Enantioselective zinc-mediated conjugate alkynylation of saccharinderived 1-*aza*-butadienes

Gonzalo Blay,*^a Alvaro Castilla,^a David Sanz,^a Amparo Sanz-Marco,^a Carlos Vila,^a M. Carmen Muñoz,^b José R. Pedro*^a

^aDepartament de Química Orgànica, Facultat de Química, Universitat de València, 46100-Burjassot, València, Spain

^bDepartament de Física Aplicada, Universitat Politècnica de València, 46022-València, Spain

Supporting Information

Table of Contents:

Preliminary experiments with chalcone N-tosyl imine (1j). Table S1	S2
Additional optimization experiments with imine 1a. Tables S2-S6	S3
Materials and methods	S 6
General procedure for the synthesis of saccarin-derived-1-aza-butadienes 1	S 6
Synthesis of ligands L6 and L7	S7
Enantioselective conjugate alkynylation of imines 1 and characterization	
data for compounds 3	S10
Enantioselective synthesis of compound 3ad at 1 mmol scale	S25
Synthetic transformations of compound 3ad	S25
Characterization data for compound 6	S27
References	S28
NMR spectra and HPLC traces for compounds 3, 4, 5 and 6	S29
Crystal data and X-Ray structure for compound 3bg (Figure S1)	S97

Preliminary experiments with chalcone N-tosyl imine (1j).

Preliminary studies for the conjugate alkynylation of α , β -unsaturated imines were carried out using the addition of phenylacetylene (**2a**) to the *N*-tosylimine of chalcone (**1j**). The conditions previously developed in our group for the zinc-mediated conjugate alkynylation of unsaturated carbonyl compounds were applied.¹ The reactive system was prepared by heating a solution of ligand (20 mol %), alkyne **2a** (7.5 equiv.) and diethylzinc (2 equiv.) in toluene to 70 °C for 1 hour followed by addition of the imine **1j** after cooling at room temperature. The reaction gave two compounds that could be separated and characterized as enamine (*Z*)-**3ja** and imine **3ja'**. Imine **3ja'** most probably results from quick isomerization of the (*E*)-enamine, initially formed, to avoid repulsion of the phenyl and phenylethynyl groups. The *Z*-enamine was stable for several days in the NMR tube while imine **3ja'** hydrolyzed almost completely after 24 hours in the NMR tube. Table S-1 shows the most representative results obtained with imine **1j**.

Table S1. Enantioselective reaction of phenylacetylene (2a) and the *N*-tosylimine of chalcone (1j). Short screening of catalysts.^a

^a**1** (0.125 mmol), **2a** (0.938 mmol), 1.5 M Et₂Zn in toluene (0.250 mmol), **L** (0.0250 mmol), toluene (1.5 mL), rt., 3 hours. ^b Determined by NMR. ^c Determined by HPLC with chiral stationary phases.

Additional Optimization Experiments with Imine 1a

Table S2. Enantioselective reaction between phenylacetylene (2a) and imine 1a. Chiral ligand study.^{*a*}

^a **1a** (0.125 mmol), **2a** (0.938 mmol), 1.5 M Et₂Zn in toluene (0.50 mmol), **L7** (0.025 mmol), toluene (1.5 mL), rt, 3 hours. ^b Determined by HPLC with chiral stationary phases. Different sign indicates opposite enantiomers.

Table S3. Enantioselective reaction between phenylacetylene (2a) and imine 1a. Effect of the number of equivalents of dialkylzinc reagent.^{*a*}

$ \begin{array}{c} $		Ph $\frac{R_2Zn, L7}{toluene}$ $\overset{O}{\overset{O}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}}{\overset{\vee}}{\overset{\vee}{\overset{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{\vee}{\overset{$	O _S Ph,,, p-ClC ₆ H ₄ p-ClC ₆ H ₄	О NH HN P-CIC ₆ H ₄ ОН НО Р-СІС₆H₄ <i>p-СІС</i> ₆ H ₄ L7
	entry	Et ₂ Zn (equiv.)	yield (%)	<i>ee</i> (%) ^b
-	1	1.3	52	63
	2	2	41	67
	3	3	50	64
	4	4	53	80
	5	5	43	64
_	6 ^c	4	50	58

^a **1a** (0.125 mmol), **2a** (0.938 mmol), **L7** (0.0125 mmol), toluene (1.5 mL), rt, 3 hours. ^b Determined by HPLC with chiral stationary phases. ^c Me₂Zn was used instead of Et₂Zn.

Table S4. Enantioselective reaction between phenylacetylene (2a) and imine 1a. Effect of the number of equivalents of alkyne.^a

$ \begin{array}{c} 0 \\ S \\ N \\ Ph \\ 1a \\ 2a \end{array} $	Et ₂ Zn, L7	Ph Ph p-ClC ₆ H ₄ Ph p-ClC ₆ H ₄	0 , NH HN Ph p-ClC ₆ H ₄ 0H HO p-C/C ₆ H ₄ L7
entry	2a (equiv.)	yield (%)	ee (%) ^b
1	4	38	57
2	5	47	85
3	7.5	53	80

^a **1a** (0.125 mmol), **2a**, 1.5 M Et₂Zn in toluene (0.50 mmol), **L7** (0.0125 mmol), toluene (1,5 mL), rt, 3 hours. ^b Determined by HPLC with chiral stationary phases.

Table S5. Enantioselective reaction between phenylacetylene (2a) and imine 1a. Effect
of the concentration. a

^a**1a** (0.125 mmol), **2a** (0.625 mmol), 1.5 M Et₂Zn in toluene (0.50 mmol), **L7** (0.0125 mmol), toluene, rt, 3 hours. ^b Determined by HPLC with chiral stationary phases.

o s	D H + Ph	Ph $\frac{Et_2Zn, L7}{solvent}$ $O = S'N$ 2a	Ph	Ph.,, NH HN Ph p-CIC ₆ H ₄ OH HO p-CIC ₆ H ₄ p-C/C ₆ H ₄ OH HO p-C/C ₆ H ₄
(entry	solvent	yield (%) <i>ee</i> (%) ^b
	1	toluene	47	85
	2	1,2-dichloroethane	46	41
	3°	CH ₂ Cl ₂	40	40
	4 ^c	THF	20	0

^a **1a** (0.125 mmol), **2a** (0.625 mmol), 1.5 M Et₂Zn in toluene (0.50 mmol), **L7** (0.0125 mmol), solvent (1.5 mL), rt, 3 hours. ^b Determined by HPLC with chiral stationary phases. c **2a** (0.625 mmol), 1.5 M Et₂Zn in toluene (0.50 mmol) and **L7** (0.0125 mmol) in toluene (0.5 mL) at 70 °C for 2 h and then **1a** (0.125 mmol) in solvent (1.0 mL), rt, 3 hours.

Materials and methods

All reagents were purchased from commercial suppliers and used without further purification. All solvents employed in the reactions were distilled from appropriate drying agents prior to use. Toluene for the enantioselective reactions was freshly distilled from CaH₂ prior to use. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel 60, 0.040-0.063 mm. Melting points were determined in capillary tubes. NMR spectra were run at 300 MHz for ¹H and at 75 MHz for ¹³C NMR using residual nondeuterated solvent as internal standard (δ 7.26 ppm for ¹H and 77.0 ppm for ¹³C in CDCl₃, and δ 2.50 ppm for ¹H and 39.52 ppm for ¹³C in DMSO-*d*₆, respectively). Chemical shifts are given in ppm. The carbon type was determined by DEPT experiments. High resolution mass spectra (ESI) were recorded on an AB SCIEX Triple TOF spectrometer equipped with an electrospray source with a capillary voltage of 4.5 kV. Specific optical rotations were measured using sodium light (D line 589 nm). Chiral HPLC analyses were performed in a chromatograph equipped with a UV diode-array detector using chiral stationary phase columns from Daicel or Phenomenex.

General procedure for the synthesis of saccharin-derived-1-aza-butadienes 1

Compounds **1** were prepared following a modified literature procedure.^{2,3} The synthesis of compound **1a** is illustrated.

3-Methylbenzo[d]isothiazole 1,1-dioxide²

A 3 M solution of MeMgBr in diethyl ether (21 mL, 62.8 mmol) was added dropwise to a solution of saccharin (5 g, 27.3 mmol) in dry THF (40 mL) a 0 °C under nitrogen. The reaction mixture was stirred overnight at room temperature and quenched with aqueous saturated NH₄Cl (50 mL). The

aqueous layer was extracted with CH₂Cl₂ (3×50 mL) and the combined organic layers washed with brine (2×25 mL). After drying with MgSO₄ and evaporation of the solvent under reduced pressure, column chromatography eluting with hexane:EtOAc gave 3.96 g (80% yield) of the title compound. ¹H NMR (300 MHz, CDCl₃) δ 7.96–7.86 (m, 1H),

7.81–7.65 (m, 3H), 2.67 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.4 (C), 139.7 (C), 134.1 (CH), 133.7 (CH), 131.7 (C), 124.3 (CH), 122.5 (CH), 17.7 (CH₃).

(E)-3-Styrylbenzo[d]isothiazole 1,1-dioxide (1a)^{3a}

Benzaldehyde (0.98 mL, 9.6 mmol), piperidine (5 drops), and acetic acid (5 drops) were added in this order to a pre-heated solution of 3-methylbenzo[*d*]isothiazole 1,1-dioxide (0.78 g, 4.3 mmol) in absolute ethanol (15 mL) at 80 °C. The mixture was

stirred overnight and, then, cooled to 0 °C and filtered. The solid was washed with cold ethanol (5 × 10 mL) and Et₂O (5 × 5 mL) to give 1.1 g (93% yield) of **1a**. ¹**H NMR** (300 MHz, CDCl₃) δ 8.32 (d, *J* = 15.6 Hz, 1H), 8.00–7.94 (m, 1H), 7.93–7.86 (m, 1H), 7.82–7.65 (m, 4H), 7.53–7.44 (m, 3H), 7.30 (d, *J* = 15.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 167.2 (C), 148.0 (CH), 140.8 (C), 134.4 (C), 133.8 (CH), 133.7 (CH), 132.0 (CH), 131.7 (C), 129.4 (CH), 129.2 (CH), 123.9 (CH), 123.0 (CH), 113.7 (CH).

In some cases, compounds **1** were obtained contaminated with a by-product of unknown structure, which was not soluble in chloroform. In these cases, compounds **1** could be obtained pure by suspending the mixture in hot chloroform (100 mL), filtering and concentrating the filtrate.

