123.9, 121.1, 62.7, 52.7, 28.3, 21.6, 15.6, 14.0; HRMS (ESI): m/z calcd for C₂₉H₃₀NO₇S [M+H]⁺ 536.1737, found 536.1740.

Methyl (E)-4-((N-(2-(2-methoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)but-

2-enoate (3f): Following the general procedure, the substrate **3f** was obtained as white solid (326.2 mg, 72% yield); m.p. 124–126°C; $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.99 – 7.88 (m, 1H), 7.53 – 7.42 (m, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 6.93 (dt, J = 15.7, 6.8 Hz, 1H),

6.67 – 6.53 (m, 1H), 5.89 (dt, J = 15.7, 1.4 Hz, 1H), 4.6 (s, 2H), 4.05 (s, 3H), 3.71 (s, 3H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.0, 165.8, 164.5, 144.7, 141.3, 139.0, 135.7, 133.5, 132.7, 131.3, 129.7, 128.7, 128.3, 126.9, 124.5, 53.0, 52.4, 51.8, 21.6; HRMS (ESI): m/z calcd for C₂₁H₂₁NNaO₇S [M+Na]⁺ 454.0931, found 454.0936.

Butyl (E)-4-((N-(2-(2-methoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)but-2-

enoate (3g): Following the general procedure, the substrate 3g was obtained as yellow solid (416.4 mg, 88% yield); m.p. 112–115°C; $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.85 (dd, J = 7.3, 2.0 Hz, 1H), 7.40 (dt, J = 7.0, 4.1 Hz, 2H), 7.25 (d, J = 8.3 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H),

6.84 (dt, J = 15.6, 6.8 Hz, 1H), 6.58 – 6.46 (m, 1H), 5.80 (d, J = 15.7 Hz, 1H), 4.19 (s, 2H), 4.02 (t, J = 6.7 Hz, 2H), 3.96 (s, 3H), 2.35 (s, 3H), 1.58 – 1.47 (m, 2H), 1.36 – 1.23 (m, 2H), 0.84 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.0, 165.5, 164.4, 144.6, 141.0, 139.1, 135.7, 133.4, 133.0, 131.3, 129.6, 128.7, 128.3, 127.2, 124.9, 64.5, 53.0, 52.5, 30.6, 21.6, 19.1, 13.7; HRMS (ESI): m/z calcd for C₂₄H₂₇NNaO₇S [M+Na]⁺ 496.1400, found 496.1404.

Ethyl (E)-4-((N-(2-(2-isopropoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)but-

2-enoate (3h): Following the general procedure, the substrate **3h** was obtained as white solid (369.1 mg, 78% yield); m.p. 129–133°C; $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80 (dd, J = 7.4, 1.9 Hz, 1H), 7.42 – 7.32 (m, 2H), 7.22 (t, J = 9.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 6.88 (dt, J = 15.6,

6.8 Hz, 1H), 6.53 (dd, J = 7.7, 1.2 Hz, 1H), 5.80 (d, J = 15.7 Hz, 1H), 5.27 – 5.20 (m, 1H), 4.22 (s, 2H), 4.08 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 1.42 (s, 6H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.4, 165.4, 163.5, 144.5, 141.3, 138.9, 135.9, 133.2, 131.4, 129.6, 128.6, 128.3, 127.4, 124.7, 71.0, 60.6, 52.6, 21.7, 21.6, 14.2; HRMS (ESI): m/z calcd for C₂₄H₂₈NO₇S [M+H]⁺ 474.1581, found 474.1578.

Ethyl (E)-4-((N-(2-(2-butoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)but-2-

enoate (3i): Following the general procedure, the substrate **3i** was obtained as white solid (345.9 mg, 71% yield); m.p. 132–135°C; $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96 – 7.85 (m, 1H), 7.51 – 7.40 (m, 2H), 7.32 (d, J = 8.3

Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 6.93 (dt, J = 15.7, 6.8 Hz, 1H), 6.61 (dd, J = 7.6, 1.4 Hz, 1H), 5.87 (d, J = 15.7 Hz, 1H), 4.43 (t, J = 6.8 Hz, 2H), 4.27 (s, 2H), 4.15 (q, J = 7.2 Hz, 2H), 2.42 (s, 3H), 1.88 – 1.80 (m, 2H), 1.57 – 1.45 (m, 2H), 1.26 (t, J = 7.2 Hz, 3H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.2, 165.4, 164.2, 144.5, 141.2, 139.0, 135.7, 133.3, 133.0, 131.3, 129.6, 128.7, 128.3, 127.3, 124.8, 66.4, 60.6, 52.6, 30.4, 21.6, 19.1, 14.2, 13.8; HRMS (ESI): m/z calcd for C₂₅H₃₀NO₇S [M+H]⁺ 488.1737, found 488.1740.

Isopropyl (E)-4-((N-(2-(2-butoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)but-

2-enoate (3i): Following the general procedure, the substrate 3i was obtained as white solid (370.8 mg, 74% yield); m.p. 141-144°C; $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.94 – 7.85 (m, 1H), 7.51 – 7.42 (m, 2H), 7.32 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.1 Hz, 2H), 6.91 (dt, J = 15.6),

6.8 Hz, 1H), 6.67 - 6.55 (m, 1H), 5.92 - 5.77 (m, 1H), 5.04 - 4.98 (m, 1H), 4.43 (t, J = 6.8 Hz, 2H), 4.25 (s, 2H), 2.42 (s, 3H), 1.88 - 1.80 (m, 2H), 1.57 - 1.47 (m, 2H), 1.23 (d, J = 6.3 Hz, 6H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.2, 164.9, 164.1, 144.5, 140.9, 139.1, 135.7, 133.3, 133.2, 131.3, 129.6, 128.7, 128.3, 127.4, 125.2, 68.0, 66.4, 52.7, 30.4, 21.8, 21.6, 19.1, 13.8; HRMS (ESI): m/z calcd for C₂₆H₃₂NO₇S [M+H]⁺ 502.1894, found 502.1896.

(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl (E)-4-((N-(2-(2-methoxy-2-oxoacetyl)phenyl)

Following the general procedure, the substrate 3k was obtained as white solid (377.5 mg, 68% yield); m.p. 142-145°C; $R_f = 0.30$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.88 – 7.80 (m, 1H), 7.44 – 7.34 (m, 2H),

(3k):

7.25 (d, J = 8.3 Hz, 2H), 7.17 (d, J = 8.2 Hz, 2H), 6.81 (dt, J = 15.6, 6.8 Hz, 1H), 6.53 (d, J =7.0 Hz, 1H), 5.79 (d, J = 15.7 Hz, 1H), 4.60 (m, 1H), 4.19 (s, 2H), 3.96 (s, 3H), 2.35 (s, 3H), 1.94 - 1.85 (m, 1H), 1.81 - 1.50 (m, 4H), 1.49 - 1.30 (m, 2H), 1.29 - 1.18 (m, 2H), 0.93 - $0.87 \text{ (m, 1H)}, 0.84 - 0.79 \text{ (m, 5H)}, 0.62 \text{ (s, 3H)}; {}^{13}\text{C NMR} (101 \text{ MHz, CDCl}_3): \delta \text{ (ppm)} 186.1,$ 165.0, 164.4, 144.6, 140.7, 135.7, 133.4, 131.2, 129.6, 128.7, 128.3, 127.3, 125.4, 74.5, 53.0, 52.6, 47.0, 40.8, 34.2, 31.4, 26.3, 23.6, 22.0, 21.6, 20.7, 16.5; HRMS (ESI): m/z calcd for $C_{30}H_{38}NO_7S [M+H]^+ 556.2363$, found 556.2361.

Ethyl (E)-4-((N-(2-(2-ethoxy-2-oxoacetyl)-4-methylphenyl)-4-methylphenyl)sulfonamido)

but-2-enoate (31): Following the general procedure, the substrate **31** was obtained as white solid (354.9 mg, 75% yield); m.p. 118–121°C; $R_f = 0.30$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.69 (d, J = 1.3 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 8.3 Hz, 3H), 6.91 (dt,

J = 15.6, 6.8 Hz, 1H), 6.48 (d, J = 8.2 Hz, 1H), 5.85 (d, J = 15.7 Hz, 1H), 4.48 (s, 2H), 4.30 (s, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.42 (s, 3H), 2.40 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.6, 165.3, 164.3, 144.7, 141.2, 138.9, 136.4, 135.3, 134.1, 132.6, 131.4, 129.6, 128.3, 126.6, 124.6, 62.5, 60.5, 52.3, 21.5, 20.9, 14.1, 14.0; HRMS (ESI): m/z calcd for C₂₄H₂₈NO₇S [M+H]⁺ 474.1581, found 474.1585.

Ethyl (E)-4-((N-(2-(2-ethoxy-2-oxoacetyl)-4-methoxyphenyl)-4-methylphenyl) sulfon-

amido)but-2-enoate (3m): Following the general procedure, the substrate 3m was obtained as yellow solid (410.9 mg, 84% yield); m.p. 128–131°C; $R_f = 0.30$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.39 (d, J = 3.0 Hz, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.25 (d,

J = 8.2 Hz, 2H), 6.99 – 6.83 (m, 2H), 6.48 (d, J = 8.8 Hz, 1H), 5.85 (d, J = 15.7 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 4.29 (s, 2H), 4.15 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 2.43 (s, 3H), 1.50 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.3, 165.4, 164.2, 159.3, 144.5, 141.1, 136.8, 133.1, 131.5, 129.6, 128.4, 124.8, 120.0, 114.6, 62.7, 60.6, 55.8, 52.6, 21.6, 14.2, 14.0; HRMS (ESI): m/z calcd for C₂₄H₂₈NO₈S [M+H]⁺ 490.1530, found 490.1534.

Ethyl (E)-4-((N-(2-(2-ethoxy-2-oxoacetyl)-4-fluorophenyl)-4-methylphenyl)sulfonamido)

but-2-enoate (3n): Following the general procedure, the substrate **3n** was obtained as white solid (329.2 mg, 69% yield); m.p. 125–128°C; $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.63 (dd, J = 8.2, 2.8 Hz, 1H), 7.35 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.20 – 7.10

(m, 1H), 6.99 – 6.85 (m, 1H), 6.59 (dd, J = 8.8, 4.5 Hz, 1H), 5.88 (d, J = 15.8 Hz, 1H), 4.51 (q, J = 7.1 Hz, 2H), 4.34 (s, 2H), 4.17 (q, J = 7.1 Hz, 2H), 2.45 (s, 3H), 1.51 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 184.9, 165.3, 163.6, 161.8 (d, J = 252.5 Hz), 144.8, 140.7, 137.9 (d, J = 7.3 Hz), 134.8 (d, J = 3.4 Hz), 132.9, 129.7, 129.1 S16

(d, J = 8.3 Hz), 128.3, 125.2, 120.2 (d, J = 23.2 Hz), 118.1 (d, J = 24.2 Hz), 62.9, 60.7, 52.6, 21.6, 14.2, 14.0; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) -110.8; HRMS (ESI): m/z calcd for C₂₃H₂₅FNO₇S [M+H]⁺ 478.1330, found 478.1327.

Ethyl (E)-4-((N-(4-bromo-2-(2-ethoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)

but-2-enoate (30): Following the general procedure, the substrate **30** was obtained as yellow solid (408.2 mg, 76% yield); m.p. 122–125°C; $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.02 (d, J = 2.4 Hz, 1H), 7.54 (dd, J = 8.5, 2.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 7.27

(d, J = 8.9 Hz, 2H), 6.88 (dt, J = 15.7, 6.8 Hz, 1H), 6.44 (d, J = 8.5 Hz, 1H), 5.86 (d, J = 15.7 Hz, 1H), 4.50 (q, J = 7.2 Hz, 2H), 4.32 (s, 2H), 4.15 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 184.8, 165.3, 163.6, 144.9, 140.5, 137.9, 137.4, 136.1, 134.1, 132.5, 129.8, 128.3, 128.2, 125.2, 122.7, 62.9, 60.7, 52.3, 21.6, 14.2, 14.0; HRMS (ESI): m/z calcd for C₂₃H₂₅BrNO₇S [M+H]⁺ 538.0530, found 538.0533.

