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Finite-difference Time Domain (FDTD) simulations: Simulations were performed using the 

FDTD method1 via the Python interface (pymeep) for the open source MEEP package.2 The 

simulations performed on a grid with a 20 nm voxel size in a two-dimensional box of area 1.5 

µm x 8 µm.  The FDTD simulations used periodic boundary conditions along the x-direction and 

perfectly matched layers at either end of the y-axis to allow for infinite propagation away from 

the electrode. The illumination source was defined as a uniform plane beneath the electrode 

with the Poynting vector oriented along the y-axis and the polarization along the z-axis, parallel 

with axes of the cylinders. The cylinders were defined by the geometric object primitives in 

MEEP assigned with complex refractive index calculated from literature measurements for 

GaAs3 and SiO2.4 The dielectric properties of GaAs varies significantly over the wavelengths of 

interest here, so a unique FDTD simulation was performed for each wavelength. The 

calculations are normalized to the intensity of the incident illumination and are therefore 

comparable in absolute quantities even though FDTD simulations are unitless.  Simulations 

were performed on a desktop computer, with each taking roughly 4 seconds to complete.   

 

Definition of error metric: We defined the metric 𝛔𝐩𝐩, or the per-pixel variance of a prediction 

to the true, FDTD-derived value: 

𝛔𝐩𝐩 = 〈
∑ &𝐀𝐩𝐫𝐞𝐝(𝐢, 𝐣) − 𝐀𝐅𝐃𝐓𝐃(𝐢, 𝐣)4

𝟐
𝐢,𝐣

∑ [𝐀𝐅𝐃𝐓𝐃(𝐢, 𝐣)]𝟐𝐢,𝐣
〉, 

where 𝐀𝐩𝐫𝐞𝐝	is the MLP-predicted absorption profile and 𝐀𝐅𝐃𝐓𝐃 is the FDTD-determined, ‘true’ 

intensity profile for a given omission glass configuration. The sum is taken over each pixel (i,j) 

and the average is taken over every prediction in the test data set. 𝛔𝐩𝐩 includes a weight term to 

normalize variance to the integrated absorption of a given configuration to avoid biasing towards 

configurations with lower total absorption.  𝛔𝐩𝐩 = 𝟎 represents perfect numerical agreement 

between the prediction and the true profile, while 𝛔𝐩𝐩 = 𝟏 for the uniform prediction of a flat, 

zero-valued profile. 𝛔𝐩𝐩 is a more exact measure of the accuracy of the prediction than the 

differences in integrated intensity, which may artificially indicate agreement for drastically 

different absorption profiles. 

 

Characterization of the close-packed k = 0 photoelectrode: The steady-state electric field 

amplitude,	|E(x, y)|, from FDTD simulations for the k = 0 (no scatterers omitted) and k = 41 (all 

scatterers omitted) simulations are shown in Figures S1a and S1b, respectively. The absorption 

profile A(x, y) = εB(𝜆)|E(x, y)|D in the GaAs cylinder for the k = 0 and k = 41 simulations are 
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shown in Figure S1c for 600 nm, 700 nm, and 800 nm illumination.  εB(𝜆) = 2	𝑛(𝜆)𝑘(𝜆) is the 

imaginary part of the wavelength-dependent, complex dielectric constant.  𝑛(𝜆) and 𝑘(𝜆) are the 

wavelength-dependent index of refraction and extinction coefficient of the material, respectively. 

The absorption spectrum for an electrode was computed by integrating A(x, y) over the volume 

of the absorber, as shown in Figure S1d.  The absorption spectrum of a continuous, 250 nm 

slab of GaAs without included scatterers is shown for comparison.  A quadrupole-like resonance 

was observed at 800 nm, possibly due to coupling through periodic boundary conditions along 

the x-direction.5 The addition of the SiO2 scatterers increases the absorption at smaller 

wavelengths than this resonance, including a 119% increase at 700 nm and a 25% increase at 

600 nm.  A k = 0 photoelectrode would enhance the broadband absorption in the GaAs 

absorber.  

 

Multi-level Perceptron (MLP) emulation from libraries of FDTD simulations: The artificial 

neural network used to generate the model of an ensemble was built with the MLPRegressor 

function implemented in the Python machine learning library Scikit-Learn.6  The MLP emulator 

accepted a 41-element array of binary values representing the presence (1) or absence (0) of 

an SiO2 cylinder at a given position in the close-packed array (Figure S1).  The MLP emulator 

predicted the corresponding 2D absorption profile in the GaAs cylinder as a 16x16 real-valued 

array.  Voxels with an imaginary dielectric constant value εB(𝜆) = 0 (ie, outside of the GaAs 

volume) were omitted from the training and prediction of the MLP emulator.  The parametric 

structure of the MLPRegressor network was composed of three hidden layers, each of 2000 

nodes with rectifier (‘ReLU’) activation and a tolerance of 10-7.  This structure was chosen 

empirically as it demonstrated the best 𝜎JJ measurements on its own training data (‘self-score’) 

of all the network structures we evaluated.  We observed a strong relationship between the self-

score of a trained MLP emulator and the absolute variance scores 𝜎JJ on unique test data.  