Synthesis of ligands L6 and L7

General procedure for the synthesis of 1,1,2-triaryl-2-aminoethanols

$$\begin{array}{c} Ph & O \\ CIH_{3}N & OMe \end{array} \xrightarrow{ArMgBr} \qquad \begin{array}{c} Ph & Ar \\ \hline THF, rt \end{array} \xrightarrow{Ph} & Ar \\ H_{2}N & OH \end{array}$$
$$R = Ph \text{ or } p\text{-CIC}_{6}H_{4}$$

(S)-2-Amino-1,1,2-triphenylethan-1-ol

Ph H_{2N} A commercially available 3 M solution of PhMgBr in dry diethyl ether (20 mL, 60 mmol) was introduced via syringe in a round bottom flask under nitrogen followed by diethyl ether (40 mL) and introduced in an ice bath. (*S*)methyl phenylglycinate hydrochloride (1.65 g, 10 mmol) was added in two portions and the mixture stirred at room temperature for 6 hours. After this time, the mixture was poured into ice (ca. 35 g) and acidified with 6 M HCl (15 mL). The mixture was filtered and the solid washed with cold Et₂O (3 × 5 mL). The solid was treated with 2 M NaOH in MeOH (60 mL) and concentrated under reduced pressure. The resulting crude was stirred in a 1:1 mixture of water and dichloromethane (100 mL) for 10 min. The layers were separated and the organic layer was washed with water (3 × 25 mL), dried and concentrated under reduced pressure to give 1.85 g (65% yield) of the title compound. White solid, mp 140-142, $[\alpha]_D^{25}$ –195.8 (*c* 1.3, MeOH); ¹H NMR (300 MHz, CDCl₃) δ 7.78 (m, 2H), 7.44–7.39 (m, 2H), 7.31–7.26 (m, 1H), 7.15–7.11 (m, 7H), 7.08–7.02 (m,3H), 5.02 (s, 1H), 1.71 (br s, NH₂); ¹³C NMR (75 MHz, CDCl₃) δ 146.5 (C), 143.9 (C), 140.0 (C), 128.6 (CH), 128.5 (2CH), 127.4 (CH), 127.3 (CH), 127.2 (CH), 127.0 (CH), 126.5 (CH), 126.0 (CH), 79.5 (C), 61.8 (CH).

(S)-2-Amino-1,1-bis(4-chlorophenyl)-2-phenylethan-1-ol

Ph p-ClC₆H₄ H_2N OH 2.21 g (62%) were obtained. White solid; ¹H NMR (300 MHz, CDCl₃) δ 7.70–7.67 (m, 2H), 7.42–7.39 (m, 2H), 7.19–7.13 (m, 5H), 7.04 (s, 4H), 4.95(s, 1H), 1.63 (br s, NH₂); ¹³C NMR (75 MHz, CDCl₃) δ 144.7 (C), 142.1 (C), 139.4 (C), 133.2 (C), 132.3 (C), 128.7 (CH), 128.5 (CH), 127.9 (2CH), 127.7 (CH), 127.6 (CH), 127.5 (CH), 78.9 (C), 61.6 (CH).

General procedure for the synthesis of bis-hydroxiamides¹

N,*N*'-Bis[(1*S*)-1,2,2-triphenyl-2-hydroxyethyl]-2,2-diethylpropanodiamide (L6)

Diethylmalonyl dichloride (141 µL, 0.82 mmol) was added dropwise to a solution of (S)-2-amino-1,1,2-triphenylethan-1-ol Ph, NH HN (472 mg, 1.63 mmol) and triethylamine (229 µL, 1.64 mmol) in Ph Ph Ph THF (11 mL) at 0 °C. The mixture was stirred at room temperature ОН НО for 2 horas, filtered and the filtrate concentrated under reduced pressure to give 340 mg (58% yield) of ligand L6. White solid; mp 254-255 °C; $[\alpha]_D^{25}$ –168 (c 0.06, MeOH); ¹H **NMR** (300 MHz, DMSO- d_6) δ 9.02 (d, J = 8.4 Hz. 1H), 7.55 (d, J = 7.1 Hz, 2H), $7.29-7.21 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (s, 1H)}, 5.86 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 1.55-1.40 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 8H)}, 6.17 \text{ (m, 5H)}, 7.11-7.00 \text{ (m, 6H)}, 7.11-7.00 \text{ (m, 6H)}, 7.11-7.00 \text{ (m, 7H)}, 7.11-7.00 \text{ ($ (m, 2H), -0.04 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, DMSO- d_6) δ 171.8 (C), 146.1 (C), 145.0 (C), 139.4 (C), 129.2 (2CH), 127.7 (2CH), 127.2 (2CH), 126.6 (2CH), 126.4 (CH), 126.2 (3CH), 126.1 (3CH), 79.7 (C), 59.2 (CH), 57.0 (C), 30.7 (CH₂), 8.6 (CH₃).

N,*N*'-Bis[(*S*)-2,2-bis(4-chlorophenyl)-2-hydroxy-1-phenylethyl)-2,2-diethylmalonamide (L7)

The same procedure as for the synthesis of **L6** was followed. After the reaction was completed, the mixture was concentrated, suspended in EtOAc and filtered. The solid was dissolved in dichloromethane and washed with brine, dried over MgSO₄ and

concentrated to give **L7** in 71% yield. White solid; mp 243-246 °C; $[\alpha]_D^{25}$ –175 (*c* 0.05, MeOH); ¹**H NMR** (300 MHz, DMSO-*d*₆) δ 9.05 (d, *J* = 8.7 Hz, 2H), 7.59 (d, *J* = 8.7 Hz, 4H), 7.37 (d, *J* = 8.7 Hz, 4H), 7.28 (d, *J* = 8.7 Hz, 4H), 7.16 (d, *J* = 8.7 Hz, 4H), 7.04 (s, 10H), 6.37 (s, 2H), 5.84 (d, *J* = 8.7 Hz, 2H), 1.49 (tt, *J* = 15.3, 7.0 Hz, 4H), -0.10 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 171.9 (C), 144.8 (C), 143.5 (C), 139.0 (C), 131.5 (C), 131.1 (C), 129.2 (CH), 128.2 (CH), 128.1 (CH), 127.8 (CH), 127.4 (CH), 126.9 (CH), 126.6 (CH), 79.4 (C), 59.2 (CH), 57.1 (C), 30.8 (CH₂), 8.5 (CH₃).

Enantioselective conjugate alkynylation of imines 1 and characterization data for compounds 3

Enantioselective addition of terminal arylacetylenes 2 ($R^2 = Aryl$) to imines 1

A 1.5 M solution of Et₂Zn in toluene (0.34 mL, 0.5 mmol) was added dropwise to a solution of ligand L7 (10.5 mg, 0.0125 mmol) and alkyne 2a-d (0.625 mmol) in dry toluene (0.5 mL) at room temperature under nitrogen. The mixture was stirred at 70 °C for 2 h. After cooling to room temperature, a solution of imine 1 (0.125 mmol) in toluene (1 mL) was added via syringe and the solution was stirred until the reaction was complete (TLC). The reaction was quenched with 20% aqueous NH₄Cl (1.0 mL), extracted with CH₂Cl₂ (3 × 15 mL), washed with brine (15 mL), dried over MgSO₄ and concentrated under reduced pressure. Purification by flash chromatography on silica gel eluting with hexane:Et₂O mixtures afforded compound **3**.

Racemic products $3 (R^2 = Aryl)$ were prepared following the same procedure but using *N*-benzil-2-hydroxy-2-phenylacetamide instead of L7.

Enantioselective addition of terminal alkylacetylenes 2 ($R^2 = Alkyl$) to imines 1

A 1.5 M solution of Et₂Zn in toluene (0.17 mL, 0.25 mmol) was added dropwise to a solution of ligand **L6** (9 mg, 0.0125 mmol) and alkyne **2e-h** (0.625 mmol) in dry toluene (0.5 mL) at room temperature under nitrogen. The mixture was introduced in a bath at 70 $^{\circ}$ C for 2 hours and allowed to reach room temperature. Imine **1** (0.125 mmol) in dry toluene (1 mL) was added via syringe and the reaction mixture stirred until the reaction was complete (TLC). After this time, the reaction was quenched with 20% aqueous NH4Cl (1.0 mL), diluted in CH₂Cl₂ (50 mL), washed with brine (10 mL), dried over MgSO₄. After filtration and concentration under reduced pressure, column chromatography eluting with hexane:Et₂O mixtures afforded compound **3**. In some cases we oserved the formation of the conjugate ethylation product **6**, which was not collected, except in some representative examples.

Near racemic compounds 3 ($R^2 = Alkyl$) were prepared by mixing enantiomeric compounds 3 obtained in separated reactions with L6 or *ent*-L6

(S)-3-(2,4-diphenylbut-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3aa)

Obtained 21.8 mg (47%); ethylation product **6** (9.3 mg, 25%) was also isolated. The enantiomeric excess (85%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer: $t_r = 29.1$ min, minor enantiomer: $t_r = 25.8$ min.

Oil; $[\alpha]_D^{25}$ –2.5 (*c* 0.8, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.96–7.86 (m, 1H), 7.76–7.58 (m, 2H), 7.57–7.49 (m, 2H), 7.43–7.26 (m, 8H), 4.65 (dd, J = 8.4, 6.3 Hz, 1H), 3.55 (dd, J = 15.3, 8.4 Hz, 1H), 3.41 (dd, J = 15.4, 6.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 173.7 (C=N), 156.0 (C), 153.5 (C), 140.0 (C), 133.9 (CH), 133.7 (CH), 131.8 (CH), 131.4 (C), 129.1 (CH), 128.4 (CH), 127.9 (CH), 127.7 (CH), 124.3 (CH), 122.9 (CH), 122.7 (CH), 89.0 (C), 85.2 (C), 39.9 (CH₂), 36.1 (CH); HRMS (ESI) *m/z*: 372.4620 [M+H]⁺, C₂₃H₁₈NO₂S⁺ requires 372.4615.

(S)-3-(2-(4-Bromophenyl)-4-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ba)

Obtained 33.2 mg (59%). The enantiomeric excess (69%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1.5 mL/min, major enantiomer: $t_r = 21.7$ min, minor enantiomer: $t_r = 35.1$ min.