Ethyl (E)-4-((N-(5-chloro-2-(2-ethoxy-2-oxoacetyl)phenyl)-4-methylphenyl)sulfonamido)

but-2-enoate (3p): Following the general procedure, the substrate **3p** was obtained as white solid (409.3 mg, 83% yield); m.p. 138–141°C; $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.87 (d, J = 8.4 Hz, 1H), 7.46 (dd, J = 8.4, 1.3 Hz, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.29

(d, J = 8.3 Hz, 2H), 6.91 (dt, J = 15.4, 6.7 Hz, 1H), 6.55 (d, J = 1.2 Hz, 1H), 5.89 (d, J = 15.7 Hz, 1H), 4.49 (d, J = 7.1 Hz, 2H), 4.28 (s, 2H), 4.17 (q, J = 7.1 Hz, 2H), 2.45 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.1, 165.3, 163.8, 145.08, 140.6, 140.3, 139.2, 134.2, 132.5, 132.3, 129.8, 129.0, 128.3, 127.3, 125.1, 62.8, 60.7, 52.5, 21.7, 14.2, 14.0; HRMS (ESI): m/z calcd for C₂₃H₂₅ClNO₇S [M+H]⁺ 494.1035, found 494.1037.

Ethyl (E)-4-((N-(2-(2-ethoxy-2-oxoacetyl)-5-fluorophenyl)-4-methylphenyl)sulfonamido)

but-2-enoate (3q): Following the general procedure, the substrate 3q was obtained as white solid (405.5 mg, 85% yield); m.p. 128–131°C; $R_f = 0.20$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.95 (dd, J = 8.7, 6.3 Hz, 1H), 7.35 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.26 – 7.09 (m, 1H), 6.91 (dt, J = 15.7, 6.8 Hz, 1H), 6.31 (dd, J = 9.2, 2.4 Hz, 1H), 5.88 (d, J = 15.7 Hz, 1H), 4.49 (q, J = 7.1 Hz, 2H), 4.29 (s, 2H), 4.16 (q, J = 7.1 Hz, 2H), 2.44 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.0, 166.2, 165.3, 163.8 (d, J = 40.4 Hz), 145.0, 141.2 (d, J = 9.4 Hz), 140.5, 133.4 (d, J = 10.1 Hz), 132.4, 132.2 (d, J = 3.5 Hz), 129.8, 128.3, 125.2, 116.1 (d, J = 22.2 Hz), 114.4 (d, J = 23.2 Hz), 62.8, 60.7, 52.4, 21.7, 14.2, 14.0; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) -102.5; HRMS (ESI): m/z calcd for C₂₃H₂₅FNO₇S [M+H]⁺ 478.1330, found 478.1327.

Ethyl

(*E*)-4-((*N*-(2-(2-ethoxy-2-oxoacetyl)-5-methoxyphenyl)-4-methylphenyl)

sulfonamido)but-2-enoate (3r): Following the general procedure, the substrate 3r was obtained as white solid (425.5 mg, 87% yield); m.p. 135–138°C; $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (d, *J* = 8.8 Hz, 1H), 7.43 (d, *J* = 8.1 Hz, 2H), 7.29 (s, 2H), 7.05

- 6.88 (m, 2H), 6.20 (d, J = 2.1 Hz, 1H), 5.88 (d, J = 15.7 Hz, 1H), 4.48 (q, J = 7.1 Hz, 2H), 4.27 (s, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 2.45 (s, 3H), 1.48 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.2, 165.4, 164.6, 163.6, 144.5, 141.3, 141.1, 133.6, 129.6, 128.4, 127.5, 124.7, 114.4, 113.7, 62.5, 60.6, 55.7, 52.7, 21.6, 14.2, 14.1; HRMS (ESI): m/z calcd for C₂₄H₂₈NO₈S [M+H]⁺ 490.1530, found 490.1534.

3. Preparation of Substrates 5

General procedure A:

To a solution of 2-oxo-2-phenylacetic acid (1.0 mmol) in DMF (5 mL) was added NaHCO₃ (168.0 mg, 2.0 mmol, 2.0 equiv) and stirred for 2 h at rt. Then the bromide **S2** (1.2 mmol, 1.2 equiv) was added into it and the reaction mixture was heated at 60 °C with stirring for 6 h and monitored by TLC until the starting material was consumed. Water (20 mL) was added and the mixture was extracted with ethyl acetate (10 mL \times 3). The combined organic layer was washed with saturated NaHCO₃ (20 mL) and dried over anhydrous MgSO₄. After filtration, the filtrate was concentrated under reduced pressure and the pure **5a** and **5b** were obtained after purification by silica gel column chromatography (PE:EA 10:1, v/v). Similarly, the substrates **5c-5e** were prepared by using the bromides **S5** and **S6** which were prepared by the known method.⁶

General procedure B:

To a solution of **S7** or **S8** (1.0 mmol, prepared by known procedures⁷) in dry CH_2Cl_2 (20 mL) was slowly added at 0 °C with stirring an excess of sodium hydride (48.0 mg, 1.2 mmol, 60% dispersion in mineral oil) and stirred for additional 30 min. Then 2-oxo-2-phenylacetyl chloride or 2-oxo-propionyl chloride (1.2 mmol) was dropwise added by a syringe. The reaction mixture was stirred at 0 °C for 1 h and then was warmed up to rt and stirred for 6 h. The mixture was cautiously poured into water (20 mL) and the organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (20 mL × 3). The combined organic layer was then dried over anhydrous MgSO₄ and filtered. After concentration under reduced pressure, the crude product was isolated by silica gel column chromatography (PE:EA 10:1, v/v) to afford **5f** or **5g**.

Ethyl (*E*)-4-(2-oxo-2-phenylacetoxy)but-2-enoate (5a): Following the general procedure A, the substrate 5a was obtained as colorless oil (223.0 mg, 85% yield); $R_f = 0.60$ (PE:EA 10:1,

v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.02 (dd, J =t 8.3, 1.2 Hz, 2H), 7.73 – 7.63 (m, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.01 (dt, J = 15.7, 4.8 Hz, 1H), 6.14 (dt, J = 15.7, 1.8 Hz, 1H), 5.04 (dd, J = 4.8, 1.9 Hz, 2H), 4.22 (q, J = 7.1 Hz,

2H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.4, 165.5, 162.9, 139.3, 135.2, 132.2, 130.1, 129.0, 123.6, 63.9, 60.7, 14.2; HRMS (ESI): m/z calcd for C₁₄H₁₅O₅ [M+H]⁺ 263.0914, found 263.0911.

Ethyl (E)-3-(3-nitrophenyl)-4-(2-oxo-2-phenylacetoxy)but-2-enoate (5b): Following the

general procedure A, the substrate **5b** was obtained as colorless oil (302.6 mg, 79% yield); $R_f = 0.40$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.33 (s, 1H), 8.25 (d, J = 8.2 Hz, 1H), 7.80 (d, J = 7.8 Hz, 3H), 7.63 – 7.57 (m, 2H), 7.42 (t, J = 7.7 Hz, 2H), 6.34 (s, 1H), 5.93 (s,

2H), 4.29 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.5, 164.9, 163.1, 148.9, 148.4, 139.4, 135.1, 133.1, 132.1, 129.9, 129.8, 128.9, 124.1, 123.9, 122.2, 61.8, 61.1, 14.2; HRMS (ESI): m/z calcd for C₂₀H₁₈NO₇ [M+H]⁺ 384.1078, found 384.1075.

Ethyl (E)-5-(2-oxo-2-phenylacetoxy)pent-2-enoate (5c): Following the general procedure A,

the substrate **5c** was obtained as colorless oil (218.1 mg, 79% yield); $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.99 (d, J = 7.7 Hz, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.07 – 6.80 (m,

1H), 5.95 (d, J = 15.7 Hz, 1H), 4.51 (t, J = 6.5 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 2.70 (q, J = 6.5 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 185.9, 166.0, 163.6, 142.9, 135.1, 132.3, 130.1, 128.9, 124.4, 63.9, 60.5, 31.2, 14.2; HRMS (ESI): m/z calcd for C₁₅H₁₇O₅ [M+H]⁺ 277.1071, found 277.1074.

tert-Butyl (E)-5-(2-oxo-2-phenylacetoxy)pent-2-enoate (5d): Following the general

procedure A, the substrate **5d** was obtained as colorless oil (255.4 mg, 84% yield); $R_f = 0.50$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.13 – 7.88 (m, 2H), 7.70 – 7.63 (m, 1H), 7.52

(t, J = 7.8 Hz, 2H), 6.84 (dt, J = 15.7, 6.9 Hz, 1H), 5.88 (dt, J = 15.7, 1.5 Hz, 1H), 4.50 (t, J =

6.6 Hz, 2H), 2.67 (qd, J = 6.7, 1.5 Hz, 2H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 186.0, 165.3, 163.6, 141.6, 135.0, 132.3, 130.1, 129.0, 126.0, 80.5, 64.1, 31.1, 28.1; HRMS (ESI): m/z calcd for C₁₇H₂₁O₅ [M+H]⁺ 305.1384, found 305.1387.

tert-Butyl (E)-6-(2-oxo-2-phenylacetoxy)hex-2-enoate (5e) : Following the general procedure A, the substrate 5e was obtained as colorless oil (232.3 mg, 73% yield); $R_f = 0.50$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.99 (dd, J = 8.3, 1.2 Hz, 2H), 7.68 –

7.64 (m, 1H), 7.54 – 7.50 (m, 2H), 6.86 (dt, J = 15.6, 6.9 Hz, 1H), 5.80 (dt, J = 15.6, 1.5 Hz, 1H), 4.41 (t, J = 6.5 Hz, 2H), 2.39 – 2.25 (m, 2H), 2.01 – 1.87 (m, 2H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 186.1, 165.6, 163.7, 145.6, 135.0, 132.3, 129.9, 128.9, 124.1, 80.1, 65.2, 28.1, 28.0, 26.9; HRMS (ESI): m/z calcd for C₁₈H₂₃O₅ [M+H]⁺ 319.1540, found 319.1540.

Ethyl (E)-4-(2-oxo-2-phenyl-N-tosylacetamido)but-2-enoate (5f): Following the general

procedure B, the substrate **5f** was obtained as colorless CO_2Et oil (265.7 mg, 64% yield); $R_f = 0.25$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96 (d, J = 7.8 Hz, 2H), 7.91 (d, J = 8.1 Hz, 2H), 7.69 (t, J = 7.4 Hz, 1H),

7.58 (d, J = 7.5 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 6.76 (dt, J = 15.8, 5.6 Hz, 1H), 5.91 (d, J = 15.7 Hz, 1H), 4.50 (d, J = 5.6 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 2.48 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 187.6, 166.8, 165.4, 146.2, 139.5, 134.7, 134.0, 132.6, 130.2, 129.8, 129.0, 128.6, 124.5, 60.6, 45.3, 21.8, 14.2; HRMS (ESI): m/z calcd for C₂₁H₂₂NO₆S [M+H]⁺ 416.1162, found 416.1166.

Ethyl (E)-5-(2-oxo-N-tosylpropanamido)pent-2-enoate (5g): Following the general

procedure B, the substrate **5g** was obtained as colorless oil (135.6 mg, 74% yield); $R_f = 0.30$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84 (d, J = 8.3Hz, 2H), 7.38 (d, J = 8.2 Hz, 2H), 6.85 – 6.65 (m, 1H),

5.78 (dd, J = 15.7, 1.0 Hz, 1H), 4.17 (q, J = 7.1 Hz, 2H), 3.70 – 3.54 (m, 2H), 2.51 (s, 3H), 2.47 (d, J = 8.2 Hz, 2H), 2.46 (s, 3H), 1.26 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 194.9, 168.0, 165.9, 146.2, 143.2, 133.9, 130.2, 128.3, 123.9, 60.4, 43.4, 30.7, 26.8, 21.7, 14.2; HRMS (ESI): m/z calcd for C₁₇H₂₂NO₆S [M+H]⁺ 368.1162, found 368.1159.

References

- (a) A. Z. Gonzalez and F. D. Toste, *Org. Lett.* 2010, **12**, 200; (b) H. Zhou, W.-H. Wang, Y. Fu, J.-H. Xie, W.-J. Shi, L.-X. Wang and Q.-L. Zhou, *J. Org. Chem.* 2003, **68**, 1582.
- 2. F.-L. Hu, X.-Y. Guan and M. Shi, Tetrahedron 2012, 68, 4782.
- (a) A. D. G. Yamagata, S. Datta, K. E. Jackson, L. Stegbauer, R. S. Paton and D. J. Dixon, *Angew.Chem. Int. Ed.* 2015, 54, 4899; (b) R. Liu, Z.-Y. Yang, Y.-X. Ni, K.-X. Song, K. Shen, S.-H. Lin and Q.-M. Pan, *J. Org. Chem.* 2017, 82, 8023; (c) K. Heckenbichler, A. Schweiger, L. A. Brandner, A. Binter, M. Toplak, P. Macheroux, K. Gruber and R. Breinbauer, *Angew.Chem. Int. Ed.* 2018, 57, 7240.
- R. Liu, L. Han, J. Liu, B. Fan, R. Li, Y. Qiao, R. Zhou, Synth. Commun. 2018, 48, 3079– 3088.
- 5. L. Zhang, H. Lu, G.-Q. Xu, Z.-Y. Wang and P.-F. Xu, J. Org. Chem. 2017, 82, 5782.
- D. J. Phillips, K. S. Pillinger, W. Li, A. E. Taylor, A. E. Graham, *Chem. Commun.* 2006, 21, 2280.
- (a) F. Beltran, I. Fabre, I. Ciofini and L. Miesch, Org. Lett. 2017, 19, 5042; (b) S. R. Angle and D. S. Belanger, J. Org. Chem. 2004, 69, 4361; (c) F. Serpier, J. L. Brayer, B. Folléas and S. Darses, Org. Lett. 2015, 17, 5496.