While the absolute values of 𝜎JJ improved, the qualitative conclusions of this work were 

consistent over the range of MLP network structures we evaluated.     

 

Error analysis for MLP emulator predictions with full ensembles: We chose a number of 

simulations from the k = 3 or the k = 4 to measure the relationship between the training set size 

and the accuracy of prediction.  A number of FDTD simulations, Nsim, were chosen at random 

from the noted ensemble as the training set, and the accuracy of the trained emulator was 

tested on the entire ensemble. This procedure was repeated eight times for each Nsim, 

generating a new training set at random and MLP emulator at each iteration. The data for λ = 



 4 

600 nm is shown in Figure S5.  An MLP emulator trained exclusively with data from k = 3 or 

from k = 4 FDTD simulations was the most accurate approach for making predictions on the 

respective ensemble for a given Nsim.  Additionally, σLL decreased monotonically with 

increasingly large training sets.  σLL is biased for large Nsim, as a significant portion of the 

ensemble is included in the training set, though this quantifies the limit of achievable statistical 

error in the MLP emulator when the training set is the entire ensemble.  σLL increased for the k 

= 3-trained and k = 4-trained MLP emulators for predictions in the k = 5 and k = 6 ensembles, 

though increasing Nsim resulted in lower values of σLL. A training set comprised of simulations 

from a single ensemble made predictions with the highest accuracy for that ensemble but 

showed diminished accuracy for other ensembles. 

We used a similar procedure to compare the effect that training an MLP emulator with   

simulations sampled from multiple ensembles has on prediction accuracy. We evaluated MLP 

emulators that where the training set was composed of a total of Nsim simulations: the entire k = 

0-2 ensemble FDTD data set (862 simulations total) included with a combination of simulations 

from the k = 3 and k = 4 ensembles (added in a ratio of ten k = 4 simulations per k = 3 

simulation). The mixed training set yielded nearly identical σLL values and dependence on Nsim 

compared to the k = 3-trained and k = 4-trained models on their respective ensembles. The 

mixed training set also improved the prediction accuracy for k = 5 and k = 6 ensembles for the 

larger values of Nsim tested.  Similar results were observed for the λ = 700 nm (Figure S6) and λ 

= 800 nm (Figure S7) cases.  These experiments showed that mixing ensembles into the 

training set resulted in prediction accuracy that was virtually equal to independent models 

trained, though with high accuracy for multiple ensembles.  Mixing ensembles in the training set 

also improved the prediction accuracy for ensembles outside of the training set.  For a fixed total 

number of simulations, there is a notable accuracy improvement to train an MLP emulator with 