Yellow solid; mp 174-176 °C; $[\alpha]_D^{25}$ +1.3 (c 0.8, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.87–7.81 (m, 1H), 7.71–7.53

(m, 3H), 7.46–7.39 (m, 2H), 7.39–7.33 (m, 2H), 7.31–7.24 (m, 2H), 7.25–7.18 (m, 3H), 4.57 (dd, J = 7.9, 6.5 Hz, 1H), 3.47 (dd, J = 15.8, 8.0 Hz, 1H), 3.32 (dd, J = 15.8, 6.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 173.3 (C), 139.9 (C), 139.0 (C), 133.9 (CH), 133.8 (CH), 132.2 (CH), 131.8 (CH), 131.2 (C), 129.5 (CH), 128.5 (CH), 128.4 (CH), 124.2 (CH), 122.7 (CH), 122.6 (C), 121.8 (C), 88.5 (C), 85.3 (C), 39.6 (CH₂), 35.3 (CH); HRMS (ESI) m/z: 450.0160 [M+H]⁺, C₂₃H₁₇BrNO₂S⁺ requires 450.0158.

(S)-3-(2-(4-Methoxyphenyl)-4-phenylbut-3-yn-1-yl)benzo[d]isothiazole (3ca)

Obtained 20.1 mg (40%). The enantiomeric excess (33%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1.5 mL/min, major enantiomer: $t_r = 25.5$ min, minor enantiomer: $t_r = 18.7$ min.

Oil; $[\alpha]_D^{25}$ –27.5 (*c* 0.9, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.97–7.86 (m, 1H), 7.75–7.57 (m, 3H), 7.49–7.40 (m, 2H), 7.35–7.30 (m, 2H), 7.30–7.23 (m, 3H), 6.94–6.85 (m, 2H), 4.60 (dd, *J* = 8.1, 6.4 Hz, 1H), 3.79 (s, 3H), 3.52 (dd, *J* = 15.3, 8.2 Hz, 1H), 3.38 (dd, *J* = 15.3, 6.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 173.7 (C), 159.1 (C), 139.8 (C), 133.8 (CH), 133.5 (CH), 131.9 (C), 131.7 (CH), 131.3 (C), 128.6 (CH), 128.2 (CH), 124.3 (CH), 122.8 (C), 122.5 (CH), 114.3 (CH), 89.3 (C), 84.8 (C), 55.4 (CH₃), 39.9 (CH₂), 35.2 (CH); HRMS (ESI) m/z: 402.1158 [M+H]⁺, C₂₄H₂₀NO₃S requires 402.1158.

(S)-3-(2-(4-Methylphenyl)-4-phenylbut-3-yn-1-yl)benzo[d]isothiazole (3da)

Obtained 16.0 mg (33%). The enantiomeric excess (58%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1.5 mL/min, major enantiomer: $t_r = 17.0$ min, minor enantiomer: $t_r = 13.4$ min.

Yellow solid; mp 143-145 °C; $[\alpha]_D^{25}$ –5.3 (*c* 0.6, CHCl₃); ¹**H NMR** (300 MHz, CDCl₃) δ 7.96–7.84 (m, 1H), 7.77–7.59 (m,

3H), 7.47–7.38 (m, 2H), 7.37–7.22 (m, 5H), 7.21–7.11 (m, 2H), 4.61 (dd, J = 8.4, 6.2 Hz, 1H), 3.52 (dd, J = 15.3, 8.4 Hz, 1H), 3.39 (dd, J = 15.3, 6.3 Hz, 1H), 2.34 (s, 3H); ¹³C **NMR** (75 MHz, CDCl₃) δ 173.7 (C), 139.9 (C), 137.5 (C), 137.0 (C), 133.8 (CH), 133.6 (CH), 131.7 (CH), 131.4 (C), 129.7 (CH), 128.3 (CH), 128.3 (CH), 127.5 (CH), 124.4 (CH), 123.0 (C), 122.6 (CH), 89.3 (C), 84.9 (C), 39.9 (CH₂), 35.7 (CH), 21.2 (CH₃); HRMS (ESI) m/z: 386.1208 [M+H]⁺, C₂₄H₂₀NO₂S⁺ requires 386.1209.

(S)-3-(2-(2-Methylphenyl)-4-phenylbut-3-yn-1-yl)benzo[d]isothiazole (3ea)

Obtained 17.3 mg (36%). The enantiomeric excess (53%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer: $t_r = 11.9$ min, minor enantiomer: $t_r = 15.2$ min.

Oil; [*α*]²⁵_{*D*} –11.6 (*c* 0.9, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.96–7.87 (m, 1H), 7.80–7.59 (m, 4H), 7.32–7.26 (m, 3H),

7.26–7.18 (m, 5H), 4.80 (dd, J = 9.2, 5.3 Hz, 1H), 3.51 (dd, J = 15.2, 9.2 Hz, 1H), 3.34 (dd, J = 15.2, 5.3 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.9 (C), 139.9 (C), 138.2 (C), 135.3 (C), 133.9 (CH), 133.7 (CH), 131.7 (CH), 131.5 (C), 131.1 (CH), 128.3 (CH), 127.8 (CH), 127.6 (CH), 126.9 (CH), 124.5 (CH), 122.9 (C), 122.7 (CH), 89.4 (C), 84.7 (C), 38.3 (CH₂), 32.9 (CH), 19.5 (CH₃); HRMS (ESI) m/z: 386.1213 [M+H]⁺, C₂₄H₂₀NO₂S⁺ requires 386.1209.

(S)-3-(2-(3-Methylphenyl)-4-phenylbut-3-yn-1-yl)benzo[d]isothiazole (3fa)

Obtained 16.8 mg (35%). The enantiomeric excess (71%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer: $t_r = 20.9$ min, minor enantiomer: $t_r = 18.0$ min.

Oil; $[\alpha]_D^{25}$ –5.1 (*c* 0.5, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.91 (dt, *J* = 7.5, 0.9 Hz, 1H), 7.76–7.58 (m, 3H), 7.36–7.30 (m,

4H), 7.29–7.22 (m, 4H), 7.09 (d, J = 7.6 Hz, 1H), 4.60 (dd, J = 8.5, 6.2 Hz, 1H), 3.53 (dd, J = 15.2, 8.6 Hz, 1H), 3.39 (dd, J = 15.2, 6.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 173.7 (C), 140.0 (C), 139.9 (C), 138.9 (C), 133.8 (CH), 133.6 (CH), 131.8 (CH), 131.5 (C), 129.0 (CH), 128.6 (CH), 128.4 (CH), 128.3 (CH), 124.6 (CH), 124.4 (CH), 123.0 (C), 122.7 (CH), 89.1 (C), 85.1 (C), 39.9 (CH₂), 36.1 (CH), 21.6 (CH₃); HRMS (ESI) m/z: 386.1214 [M+H]⁺, C₂₄H₂₀NO₂S⁺ requires 386.1209.

(S)-3-(2-(Naphthalen-2-yl)-4-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ga)

Obtained 18.5 mg (35%). The enantiomeric excess (83%) was determined by HPLC (Chiralcel AS-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer: $t_r = 53.7$ min, minor enantiomer: $t_r = 60.9$ min.

Oil; $[\alpha]_D^{25}$ +1.8 (c 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 8.01–7.96 (m, 1H), 7.93–7.78 (m, 4H), 7.74–7.58

(m, 4H), 7.52–7.45 (m, 2H), 7.40–7.33 (m, 2H), 7.28 (q, J = 3.1 Hz, 3H), 4.83 (dd, J = 8.4, 6.2 Hz, 1H), 3.63 (dd, J = 15.5, 8.4 Hz, 1H), 3.49 (dd, J = 15.4, 6.2 Hz, 1H); ¹³C **NMR** (75 MHz, CDCl₃) δ 173.7 (C), 140.0 (C), 137.3 (C), 133.8 (CH), 133.7 (CH), 133.6 (C), 132.9 (CH), 131.8 (CH), 131.4 (C), 129.0 (CH), 128.4 (CH), 128.4 (CH), 128.1 (CH), 127.8 (CH), 126.6 (CH), 126.3 (CH), 125.5 (CH), 124.3 (CH), 122.9 (C), 122.8 (C), 122.7 (CH), 89.0 (C), 85.4 (C), 39.8 (CH₂), 36.2 (CH); HRMS (ESI) m/z: 422.1209 [M+H]⁺, C₂₇H₂₀NO₂S⁺ requires 422.1209.

(*R*)-3-(4-Phenyl-2-(thiophen-2-yl)but-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ha)

Obtained 23.1 mg (49%). The enantiomeric excess (70%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer: $t_r = 31.9$ min, minor enantiomer: $t_r = 27.7$ min.

Oil; $[\alpha]_D^{25}$ +3.5 (*c* 1.0, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.95–7.89 (m, 1H), 7.80–7.60 (m, 3H), 7.41–7.32 (m, 2H),

7.32–7.25 (m, 3H), 7.25–7.19 (m, 1H), 7.17–7.09 (m, 1H), 6.98–6.90 (m, 1H), 4.97 (dd, J = 7.5, 6.5 Hz, 1H), 3.62 (dd, J = 15.8, 7.7 Hz, 1H), 3.52 (dd, J = 15.8, 6.7 Hz, 1H); ¹³C **NMR** (75 MHz, CDCl₃) δ 173.2 (C), 143.2 (C), 139.9 (C), 134.0 (CH), 133.8 (CH), 131.8 (CH), 131.3 (C), 128.6 (CH), 128.4 (CH), 127.2 (CH), 125.7 (CH), 125.0 (CH), 124.3 (CH), 122.7 (CH), 122.6 (C), 88.5 (C), 84.6 (C), 40.1 (CH₂), 31.1 (CH); HRMS (ESI) m/z: 395.0880 [M+NH₄]⁺, C₂₄H₁₉N₂O₂S₂⁺ requires 395.0882.

(S)-3-(2-(*tert*-Butyl)-4-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ia)

Obtained 37.0 mg (84%). The enantiomeric excess (35%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer: $t_r = 14.0$ min, minor enantiomer: $t_r = 9.0$ min.

White solid; mp 90-93 °C; $[\alpha]_D^{25}$ -40.5 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.95-7.88 (m, 1H), 7.81-7.59 (m, 3H),

7.24–7.14 (m, 5H), 3.24–3.06 (m, 3H), 1.18 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 175.8 (C), 140.0 (C), 133.8 (CH), 133.5 (CH), 131.7 (C), 131.6 (CH), 128.2 (CH), 128.0 (CH), 124.6 (CH), 123.2 (C), 122.6 (CH), 89.6 (C), 85.3 (C), 42.2 (CH), 34.4 (C), 32.1 (CH₂), 27.5 (CH₃); HRMS (ESI) m/z: 352.1370 [M+H]⁺, C₂₁H₂₂NO₂S⁺ requires 352.1366.

