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Experimental

Materials and Methods

All chemicals were gained from reagent companies (Sigma-Aldrich,
Aladdin, Macklin). Annexin V/7-AAD Apoptosis Detection Kit was gained
from Shanghai Xinyu Biological Technology CO., LTD. Deionized water was
used all over the work. The pH values were detected by a Model PHS-3C meter
(Shanghai, China). Absorption spectrums were detected by UV-2102 double-
beam UV/VIS spectrometer. Fluorescence spectrums were recorded by F-4500
FL Spectrophotometer. The 'H NMR and 13C NMR spectra were measured by
Bruker DTX-400 spectrometer. ESI mass spectra were gained by an HPLC Q-
Exactive HR-MS spectrometer (Thermo, USA). Flow cytometry analysis was
taken on BD Canto plus (USA). Cofocal fluorescence images were gained by
Zeiss LSM 880 confocal microscope.

Synthesis and characterization

Compounds 1 and 2 were gained by the literature methods.S!-5?

Synthesis of probe NPCF. 240 mg of compound 1 (1.5 equiv.) and 269 mg
of compound 2 (1 equiv.) were added to a flask (50 mL), followed by adding
ethanol (20 mL) and piperidine (0.2 mL). After refluxing for 16 h under
nitrogen, a yellow product was filtered, washed with ice-cold ethanol. 117.0 mg
of NPCF was obtained in a yield of 28.4%. 'H NMR (400 MHz, DMSO-ds,
ppm): 2.39 (s, 3H), 7.35 (t, I1H, J = 15.0 Hz), 7.42 (t, 1H, J = 15.0 Hz), 7.52 (4,
1H, J=15.0 Hz), 7.60 (t, 2H, J = 14.0 Hz), 7.77 (s, 1H), 7.84 (s, 1 H), 7.89 (d,
1 H, J=8.1 Hz), 8.15 (d, 1H, J = 8.1 Hz), 8.19-8.34 (m, 3H), 13.20 (s, 1H),
13.48 (s, 1H); 3C NMR (100 MHz, DMSO-ds, ppm): & = 20.27, 113.33,
117.44, 121.60, 122.45, 122.77, 123.25, 123.58, 126.14, 126.46, 127.54,
129.57, 131.80, 132.83, 133.70, 135.28, 138.96, 143.57, 149.60, 151.28,
155.32, 168.84, 181.62. HR-MS: Calcd for [Cy4H7N30,S + H]": 412.1114,
found 412.1117.

Synthesis of compound NPM. 269 mg of compound 2 (1 equiv.) and 553
mg of K,CO; (4 equiv.) were added to a flask (50 mL), and then acetone (7
mL) were added. After refluxing for 12 h, a red-purple product was filtered,
washed with acetone and deionized water. Compound NPM was received as a
red-purple solid (136.6 mg, yield 44.2%). 'H NMR (400 MHz, DMSO-ds,
ppm): 2.20 (s, 3H), 2.25 (s, 3H), 7.05 (d, 2H, J=16.0 Hz), 7.21 (s, 2H), 7.36 (s,
1H), 7.79-7.93 (m, 3H), 8.02 (s, 1H); 3C NMR (100 MHz, DMSO-d,, ppm): &
= 20.73, 27.31, 115.96, 116.34, 120.74, 121.68, 121.74, 122.61, 123.69,
125.31, 131.11, 133.64, 136.11, 144.35, 152.25, 166.29, 170.87, 198.56. HR-
MS: Calcd for [CgH{sNO,S + H]": 310.0896, found 310.0900.



Synthesis of SO, donor. SO, donor were synthesized by reported
methods.S? 2, 4-dinitrobenzensulfonyl chloride (0.594 g, 2.25 mmol) in 18 mL
dry DCM at 0 °C was added to a solution of benzylamine (0.477 g, 6.0 mmol)
with trimethylamine (0.963 g, 9 mmol) and 10 mL DCM, the mixture was
stirred and reacted for 3 h at room temperature, then 100 mL of water was
added to the solution to stop the reaction. Extracted by DCM, and the organic
layer was dried by anhydrous Na,SO,4. The solvent was removed under vacuum
to get the crude product and the yellow product was collected by
chromatography using DCM as eluent. SO, donor was obtained as a yellow
solid (580.0 mg, yield 77.3%). '"H NMR (400 MHz, CDCls, ppm): 4.66 (d, 2H,
J=5.6 Hz), 6.92 (d, 1H, J=9.5 Hz), 7.34—7.42 (m, 5H), 8.20—8.24 (dd, 1H, J
= 2.5 Hz), 8.92 (s, 1H) 9.14 (d, 1H, J = 2.6 Hz); '*C NMR (100 MHz, CDCl;,
ppm): & = 47.58, 114.45, 124.22, 127.09, 128.37, 129.29, 130.39, 130.76,
135.59, 136.45, 148.23.