III. Optimization of the Reaction Conditions

Table S1. Survey on conditions of the model reaction of 1a^a

Entry	PR ₃	Solvent	<i>T</i> (°C)	Time (h)	Yield $(\%)^b$	dr ^c
1	P(OMe) ₃	CH ₂ Cl ₂	-78	10	11	5:1
2	P(OEt) ₃	CH_2Cl_2	-78	10	17	7:1
3	PPh ₃	CH_2Cl_2	-78	10	0	/
4	PBu ₃	CH_2Cl_2	-78	10	12	4:1
5	$P(NMe_2)_3$	CH_2Cl_2	-78	10	42	10:1
6	$P(NMe_2)_3$	toluene	-78	10	28	10:1
7	$P(NMe_2)_3$	THF	-78	10	37	10:1
8	$P(NMe_2)_3$	CHCl ₃	-60	10	67	10:1
9	$P(NMe_2)_3$	CHCl ₃	-60	15	72	10:1
10	$P(NMe_2)_3$	CHCl ₃	-60	24	61	10:1
11	P(NMe ₂) ₃	CHCl ₃	-60	18	82	10:1

 a All reactions were carried out using 1a (0.20 mmol) in 2.0 mL of solvent with PR₃ (1.1 equiv) under N₂ atmosphere.

^b Isolated yield of **2a** after column chromatography. ^c Diastereomeric ratio (dr) value was determined by ¹H NMR assay.

Table S2. Survey on conditions of the reaction of $3a^a$

$\begin{array}{c} O \\ CO_2Et \\ N \\ Ts \\ 3a \end{array} \xrightarrow{CO_2Et} CO_2Et \\ \hline $								
Entry	PR ₃	Solvent	<i>T</i> (°C)	Time (h)	Yield $(\%)^b$	dr ^c		
1	P(OMe) ₃	CH_2Cl_2	-78	8	14	20:1		
2	P(OEt) ₃	CH_2Cl_2	-78	8	trace	/		
3	PPh ₃	CH_2Cl_2	-78	8	0	/		
4	PBu ₃	CH_2Cl_2	-78	8	16	20:1		
5	$P(NMe_2)_3$	CH_2Cl_2	-78	8	73	20:1		
6	$P(NMe_2)_3$	THF	-78	8	54	20:1		
7	$P(NMe_2)_3$	toluene	-78	8	48	20:1		
8	$P(NMe_2)_3$	CHCl ₃	-60	8	57	20:1		
9	P(NMe ₂) ₃	CH ₂ Cl ₂	-78	12	86	20:1		
10	$P(NMe_2)_3$	CH_2Cl_2	-78	16	71	20:1		

^{*a*} All reactions were carried out using **3a** (0.20 mmol) in 2.0 mL of solvent with PR₃ (1.1 equiv) under N₂ atmosphere. ^{*b*} Isolated yield of **4a** after column chromatography. ^{*c*} Diastereomeric ratio (dr) value was determined by ¹H NMR assay.

Table S3. A brief survey on the asymmetric reaction of 1b^a

1 P1 12 0 / / 2 P2 10 trace / /	
2 P2 10 trace / /	
3 P3 12 29 20:1 95	

^{*a*} All reactions were carried out using **1b** (0.10 mmol) in CH₂Cl₂ (1.0 mL) with chiral phosphine PR₃ (1.1 equiv) under N_2 atmosphere. ^{*b*} Isolated yield of product after column chromatography. ^{*c*} Diastereomeric ratio (dr) value was determined by ¹H NMR assay. ^{*d*} The enantiomeric excess of **Chiral-2b** was measured by HPLC analysis with a Chiralcel AS-H column (hexane/*i*-PrOH: 90/10, flow rate: 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 19.1$ min, $t_{minor} = 20.5$ min).

IV. General Procedures for P(NMe₂)₃-Mediated Reductive Intramolecular Cyclopropanations

1. General procedure for synthesis of cyclopropane-fused chromanes 2 (Table 1)

To a solution of substrate 1 (0.2 mmol) in dry CHCl₃ (1.0 mL) was dropwise added a solution of P(NMe₂)₃ (35.9 mg, 0.22 mmol) in dry CHCl₃ (1.0 mL) via a syringe at -60 °C with stirring over 20 min. The resulting reaction mixture was stirred at -60 °C for 1 h and then slowly warmed up to rt and stirred for additional 17 h. After the solvent was removed on a rotary evaporator under reduced pressure, the residue was subjected to isolation by silica gel column chromatography (PE/EA 15:1–10:1, v/v) to give product **2**.

2. General procedure for synthesis of cyclopropane-fused tetrahydroquinolines 4 (Table 2)

To a solution of substrate **3** (0.2 mmol) in dry $CH_2Cl_2(1.0 \text{ mL})$ was dropwise added a solution of $P(NMe_2)_3$ (35.9 mg, 0.22 mmol) in dry CH_2Cl_2 (1.0 mL) via a syringe at -78 °C with stirring over 20 min. The resulting reaction mixture was stirred at -78 °C for 1 h and then slowly warmed up to rt and stirred for additional 11 h. After the solvent was removed on a rotary evaporator under reduced pressure, the residue was subjected to isolation by silica gel column chromatography (PE/EA 10:1–5:1, v/v) to give product **4**.

3. General procedure for synthesis of cyclopropane-fused lactones or lactams 6 (Table 3)

To a solution of substrate **5** (0.2 mmol) in dry $CH_2Cl_2(1.0 \text{ mL})$ was dropwise added a solution of $P(NMe_2)_3$ (35.9 mg, 0.22 mmol) in dry CH_2Cl_2 (1.0 mL) via a syringe at -78 °C with stirring over 20 min. The resulting reaction mixture was stirred at -78 °C for 1 h and then slowly warmed up to rt and stirred for additional 5 h. After the solvent was removed on a rotary evaporator under reduced pressure, the residue was subjected to isolation by silica gel column chromatography (PE/EA 10:1, v/v) to give product **6**.

V. Characterization Data of Compounds 2, 4 and 6

Diethyl 1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2a): colorless oil,

CO₂Et 47.6 mg, 82% yield; $R_f = 0.80$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.37 (dd, J = 7.8, 1.5 Hz, 1H), 7.09 (td, J = 7.8, 1.6 Hz, 1H), 6.88 (td, J = 7.6, 1.2 Hz, 1H), 6.78 (dd, J = 8.1, 1.1 Hz, 1H), 4.28 (dd, J = 11.2, 1.5 Hz, 1H), 4.21 (tt, J = 7.2, 3.5 Hz, 2H), 4.10 (dt, J = 7.2, 2.9 Hz, 2H), 3.96 (dd, J = 11.1, 1.5 Hz, 1H), 2.71 (dt, J = 5.5, 1.6 Hz,

1H), 2.44 (d, J = 5.5 Hz, 1H), 1.26 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.7, 167.6, 152.3, 128.2, 127.0, 122.0, 121.2, 118.0, 61.7, 61.3, 60.6, 33.9, 30.3, 29.7, 14.2, 14.1; HRMS (ESI): m/z calcd for C₁₆H₁₉O₅ [M+H]⁺ 291.1227, found 291.1230.

Benzyl 7b-ethyl 1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2b):

colorless oil, 63.0 mg, 84% yield; $R_f = 0.75$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.43 (dd, J = 7.8, 1.6 Hz, 1H), 7.40 – 7.33 (m, 5H), 7.19 – 7.11 (m, 1H), 6.95 (td, J = 7.6, 1.3 Hz, 1H), 6.84 (dd, J = 8.1, 1.2 Hz, 1H), 5.15 (s, 2H), 4.35 (dd, J = 11.2, 1.6 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 4.03 (dd, J = 11.2, 1.2 Hz, 1H), 2.81 (dt,

J = 5.5, 1.6 Hz, 1H), 2.58 (d, J = 5.5 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.5, 167.5, 152.3, 135.5, 128.6, 128.4, 128.3, 127.1, 122.0, 121.1, 118.0, 67.1, 61.7, 60.5, 34.0, 30.2, 29.9, 14.1; HRMS (ESI): m/z calcd for C₂₁H₂₀NaO₅ [M+Na]⁺ 375.1203, found 375.1208.

7b-Ethyl 1-phenyl 1a, 2-dihydrocyclopropa[c]chromene-1, 7b(1H)-dicarboxylate (2c):

CO₂Ph colorless oil, 59.0 mg, 87% yield; $R_f = 0.60$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51 (dd, J = 7.8, 1.5 Hz, 1H), 7.40 (t, J = 7.9 Hz, 2H), 7.28 – 7.19 (m, 2H), 7.17 – 7.11 (m, 2H), 7.02 (td, J = 7.6, 1.0 Hz, 1H), 6.92 (dd, J = 8.1, 0.9 Hz, 1H), 4.46 (dd, J = 11.2,

1.5 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 4.12 (dd, J = 11.2, 1.3 Hz, 1H), 2.94 (dt, J = 5.5, 1.4 Hz, 1H), 2.78 (d, J = 5.5 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.3, 167.4, 152.4, 150.7, 129.4, 128.5, 127.2, 126.0, 122.1, 121.4, 120.9, 118.1, 61.9, 60.5, 34.6, 30.2, 30.1, 14.1; HRMS (ESI): m/z calcd for C₂₀H₁₉O₅ [M+H]⁺ 339.1227, found 339.1224.

1-Cyclohexyl 7b-ethyl 1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2d):

colorless oil, 63.5 mg, 92% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.46 (dd, J = 7.8, 1.6 Hz, 1H), 7.21 – 7.14 (m, 1H), 6.97 (td, J = 7.6, 1.3 Hz, 1H), 6.87 (dd, J = 8.1, 1.2 Hz, 1H), 4.85 – 4.74 (m, 1H), 4.38 (dd, J = 11.2, 1.5 Hz, 1H), 4.35 – 4.20 (q, J = 7.2 Hz, 2H), 4.05 (dd, J = 11.1, 1.2 Hz, 1H), 2.79 (dt, J = 5.5,

1.6 Hz, 1H), 2.52 (d, J = 5.5 Hz, 1H), 1.89 – 1.86 (m, 2H), 1.78 – 1.72 (m, 2H), 1.58 – 1.52 (m, 1H), 1.46 – 1.38 (m, 3H), 1.35 (t, J = 7.2 Hz, 3H), 1.33 – 1.19 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.2, 167.6, 152.4, 128.2, 127.0, 122.0, 121.4, 118.0, 73.8, 61.6, 60.6, 33.8, 31.6, 31.5, 30.5, 29.6, 25.3, 23.8, 23.7, 14.2; HRMS (ESI): m/z calcd for C₂₀H₂₅O₅ [M+H]⁺ 345.1697, found 345.1699.

1-Butyl 7b-ethyl 1a, 2-dihydrocyclopropa[c]chromene-1,7b(1*H*)-dicarboxylate (2e): CO₂*n*-Bu CO₂*n*-Bu CO₂*n*-Bu CO₂*n*-Bu CO₂*n*-Bu CO₂*n*-Bu CO₂*n*-Bu CO₂*n*-Bu CO₂*n*-Bu NMR (400 MHz, CDCl₃): δ (ppm) 7.46 (dd, J = 7.8, 1.3 Hz, 1H), 7.22 - 7.14 (m, 1H), 6.99 - 6.96 (m, 1H), 6.88 (d, J = 8.1 Hz, 1H), 4.38 (dd, J = 11.1, 1.3 Hz, 1H), 4.31 (q, J = 7.1, 2H), 4.13 (t, J = 6.7, 2H), 4.05 (dd, J = 11.2, 0.9 Hz, 1H), 2.80 (dt, J = 5.5, 2.0 Hz, 1H),

2.53 (d, J = 5.5 Hz, 1H), 1.67 – 1.59 (m, 2H), 1.47 – 1.37 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.8, 167.6, 152.3, 128.2, 127.0, 122.0, 121.2, 118.0, 65.2, 61.7, 60.6, 33.8, 30.6, 30.3, 29.7, 19.1, 14.1, 13.7; HRMS (ESI): m/z calcd for C₁₈H₂₃O₅ [M+H]⁺ 319.1540, found 319.1545.