(S)-3-(4-(4-Chlorophenyl)-2-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ab)

Obtained 21.8 mg (43%). The enantiomeric excess (83%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer: $t_r = 26.9$ min, minor enantiomer: $t_r = 32.7$ min.

Brown solid; mp 113-116 °C; $[\alpha]_D^{25}$ –1.9 (*c* 0.8, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.96–7.84 (m, 2H), 7.76–7.56 (m, 5H),

7.54–7.48 (m, 3H), 7.43–7.33 (m, 3H), 7.33–7.20 (m, 5H), 4.64 (dd, J = 8.5, 6.1 Hz, 1H), 3.53 (dd, J = 15.6, 8.5 Hz, 1H), 3.40 (dd, J = 15.5, 6.1 Hz, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 173.5 (C), 139.9 (C), 139.8 (C), 134.4 (C), 133.9 (CH), 133.7 (CH), 133.0 (CH), 131.3 (C), 129.2 (CH), 128.7 (CH), 127.9 (CH), 127.6 (CH), 124.2 (CH), 122.7 (CH), 121.4 (C), 90.0 (C), 84.0 (CH), 39.7 (CH₂), 36.0 (CH); HRMS (ESI) m/z: 406.0662 [M+H]⁺, C₂₃H₁₇ClNO₂S⁺ requires 406.0663.

(S)-3-(4-(4-Methoxyphenyl)-2-phenylbut-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3ac)

Obtained 23.1 mg (46%). The enantiomeric excess (54%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20 1 mL/min, major enantiomer: $t_r = 44.8$ min, minor enantiomer: $t_r = 28.8$ min.

Oil; $[\alpha]_D^{25}$ –3.5 (*c* 0.9, CHCl₃); ¹**H** NMR (300 MHz, CDCl₃) δ 7.94–7.86 (m, 1H), 7.74–7.65 (m, 1H), 7.65–7.58 (m, 2H), 7.56–7.50 (m, 2H), 7.42–7.32 (m, 3H), 7.27 (d, *J* = 9.0 Hz, 2H),

6.78 (d, J = 8.9 Hz, 2H), 4.62 (dd, J = 8.4, 6.2 Hz, 1H), 3.78 (s, 3H), 3.53 (dd, J = 15.2, 8.4 Hz, 1H), 3.39 (dd, J = 15.2, 6.2 Hz, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 173.7 (C), 159.6 (C), 140.1 (C), 139.8 (C), 133.7 (CH), 133.5 (CH), 133.1 (CH), 131.3 (C), 129.0 (CH), 127.7 (CH), 127.5 (CH), 124.3 (CH), 122.5 (CH), 114.9 (C), 113.9 (CH), 87.4 (C), 85.0 (C), 55.3 (CH), 39.9 (CH₂), 36.1 (CH₃); HRMS (ESI) m/z: 419.1424 [M+NH₄]⁺, C₂₄H₂₃N₂O₃S⁺ requires 419.1424.

(S)-3-(2,6-Diphenylhex-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3ad)

Obtained 34.0 mg (68%). The enantiomeric excess (95%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer t_r = 29.5 min, minor enantiomer t_r = 24.7 min.

Oil; $[\alpha]_D^{25}$ +6.2 (*c* 1.0, CHCl₃); ¹**H** NMR (300 MHz,CDCl₃) δ 7.91–7.87 (m, 1H), 7.74–7.61 (m, 2H), 7.51–7.49 (m, 1H), 7.40–7.04 (m, 10H), 4.36 (ddt, *J* = 8.4, 6.2, 2.3 Hz, 1H), 3.40

(dd, J = 15.0, 8.6 Hz, 1H), 3.27 (dd, J = 15.0, 8.6 Hz, 1H), 2.74 (t, J = 7.4 Hz, 2H), 2.55–2.35 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃) δ 173.9 (C), 140.5 (C), 139.9 (C), 133.7 (CH), 133.6 (CH), 131.5 (C), 128.9 (CH), 128.7 (CH), 128.4 (CH), 127.6 (CH), 127.6 (CH), 126.3 (CH), 124.3 (CH), 122.6 (CH), 84.7 (C), 80.5 (C), 40.1 (CH₂), 35.6 (CH),

35.0 (CH₂), 21.0 (CH₂); HRMS (ESI) *m/z*: 400.1363, [M+H]⁺, C₂₅H₂₂NO₂S⁺ requires 400.1366.

(S)-3-(2-(4-Bromophenyl)-6-phenylhex-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3bd)

Obtained 21.0 mg (35%). The enantiomeric excess (96%) was determined by HPLC (Chiralcel AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 18.6$ min, minor enantiomer $t_r = 21.8$ min.

Oil; $[\alpha]_D^{25}$ +4.3 (*c* 1.0, CHCl₃); ¹**H** NMR (300 MHz,CDCl₃) δ 7.92–7.90 (m, 1H), 7.73 (td, *J* = 7.4, 1.2 Hz, 1H), 7.66 (td,

J = 7.5, 1.2 Hz, 1H), 7.53–7.50 (m, 1H), 7.44–7.40 (m, 2H), 7.28–7.15 (m, 7H), 4.34 (ddt, J = 8.4, 6.4, 2.2 Hz, 1H), 3.32 (dd, J = 15.7, 8.1 Hz, 1H), 3.20 (dd, J = 15.7, 8.1 Hz, 1H), 2.74 (t, J = 7.4 Hz, 2H), 2.48–2.42 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.3 (C), 140.5 (C), 139.7 (C), 139,4 (C), 133.6 (CH), 133.6 (CH), 131.8 (CH), 131.8 (C), 129.2 (CH), 128.5 (CH), 128.3 (CH), 126.2 (CH), 124.0 (CH), 122.6 (CH), 121.3 (C), 84.8 (C), 80.0 (C), 39.7 (CH₂), 34.8 (CH₂), 34.6 (CH), 20.7 (CH₂). HRMS (ESI) *m/z*: 478.0473, [M+H]⁺, C₂₅H₂₁BrNO₂S⁺ requires 478.0471.

(S)-3-(2-Phenyloct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3ae)

Obtained 19.3 mg (44%). The enantiomeric excess (88%) was determined by HPLC (Chiralpak IC), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 26.18$ min, minor enantiomer $t_r = 22.72$ min.

Yellow solid; mp 91-93 °C; $[\alpha]_D^{25}$ +4.7 (*c* 0.95, CHCl₃); ¹**H** NMR (300 MHz,CDCl₃) δ 7.91–7.89 (m, 1H), 7.69 (dtd, *J*

= 16.8, 7.3, 1.2 Hz, 2H), 7.60–7.57 (m, 1H), 7.47–7.43 (m, 2H), 7.36–7.30 (m, 2H), 7.27–7.22 (m, 1H), 4.39 (ddt, J = 8.5, 6.2, 2.3 Hz, 1H), 3.40 (dd, J = 15.0, 8.6 Hz, 1H), 3.27 (dd, J = 15.0, 6.2 Hz, 1H), 2.13 (td, J = 6.9, 2.2 Hz, 2H), 1.46–1.21 (m, 4H), 0.83 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.8 (C), 140.6 (C), 139.8 (C), 133.6 (CH), 133.4 (CH), 131.5 (C), 128.8 (CH), 127.4 (CH), 127.4 (CH), 124.2 (CH), 122.5 (CH), 85.5 (C), 79.4 (C), 40.0 (CH₂), 35.6 (CH), 30.7 (CH₂), 21.9 (CH₂), 18.4 (CH₂), 13.5 (CH₃); HRMS (ESI) *m/z*: 352.1363, [M+H]⁺, C₂₁H₂₂NO₂S⁺ requires 352.1366.

(S)-3-(2-(4-Bromophenyl)oct-3-yn-1-yl)benzo[d]isothiazole (3be)

Obtained 20.4 mg (38%). The enantiomeric excess (97%) was determined by HPLC (Chiralpak IC), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 26.56$ min, minor enantiomer $t_r = 24.13$ min.

Yellow solid; mp 152-155 °C; $[\alpha]_D^{25}$ +7.23 (*c* 0.98, CHCl₃); ¹**H NMR** (300 MHz,CDCl₃) δ 7.92–7.89 (m, 1H), 7.71 (dtd, *J* = 16.1, 7.4, 1.3 Hz, 2H), 7.60–7.58 (m, 1H), 7.48–7.43 (m,

2H), 7.36–7.31 (m, 2H), 4.37 (ddt, J = 8.6, 6.4, 2.3 Hz, 1H), 3.38 (dd, J = 15.4, 8.1 Hz, 1H), 3.24 (dd, J = 15.4, 6.5 Hz, 1H), 2.13 (td, J = 6.9, 2.3 Hz, 2H), 1.43–1.23 (m, 4H), 0.84 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 173.6 (C), 139.9 (C), 139.8 (C), 133.8 (CH), 133.7 (CH), 132.0 (CH), 131.4 (C), 129.4 (C), 124.3 (CH), 122.7 (CH), 121.5 (C), 85.9 (C), 79.1 (C), 39.9 (CH₂), 35.0 (CH), 30.8 (CH₂), 22.0 (CH₂), 18.5 (CH₂), 13.7 (CH₃). HRMS (ESI) *m/z*: 430.0473, [M+H]⁺, C₂₁H₂₁BrNO₂S⁺ requires 430.0471.

(S)-3-(2-(p-Tolyl)oct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3de)

Obtained 19.2 mg (42%). The enantiomeric excess (92%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20, 0.7mL/min. Major enantiomer $t_r = 18.32$ min, minor enantiomer $t_r = 16.35$ min.

Yellow solid; mp 131-135 °C; $[\alpha]_D^{25}$ +1.61 (*c* 0.99, CHCl₃); ¹**H NMR** (300 MHz,CDCl₃) δ 7.91–7.88 (m, 1H), 7.69 (dtd,

J = 16.0, 7.3, 1.3 Hz, 2H), 7.61–7.58 (m, 1H), 7.35–7.32 (m, 2H), 7.15–7.13 (m, 2H), 4.35 (ddt, J = 8.5, 6.1, 2.3 Hz, 1H), 3.38 (dd, J = 15.0, 8.6 Hz, 1H), 3.25 (dd, J = 15.0, 6.2 Hz, 1H), 2.32 (s, 3H), 2.11 (td, J = 6.9, 2.2 Hz, 2H), 1.42–1.23 (m, 4H), 0.83 (t, J = 7.1 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 174.1 (C), 140.0 (C), 137.8 (C), 137.3 (C), 133.7 (CH), 133.5 (CH), 131.6 (C), 129.6 (CH), 127.4 (CH), 124.4 (CH), 122.6 (CH), 85.4 (C), 79.7 (C), 40.2 (CH₂), 35.4 (CH), 30.8 (CH₂), 22.0 (CH₂), 21.2 (CH₃), 18.5 (CH₂), 13.7 (CH₃). HRMS (ESI) *m*/*z*: 366.1523, [M+H]⁺, C₂₂H₂₄NO₂S⁺ requires 366.1522.