Detection Limit Calculation

For NPCF, the fluorescence intensity of 542 nm versus HSOj;™
concentration (0.6 to 1.8 equiv.) was investigated, and the detection limit of
NPCF was counted as 22.7 nM (R? = 0.985), using the formula (1):
Detection limit = 3 &/[k| (1)

Cell imaging

All cells were cultured in Dulbecco's modified Eagle's medium (DMEM)
supplemented with 10% fetal bovine serum at 37°C

Cytotoxicity assay. Cytotoxicity assay was executed by using Cell Counting
Kit-8 (CCK-8) according to our report article.>* The concentrations of NPCF
changed from 0 uM to 30 uM.

Bio-imaging of NPCF for sensing HSO;™ in MCF-7 cells. In order to
detect endogenous HSO3;~, MCF-7 cells were treated with NEM (1 mM) for 0.5
h, and treated with NPCF (10 uM) for 0.5 h and SO, donor (100 uM) for 1h.
For detecting exogenous HSO;~, MCF-7 cells were incubated with NPCF (10
uM) for 0.5 h, and treated with lequiv., Sequiv. and 10 equiv. of HSO5 for 1h,
and then imaged. Conditions: A, = 405 nm, A, = 520 nm—560 nm.

Bioimaging application of NPCF for detecting pH in Hela cells. NPCF
(10 uM) was incubated in different pH PBS buffers (pH 4.5, 5.5, 6.5, 7.5 and
8.5) for 0.5 h, and imaged by Zeiss LSM 880 confocal microscope. Conditions:
Aex = 552 nm, Ay, = 630—670 nm.

SO; reduces LPS-induced inflammation and alleviates acidification
environment. For the blank group, EC1 cells were incubated with NPCF (10
uM) for 0.5 h; For the control groups, EC1 cells were treated with LPS (10
mg/L) for 12 h, followed by treated with PMA (1 pg/mL) for 1 h, and imaged
after incubation with NPCF (10 uM) for 0.5 h; ECI1 cells were treated with SO,
donor (100 uM) for 1 h, and then imaged after incubation with NPCF (10 puM)
for 0.5 h; For the experimental group, EC1 cells were incubated with LPS (10



mg/L) for 12 h, followed by treated with PMA (1 pg/mL) for 1 h, and incubated
with SO, donor (100 uM) for 1 h, and finally imaged after incubation with
NPCF (10 uM) for 0.5 h.

Distinguishing between normal cells and cancer cells. NPCF were
incubated with cancer cells (MCF-7 cells) and normal cells (MCF-10A cells)
for 0.5 h, respectively, and then imaged. Conditions: for green channel, Ao =
405 nm, Aem = 520 nm—560 nm; for red channel, A, = 552 nm, A, = 630—670
nm.

Changes of SO; and pH in cells with the increase of CCCP concentrations.
Hela cells were incubated with CCCP (Ranged from 0 uM to 30 uM) for 1 h,
12 h or 24 h, respectively. Conditions: for green channel, Ao, = 405 nm, Ay, =
520 nm—560 nm; for red channel, A, = 552 nm, A.,, = 630—670 nm.

Flow cytometry analysis. Hela cells were cultured in 6-well plates at a
density of 2.0 x 105 cells/well, and the cells were washed with PBS buffers and
centrifuged. The cells were resuspended in PBS, stained with NPCF (10 pM)
for 30 min, and checked by flow cytometry.

Zebrafish Confocal Fluorescence Imaging

Wild zebrafish were gained from Shanghai FishBio Co., Ltd. Zebrafish were
fed in E3 media at 28°C. For the control groups, the two days old zebrafish
were incubated with NPCF for 0.5 h and imaged. For the experimental group,
zebrafish were incubated with 10 uM of NPCF for 0.5 h, treated with 100 uM
of HSO;5™ for 1 h, and then imaged. Zebrafish were imaged on Zeiss LSM 880
confocal microscope. Conditions: Aex = 405 nm, A, = 520 nmm—560 nm.
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Fig. S1 HR-MS spectrum of probe NPCF with HSO;~
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Fig. S2 Structure characterization of probe NPCF
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Fig. S3 Structure characterization of compound NPM
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NPCF (10 uM) for 0.5 h; (d, e and f) images of cells after treatment with probe