7b-Ethyl 1-(4-ethylphenyl) 1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate

(2f): colorless oil, 54.3 mg, 74% yield; $R_f = 0.75$ (10:1 v/v, PE:EA); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.41 (dd, J = 7.8, 1.5 Hz, 1H), 7.14 – 7.10 (m, 3H), 6.97 – 6.89 (m, 3H), 6.82 (dd, J = 8.1, 1.1 Hz, 1H), 4.36 (dd, J = 11.2, 1.5 Hz, 1H), 4.26 – 4.16 (m, 2H), 4.02 (dd, J = 11.2, 1.2 Hz, 1H), 2.83 (dt, J = 5.5, 1.6 Hz, 1H),

2.67 (d, J = 5.6 Hz, 1H), 2.56 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.5, 167.4, 152.4, 148.6, 141.9, 128.8, 128.4, 127.2, 122.1, 121.1, 120.9, 118.1, 61.9, 60.5, 34.6, 30.2, 30.1, 28.3, 15.6, 14.2; HRMS (ESI): m/z calcd for C₂₂H₂₃O₅ [M+H]⁺ 367.1540, found 367.1538.

1-Allyl 7b-ethyl 1a, 2-dihydrocyclopropa[c]chromene-1,7b(1*H*)-dicarboxylate (2g): colorless oil, 49.1 mg, 81% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.44 (dd, J = 7.8, 1.6 Hz, 1H), 7.16 (td, 7.8, 1.6 Hz, 1H), 6.95 (td, J = 7.6, 1.2 Hz, 1H), 6.86 (dd, J= 8.1, 1.2 Hz, 1H), 5.98 – 5.83 (m, 1H), 5.39 – 5.21 (m, 2H), 4.65 – 4.56 (m, 2H), 4.36 (dd, J = 11.2, 1.5 Hz, 1H), 4.28 (q, J = 7.1,

2H), 4.04 (dd, J = 11.2, 1.5 Hz, 1H), 2.80 (dt, J = 5.5, 1.6 Hz, 1H), 2.55 (d, J = 5.5 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.4, 167.5, 152.3, 131.8, 128.3, 127.0, 122.0, 121.1, 118.6, 118.0, 65.9, 61.7, 60.5, 34.0, 30.1, 29.8, 14.1; HRMS (ESI): m/z calcd for C₁₇H₁₉O₅ [M+H]⁺ 303.1227, found 303.1229.

7b-Allyl 1-butyl 1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2h):

colorless oil, 58.3 mg, 88% yield; $R_f = 0.65$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.43 (d, J = 1.5 Hz, 1H), 7.14 (td, J = 7.8, 1.2 Hz, 1H), 6.93 (td, J = 7.6, 1.3 Hz, 1H), 6.83 (dd, J = 8.1, 1.1 Hz, 1H), 6.00 – 5.90 (m, 1H), 5.35 (ddd, J = 17.2, 2.9, 1.5 Hz, 1H), 5.26 (ddd, J = 10.4, 2.4, 1.2 Hz, 1H), 4.70 (ddd, J =

5.9, 2.7, 1.4 Hz, 2H), 4.33 (dd, J = 11.2, 1.6 Hz, 1H), 4.13 – 4.04 (m, 2H), 4.02 (dd, J = 11.2, 1.2 Hz, 1H), 2.77 (dt, J = 5.5, 1.6 Hz, 1H), 2.50 (d, J = 5.6 Hz, 1H), 1.61 – 1.57 (m, 2H), 1.38 – 1.32 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.7, 167.3, 152.3, 131.7, 128.5, 127.1, 122.0, 121.1, 119.0, 118.0, 66.4, 65.2, 60.6, 33.8, 30.6, 30.3, 29.8, 19.1, 13.7; HRMS (ESI): m/z calcd for C₁₉H₂₃O₅ [M+H]⁺ 331.1540, found 331.1543.

Diethyl 6-ethyl-1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2i): yellow

oil, 50.4 mg, 79% yield; $R_f = 0.80$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.25 (d, J = 2.0 Hz, 1H), 6.98 (dd, J = 8.2, 2.0 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 4.36 – 4.26 (m, 3H), 4.20 – 4.15 (m, 2H), 4.00 (dd, J = 11.0, 1.3 Hz, 1H), 2.76 (dt, J = 5.5, 1.5 Hz, 1H), 2.57 (q, J = 7.7 Hz, 2H), 2.50 (d, J = 5.5 Hz, 1H),

1.34 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, 101 MHz)

CDCl₃): δ (ppm) 169.8, 167.7, 150.3, 137.8, 127.5, 126.2, 120.8, 117.7, 61.6, 61.2, 60.6, 34.0, 30.2, 29.7, 28.3, 15.7, 14.2, 14.1; HRMS (ESI): *m/z* calcd for C₁₈H₂₃O₅ [M+H]⁺ 319.1540, found 319.1540.

Dimethyl 6-ethyl-1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2j):

colorless oil, 48.9 mg, 84% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.22 (d, J = 1.8 Hz, 1H), 6.99 (dd, J = 8.2, 1.8 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 4.32 (dd, J = 11.2, 1.3 Hz, 1H), 4.00 (dd, J = 11.1, 1.0 Hz, 1H), 3.83 (s, 3H), 3.72 (s, 3H), 2.77 (d, J = 5.5 Hz, 1H), 2.57 (q, J = 7.6 Hz, 2H),

2.52 (d, J = 5.5 Hz, 1H), 1.19 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 170.3, 168.2, 150.2, 138.0, 127.7, 126.3, 120.5, 117.8, 60.6, 52.6, 52.3, 33.9, 30.1, 29.9, 28.3, 15.8; HRMS (ESI): m/z calcd for C₁₆H₁₉O₅ [M+H]⁺ 291.1227, found 291.1225.

Dimethyl 6-(tert-butyl)-1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate

(2k): white solid, 52.3 mg, 82% yield; m.p. 108–110 °C; $R_f = 0.80$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.42 (d, J = 2.4 Hz, 1H), 7.18 (dd, J = 8.5, 2.4 Hz, 1H), 6.79 (d, J = 8.5 Hz, 1H), 4.32 (dd, J = 11.2, 1.5 Hz, 1H), 4.01 (dd, J = 11.2, 1.4 Hz, 1H), 3.84 (s, 3H), 3.72 (s, 3H), 2.77 (td, J = 5.5,

1.6 Hz, 1H), 2.52 (d, J = 5.6 Hz, 1H), 1.28 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 170.3, 168.3, 149.9, 144.8, 125.4, 123.7, 120.0, 117.4, 60.6, 52.6, 52.3, 34.3, 33.9, 31.4, 30.1, 29.9; HRMS (ESI): m/z calcd for C₁₈H₂₃O₅ [M+H]⁺ 319.1540, found 319.1541.

7b-Ethyl1-methyl6-(tert-butyl)-1a,2-dihydrocyclopropa[c]chromene-1,7b(1H)-CO2MeCO2Medicarboxylate (2l): colorless oil, 47.3 mg, 71% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm)7.35 (dd, J = 7.7, 2.4 Hz, 1H), 7.11 (dd, J = 8.5, 2.4 Hz, 1H),6.71 (d, J = 8.5 Hz, 1H), 4.29 - 4.20 (m, 2H), 3.94 (dd, J = 11.2, 1.6 Hz, 1H), 3.76 (s, 1H), 3.65 (s, 3H), 2.74 - 2.65 (m,

1H), 2.45 (d, J = 5.5 Hz, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.21 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 170.2, 167.8, 149.9, 144.7, 125.3, 123.8, 120.2, 117.4, 61.6, 60.6, 52.3, 34.4, 34.1, 31.4, 30.0, 29.8, 14.3; HRMS (ESI): m/z calcd for C₁₉H₂₅O₅ [M+H]⁺ 333.1697, found 333.1696.

Diethyl 6-methoxy-1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2m):

colorless oil, 48.2 mg, 75% yield; $R_f = 0.85$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.02 (d, J = 2.9 Hz, 1H), 6.78 (d, J = 8.8 Hz, 1H), 6.71 (dd, J = 8.8, 2.9 Hz, 1H), 4.36 – 4.24 (m, 3H), 4.20 – 4.14 (m, 2H), 3.97 (dd, J = 11.1, 1.2 Hz, 1H), 3.75 (s, 3H), 2.76 (dt, J = 5.5, 1.6 Hz, 1H), 2.52 (d, J = 5.6

Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.7, 167.5, 154.4, 146.2, 121.8, 118.5, 113.6, 112.3, 61.7, 61.3, 60.7, 55.7, 34.0, 30.1, 29.6, 14.2; HRMS (ESI): m/z calcd for C₁₇H₂₁O₆ [M+H]⁺ 321.1333, found 321.1329.

Diethyl 5-methoxy-1a, 2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2n):

colorless oil, 55.9 mg, 87% yield; $R_f = 0.65$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.27 (d, J = 8.6 Hz, 1H), 6.45 (dd, J = 8.6, 2.5 Hz, 1H), 6.35 (d, J = 2.5 Hz, 1H), 4.28 (d, J = 7.6 Hz, 1H), 4.24 – 4.18 (m, 2H), 4.12 – 4.06 (m, 2H), 3.99 (dd, J = 11.2, 1.3 Hz, 1H), 3.68 (s, 3H), 2.66 (d, J = 5.5 Hz, 1H),

2.34 (d, J = 5.5 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.7, 167.8, 159.7, 153.4, 127.8, 113.3, 108.2, 103.4, 61.6, 61.2, 61.1, 55.4, 33.4, 30.6, 29.0, 14.2, 14.1; HRMS (ESI): m/z calcd for C₁₇H₂₁O₆ [M+H]⁺ 321.1333, found 321.1333.

8b-Ethyl 1-methyl 1a, 2-dihydrocyclopropa[c][1,3]dioxolo[4,5-g]chromene-1,8b(1H)-

dicarboxylate (20): colorless oil, 52.0 mg, 81% yield; $R_f = 0.65$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.94 (s, 1H), 6.40 (s, 1H), 5.90 (d, J = 1.9 Hz, 2H), 4.35 – 4.24 (m, 3H), 4.02 (dd, J = 11.2, 1.9 Hz, 1H), 3.71 (s, 3H), 2.72 (dt, J =5.4, 1.8 Hz, 1H), 2.43 (d, J = 5.6 Hz, 1H), 1.32 (t, J = 7.1 Hz,

3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 170.1, 167.8, 147.6, 147.1, 142.4, 112.9, 106.6, 101.3, 100.0, 61.8, 61.2, 52.3, 33.8, 30.4, 29.0, 14.1; HRMS (ESI): *m/z* calcd for C₁₆H₁₇O₇ [M+H]⁺ 321.0969, found 321.0971.

7a-Ethyl7-phenyl6a,7-dihydrobenzo[h]cyclopropa[c]chromene-7,7a(6H)-dicarboxylate (2p): colorless oil, 73.9 mg, 95% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR(400 MHz, CDCl₃): δ (ppm) 8.21 – 8.10 (m, 1H), 7.77 (dd, J = 6.7, 2.7 Hz, 1H), 7.58 (d, J = 8.6 Hz, 1H), 7.50 – 7.43 (m, 3H), 7.37 (t, J = 7.9 Hz, 2H), 7.23 – 7.19 (m, 1H), 7.14 (d, J = 829

7.7 Hz, 2H), 4.63 (dd, J = 11.2, 1.5 Hz, 1H), 4.35 – 4.29 (m, 2H), 4.25 (dd, J = 11.2, 1.8 Hz, 1H), 3.02 (td, J = 5.5, 1.6 Hz, 1H), 2.80 (d, J = 5.6 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.2, 167.8, 150.7, 148.0, 133.5, 129.5, 127.6, 126.5, 126.0, 125.9, 125.4, 124.3, 121.7, 121.5, 121.3, 115.1, 62.0, 61.1, 34.5, 31.6, 30.6, 14.2; HRMS (ESI): m/z calcd for C₂₄H₂₁O₅

[M+H]⁺ 389.1384, found 389.1383.