(S)-3-(8-Chloro-2-phenyloct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3af)

CI

Obtained 22.3 mg (48%). The enantiomeric excess (96%) was determined by HPLC (Chiralpak IC), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer t_r = 34.72 min, minor enantiomer t_r = 32.14 min.

Oil; $[\alpha]_D^{25}$ -2.44 (*c* 0.98, CHCl₃); ¹H NMR (300 MHz,CDCl₃) δ 7.92–7.90 (m, 1H), 7.70 (dtd, *J* = 16.8, 7.4, 1.3 Hz, 2H), 7.60–7.56 (m, 1H), 7.47–7.43 (m, 2H), 7.37–7.31 (m, 2H), 7.29–7.23 (m, 1H) 4.40 (ddt, *J* = 8.4, 5.3, 2.3 Hz, 1H), 3.50 (td, *J* = 6.5, 2.1 Hz, 2H) 3.40 (dd, *J* = 15.3, 8.9 Hz, 1H), 3.27 (dd, *J* = 15.3, 5.9 Hz, 1H), 2.19 (td, *J* = 6.8, 2.2 Hz, 2H), 1.83–1.74 (m, 2H), 1.61–1.51 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.8 (C), 140.5 (C), 140.0 (C), 133.8 (CH), 133.7 (CH), 131.5 (C), 129.0 (CH), 127.7 (CH), 127.5 (CH), 124.3 (CH), 122.7 (CH), 84.7 (C), 80.3 (C), 44.8 (CH₂), 40.1 (CH₂), 35.6 (CH), 31.5 (CH₂), 25.8 (CH₂), 18.2 (CH₂); HRMS (ESI), *m/z*: 386.0976, [M+H]⁺, C₂₁H₂₁ClNO₂S⁺ requires 386.0976.

(S)-3-(2-(4-Bromophenyl)-8-chlorooct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3bf)

Obtained 20.3 mg (36%). The enantiomeric excess (93%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 21.33$ min, minor enantiomer $t_r = 17.69$ min.

Yellow solid; mp 116-119 °C; $[\alpha]_D^{25}$ +4.65 (*c* 1.0, CH₃Cl); ¹**H NMR** (300 MHz,CDCl₃) δ 7.93–7.90 (m,

1H), 7.72 (dtd, J = 15.9, 7.4, 1.3 Hz, 2H), 7.61–7.57 (m, 1H), 7.49–7.44 (m, 2H), 7.36–7.31 (m, 2H), 4.38 (ddt, J = 8.4, 6.0, 2.3 Hz, 1H), 3.49 (td, J = 6.5, 1.8 Hz, 2H) 3.39 (dd, J = 15.7, 8.5 Hz, 1H), 3.25 (dd, J = 15.7, 6.2 Hz, 1H), 2.19 (td, J = 6.8, 2.2 Hz, 2H), 1.83–1.73 (m, 2H), 1.61–1.51 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.5 (C), 139.9 (C), 139.6 (C), 133.9 (CH), 133.8 (CH), 132.1 (CH), 131.3 (C), 129.3 (CH), 124.2 (CH), 122.8 (CH), 121.6 (C), 84.9 (C), 79.9 (C), 44.7 (CH₂), 39.8 (CH₂), 34.9 (CH), 31.5 (CH₂), 385.8 (CH₂), 18.1 (CH₂); HRMS (ESI), *m*/*z*: 464.0079, [M+H]⁺, C₂₁H₂₀BrClNO₂S⁺ requires 464.0081.

(S)-3-(8-Chloro-2-(p-tolyl)oct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3df)

Obtained 28.0 mg (58%). The enantiomeric excess (91%) was determined by HPLC (Chiralpak AS-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 32.5$ min, minor enantiomer $t_r = 29.7$ min.

Yellow solid; mp 85-89 °C; $[\alpha]_D^{25}$ –3.50 (*c* 0.95, CH₃Cl); **¹H NMR** (300 MHz,CDCl₃) δ 7.92–7.89 (m, 1H), 7.70

(dtd, J = 16.0, 7.4, 1.3 Hz, 2H), 7.61–7.58 (m, 1H), 7.35–7.31 (m, 2H), 7.17–7.13 (m, 2H), 4.36 (ddt, J = 8.5, 5.5, 2.4 Hz, 1H), 3.49 (td, J = 6.5, 2.2 Hz, 2H), 3.38 (dd, J = 15.3, 8.9 Hz, 1H), 3.25 (dd, J = 15.2, 5.9 Hz, 1H), 2.33 (s, 3H), 2.18 (td, J = 6.7, 1.9 Hz, 2H), 1.83–1.73 (m, 2H), 1.60–1.50 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.9 (C), 139.9 (C), 137.6 (C), 137.4 (C), 133.8 (CH), 133.6 (CH), 131.5 (C), 129.7 (CH), 127.4 (CH), 124.3 (CH), 122.7 (CH), 84.4 (C), 80.5 (C), 44.8 (CH₂), 40.1 (CH₂), 35.2 (CH), 31.5 (CH₂), 25.8 (CH₂), 21.2 (CH₃), 18.2 (CH₂); HRMS (ESI), m/z: 400.1132, [M+H]⁺, C₂₂H₂₃ClNO₂S⁺ requires 400.1133.

(S)-3-(4-Cyclopropyl-2-phenylbut-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3ag)

Obtained 25.6 mg (61%). The enantiomeric excess (93%) was determined by HPLC (Chiralpak AS-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 28.7$ min, minor enantiomer $t_r = 34.3$ min.

Oil; $[\alpha]_D^{25}$ +6.56 (*c* 0.98, CH₃Cl); ¹H NMR (300 MHz,CDCl₃) δ 7.91–7.88 (m, 1H), 7.69 (dtd, J = 16.9, 7.4, 1.2 Hz, 2H), 7.59–7.56 (m, 1H), 7.45–7.41 (m, 2H), 7.36–7.29 (m, 2H), 7.27–7.22 (m, 1H), 4.34 (ddd, J = 8.3, 6.2, 1.8 Hz, 1H), 3.38 (dd, J = 14.9, 8.5 Hz, 1H), 3.26 (dd, J = 14.9, 6.3 Hz, 1H), 1.17 (ttd, J = 8.2, 5.0, 1.8, 1H), 0.70–0.61 (m, 2H), 0.60–0.47 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 173.9 (C), 140.6 (C), 139.9 (C), 133.7 (CH), 133.6 (CH), 131.5 (C), 128.9 (CH), 127.6 (CH), 127.5 (CH), 124.4 (CH), 122.6 (CH), 88.7 (C), 74.7 (C), 40.1 (CH₂), 35.7 (C), 8.2 (CH₂), 8.2 (CH₂), -0.4 (CH); HRMS (ESI), *m/z*: 336.1055, [M+H]⁺, C₂₀H₁₈NO₂S⁺ requires 336.1053.

(S)-3-(2-(4-bromophenyl)-4-cyclopropylbut-3-yn-1-yl)benzo[d]isothiazole 1,1dioxide (3bg)

Obtained 23.3 mg (45%). The enantiomeric excess (96%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 20.01$ min, minor enantiomer $t_r = 16.73$ min.

Yellow solid; mp 119-121 °C; $[\alpha]_D^{25}$ +6.28 (*c* 1.0, CHCl₃); ¹**H** NMR (300 MHz,CDCl₃) δ 7.92–7.89 (m, 1H), 7.71 (dtd, *J* = 16.1,

7.4, 1.2 Hz, 2H), 7.60–7.57 (m, 1H), 7.47–7.43 (m, 2H), 7.34–7.29 (m, 2H), 4.33 (ddd, J = 8.2, 6.5, 1.8 Hz, 1H), 3.36 (dd, J = 15.3, 8.2 Hz, 1H), 3.24 (dd, J = 15.3, 6.5 Hz, 1H), 1.17 (ttd, J = 8.2, 5.0, 1.8, 1H), 0.71–0.67 (m, 2H), 0.59–0.48 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃) δ 173.5 (C), 139.9 (C), 139.6 (C), 133.8 (CH), 133.7 (CH), 132.0 (CH), 131.4 (C), 129.4 (CH), 124.3 (CH), 122.7 (CH), 121.5 (C), 89.0 (C), 74.3 (C), 39.8 (CH₂), 35.0 (CH), 8.3 (CH₂), 8.2 (CH₂), -0.4 (CH); HRMS (ESI), *m/z*: 414.0154, [M+H]⁺, C₂₀H₁₇BrNO₂S⁺ requires 414.0158.

(S)-3-(4-Cyclopropyl-2-(4-methoxyphenyl)but-3-yn-1-yl)benzo[d]isothiazole 1,1dioxide (3cg)

Obtained 31.5 mg (69%). The enantiomeric excess (92%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 21.98$ min, minor enantiomer $t_r = 19.32$ min.

Yellow solid; mp 112-115 °C; $[\alpha]_D^{25}$ +7.46 (*c* 1.0, CHCl₃); ¹**H** NMR (300 MHz,CDCl₃) δ 7.91–7.88 (m, 1H), 7.69 (dtd, *J* = 16.0,

7.4, 1.3 Hz, 2H), 7.59–7.56 (m, 1H), 7.37–7.32 (m, 2H), 6.87–6.82 (m, 2H), 4.30 (ddd, J = 8.2, 6.4, 1.8 Hz, 1H), 3.78 (s, 3H), 3.35 (dd, J = 14.9, 8.3 Hz, 1H), 3.24 (dd, J = 14.9, 6.5 Hz, 1H), 1.16 (ttd, J = 8.2, 5.0, 1.8, 1H), 0.69–0.62 (m, 2H), 0.59–0.46 (m, 2H); ¹³C **NMR** (75 MHz, CDCl₃) δ 174.0 (C), 159.1 (C), 139.9 (C), 133.7 (CH), 133.5 (CH), 132.7 (C), 131.6 (C), 128.6 (CH), 124.5 (CH), 122.6 (CH), 114.3 (CH), 88.5 (C), 75.1 (C), 55.5 (CH₃), 40.3 (CH₂), 35.0 (CH), 8.2 (CH₂), 8.2 (CH₂), -0.4 (CH); HRMS (ESI), *m/z*: 366.1159, [M+H]⁺, C₂₁H₂₀NO₃S⁺ requires 366.1158.