NPCF (10 uM) for 0.5 h and then treatment of the cells with 100 uM of HSO;™ for 1




h. (a and d) Bright field images; (b and e) green emission of NPCF; (c and f) red
emission of NPCF.
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Fig. S25 Fluorescence images of MCF-7 cells. The cells were incubated with
NPCF (10 uM) for 0.5 h (a, b, and c) and 100 uM of SO, donor for 1h (d, e and
f). The cells were treated with 1 mM of NEM for 0.5 h, incubated with NPCF
(10 uM) for 0.5 h, and then treated with 100 uM of SO, donor for 1h (g, h and
1). MCF-7 cells were incubated with NPCF (10 uM) for 0.5 h and treated with
several concentrations of HSO5™ for 1 h (j—r).
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Fig.S26 Confocal fluorescence images of zebrafish using a 10xobjective. (a—d)
NPCF (10 uM) and zebrafish were incubated for 0.5 h. (e-h) NPCF (10 uM) and
zebrafish were incubated for 0.5 h, and then treated with HSO;~ (100 uM) for 1 h. (i)
Relative pixel intensity of Igreen channet/Ired channet fOT detecting HSO5™. (a and €) Ao = 405

nm, Ay, = 520 nm—560 nm; (b and f) A, = 552 nm, A, = 630—670 nm. Scale bar is
200 pum.
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Fig. S27 (a—d) EC1 cells were incubated with NPCF (10 uM) for 0.5 h. (e—h) EC1
cells were incubated with SO, donor (100 uM) for 1 h, and then incubated with
NPCF (10 uM) for 0.5 h. (i—1) EC1 cells were incubated with LPS (10 mg/L) for 12 h
and PMA (1 pg/mL) for 1 h, and then incubated with NPCF (10 uM) for 0.5 h. (m—p)
ECI1 cells were incubated with LPS (10 mg/L) for 12 h and PMA (1 pg/mL) for 1 h,
followed by adding SO, donor (100 uM) for 1 h, and finally incubated with NPCF
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Fig. 28 Confocal fluorescence images of cancer cells vs normal cells. NPCF were
incubated with MCF-10A cells (a—d) and MCF-7 cells (e—h) for 0.5 h, respectively.
Scale bar is 25 pum. (i—1) Flow cytometry analysis of (a—h). (m) The mean intensity of
green channel (i and k, A, = 405 nm, A, = 520 nm—560 nm) and (n) red channel (j
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Fig.S29 Experiments of SO, and pH changes in CCCP-induced apoptosis. Flow
cytometry analysis of (a—n), different concentrations of CCCP (a—d, 0 uM; e—h, 10
uM; i—1, 30 uM) were co-incubated with the cells for 12h (a, b, e, f, 1 and j) or 24 h (c,
d, g, h, k and 1), respectively, followed by separately adding NPCF (10 pM) and
incubating for 0.5 h, and then analyzed by flow cytometry. (m and n) The green
channel (a, e, 1, ¢, g and k, Aex = 405 nm, A.,, = 520 nm—560 nm) and red channel (b, f,
J, d, hand 1, Aex = 552 nm, Ae, = 630—670 nm). (0o—v) Annexin V/7-AAD analysis of
apoptosis of CCCP at different concentrations (p and t, 0 uM; q and u, 10 uM; r and v,
30 uM) and different culture time (o—r, 12 h; s—v, 24 h). (x—y) The population of
necrosis (Q1), early apoptosis (Q4), late apoptosis (Q2), and viable cells (Q3) for 12h
(x) or 24h (y) in the Annexin V/7-AAD analysis of apoptosis (0—v).




Bright

Red channel

High« I610 om »Low
120 120
2 k 2 ] Y = 196.9923-22.70845 X
2 2 R? = 0.9856
*‘é’ 80+ ‘qé 80
£ 2
=% Q404
e 2
g s
°© 7]
€ z 0
45 55 65 75 85 45 55 65 15 8.5
pH PH

Fig.S30 (a—j) Confocal fluorescence images of Hela cells and NPCF (10 uM) were
treated with different pH PBS buffers (pH 4.5, 5.5, 6.5, 7.5 and 8.5) for 0.5 h,
respectively. (k) Relative pixel intensity of red channel (Aex = 552 nm, A, = 630-670
nm) in different pH PBS buffers. (I) The linear responses in different pH PBS buffers.
Scale baris 25 um