6-phenyl-1a,2-dihydrocyclopropa[*c*]chromene-1,7b(1*H*)dicarboxylate (2q): colorless oil, 62.9 mg, 89% yield; $R_f = 0.80$ (10:1 v/v, PE:EA); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.70 (d, J = 2.2 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.45 – 7.39 (m, 3H), 7.37 – 7.31 (m, 1H), 6.95 (d, J = 8.4 Hz, 1H), 4.41 (dd, J = 11.2, 1.6 Hz, 1H), 4.38 – 4.26 (m, 2H), 4.11

 $(dd, J = 11.2, 1.3 Hz, 1H), 3.76 (s, 3H), 2.84 (dt, J = 5.6, 1.7 Hz, 1H), 2.59 (d, J = 5.7 Hz, 1H), 1.36 (t, J = 7.1 Hz, 3H); {}^{13}C NMR (101 MHz, CDCl_3): \delta (ppm) 170.1, 167.6, 151.8, 140.6, 135.3, 128.8, 127.0, 126.9, 126.8, 125.9, 121.2, 118.3, 61.8, 60.7, 52.3, 33.8, 30.3, 29.6, 14.2; HRMS (ESI):$ *m/z*calcd for C₂₁H₂₁O₅ [M+H]⁺ 353.1384, found 353.1379.

5.6 Hz, 1H), 2.47 (d, J = 5.6 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.8, 167.3, 152.9, 133.5 128.1, 122.2, 119.6, 118.3, 61.9, 60.8, 52.3, 33.2, 30.5, 29.3, 14.1; HRMS (ESI): m/z calcd for C₁₅H₁₆ClO₅ [M+H]⁺ 311.0681, found 311.0682.

7b-Ethyl 1-methyl 5-bromo-1a,2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate

(2s): colorless oil, 56.1 mg, 79% yield; $R_f = 0.80$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.26 (d, J = 8.3 Hz, 1H), 7.04 – 6.98 (m, 1H), 6.96 (d, J = 1.5 Hz, 1H), 4.28 (d, J = 11.6 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.97 (d, J = 11.2 Hz,

1H), 3.65 (s, 3H), 2.71 (d, J = 5.5 Hz, 1H), 2.39 (d, J = 5.6 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.7, 167.3, 153.0, 128.4, 125.1, 121.2, 120.2, 61.9, 60.8, 52.3, 33.2, 30.4, 29.3, 14.1; HRMS (ESI): m/z calcd for C₁₅H₁₆BrO₅ [M+H]⁺ 355.0176, found 355.0160.

Diethyl 5-chloro-1a,2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2t):

colorless oil, 61.1 mg, 94% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.39 (d, J = 8.4 Hz, 1H), 6.93 (dd, J = 8.4, 2.2 Hz, 1H), 6.87 (d, J = 2.1 Hz, 1H), 4.36 (dd, J = 11.2, 1.5 Hz, 1H), 4.31 – 4.25 (m, 2H), 4.20 – 4.14 (m, 2H), 4.04 (dd, J = 11.2, 1.4 Hz, 1H), 2.78 (dt, J = 5.6, 1.6 Hz, 1H),

2.45 (d, J = 5.6 Hz, 1H), 1.32 (t, J = 7.2 Hz, 3H), 1.26 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.3, 167.3, 152.9, 133.4, 128.1, 122.1, 119.7, 118.3, 61.8, 61.4, 60.8, 33.2, 30.6, 29.2, 14.2, 14.1; HRMS (ESI): m/z calcd for C₁₆H₁₈ClO₅ [M+H]⁺ 325.0837, found 325.0833.

Diethyl 5-bromo-1a,2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2u):

CO₂Et colorless oil, 62.0 mg, 84% yield; $R_f = 0.80$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.34 (d, J = 8.4 Hz, 1H), 7.08 (dd, J = 8.3, 2.0 Hz, 1H), 7.03 (d, J = 1.9 Hz, 1H), 4.37 – 4.34 (m, 1H), 4.28 (q, J = 7.1 Hz, 2H), 4.20 – 4.14 (m, 2H), 4.04 (dd, J = 11.2, 1.6 Hz, 1H), 2.78 (dt, J = 5.6, 1.6 Hz, 1H), 2.46 (d, J = 5.6

Hz, 1H), 1.32 (t, J = 7.2 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.3, 167.3, 153.0, 128.4, 125.1, 121.2, 121.1, 120.3, 61.8, 61.4, 60.8, 33.2, 30.5, 29.3, 14.2, 14.1; HRMS (ESI): m/z calcd for C₁₆H₁₈BrO₅ [M+H]⁺ 369.0332, found 369.0330.

Diethyl 5-fluoro-1a,2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2v):

CO₂Et colorless oil, 48.8 mg, 79% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.43 (dd, J = 8.7, 6.3 Hz, 1H), 6.67 (td, J = 8.5, 2.6 Hz, 1H), 6.59 (dd, J = 9.6, 2.6 Hz, 1H), 4.35 (dd, J = 11.3, 1.0 Hz, 1H), 4.31 – 4.25 (m, 2H), 4.20 – 4.14 (m, 2H), 4.06 (dd, J = 11.2, 1.4 Hz, 1H), 2.76 (d, J = 5.6 Hz, 1H), 2.42

(d, J = 5.6 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.4, 167.5, 162.2 (d, J = 246.4 Hz), 153.4 (d, J = 11.9 Hz), 128.2 (d, J = 9.7 Hz), 116.9 (d, J = 3.4 Hz), 109.0 (d, J = 22.2 Hz), 105.5 (d, J = 25.3 Hz), 61.7, 61.3, 61.0,

33.1, 30.6, 29.0, 14.2, 14.1; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) 136.9; HRMS (ESI): *m*/*z* calcd for C₁₆H₁₈FO₅ [M+H]⁺ 309.1133, found 309.1131.

7b-Ethyl 1-methyl 6-bromo-1a,2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate

(2w): colorless oil, 51.1 mg, 72% yield; $R_f = 0.80$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.60 (d, J = 2.4 Hz, 1H), 7.25 (d, J = 2.4 Hz, 1H), 6.74 (d, J = 8.6 Hz, 1H), 4.35 (dd, J = 11.3, 1.6 Hz, 1H), 4.33 – 4.27 (m, 2H), 4.02 (dd, J = 11.2, 1.3 Hz, 1H), 3.72 (s, 3H), 2.79 (dt, J = 5.7, 1.6 Hz, 1H), 2.49 (d,

J = 5.7 Hz, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.7, 167.1, 151.4, 131.2, 130.0, 123.0, 119.7, 114.2, 62.0, 60.6, 52.4, 33.2, 30.4, 29.4, 14.1; HRMS (ESI): m/z calcd for C₁₅H₁₆BrO₅ [M+H]⁺ 355.0176, found 355.0180.

Diethyl 1a-(3-nitrophenyl)-1a,2-dihydrocyclopropa[c][1,3]dioxolo[4,5-g]chromene-

1,8b(1*H***)-dicarboxylate (2x):** yellow solid, 62.0 mg, 68% yield; m.p. 145–148 °C; $R_f = 0.60$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.37 (s, 1H), 8.17 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 6.81 (s, 1H), 6.47 (s, 1H), 5.95 (s, 2H), 4.27 – 4.02 (m,

5H), 3.80 (d, J = 11.3 Hz, 1H), 3.07 (s, 1H), 1.25 – 1.19 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.1, 166.2, 147.9, 147.8, 147.4, 142.9, 137.6, 134.5, 128.7, 126.2, 122.9, 114.5, 106.7, 101.5, 100.0, 68.9, 61.8, 61.3, 43.8, 38.9, 31.4, 14.1, 13.8; HRMS (ESI): m/z calcd for C₂₃H₂₂NO₉ [M+H]⁺ 456.1289, found 456.1289.

Diethyl 6a-(3-nitrophenyl)-6a,7-dihydrobenzo[h]cyclopropa[c]chromene-7,7a(6H)-

dicarboxylate (2y): colorless oil, 54.5 mg, 59% yield; $R_f = 0.50$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDC1₃): δ (ppm) 8.44 (t, J = 1.8 Hz, 1H), 8.22 – 8.10 (m, 2H), 7.93 (d, J = 7.8 Hz, 1H), 7.83 – 7.80 (m, 1H), 7.58 – 7.48 (m, 4H), 7.43 (d, J = 8.7 Hz, 1H), 4.45 (d, J = 11.2 Hz, 1H), 4.30 – 4.20 (m, 2H), 4.18 – 4.11 (m, 2H), 4.00 (d, J = 11.2 Hz, 1H), 3.22 (s, 1H),

1.26 (t, J = 7.1 Hz, 3H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 167.9, 166.4, 148.2, 147.9, 137..7, 134.6, 133.4, 128.8, 127.5, 126.7, 126.2, 126.1, 125.1, 124.2, 123.0, 121.8, 121.5, 117.0, 68.7, 61.8, 61.3, 45.1, 38.8, 32.3, 14.1, 13.9; HRMS (ESI): m/z calcd for C₂₆H₂₄NO₇ [M+H]⁺ 462.1547, found 462.1545.

Diethyl 1a-(4-bromophenyl)-5-methoxy-1a,2-dihydrocyclopropa[c]chromene-1,7b(1H)-

dicarboxylate (2z): colorless oil, 77.0 mg, 81% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.47 (d, J = 8.4 Hz, 2H), 7.30 (d, J =8.6 Hz, 2H), 7.26 (s, 1H), 6.60 (dd, J = 8.6, 2.6 Hz, 1H), 6.44 (d, J = 2.6 Hz, 1H), 4.52 (d, J = 11.7 Hz,

1H), 4.16 (d, J = 11.7 Hz, 1H), 4.09 – 4.02 (m, 2H), 3.93 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 3.49 (s, 1H), 1.10 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 167.1, 165.5, 158.8, 152.6, 131.7, 130.5, 130.1, 126.8, 121.0, 114.1, 107.6, 102.3, 67.8, 60.3, 59.9, 54.4, 43.1, 37.4, 30.5, 13.1, 12.9; HRMS (ESI): m/z calcd for C₂₃H₂₄BrO₆ [M+H]⁺ 475.0751, found 475.0741.

Diethyl 1a-methyl-1a,2-dihydrocyclopropa[c]chromene-1,7b(1H)-dicarboxylate (2aa):

colorless oil, 30.3 mg, 31% yield; $R_f = 0.65$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.15 (dd, J = 7.8, 1.5 Hz, 1H), 7.08 (td, J = 8.0, 1.6 Hz, 1H), 6.87 (td, J = 7.6, 1.2 Hz, 1H), 6.78 (dd, J = 8.1, 1.1 Hz, 1H), 4.33 – 4.21 (m, 2H), 4.12 – 4.05 (m, 3H), 3.65 (d, J = 11.0 Hz, 1H), 2.55 (s, 1H), 1.47 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H), 1.19

(t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.9, 166.8, 152.4, 127.9, 126.9, 123.0, 122.1, 117.8, 66.8, 61.4, 60.7, 38.0, 35.0, 30.9, 14.2, 14.1, 11.2; HRMS (ESI): m/z calcd for C₁₇H₂₀NaO₅ [M+Na]⁺ 327.1203, found 327.1207.

Diethyl (3aS,3bR,10bS,12aS)-12a-methyl-1-oxo-2, 3, 3a, 3b, 4, 5, 8a, 9, 10b, 11, 12, 12adodecahydro -1*H*- cyclopenta [5,6] naphtha [1,2-g]cyclopropa [c] chromene-9,9a (8*H*)-

dicarboxylate (2ab): white solid, 21.4 mg, 46% yield; m.p. 118–120 °C; $R_f = 0.30$ (PE:EA 8:1, v/v); a diastereomeric mixture with dr 1:1; ¹H NMR (400 MHz, CDCl₃): (ppm) δ 7.38 (d, J = 6.1 Hz, 1H), 6.60 (s, 1H), 4.41 – 4.22 (m, 3H), 4.22 – 4.08 (m, 2H), 4.01 (dd, J = 10.5, 4.0 Hz, 1H), 2.84 (dd, J = 9.1, 5.7 Hz, 2H), 2.78 –

2.66 (m, 1H), 2.60 – 2.41 (m, 2H), 2.40 – 2.29 (m, 1H), 2.06 (dddd, J = 30.1, 16.8, 12.5, 6.9 Hz, 5H), 1.69 – 1.45 (m, 6H), 1.33 (td, J = 7.1, 1.8 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 0.90 (d, J = 8.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): (ppm) δ 220.9, 220.8, 169.7, 169.6, 167.7, 167.6, 150.2, 150.1, 136.9, 133.5, 124.0, 123.8, 118.4, 118.3, 117.8, 117.7, 61.6, 61.5, 61.2,

50.4, 48.0, 44.1, 38.2, 38.1, 35.9, 33.8, 33.7, 31.5, 30.5, 30.4, 29.1, 29.0, 26.5, 26.4, 25.9, 25.8, 21.6, 14.2, 14.1, 13.8; HRMS (ESI): *m/z* calcd for C₂₈H₃₅O₆ [M+H]⁺ 467.2428, found 467.2429.