(S)-3-(4-Cyclopropyl-2-(p-tolyl)but-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3dg)

Obtained 31.0 mg (69%). The enantiomeric excess (93%) was determined by HPLC (Chiralcel OD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 16.5$ min, minor enantiomer $t_r = 14.4$ min.

Yellow solid; mp 104-107 °C; $[\alpha]_D^{25}$ +1.32 (*c* 1.0, CHCl₃); ¹**H** NMR (300 MHz,CDCl₃) δ 7.92–7.89 (m, 1H), 7.69 (dtd, *J* = 16.2,

7.3, 1.3 Hz, 2H), 7.60–7.57 (m, 1H), 7.34–7.30 (m, 2H), 7.15–7.12 (m, 2H), 4.30 (ddd, J = 8.3, 6.2, 1.7 Hz, 1H), 3.35 (dd, J = 14.9, 8.5 Hz, 1H), 3.24 (dd, J = 14.9, 6.3 Hz, 1H), 2.32 (s, 3H), 1.17 (ttd, J = 8.2, 5.0, 1.8, 1H), 0.70–0.61 (m, 2H), 0.58–0.45 (m, 2H); ¹³C **NMR** (75 MHz, CDCl₃) δ 174.0 (C), 139.9 (C), 137.6 (C), 137.3 (C), 133.7 (CH), 133.5 (CH), 131.6 (C), 129.6 (CH), 127.4 (CH), 124.5 (CH), 122.6 (CH), 88.5 (C), 74.9 (C), 40.2 (CH₂), 35.4 (CH), 21.2 (CH₃), 8.2 (CH₂), 8.2 (CH₂), -0.4 (CH); HRMS (ESI), *m/z*: 350.1212, [M+H]⁺, C₂₁H₂₀NO₂S⁺ requires 350.1209.

(S)-3-(4-Cyclopropyl-2-(*o*-tolyl)but-3-yn-1-yl)benzo[–]isothiazole 1,1-dioxide (3eg)

Obtained 24.0 mg (55%). The enantiomeric excess (85%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 10.50$ min, minor enantiomer $t_r = 9.93$ min.

Yellow solid; mp 143-146 °C; $[\alpha]_D^{25}$ –17.8 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz,CDCl₃) δ 7.93–7.90 (m, 1H), 7.71 (dtd, *J* = 14.2, 7.3, 1.4 Hz, 2H), 7.65–7.61 (m, 1H), 7.59–7.56 (m, 1H), 7.25–7.14 (m, 3H), 4.50 (ddd, *J* = 9.3, 5.3, 1.8 Hz, 1H), 3.34 (dd, *J* = 14.7, 9.3 Hz, 1H), 3.19 (dd, *J* = 14.7, 5.3 Hz, 1H), 2.42 (s, 3H), 1.13 (ttd, *J* = 8.2, 5.0, 1.8, 1H), 0.67–0.58 (m, 2H), 0.56–0.42 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 174.1 (C), 140.0 (C), 138.8 (C), 135.1 (C), 133.7 (CH), 133.6 (CH), 131.6 (C), 131.0 (CH), 127.6 (CH), 127.5 (CH), 126.8 (CH), 124.6 (CH), 122.6 (CH), 88.2 (C), 75.0 (C), 38.6 (CH₂), 32.5 (CH), 19.4 (CH₃), 8.2 (CH₂), 8.1(CH₂), -0.4 (CH); HRMS (ESI), *m/z*: 350.1212, [M+H]⁺, C₂₁H₂₀NO₂S⁺ requires 350.1209.

(S)-3-(4-Cyclopropyl-2-(*m*-tolyl)but-3-yn-1-yl)benzo[*d*]isothiazole 1,1-dioxide (3fg)

Obtained 28.0 mg (64%). The enantiomeric excess (82%) was determined by HPLC (Chiralpak AY-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer t_r = 46.0 min, minor enantiomer t_r = 43.8 min.

Oil; $[\alpha]_D^{25}$ +11.2 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz,CDCl₃) δ 7.91–7.89 (m, 1H), 7.69 (dtd, J = 21.7, 7.4, 1.1 Hz, 2H),

7.60–7.57 (m, 1H), 7.23–7.21 (m, 3H), 7.07–7.04 (m, 1H), 4.29 (ddd, J = 8.5, 6.2, 1.8 Hz, 1H), 3.36 (dd, J = 14.8, 8.8 Hz, 1H), 3.25 (dd, J = 14.8, 6.1 Hz, 1H), 2.32 (s, 3H), 1.17 (ttd, J = 8.3, 5.0, 1.8, 1H), 0.69–0.64 (m, 2H), 0.58–0.47 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 174.0 (C), 140.5 (C), 139.9 (C), 138.7 (C), 133.7 (CH), 133.5 (CH), 131.6 (C), 128.9 (CH), 128.4 (CH), 128.3 (CH), 124.5 (CH), 124.4 (CH), 122.6 (CH), 88.7 (C), 74.8 (C), 40.1 (CH₂), 35.8 (CH), 21.5 (CH₃), 8.2 (CH₂), 8.2 (CH₂), -0.4 (CH); HRMS (ESI), m/z: 350.1211, [M+H]⁺, C₂₁H₂₀NO₂S⁺ requires 350.1209.

(S)-5-(1,1-Dioxidobenzo[d]isothiazol-3-yl)-4-phenylpent-2-yn-1-yl benzoate (3ah)

Obtained 34.0 mg (63%). The enantiomeric excess (93%) was determined by HPLC (Chiralpak IC), hexane:*i*PrOH 70:30, 1mL/min. Major enantiomer $t_r = 56.5$ min, minor enantiomer $t_r = 46.8$ min.

Oil; $[\alpha]_D^{25}$ +15.6 (*c* 1.0, CHCl₃); ¹H NMR (300 MHz,CDCl₃) δ 8.04–8.02 (m, 2H), 7.86–7.83 (m, 1H), 7.66–7.55 (m, 4H), 7.47–7.41 (m, 4H), 7.36–7.23 (m, 3H), 4.90 (dd, *J* = 2.1, 1.5 Hz, 2H), 4.53–4.47 (m, 1H), 3.49 (dd, *J* = 15.7, 8.2 Hz, 1H), 3.33 (dd, *J* = 15.7, 6.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 173.5 (C), 166.0 (C), 139.8 (C), 139.4 (C), 133.9 (CH), 133.7 (CH), 133.4 (CH), 131.3 (C), 130.0 (CH), 129.7 (C), 129.1 (CH), 128.5 (CH), 127.9 (CH), 127.6 (CH), 124.2 (CH), 122.6 (CH), 86.8 (C), 78.8 (C), 53.0 (CH₂), 39.5 (CH₂), 35.3 (CH); HRMS (ESI), *m/z*: 430.1104, [M+H]⁺, C₂₅H₂₀NO4S⁺ requires 4301108.

(S)-3-(8-(4-Methoxyphenoxy)-2-phenyloct-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3ai)

Obtained 39.3 mg (66%); the conjugate ethylation product **6** (12.3 mg, 33%). The enantiomeric excess (99%) was determined by HPLC (Chiralpak OD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer $t_r = 38.7$ min, minor

enantiomer $t_r = 48.1$ min.

Oil; $[\alpha]_D^{25}$ +10.3 (*c* 0.96, CHCl₃); ¹H NMR (300 MHz,CDCl₃) δ 7.89–7.86 (m, 1H), 7.68–7.64 (m, 2H), 7.58–7.56 (m, 1H), 7.47–7.44 (m, 2H), 7.36–7.31 (m, 2H), 7.28–7.22 (m, 1H), 6.81 (s, 4H), 4.40–4.37 (m, 1H) 3.86 (td, *J* = 6.3, 2.2 Hz, 2H), 3.76 (s, 3H), 3.39 (dd, *J* = 15.1, 8.7 Hz, 1H), 3.27 (dd, *J* = 15.1, 6.1 Hz, 1H), 2.21 (td, *J* = 7.1, 2.3 Hz, 2H), 1.79–1.71 (m, 2H), 1.63–1.55 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 173.1 (C), 153.8 (C), 153.3 (C), 140.6 (C), 139.9 (C), 133.8 (CH), 133.6 (CH), 131.5 (C), 129.9 (CH), 127.7 (CH), 127.5 (CH), 124.4 (CH), 122.6 (CH), 115.5 (CH), 114.8 (CH), 85.1 (C), 80.0 (C), 68.0 (CH₂), 55.9 (CH₃), 40.1 (CH₂), 35.7 (CH), 28.5 (CH₂), 25.3 (CH₂), 18.6 (CH₂); HRMS (ESI), *m/z*: 474.1732, [M+H]⁺, C₂₈H₂₈NO₄S⁺ requires 474.1734.

(S)-3-(5-(Benzyloxy)-2-phenylpent-3-yn-1-yl)benzo[d]isothiazole 1,1-dioxide (3aj)

Obtained 30.7 mg (59%); the conjugate ethylation product **6** (5.3 mg, 14%). The enantiomeric excess (80%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 80:20, 1mL/min. Major enantiomer t_r = 45.4 min, minor enantiomer t_r = 26.9 min.

Oil; $[\alpha]_D^{25}$ +3.8 (*c* 0.65, CHCl₃); ¹H NMR (300 MHz,CDCl₃) δ 7.89–7.86 (m, 1H), 7.72–7.61 (m, 2H), 7.58–7.55 (m, 1H), 7.49–7.45 (m, 2H), 7.37–7.27 (m, 8H), 4.52 (d, *J* = 1.9 Hz, 2H), 4.17 (d, *J* = 2.0 Hz, 2H), 3.48 (dd, *J* = 15.9, 8.5 Hz, 1H), 3.32 (dd, *J* = 15.8, 6.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 173.5 (C), 139.9 (C), 139.8 (C), 137.6 (C), 133.9 (CH), 133.7 (CH), 131.3 (C), 129.1 (CH), 128.5 (CH), 128.2 (CH), 127.90 (CH), 127.85 (CH), 127.6 (CH), 124.2 (CH), 122.7 (CH), 86.3 (C), 80.7 (C), 71.6 (CH₂),

57.6 (CH₃), 39.7 (CH₂), 35.3 (CH); HRMS (ESI), *m*/*z*: 416.1312, [M+H]⁺, C₂₅H₂₂NO₃S⁺ requires 416.1315.

4-Methyl-*N*-(1,3,5-triphenylpent-1-en-4-yn-1-yl)benzenesulfonamide (3ja) and 4-Methyl-*N*-(1,3,5-triphenylpent-4-yn-1-ylidene)benzenesulfonamide (3ja')

Obtained 24.5 mg (43%) as a mixture enamine **3ja**/imine **3ja**' (72/28).

