Chiral Molecular Conductor With An Insulator-Metal Transition Close To Room Temperature

Jonathan Short,^a Toby J. Blundell,^a Sara J. Krivickas,^a Songjie Yang,^a John D. Wallis,^a Hiroki Akutsu,^b Yasuhiro Nakazawa^b and Lee Martin^{*a}

^a. School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, United Kingdom. ^bDepartment of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.

Figs. S1-S3

Fig. S1 Band calculations at 300K (top) and 150K (bottom).

Fig. S2 Ewald sphere at 300K for θ -(**1**)₄TCNQ viewed along the c* axis showing the presence of incommensurate peaks along the a* (red) and b* (green) axis. Some reflections have been hidden for clarity.

300 K Band Insulator by forming the eight-fold superstructure

150 K metallic by forming the uniform stacks

Fig. S3 Schematic diagrams of the donor layer above (top) and below (bottom) the insulator-metal (IM) transition temperature.