Diethyl 3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7b-dicarboxylate (4a):

yellow solid, 76.4 mg, 86% yield; m.p. 134–136°C; $R_f = 0.40$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.62 (dd, J = 8.2, 3.2 Hz, 3H), 7.52 (dd, J = 7.8, 1.1 Hz, 1H), 7.28 (d, J = 8.8 Hz, 3H), 7.20 – 7.17 (m, 1H), 4.18 – 4.05 (m, 5H), 3.95 (dd, J = 8.7, 4.1 Hz, 1H), 2.69 (dd, J = 9.3, 4.0 Hz, 1H), 2.43 (s, 3H), 1.84 (d, J = 5.5 Hz, 1H), 1.28 – 1.23 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.9,

167.6, 143.9, 136.9, 134.8, 130.0, 128.8, 127.8, 127.1, 127.0, 125.8, 125.2, 61.6, 61.3, 43.7, 33.8, 33.5, 29.0, 21.6, 14.2, 14.0; HRMS (ESI): m/z calcd for $C_{23}H_{26}NO_6S[M+H]^+$ 444.1475, found 444.1470.

7b-Ethyl 1-methyl 3-tosyl-1, 1a, 2, 3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7b-

dicarboxylate (4b): yellow solid, 82.3 mg, 91% yield; m.p. 123–125°C; $R_f = 0.35$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.60 (d, J = 8.2 Hz, 3H), 7.50 (dd, J = 7.8, 1.5 Hz, 1H), 7.29 – 7.26 (m, 3H), 7.17 (td, J = 7.7, 1.1 Hz, 1H), 4.08 (q, J = 7.0 Hz, 2H), 4.05 – 3.86 (m, 2H), 3.66 (s, 3H), 2.66 (dd, J = 9.6, 4.2 Hz, 1H),

2.40 (s, 3H), 1.83 (d, J = 5.6 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.3, 167.7, 143.9, 136.8, 134.9, 130.0, 128.9, 127.8, 127.0, 126.0, 125.9, 125.4, 61.6, 52.3, 43.9, 33.7, 33.6, 28.7, 21.6, 13.9; HRMS (ESI): m/z calcd for C₂₂H₂₃NNaO₆S [M+Na]⁺ 452.1138, found 452.1142.

1-Benzyl 7b-ethyl **3-tosyl-1**, **1a**, **2**, **3-tetrahydro-7bH-cyclopropa[c]quinoline-1**, 7bdicarboxylate (4c): yellow oil, 93.1 mg, 92% yield; $R_f = 0.40$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.57 (d, J = 8.1 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.41 (dd, J = 7.8, 1.2 Hz, 1H), 7.35 – 7.21 (m, 5H), 7.19 – 7.14 (m, 1H), 7.11 – 7.06 (m, 3H), 5.00 (s, 2H), 4.03 (dd, J = 14.5, 3.8 Hz, 1H), 3.98 – 3.92 (m, 2H), 3.86 (dd, J = 14.5, 4.1 Hz, 1H), 2.62 (dd, J = 9.4, 4.0 Hz, 1H), 2.21 (s, 3H), 1.74 (d, J = 14.5

5.5 Hz, 1H), 1.10 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.8, 167.6, 143.9, 136.7, 135.5, 134.8, 130.0, 128.8, 128.6, 128.4, 127.9, 127.0, 126.9, 125.8, 125.3, 67.1,

61.6, 43.6, 34.0, 33.4, 29.2, 21.4, 13.9; HRMS (ESI): m/z calcd for C₂₈H₂₈NO₆S [M+H]⁺ 506.1632, found 506.1623.

1-Cyclohexyl 7b-ethyl 3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7b-

dicarboxylate (4d): colorless oil, 89.7 mg, 90% yield; $R_f = 0.40$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.63 – 7.59 (m, 3H), 7.49 (dd, J = 7.7, 1.2 Hz, 1H), 7.27 – 7.22 (m, 3H), 7.17 – 7.13 (m, 1H), 4.72 – 4.67 (m, 1H), 4.17 – 4.04 (m, 3H), 3.90 (dd, J = 14.4, 4.0 Hz, 1H), 2.67 (dd, J = 9.2, 3.9 Hz, 1H), 2.40 (s, 3H), 1.83 (d, J = 5.5 Hz, 1H), 1.81 – 1.76 (m, 2H), 1.75 – 1.68 (m, 2H), 1.57 – 1.50

(m, 1H), 1.41 - 1.31 (m, 4H), 1.30 - 1.25 (m, 1H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.4, 167.6, 143.8, 136.9, 134.8, 130.0, 128.7, 127.7, 127.1, 127.0, 125.7, 125.1, 73.8, 61.6, 43.6, 33.9, 33.6, 31.6, 31.5, 29.0, 25.3, 23.8, 23.7, 21.6, 14.0; HRMS (ESI): m/z calcd for C₂₇H₃₂NO₆S [M+H]⁺ 498.1945, found 498.1944.

7b-Ethyl 1-(4-ethylphenyl) 3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7b-

dicarboxylate (4e): colorless oil, 87.4 mg, 84% yield; $R_f = 0.50$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.70 - 7.65 (m, 3H), 7.52 (dd, J = 7.8, 1.3 Hz, 1H), 7.34 - 7.28 (m, 3H), 7.18 (d, J = 8.3 Hz, 3H), 6.95 (d, J = 8.5 Hz, 2H), 4.20 (dd, J = 14.5, 3.7 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H),

3.95 (dd, J = 14.5, 3.9 Hz, 1H), 2.77 (d, J = 5.5 Hz, 1H), 2.63 (q, J = 7.6 Hz, 2H), 2.40 (s, 3H), 1.98 (d, J = 5.6 Hz, 1H), 1.27 – 1.22 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 167.7, 167.5, 148.5, 144.1, 141.9, 136.8, 134.8, 130.1, 128.8, 128.7, 128.0, 127.0, 126.7, 125.9, 125.3, 121.0, 61.9, 43.4, 34.6, 33.2, 29.6, 28.3, 21.6, 15.5, 14.0; HRMS (ESI): m/z calcd for C₂₉H₃₀NO₆S [M+H]⁺ 520.1788, found 520.1783.

Dimethyl 3-tosyl-1,1a,2,3-tetrahydro-7b*H*-cyclopropa[*c*]quinoline-1,7b-dicarboxylate

CO₂Me (4f): white solid, 82.4 mg, 94% yield; m.p. 147–149 °C; $R_f = 0.50$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.66 – 7.54 (m, 3H), 7.51 (dd, J = 7.8, 1.5 Hz, 1H), 7.27 – 7.22 (m, 3H), 7.21 – 7.15 (m, 1H), 4.09 (dd, J = 14.7, 4.9 Hz, 1H), 3.92 (dd, J = 14.7, 4.3 Hz, 1H), 3.66 (s, 3H), 3.59 (s, 3H), 2.63 (dd, J = 10.0, 4.8 Hz, 1H), 2.41 (s, 3H), 1.83 (d, J = 5.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃): δ

(ppm) 169.4, 168.2, 143.9, 136.7, 135.1, 130.0, 129.1, 128.0, 127.1, 127.0, 126.1, 125.7, 52.6,
52.4, 44.5, 34.3, 33.3, 28.2, 21.6; HRMS (ESI): m/z calcd for C₂₁H₂₁NNaO₆S [M+Na]⁺ 438.0982, found 438.0986.

2H), 1.41 – 1.36 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.0, 168.2, 143.8, 136.8, 135.1, 129.9, 129.1, 127.9, 127.1, 127.0, 126.0, 125.6, 65.3, 52.5, 44.4, 34.3, 33.4, 30.6, 28.3, 21.6, 19.0, 13.7; HRMS (ESI): m/z calcd for C₂₄H₃₁N₂O₆S [M+NH₄]⁺ 475.1897, found 475.1894.

1-Ethyl 7b-isopropyl 3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7b-

dicarboxylate (4h): yellow oil, 84.3 mg, 92% yield; $R_f = 0.40$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.63 – 7.58 (m, 3H), 7.47 (dd, J = 7.8, 1.4 Hz, 1H), 7.28 – 7.25 (m, 2H), 7.22 (dd, J = 8.1, 1.4 Hz, 1H), 7.14 (td, J = 7.7, 1.1 Hz, 1H), 5.04 – 4.94 (m, 1H), 4.23 (dd, J = 14.3, 3.3 Hz, 1H), 4.10 (q, J = 7.1, 2H), 3.77 (dd, J

= 14.2, 3.4 Hz, 1H), 2.68 (dt, J = 6.5, 3.3 Hz, 1H), 2.41 (s, 3H), 1.81 (d, J = 5.5 Hz, 1H), 1.27 (d, J = 6.4 Hz, 3H), 1.24 (d, J = 6.4 Hz, 3H), 1.20 (d, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 169.0, 167.0, 143.9, 137.1, 134.6, 130.0, 128.2, 127.6, 127.0, 126.9, 125.6, 124.8, 69.4, 61.2, 42.8, 34.4, 32.5, 29.7, 21.8, 21.6, 21.5, 14.2; HRMS (ESI): m/z calcd for C₂₄H₂₈NO₆S [M+H]⁺ 458.1632, found 458.1631.

(m, 2H), 1.24 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ

(ppm) 168.9, 167.7, 143.9, 136.9, 134.8, 130.0, 128.8, 127.8, 127.1, 127.0, 125.8, 125.2, 65.6, 61.3, 43.7, 33.9, 33.5, 30.4, 29.0, 21.6, 19.1, 14.2, 13.7; HRMS (ESI): *m/z* calcd for C₂₅H₃₀NO₆S [M+H]⁺ 472.1788, found 472.1783.

7b-Butyl 1-isopropyl -**3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa**[*c*]quinoline-1,7b*n*-BuO₂C CO_2i -Pr O_2i -Pr

10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.60 (dd, J = 8.7, 2.0Hz, 3H), 7.47 (dd, J = 7.8, 1.5 Hz, 1H), 7.27 – 7.21 (m, 3H), 7.15 (td, J = 7.6, 1.3 Hz, 1H), 5.01 – 4.85 (m, 1H), 4.13 (dd, J = 14.4, 3.7 Hz, 1H), 4.03 (t, J = 6.8 Hz, 2H), 3.89 (dd, J = 14.4, 4.0 Hz, 1H), 2.66 (dt, J = 14.4, 3.7 Hz, 1H),

5.5, 3.8 Hz, 1H), 2.41 (s, 3H), 1.80 (d, J = 5.6 Hz, 1H), 1.62 – 1.55 (m, 2H), 1.40 – 1.31 (m, 2H), 1.22 (d, J = 6.3 Hz, 3H), 1.20 (d, J = 6.3 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.4, 167.7, 143.8, 136.9, 134.8, 130.0, 128.7, 127.7, 127.1, 127.0, 125.7, 125.1, 68.8, 65.6, 43.5, 34.0, 33.5, 30.4, 29.1, 21.8, 21.7, 21.6, 19.1, 13.7; HRMS (ESI): m/z calcd for C₂₆H₃₂NO₆S [M+H]⁺ 486.1945, found 486.1950.

1-((1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl) 7b-methyl 3-tosyl-1,1a,2,3-tetrahydro-

⁺s 4j

> **7bH-cyclopropa**[*c*]**quinoline-1,7b-dicarboxylate (4k):** colorless oil, 92.9 mg, 86% yield; $R_f = 0.50$ (PE:EA 10:1, v/v); a diastereomeric mixture with dr 1:1; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77 - 7.57 (m, 3H), 7.55 - 7.51 (m, 1H), 7.29 - 7.23 (m, 3H), 7.23 - 7.16 (m, 1H), 4.70 - 4.60 (m, 1H), 4.26 - 3.90 (m, 2H),

3.61 (s, 3H), 2.72 – 2.57 (m, 1H), 2.43 (s, 3H), 2.03 – 1.77 (m, 3H), 1.72 – 1.66 (m, 2H), 1.52 – 1.43 (m, 1H), 1.39 – 1.31 (m, 1H), 1.11 – 1.02 (m, 1H), 0.96 – 0.87 (m, 8H), 0.76 (d, J = 6.9, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.6, 168.0, 143.8, 143.7, 136.8, 136.7, 130.0, 129.9, 129.3, 129.0, 127.9, 127.8, 127.2, 127.1, 126.0, 125.9, 125.5, 125.4, 75.4, 75.3, 52.5, 52.4, 47.0, 46.9, 44.7, 44.2, 40.9, 40.8, 34.7, 34.2, 33.7, 33.3, 31.4, 31.3, 28.4, 27.8, 26.1, 23.4, 23.3, 22.0, 21.7, 21.6, 20.9, 20.7, 16.4, 16.3; HRMS (ESI): m/z calcd for C₃₀H₃₈NO₆S [M+H]⁺ 540.2414, found 540.2406.