Enamine **3ja**: The enantiomeric excess of enamine **3ja** (73%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 90:10 1 mL/min,

major enantiomer: $t_r = 14.2 \text{ min}$, minor enantiomer: $t_r = 17.5 \text{ min}$.

Brown solid; mp 45-50 °C; $[\alpha]_D^{25}$ +7.6 (*c* 1.0, CHCl₃, 73% *ee*); ¹**H** NMR (300 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.43–7.37 (m, 2H), 7.37–7.31 (m, 3H), 7.25–7.07 (m, 5H), 6.80 (s, 1H), 5.51 (dd, *J* = 8.1, 0.8 Hz, 1H), 4.35 (d, *J* = 8.1 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.93 (C), 139.57 (C), 136.89 (C), 136.76 (C), 135.73 (C), 131.82 (CH), 129.66 (CH), 128.80 (CH), 128.42 (CH), 128.38 (CH), 128.08 (CH), 127.55 (CH), 127.47 (CH), 127.45 (CH), 127.36 (CH), 127.32 (CH), 124.19 (CH), 122.8 (C), 87.55 (C), 84.83 (C), 35.67 (CH), 21.56 (CH₃).

Imine **3ja':** The enantiomeric excess of imine **3ja'** (75%) was determined by HPLC (Chiralpak AD-H), hexane:*i*PrOH 90:10 1 mL/min, major enantiomer: $t_r = 28.3$ min, minor enantiomer: $t_r = 22.9$ min.

Oil; ¹**H NMR** (300 MHz, CDCl₃) δ 7.94 (d, *J* = 8.1 Hz, 4H), 7.61 (bd, *J* = 7.4 Hz, 2H), 7.55–7.47 (m, 1H), 7.43–7.29 (m, 7H), 7.23–7.16 (m, 3H), 7.08 (bd, *J* = 6.5 Hz, 2H), 4.75 (s, 1H), 3.96 (s, 1H), 3.82 (s, 1H), 2.44 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 180.53 (C), 143.65 (C), 140.50 (C), 138.49 (C), 137.70 (C), 132.88 (CH), 131.54 (CH), 129.53 (CH), 129.14 (CH), 128.82 (CH), 128.51 (CH), 128.02 (CH), 127.96 (CH), 127.60 (CH), 127.44 (CH), 127.29 (CH), 123.04 (C), 89.15 (C), 85.86 (C), 41.38 (CH2), 37.32 (CH), 21.64 (CH₃).

Synthesis of compound 3ad at 1 mmol scale

Ligand L6 (90 mg, 0.126 mmol) was introduced in a round bottom flask and purged with nitrogen. Dry toluene (5 mL), alkyne 2e (6.3 mmol) and a 1.5 M solution of diethyzinc in toluene (1.7 mL, 2.52 mmol) were added in this order. The mixture was introduced in a bath at 70 °C for 2 hours and allowed to reach room temperature. Imine 1a (1.26 mmol) in dry toluene (10 mL) was injected ant the reaction mixture stirred until completion (TLC). After this time, the reaction was quenched with 20% aqueous NH₄Cl (5 mL), diluted in CH₂Cl₂ (100 mL), washed with brine (100 mL), dried over MgSO₄. After filtration and concentration under reduced pressure, column chromatography eluting with toluene:Et₂O (9:1) afforded compound 3ad (280 mg, 56%, 88% *ee*).

Synthetic transformations of compound 3ad

3-((*S*)-2,6-Diphenylhex-3-yn-1-yl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (4)

NaBH₄ (8 mg, 0.2 mmol) was added to a solution of compound **3ad** (20 mg, 0.05 mmol) in THF (1 mL) at room temperature under nitrogen atmosphere. After 1 h, the reaction was quenched with 1M HCl and extracted with CH₂Cl₂, the organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. Purification by flash

chromatography gave amine 4 (16 mg, 80%) as a 69:31 diastereomer mixture.

Major diastereomer: The enantiomeric excess (95%) was determined by HPLC (Lux Cellulose 4), hexane: iPrOH 80:20, 1 mL/min. Major enantiomer $t_r = 36.5$ min, minor enantiomer $t_r = 24.1$ min.

Oil; $[\alpha]_D^{25}$ +11.1 (*c* 0.7, CHCl₃); ¹**H** NMR (300 MHz,CDCl₃) δ 7.78–7.75 (m, 1H), 7.59 (td, *J* = 7.5, 1.3 Hz, 1H), 7.52 (td, *J* = 7.4, 1.2 Hz, 1H), 7.35–7.19 (m, 11H), 4.80 (d, *J* = 4.6 Hz, 1H), 4.55 (dt, *J* = 9.4, 4.6 Hz, 1H), 3.90–3.85 (m, 1H), 2.86 (t, *J* = 7.3 Hz, 2H), 2.59 (td, *J* = 7.3, 2.2 Hz, 2H), 2.26–2.18 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 140.69 (C), 140.68 (C), 140.2 (C), 135.6 (C), 133.1 (CH), 129.5 (CH), 129.1 (2CH), 128.7 (2CH), 128.6 (2CH), 127.5 (2CH), 126.4 (CH), 124.6 (CH), 121.6 (CH), 84.9 (C), 81.5 (C), 56.3 (CH), 44.8 (CH₂), 35.8 (CH), 35.1 (CH₂), 20.9 (CH₂); HRMS (ESI), *m/z*: 402.1530, [M+H]⁺, C₂₅H₂₄NO₂S⁺ requires 402.1522.

Minor diastereomer: The enantiomeric excess (92%) was determined by HPLC (Chiralcel OD-H), hexane:iPrOH 80:20, 1mL/min. Major enantiomer $t_r = 13.1$ min, minor enantiomer $t_r = 27.6$ min

Oil; $[\alpha]_D^{25}$ –11.7 (*c* 0.3, CHCl₃); ¹**H** NMR (300 MHz,CDCl₃) δ 7.78–7.75 (m, 1H), 7.58 (td, *J* = 7.5, 1.3 Hz, 1H), 7.53–7.48 (m, 1H), 7.32–7.15 (m, 11H), 4.77 (d, *J* = 6.0 Hz, 1H), 4.69–4.64 (m, 1H), 3.95–3.90 (m, 1H), 2.89 (t, *J* = 6.9 Hz, 2H), 2.66 (td, *J* = 7.0, 2.1 Hz, 2H), 2.03–1.97 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 141.0 (C), 140.8 (C), 140.6 (C), 136.7 (C), 133.1 (CH), 129.4 (CH), 128.8 (2CH), 128.7 (2CH), 128.6 (2CH), 127.4 (2CH), 127.2 (CH), 126.6 (CH), 124.3 (CH), 121.5 (CH), 85.3 (C), 80.8 (C), 56.5 (CH), 45.0 (CH₂), 35.6 (CH), 35.0 (CH₂), 20.7 (CH₂); HRMS (ESI), *m/z*: 402.1530, [M+H]⁺, C₂₅H₂₄NO₂S⁺ requires 402.1522.

3-((S)-2,6-Diphenylhexyl)-2,3-dihydrobenzo[d]isothiazole 1,1-dioxide (5)

A solution of **3ad** (20 mg, 0.05 mmol) in MeOH (1 mL) was stirred under hydrogen atmosphere in the presence of 10% Pd/C for 30 min. Then, the reaction mixture was filtered through celite® eluting with EtOAc and the solvent was removed under reduced pressure. Purification by flash chromatography gave compound **5** (15.3 mg, 75%) as a 74:26

diastereomeric mixture.

Major diastereomer: The enantiomeric excess (94%) was determined by HPLC (Lux Cellulose 4), hexane:iPrOH 80:20, 1mL/min. Major enantiomer $t_r = 21.4$ min, minor enantiomer $t_r = 25.7$ min

Oil; $[\alpha]_D^{25}$ –26.7 (*c* 0.8, CHCl₃); ¹H NMR (300 MHz,CDCl₃) δ 7.74–7.71 (m, 1H), 7.54 (td, *J* = 7.5, 1.4 Hz, 1H), 7.47 (t, *J* = 7.1 Hz, 1H), 7.33–7.10 (m, 11H), 4.67–4.61 (m, 1H), 4.23 (d, *J* = 4.2 Hz, 1H), 2.88–2.78 (m, 1H), 2.56–2.50 (m, 2H), 2.29 (ddd, *J* = 14.4, 5.7, 4.2 Hz, 1H), 2.10 (dt, *J* = 14.6, 9.0 Hz, 1H), 1.74–1.54 (m, 4H), 1.29–1.18 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 144.0 (C), 142.6 (C), 140.4 (C), 135.4 (C), 133.0 (CH), 129.4 (CH), 129.1 (2CH), 128.5 (2CH), 128.4 (2CH), 127.8 (2CH), 127.1 (CH), 125.8 (CH), 124.4 (CH), 121.5 (CH), 57.1 (CH), 44.0 (CH), 43.6 (CH₂), 36.6 (CH₂), 35.9 (CH₂), 31.5 (CH₂), 27.0 (CH₂); HRMS (ESI), *m*/*z*: 406.1841, [M+H]⁺, C₂₅H₂₈NO₂S⁺ requires 406.1835.

Minor diastereomer: The enantiomeric excess (84%) was determined by HPLC (Lux Cellulose 4), hexane:iPrOH 80:20, 1mL/min. Major enantiomer $t_r = 17.8$ min, minor enantiomer $t_r = 14.7$ min.

Oil; $[\alpha]_D^{25}$ +41.3 (*c* 0.3, CHCl₃); ¹H NMR (300 MHz,CDCl₃) δ 7.75–7.72 (m, 1H), 7.57 (td, *J* = 7.5, 1.3 Hz, 1H), 7.51–7.46 (m, 1H), 7.40–7.34 (m, 2H), 7.29–7.22 (m, 6H), 7.18–7.09 (m, 3H), 4.55 (d, *J* = 6.0 Hz, 1H), 4.22 (ddd, *J* = 11.1, 5.9, 3.0 Hz, 1H), 2.94–2.84 (m, 1H), 2.55–2.49 (m, 2H), 2.15–2.02 (m, 2H), 1.69–1.53 (m, 4H), 1.28–1.23 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 143.5 (C), 142.7 (C), 141.3 (C), 135.7 (C), 133.2 (CH), 129.3 (CH), 129.2 (2CH), 128.5 (2CH), 128.4 (2CH), 127.8 (2CH), 127.1 (CH), 125.8 (CH), 124.2 (CH), 121.5 (CH), 56.1 (CH), 43.6 (CH), 43.5 (CH₂), 37.3 (CH₂), 35.9 (CH₂), 31.5 (CH₂), 27.3 (CH₂); HRMS (ESI), *m/z*: 406.1841, [M+H]⁺, C₂₅H₂₈NO₂S⁺ requires 406.1835.