Diethyl

6-methyl-3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7b-

dicarboxylate (4l): yellow oil, 78.8 mg, 86% yield; $R_f = 0.40$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.50 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.3 Hz, 1H), 7.21 (d, J = 1.7 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.01 – 6.94 (m, 1H), 4.05 – 3.95 (m, 5H), 3.86 (dd, J = 14.5, 4.3 Hz, 1H), 2.55 (dt, J = 5.5, 4.1 Hz, 1H), 2.32 (s, 3H), 2.23 (s, 3H), 1.66 (d, J = 5.6 Hz, 1H), 1.18 – 1.13 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.9, 167.7, 143.7, 136.9, 135.7, 132.2, 130.0, 129.2, 128.6, 127.0, 126.8, 125.2, 61.5, 61.2, 60.4, 43.8, 33.7, 28.7, 21.6, 21.1, 14.2, 14.0; HRMS (ESI): m/z calcd for C₂₄H₂₈NO₆S [M+H]⁺ 458.1632, found 458.1638.

Diethyl 6-methoxy-3-tosyl-1,1a,2,3-tetrahydro-7b*H*-cyclopropa[*c*]quinoline-1,7b-CO₂Et dicarboxylate (4m): colorless oil, 89.1 mg, 94% yield; $R_f = 0.50$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.54 (d, J = 8.7 Hz, 3H), 7.24 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 2.9 Hz, 1H), 6.81 (dd, J = 9.0, 3.0 Hz, 1H), 4.14 – 4.01 (m, 5H), 3.93 (dd, J = 14.8, 4.1 Hz, 1H), 3.79 (s, 3H), 2.58 (dd, J = 10.0,

4.6 Hz, 1H), 2.40 (s, 3H), 1.69 (d, J = 5.7 Hz, 1H), 1.25 – 1.20 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.8, 167.5, 157.3, 143.7, 136.7, 129.9, 128.4, 127.7, 127.1, 114.1, 113.5, 61.5, 61.3, 55.5, 44.5, 34.6, 33.5, 27.9, 21.6, 14.2, 14.0; HRMS (ESI): m/z calcd for C₂₄H₂₈NO₇S [M+H]⁺ 474.1581, found 474.1578.

Diethyl

6-fluoro-3-tosyl-1,1a,2,3-tetrahydro-7b*H*-cyclopropa[*c*]quinoline-1,7b-D₂Et dicarboxylate (4n): yellow oil, 69.3 mg, 75% yield; R_f = 0.40 (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.60 (dd, J = 9.1, 5.3 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 3.0 Hz, 1H), 7.25 (d, J = 4.2 Hz, 2H), 7.02 - 6.94 (m, 1H), 4.13 - 4.04 (m, 4H), 4.00 (dd, J = 6.5, 4.4 Hz, 2H), 2.63 (dd, J = 10.0, 4.4 Hz, 1H), 2.41

(s, 3H), 1.73 (d, J = 5.7 Hz, 1H), 1.25 – 1.21 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.4, 167.1, 160.1 (d, J = 246.4 Hz), 144.0, 136.5, 130.8 (d, J = 2.0 Hz), 130.0, 129.2 (d, J = 8.1 Hz), 127.5 (d, J = 8.1 Hz), 127.1, 115.9 (d, J = 24.2 Hz), 114.9 (d, J = 23.2 Hz), 61.7, 61.3, 43.9, 33.8, 33.2, 28.4, 21.6, 14.2, 13.9; ¹⁹F NMR (376 MHz, CHCl₃): δ (ppm) -115.3; HRMS (ESI): m/z calcd for C₂₃H₂₅FNO₆S [M+H]⁺ 462.1381, found 462.1376.

Diethyl

6-bromo-3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7b-

CO₂Et dicarboxylate (40): colorless oil, 76.2 mg, 73% yield; $R_f = 0.45$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.68 (d, J = 2.3 Hz, 1H), 7.59 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 8.8 Hz, 1H), 7.39 (dd, J = 8.8, 2.3 Hz, 1H), 7.30 (s, 1H), 7.27 (s, 1H), 4.15 – 4.11 (m, 4H), 4.07 – 4.02 (m, 1H), 3.97 (dd, J = 14.6, 4.4 Hz, 1H), 2.69 - 2.61 (m, 1H), 2.43 (s, 3H), 1.74 (d, J = 5.7 Hz, 1H), 1.28 - 1.22(m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.5, 167.1, 144.2, 136.4, 133.9, 131.8, 130.9, 130.1, 129.0, 127.0, 126.9, 119.2, 61.8, 61.4, 43.7, 34.0, 33.2, 28.5, 21.6, 14.2, 13.9; HRMS (ESI): m/z calcd for $C_{23}H_{25}BrNO_6S[M+H]^+$ 522.0580, found 522.0572.

Diethyl 5-chloro-3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7b-CO₂Et dicarboxylate (4p): yellow oil, 83.2 mg, 87% yield; $R_f = 0.40$ EtO₂C (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.69 (d, J = 1.9 Hz, 1H), 7.63 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.5 Hz, 1H), CI 7.30 (d, J = 7.1 Hz, 2H), 7.16 (dd, J = 8.4, 2.0 Hz, 1H), 4.19 – Τs

4p 1H), 2.67 (dd, J = 9.5, 4.1 Hz, 1H), 2.44 (s, 3H), 1.76 (d, J = 5.6 Hz, 1H), 1.28 – 1.22 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.6, 167.3, 144.2, 136.4, 135.9, 133.4, 130.1, 129.9, 127.1, 126.0, 125.6, 125.3, 61.7, 61.4, 43.8, 33.8, 33.2, 28.6, 21.6, 14.2, 13.9; HRMS (ESI): m/z calcd for C₂₃H₂₅ClNO₆S [M+H]⁺ 478.1086, found 478.1079.

Diethyl

5-fluoro-3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7bdicarboxylate (4q): yellow oil, 84.1 mg, 91% yield; $R_f = 0.50$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.65 – 7.56 (m, 2H), 7.49 (dd, J = 8.8, 6.1 Hz, 1H), 7.42 (dd, J = 10.4, 2.7 Hz, 1H), 7.30 – 7.27 (m, 2H), 6.92 – 6.87 (m, 1H), 4.14 – 4.06 (m, 4H), 4.04 (d, J = 4.0 Hz, 1H), 3.98 (dd, J = 14.6, 4.4 Hz, 1H), 2.65 (dt, J =

4.08 (m, 4H), 4.04 (d, J = 3.9 Hz, 1H), 3.96 (dd, J = 14.6, 4.3 Hz,

5.5, 4.2 Hz, 1H), 2.42 (s, 3H), 1.73 (d, J = 5.6 Hz, 1H), 1.27 – 1.21 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.7, 167.5, 161.4 (d, *J* = 247.5 Hz), 144.2, 136.4, 136.2 (d, *J* = 11.1 Hz), 130.2 (d, J = 9.1 Hz), 130.1, 127.0 (d, J = 2.0 Hz), 122.8 (d, J = 3.0 Hz), 113.0 (d 22.2 Hz), 112.6 (d, J = 25.3 Hz), 61.7, 61.3, 43.9, 33.8, 33.2, 28.4, 21.6, 14.2, 13.9; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) -111.9; HRMS (ESI): m/z calcd for C₂₃H₂₅FNO₆S [M+H]⁺ 462.1381, found 462.1378.

Diethyl 5-methoxy-3-tosyl-1,1a,2,3-tetrahydro-7bH-cyclopropa[c]quinoline-1,7b-

dicarboxylate (4r): yellow oil, 81.6 mg, 86% yield; $R_f = 0.50$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.59 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.7 Hz, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 2.6 Hz, 1H), 6.74 (dd, J = 8.7, 2.7 Hz, 1H), 4.16 - 4.01 (m, 5H), 3.98 (d, J = 4.3 Hz, 1H), 3.79 (s, 3H), 2.58

(dd, J = 10.0, 4.5 Hz, 1H), 2.40 (s, 3H), 1.70 (d, J = 5.6 Hz, 1H), 1.25 – 1.19 (m, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.9, 167.8, 158.8, 143.9, 136.7, 136.0, 130.0, 129.7, 127.1, 119.2, 112.4, 110.5, 61.5, 61.2, 55.5, 44.5, 34.4, 33.1, 27.7, 21.6, 14.2, 14.0; HRMS (ESI): m/z calcd for C₂₄H₂₈NO₇S [M+H]⁺ 474.1581, found 474.1580.

Ethyl 2-oxo-1-phenyl-3-oxabicyclo[3.1.0]hexane-6-carboxylate (6a): yellow oil, 35.6 mg,

72% yield; $R_f = 0.80$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.45 – 7.40 (m, 2H), 7.36 (d, J = 6.8 Hz, 3H), 4.56 (dd, J = 9.7, 4.2 Hz, 1H), 4.40 (d, J = 9.7 Hz, 1H), 3.93 (q, J = 7.1 Hz, 2H), 3.28 (t, J = 3.9 Hz, 1H), 2.37 (d, J = 3.7 Hz, 1H), 1.00 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 173.7, 166.7, 130.1, 129.2, 128.6,

128.4, 67.7, 61.3, 39.1, 31.6, 27.5, 13.9; HRMS (ESI): m/z calcd for C₁₄H₁₅O₄ [M+H]⁺ 247.0965, found 247.0966.

Ethyl 5-(3-nitrophenyl)-2-oxo-1-phenyl-3-oxabicyclo[3.1.0]hexane-6-carboxylate (6b):

yellow oil, 40.8 mg, 53% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.15 – 8.05 (m, 2H), 7.54 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 8.1 Hz, 1H), 7.35 – 7.27 (m, 3H), 7.24 – 7.20 (m, 2H), 4.87 (d, J = 10.3 Hz, 1H), 4.67 (d, J = 10.2 Hz, 1H), 4.39 – 4.29 (m, 2H), 3.36 (s, 1H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 172.5, 166.4, 148.4, 136.1,

135.1, 130.1, 129.8, 129.4, 129.0, 128.9, 124.1, 123.6, 70.4, 62.4, 46.1, 45.3, 33.1, 14.1; HRMS (ESI): m/z calcd for C₂₀H₂₁N₂O₆ [M+NH₄]⁺ 385.1394, found 385.1396.

Bis((E)-6-(tert-butoxy)-6-oxohex-4-en-1-yl) 2,3-diphenylfumarate (6e): colorless oil, 46.0

mg, 76% yield; $R_f = 0.65$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.36 - 7.29 (m, 4H), 7.19 - 7.09 (m, 6H), 6.83 - 6.76 (m, 2H), 5.71

(dt, J = 15.6, 1.4 Hz, 2H), 4.29 - 4.14 (m, 4H), 2.20 (td, J = 8.1, 1.2 Hz, 4H), 1.85 - 1.77 (m, 4H), 1.48 (s, 18H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 167.0, 165.8, 145.9, 130.8, 128.6, 127.8, 127.5, 124.0, 80.2, 69.0, 65.3, 28.2, 28.1, 26.9; HRMS (ESI): m/z calcd for $C_{36}H_{44}NaO_8[M+Na]^+$ 627.2928, found 627.2925.

Ethyl 2-(5-oxo-4-phenyl-1-tosyl-2,5-dihydro-1H-pyrrol-3-yl)acetate (6f): colorless oil,

71.2 mg, 89% yield; $R_f = 0.60$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.99 (d, J = 8.4 Hz, 2H), 7.38 – 7.30 (m, 7H), 4.61 (s, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.54 (s, 2H), 2.40 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 168.6, 167.5, 147.3, 145.2, 135.3, 134.6, 129.8, 129.1, 129.0, 128.6, 128.2, 61.8, 52.2, 34.5, 21.7, 14.1; HRMS (ESI): m/z calcd for

 $C_{21}H_{22}NO_5S[M+H]^+$ 400.1213, found 400.1215.

Ethyl 1-methyl-2-oxo-3-tosyl-3-azabicyclo[4.1.0]heptane-7-carboxylate (6g): white solid,

(101 MHz, CDCl₃): δ (ppm) 170.3, 169.0, 144.8, 136.2, 129.5, 128.5, 61.4, 42.6, 30.5, 28.3, 26.3, 21.7, 20.4, 14.2, 13.1; HRMS (ESI): *m*/*z* calcd for C₁₇H₂₂NO₅S [M+H]⁺ 352.1213, found 352.1210.