3-(2-Phenylbutyl)benzo[d]isothiazole 1,1-dioxide (6)

⁰ ¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.68 (td, J =¹H NMR (300 MHz,CDCl₃) δ 7.88–7.84 (m, 1H), 7.49–7.46 (m, 1H), 1.88–1.21 (m, 1H), 7.49–7.46 (m, 3H), 1.98–1.91 (m, 1H), 1.82–1.72 (m, 1H), 0.84 (t, J =¹J - 2.1 (m, 1H), 1.82–1.72 (m, 1H), 0.84 (t, J =¹J - 2.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 175.4 (C), 143.3 (C), 139.8 (C), 133.8 (CH), 133.5 (CH), 131.6 (C), 128.8 (CH), 127.7 (CH), 127.0 (CH), 124.1 (CH), 122.5 (CH), 45.1 (CH₂), 38.5 (CH), 28.8 (CH₃), 12.2 (CH₂); HRMS (ESI), m/z: 300.1050, [M+H]⁺, C₁₇H₁₈NO₂S⁺ requires 300.1053.

References

1. G. Blay, M. C. Muñoz, J. R. Pedro and A. Sanz-Marco, *Adv. Synth. Catal.*, 2013, 355, 1071.

2. M. Rommel, T. Fukuzumi and J. Bode, J. Am. Chem. Soc., 2008, 130, 17266.

3. (a) C. M. Young, D. G. Stark, T. H. West, J. E. Taylor and A. D. Smith, *Angew. Chem. Int. Ed.*, 2016, 55, 14394; (b) X. Feng, Z. Zhou, C. Ma, X. Yin, R. Li, L. Dong and Y.-C.
Chen, *Angew. Chem. Int. Ed.*, 2013, 52, 14173; (c) E. Li, H. Jin, P. Jia, X. Dong and Y.
Huang, *Angew. Chem. Int. Ed.*, 2016, 55, 11591; (d) Q. An, J. Shen, N. Butt, D. Liu, Y.
Liu and W. Zhang, *Adv. Synth. Catal.*, 2015, 357, 3627. 7, 2005 7, 200

Racemic or near racemic mixture:

No.	RT	Area	Area %	Name
1 2	24,04 27,19	9629085 9090504	51,439 48,561	
		18719589	100,000	

Enantioselective reaction:

No.	RT	Area	Area %	Name
1 2	25,81 29,07	1643736 19905358	7,628 92,372	
		21549094	100,000	

7, 288 7, 289 7, 299 7, 299 7,

Racemic or near racemic mixture:

No.	RT	Area	Area %	Name
1	21,63	4093595	50,700	
2	35,19	3980515	49,300	
		8074110	100,000	

Enantioselective reaction:

7,310 7,710

Racemic or near racemic mixture:

9: 245 nm, 4 nm Results	Area	Area Percent
Recención Time	Alea	Alea Fercenc
18,41	226501385	51,117
25,19	216600530	48,883

Enantioselective reaction:

7,912 7,912 7,918 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,788 7,77 7,77 7,77 7,768 7,698 7,698 7,698 7,698 7,698 7,698 7,698 7,698 7,698 7,698 7,718 7,698 7,698 7,698 7,718 7,7

Racemic or near racemic mixture:

Enantioselective reaction:

Racemic or near racemic mixture:

No.	RT	Area	Area %	Name
1 2	11,84 14,83	15064120 14241760	51,403 48,597	
		29305880	100,000	

No.	RT	Area	Area %	Name
1 2	11,89 15,17	8333409 2576065	76,387 23,613	
		10909474	100,000	

7,7,222 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,898 7,7,10

Racemic or near racemic mixture:

No.	RT	Area	Area %	Name
1 2	19,63 23,15	13434774 12921004	50,975 49,025	
		26355778	100,000	

No.	RT	Area	Area %	Name
1 2	18,02 20,91	5525730 32433190	14,557 85,443	
		37958920	100,000	

7,3988 7,79110 7,79110 7,79110 7,79110 7,79110 7,79110 7,79110 7,79110 7

Racemic or near racemic mixture:

Racemic or near racemic mixture:

Racemic or near racemic mixture:

7, 234 7, 234 7, 235 7, 235 7, 235 7, 235 7, 235 7, 255 7,

Racemic or near racemic mixture:

No.	RT	Area	Area %	Name
1 2	24,79 29,80	10927720 10972194	49,898 50,102	
		21899914	100,000	

No.	RT	Area	Area %	Name
1 2	26,91 32,65	28149638 2673610	91,326 8,674	
		30823248	100,000	

7,914 7,914 7,914 7,910 7,910 7,7914

Racemic or near racemic mixture:

No.	RT	Area	Area %	Name
1	28,31	18141489	50,342	
		36036548	100,000	

No.	RT	Area	Area %	Name
1 2	28,79 44,76	3738144 12274864	23,344 76,656	
		16013008	100,000	

7,915 7,915 7,759 7,759 7,759 7,759 7,759 7,759 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,751 7,752

Racemic or near racemic mixture:

No.	RT	Area	Area %	Name
1	24,92	8841550	50,014	
2 29,42	29,42	8836630	49,986	
		17678180	100,000	

No.	RT	Area	Area %	Name
1 2	24,66 29,49	35156310 916560	97,459 2,541	
		36072870	100,000	

No.	RT	Area	Area %	Name
1 2	23,17 26,76	9625744 11491329	45,583 54,417	
		21117073	100,000	

No.	RT	Area	Area %	Name
1 2	22,72 26,18	1081550 17256240	5,898 94,102	
		18337790	100,000	

No.	RT	Area	Area %	Name
1 2	23,86 26,37	14572449 16979510	46,186 53,814	
		31551959	100,000	

No.	RT	Area	Area %	Name
1 2	24,13 26,56	198690 12454504	1,570 98,430	
		12653194	100,000	

No.	RT	Area	Area %	Name
1 2	16,31 18,40	9140336 10633608	46,224 53,776	
		19773944	100,000	

No.	RT	Area	Area %	Name
1 2	16,35 18,32	755407 18645662	3,894 96,106	
		19401069	100,000	

No.	RT	Area	Area %	Name
1 2	31,80 34,43	6645030 12899800	33,999 66,001	
		19544830	100,000	

No.	RT	Area	Area %	Name
1 2	32,14 34,72	199995 9417889	2,079 97,921	
		9617884	100,000	

No.	RT	Area	Area %	Name
1 2	17,71 21,31	10183900 13654979	42,720 57,280	
		23838879	100,000	

No.	RT	Area	Area %	Name
1 2	17,69 21,33	950905 25385980	3,611 96,389	
		26336885	100,000	

S67

No.	RT	Area	Area %	Name
1 2	16,67 19,95	10639500 11103820	48,932 51,068	
		21743320	100,000	

No.	RT	Area	Area %	Name
1 2	16,73 20,01	370170 18711820	1,940 98,060	
		19081990	100,000	

No.	RT	Area	Area %	Name
1 2	19,41 22,08	9640990 16887315	36,342 63,658	
		26528305	100,000	

No.	RT	Area	Area %	Name
1 2	19,32 21,98	1135975 26272099	4,145 95,855	
		27408074	100,000	

Racemic or near racemic mixture of enantiomers:

1 2	14,52 16,87	4322875 4973360	46,501 53,499	
		9296235	100,000	

No.	RT	Area	Area %	Name
1 2	14,40 16,54	599085 15966884	3,616 96,384	
		16565969	100,000	

No.	RT	Area	Area %	Name
1 2	9,93 10,51	6282960 7983640	44,040 55,960	
		14266600	100,000	

No.	RT	Area	Area %	Name
1 2	9,93 10,50	904102 11350442	7,378 92,622	
		12254544	100,000	

No.	RT	Area	Area %	Name
1 2	46,42 50,89	7748470 5245439	59,632 40,368	
		12993909	100,000	

No.	RT	Area	Area %	Name
1 2	43,81 46,01	2270362 22571467	9,139 90,861	
		24841829	100,000	

No.	RT	Area	Area %	Name
1 2	49,41 61,15	3065898 3916918	43,906 56,094	
		6982816	100,000	

No.	RT	Area	Area %	Name
1 2	46,84 56,47	235995 6481260	3,513 96,487	
		6717255	100,000	

3ai

Racemic or near racemic mixture of enantiomers:

Enantioselective reaction:

No.	RT	Area	Area %	Name
1 2	27,71 47,83	2482240 2713290	47,776 52,224	
		5195530	100,000	

NO.	RT	Area	Area %	Name
1 2	26,88 45,39	656695 5568660	10,549 89,451	
		6225355	100,000	

No.	RT	Area	Area %	
1	14,39	28915600	46,944	
2	17,59	28939929	46,984	
3	23,11	1842060	2,991	
4	28,54	1897840	3,081	
66 		61595429	100,000	

No.	RT	Area	Area %	Name
1 2	24,09 36,49	565220 21606480	2,549 97,451	
		22171700	100,000	

1 2	21,36	12941350	97,323
	25,71	355960	2,677
		13297310	100,000

No.	RT	Area	Area %	Name
1 2	14,67 17,91	195100 2242210	8,005 91,995	
		2437310	100,000	

3.273.273.223283.23283.23

X-Ray Crystallography data for compound **3bg**: crystallized from hexane-EtOAc; C₂₀H₁₆BrNO₂S; Mr=414.31; monoclinic; space group= $P2_1$; a=7.4286(4), b=7.2641(3); c=17.1612(8) Å, β =96.473(2); V=929.15(8) Å³; Z=2; ρ_{calcd} =1.495 Mg m⁻³; μ =2.360 mm⁻¹; F(000)=420. A colorless crystal of 0.04x0.04x0.08 mm³ was used; 3393 [R(int)=0.0504] independent reflections were collected on a Bruker S8 x-ray diffraction, equipped with a graphite monochromator and Mo K α (λ = 0.71073 Å). The structure was solved by using direct methods with SHELXS-2014 and refined by using full matrix least squares on F^2 with SHELXL-2014. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined isotropically. Final R(ω R) values were R=0.0451 (0.1152). CCDC-1992564 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure S1. Ortep plot for the X-ray structure of compound **3bg**. The thermal ellipsoids are drawn at the 50% probability level. Flack parameter 0.017(6).