VI. Synthesis of Compounds 7–10

1. Removal of tosyl group of 4f

To a solution of **4f** (0.1 mmol) in anhydrous methanol (5 mL) was added Mg fine powder (24.0 mg, 1.0 mmol). The reaction mixture was heated to reflux for 12 h. After cooling down to rt, the reaction mixture was diluted with CH_2Cl_2 (10 mL) followed by addition of 1M HCl (10 mL). The mixture was extracted with CH_2Cl_2 (10 mL × 3) and the combined organic layer was dried over anhydrous MgSO₄. The solvent was removed under reduced pressure. The residue was isolated by silica gel column chromatography (PE/EA 10:1, v/v) to afford 7.

Dimethyl 1,1a,2,3-tetrahydro-7b*H*-cyclopropa[*c*]quinoline-1,7b-dicarboxylate (7): white solid, 20.6 mg, 79% yield; m.p. 90–93 °C; $R_f = 0.40$ (PE:EA 10:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.33 (dd, J = 7.8, 1.1 Hz, 1H), 7.10 – 6.98 (m, 1H), 6.73 (t, J = 7.6 Hz, 1H), 6.54 (d, J = 8.0 Hz, 1H), 3.81 (s, 3H), 3.70 (s, 3H), 3.42 (d, J = 2.1 Hz, 3H), 2.80 (d, J = 5.6 Hz, 1H), 2.77 – 2.71 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 171.1, 169.0, 142.1, 127.8, 127.3, 119.0, 118.7, 115.3, 52.5, 52.2, 37.0, 35.3, 30.6, 27.9; HRMS (ESI): *m/z* calcd for C₁₄H₁₆NO₄ [M+H]⁺ 262.1074, found 262.1080.

2. Catalytic hydrogenative ring expansion of 2l, 4j and 6g

To a solution of **21** (0.1 mmol) in anhydrous EtOAc (2 mL) was added 10% Pd/C (20.0 mg) in an autoclave, which was then charged with 5 atm H₂. After stirred at rt for 12 h, the reaction mixture was filtered through a plug of celite and washed with EtOAc (10 mL \times 3). The filtrate was concentrated under reduced pressure and the residue was subjected to silica gel column chromatography isolation (PE/EA 10:1, v/v) to afford **8**.

Following the above procedure, compounds 9 and 10 were smoothly prepared from 4j (0.1 mmol) and 6g (0.1 mmol), respectively.

5-Ethyl 4-methyl 7-(*tert***-butyl)-2,3,4,5-tetrahydrobenzo**[*b*]**oxepine-4,5-dicarboxylate (8)**: colorless oil as a diastereomeric mixture with *cis:trans* 6:1, 26.1 mg, 78% yield; $R_f = 0.75$ (PE:EA 10:1, v/v); for *cis*-isomer, ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.28 (d, J = 2.2 Hz, 1H), 7.19 (dd, J = 8.6, 2.3 Hz, 1H), 6.78 (d, J = 8.6 Hz, 1H), 4.35 (dd, J = 11.2, 2.4 Hz, 1H), 4.26 – 4.10 (m, 2H), 4.04 (ddd, J = 11.2, 3.9, 1.2 Hz, 1H), 3.69 (s, 3H), 3.57 (d, J = 2.3 Hz, 1H), 2.86 (qd, J = 7.0, 3.6 Hz, 1H), 2.49 (dd, J = 16.6, 7.2 Hz, 1H), 2.38 (dd, J = 16.6, 7.3 Hz, 1H), 1.31 – 1.24 (m, 12H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 172.8, 172.4, 151.6, 143.4, 127.4, 125.9, 116.6, 116.1, 66.6, 61.2, 51.8, 44.9, 35.0, 34.1, 31.5, 30.8, 14.2; HRMS (ESI): *m/z* calcd for C₁₉H₂₇O₅ [M+H]⁺ 335.1853, found 335.1861.

5-Butyl 4-isopropyl 1-tosyl-2,3,4,5-tetrahydro-1*H***-benzo**[*b*]azepine-4,5-dicarboxylate (9): colorless oil as a diastereomeric mixture with *cis:trans* 4:1, 45.8 mg, 94% yield; $R_f = 0.50$ (PE:EA 10:1, v/v); for *cis*-isomer, ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (dd, J = 8.4, 0.9

8H), 0.88 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 171.7, 170.6, 143.8, 136.4, 136.2, 129.6, 129.5, 128.0, 127.3, 125.2, 124.4, 123.3, 68.4, 64.9, 46.8, 46.0, 35.3, 30.5, 30.1, 21.9, 21.8, 21.5, 19.0, 13.6; HRMS (ESI): m/z calcd for C₂₆H₃₄NO₆S [M+H]⁺ 488.2101, found 488.2104.

Ethyl 3-methyl-2-oxo-1-tosylazepane-4-carboxylate (10): colorless oil as a diastereomeric

mixture with *trans:cis* 3:1, 18.7 mg, 53% yield; $R_f = 0.70$ (PE:EA 10:1, v/v); for *trans*-isomer, ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.91 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 4.16 (q, J = 7.2 Hz, 2H), 4.15 – 4.06 (m, 1H), 3.87 – 3.77 (m, 1H), 2.52 (dd, J = 20.0, 4.3 Hz, 1H), 2.45 (s, 3H), 2.26 – 2.11 (m, 3H), 2.06 – 1.98 (m, 1H), 1.74 – 1.66 (m, 1H), 1.28 (t, J = 7.2 Hz,

3H), 1.21 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 172.6, 171.7, 144.8, 136.0, 129.4, 128.6, 60.8, 45.0, 43.6, 38.5, 35.8, 28.5, 21.7, 14.7, 14.2. HRMS (ESI): m/z calcd for C₁₇H₂₄NO₅S [M+H]⁺ 354.1370, found 354.1374.

VII. X-Ray Crystallographic Data of 2k, 2x, 4a and 6g

Table S4. Crystal data and structure refinement for compound 2k

Identification code	2k
Empirical formula	C ₁₈ H ₂₂ O ₅

Formula weight	318.35
Temperature	113(2) K
Wavelength	0.71073 Å
Crystal system, space group	Monoclinic, C2/c
Unit cell dimensions	$a = 31.452(6) \text{ Å} \alpha = 90^{\circ}.$
	$b = 5.5892(11) \text{ Å} \beta = 90.16(3)^{\circ}.$
	$c = 19.232(4) \text{ Å} \gamma = 90^{\circ}.$
Volume	3380.8(12) Å ³
Z, Calculated density	8, 1.251 Mg/m ³
Absorption coefficient	0.091 mm ⁻¹
F(000)	1360
Crystal size	0.200 x 0.180 x 0.120 mm ³
Theta range for data collection	2.590 to 27.837°
Limiting indices	-40<=h<=40, -7<=k<=7, -25<=l<=25
Reflections collected / unique	19193 / 4017 [R(int) = 0.0802]
Completeness to theta = 25.242	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.7288
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4017 / 0 / 213
Goodness-of-fit on F ²	1.097
Final R indices [I>2sigma(I)]	R1 = 0.0649, wR2 = 0.1375
R indices (all data)	R1 = 0.0968, wR2 = 0.1525
Extinction coefficient	n/a
Largest diff. peak and hole	0.253 and 0.244 e. Å ³

2. X-Ray crystal data of 2x

Table S5. Crystal data and structure refinement for compound 2x

Identification code	2x
Empirical formula	$C_{23}H_{21}NO_9$
Formula weight	455.41
Temperature	113(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 9.4995(19) \text{ Å} \ \alpha = 97.84(3)^{\circ}$
	$b = 9.5604(19) \text{ Å} \beta = 105.01(3)^{\circ}$
	$c = 12.684(3) A \gamma = 103.90(3)^{\circ}$
Volume	$1055.6(4) \text{ Å}^3$
Z, Calculated density	2, 1.433 Mg/m ³
Absorption coefficient	0.112 mm^{-1}
F(000)	476
Crystal size	0.200 x 0.180 x 0.120 mm ³
Theta range for data collection	1.701 to 27.882°
Limiting indices	-12<=h<=12, -12<=k<=12, -16<=l<=16
Reflections collected / unique	12755 / 5013 [R(int) = 0.0422]
Completeness to theta $= 25.242$	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.7642
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5013 / 0 / 300
Goodness-of-fit on F^2	0.990

Final R indices [I>2sigma(I)]	R1 = 0.0498, wR2 = 0.1302
R indices (all data)	R1 = 0.0705, wR2 = 0.1436
Extinction coefficient	n/a
Largest diff. peak and hole	0.383 and 0.390 e. $Å^3$

3. X-Ray crystal data of 4a

Table S6. Crystal data and structure refinement for 4a

Identification code	4a
Empirical formula	$C_{23}H_{25}NO_6S$
Formula weight	443.50
Temperature/K	294.15
Crystal system	triclinic
Space group	P-1
Unit cell dimensions	a = 8.7393(2) Å α = 80.848(2)°
	b = 9.8405(3) Å β = 87.645(2)°
	$c = 28.4880(6) \ \gamma = 69.047(2)^{\circ}$
Volume/Å ³	2258.48(10)
Z	4
pcalcg/cm ³	1.304
μ/mm^{-1}	1.603
F(000)	936.0
Crystal size/mm ³	$0.36 \times 0.26 \times 0.22$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	6.286 to 148.662

Index ranges	$-10 \le h \le 10, -11 \le k \le 11, -9 \le l \le 35$
Reflections collected	8595
Independent reflections	8595 [Rint = ?, Rsigma = 0.0276]
Data/restraints/parameters	8595/64/606
Goodness-of-fit on F ²	1.075
Final R indexes [I>= 2σ (I)]	R1 = 0.0766, wR2 = 0.2291
Final R indexes [all data]	R1 = 0.0803, wR2 = 0.2315
Largest diff. peak/hole / e Å ³	0.32/0.33

4. X-Ray crystal data of 6g

 Table S7. Crystal data and structure refinement for compound 6g

Identification code	6g
Empirical formula	$C_{17}H_{21}NO_5S$
Formula weight	351.4
Temperature	113(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 6.0259(12) \text{ Å} \ \alpha = 115.34(3)^{\circ}.$
	$b = 12.569(3) \text{ Å} \beta = 93.96(3)^{\circ}.$
	$c = 12.930(3) \text{ Å}$ $\gamma = 100.21(3)^{\circ}$
Volume	859.4(4) Å ³
Z, Calculated density	2, 1.435 Mg/m ³
Absorption coefficient	0.211 mm ⁻¹
F(000)	372
Crystal size	0.200 x 0.180 x 0.120 mm ³
Theta range for data collection	1.842 to 27.900° \$47

Limiting indices	-7<=h<=7, -16<=k<=16, -16<=l<=16
Reflections collected / unique	10454 / 4067 [R(int) = 0.0744]
Completeness to theta $= 25.242$	99.7%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1 and 0.4708
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4067 / 0 / 220
Goodness-of-fit on F ²	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0496, $wR2 = 0.1210$
R indices (all data)	R1 = 0.0834, wR2 = 0.1615
Extinction coefficient	n/a
Largest diff. peak and hole	0.395 and 0.646 e.A ³

VIII. A Plausible Mechanism for Formation of 6f

Scheme S1. Plausible mechanism for formation of 6f

IX. NMR Spectra of New Compounds 1–10

S49

S113

X. Chiral HPLC Analysis of Chiral-2b and 4k

Racemate of 2b:

Retention	Area	Area%	Height	Height%
19.437	32976	50.203	1055	54.635
21.265	32709	49.797	876	45.365
Totals	65685	100.000	1931	100.000

UV1000-254nm Results

Retention	Area	Area%	Hight	Hight%
19.078	92751	2.498	3080	2.570
20.540	3620541	97.502	116753	97.430
Totals	3713292	100.000	119833	100.000

HPLC Chromatogram of ${\bf 4k}$ using a chiral AD column

PeakTable						
Detector A Ch1 210nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	9.974	9829461	578812	47.729	57.501	
2	13.641	10764998	427803	52.271	42,499	
Total		20594459	1006614	100.000	100.000	

HPLC Chromatogram of **4k** using a chiral IA column

1 Det.A Ch1/210nm

PeakTable Detector A Ch1 210nm Ret. Time Height 526902 531927 Peak# Area Area % Height % 8455205 9464802 47.183 49.763 9.777 10.464 1058829 17920007 100.000 100.000 Tota

PeakTable Detector A Ch1 210nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	6.650	11255096	330030	53.337	83.474	
2	14.882	9846585	65337	46.663	16.526	
Total		21101681	395368	100.000	100.000	

HPLC Chromatogram of ${\bf 4k}$ using a chiral IF column

Detector A Ch1 210nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	11.780	10855083	529141	52.538	57.125	
2	14.641	9806406	397137	47.462	42.875	
Total		20661490	926278	100.000	100.000	