data from many ensembles.  
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Figure S1 – The geometry and steady-state |E(x,y)| for (a) the k = 0 and (b) the k = 41 omission 
glass electrode structure at λ = 600 nm (scale bar = 400 nm).  The planar illumination is incident 
from the bottom, propagating from below along the y-direction.  (c) The absorption profiles 
AFDTD(x,y) for the k = 0 and k = 41 electrodes, calculated from FDTD simulations for λ = 600 nm, 
λ = 700 nm, and λ = 800 nm (circle = boundary of 250 nm-diameter GaAs cylinder).  (d) The 
integrated absorption spectra for the k = 0 (red circles) and k = 41 (gray squares) 
photoelectrodes.  The FDTD-simulated integrated absorption spectrum of a 250 nm GaAs thin 
film is shown for comparison (black ‘x’).  
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Figure S2 – Randomly chosen examples of the MLP emulator-predicted profile Apred, the 
corresponding true profile AFDTD, and the difference between the two profiles (difference). The 
integrated absorption for each profile is included at the bottom of each panel. The 𝝈𝒑𝒑 metric for 
each pair is included at the bottom of the difference panel.  λ = 600 nm for these examples. 
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Figure S3 – Randomly chosen examples of the MLP emulator-predicted profile Apred, the 
corresponding true profile AFDTD, and the difference between the two profiles (difference). The 
integrated absorption for each profile is included at the bottom of each panel. The 𝝈𝒑𝒑 metric for 
each pair is included at the bottom of the difference panel.  λ = 700 nm for these examples. 
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Figure S4 – Randomly chosen examples of the MLP emulator-predicted profile Apred, the 
corresponding true profile AFDTD, and the difference between the two profiles (difference). The 
integrated absorption for each profile is included at the bottom of each panel. The 𝝈𝒑𝒑 metric for 
each pair is included at the bottom of the difference panel.  λ = 800 nm for these examples. 
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Figure S5 – 𝛔𝐩𝐩 plotted as a function of the size (Nsim = total number of simulations in the 
training set) and composition of the training set (λ = 600 nm) and the targeted ensembles used 
for testing.  Predictions for an MLP emulator trained on the k = 3 ensemble are shown as the 
red ‘Y’ data. Predictions for an MLP emulator trained on the k = 4 ensemble are shown as the 
blue ‘X’ data.  The green ‘+’ data represents predictions made by an MLP emulator trained by 
the entire k = 0, k = 1, and k = 2 (862 simulations) and the balance made of a random selection 
of k = 3 and k = 4 included in a 1:10 ratio.  The test set for each 𝛔𝐩𝐩 calculation was (a) the 
entire k = 3 ensemble (10,660 FDTD simulations), (b) the entire k = 4 ensemble (101,270 
simulations), (c) 20,000 FDTD simulations from the k = 5 ensemble, and (d) 20,000 FDTD 
simulations from the k = 6 ensemble.  Each point represents the average 𝛔𝐩𝐩 over eight 
independent MLP emulators trained on a random selection of simulations.  The dashed lines 
represent the value of Nsim where the MLP emulator is trained on the entire k = 3 (red) and k = 4 
(blue) ensembles. 
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Figure S6 – 𝛔𝐩𝐩 plotted as a function of the size (Nsim = total number of simulations in the 
training set) and composition of the training set (λ = 700 nm) and the targeted ensembles used 
for testing.  Predictions for an MLP emulator trained on the k = 3 ensemble are shown as the 
red ‘Y’ data. Predictions for an MLP emulator trained on the k = 4 ensemble are shown as the 
blue ‘X’ data.  The green ‘+’ data represents predictions made by an MLP emulator trained by 
the entire k = 0, k = 1, and k = 2 (862 simulations) and the balance made of a random selection 
of k = 3 and k = 4 included in a 1:10 ratio.  The test set for each 𝛔𝐩𝐩 calculation was (a) the 
entire k = 3 ensemble (10,660 FDTD simulations), (b) the entire k = 4 ensemble (101,270 
simulations), (c) 20,000 FDTD simulations from the k = 5 ensemble, and (d) 20,000 FDTD 
simulations from the k = 6 ensemble.  Each point represents the average 𝛔𝐩𝐩 over eight 
independent MLP emulators trained on a random selection of simulations.  The dashed lines 
represent the value of Nsim where the MLP emulator is trained on the entire k = 3 (red) and k = 4 
(blue) ensembles. 
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Figure S7 – 𝛔𝐩𝐩 plotted as a function of the size (Nsim = total number of simulations in the 
training set) and composition of the training set (λ = 800 nm) and the targeted ensembles used 
for testing.  Predictions for an MLP emulator trained on the k = 3 ensemble are shown as the 
red ‘Y’ data. Predictions for an MLP emulator trained on the k = 4 ensemble are shown as the 
blue ‘X’ data.  The green ‘+’ data represents predictions made by an MLP emulator trained by 
the entire k = 0, k = 1, and k = 2 (862 simulations) and the balance made of a random selection 
of k = 3 and k = 4 included in a 1:10 ratio.  The test set for each 𝛔𝐩𝐩 calculation was (a) the 
entire k = 3 ensemble (10,660 FDTD simulations), (b) the entire k = 4 ensemble (101,270 
simulations), (c) 20,000 FDTD simulations from the k = 5 ensemble, and (d) 20,000 FDTD 
simulations from the k = 6 ensemble.  Each point represents the average 𝛔𝐩𝐩 over eight 
independent MLP emulators trained on a random selection of simulations.  The dashed lines 
represent the value of Nsim where the MLP emulator is trained on the entire k = 3 (red) and k = 4 
(blue) ensembles.  
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Figure S8 – (a) 𝛔𝐩𝐩 measurements for MLP emulators trained on with a fixed number of 
samples (Nset = 3000) with varying distribution across the ensembles in a library of λ = 700 nm 
FDTD simulations. For example, the training set ‘k ≤ 4’ was composed of the entire set of 
simulations from the k = 0, k = 1, and k = 2 ensembles, 1500 randomly-sampled k = 3 
simulations and 1500 k = 4 simulations.  No simulations from the k = 7 or k = 9 ensembles were 
included in the training set.  Each line represents the 𝛔𝐩𝐩 measurement (averaged over eight 
unique models) for testing on the complete library of the targeted ensemble.  (b) 𝛔𝐩𝐩 
measurements for MLP emulators (solid lines) trained on the ‘k ≤ 10’ training set as a function of 
Nset.  𝛔𝐩𝐩 was also calculated for varied contributions from each ensemble.  The ‘X’ data 
represents 𝛔𝐩𝐩  measurements for a model trained with the entire set of simulations for k = 0-2 
ensembles, 500 simulations from k = 3, 500 from k = 4, 2500 from k = 5, 2500 from k = 6, 6000 
from k = 8, and 6000 from k = 10.  (c) Scatter plots showing the distribution of integrated 
absorption values for all of the test data from each ensemble, using emulators trained on the ‘X’ 
composition in (b).  For each configuration in the ensemble, the x-coordinate of the point 
represents the FDTD-derived absorption for the configuration while the y-coordinate represents 
the MLP-predicted absorption.  The black ‘X’ in each plot indicates the average of the predicted 
(y-coordinate) and the FDTD-determined (x-coordinate) absorption for that ensemble. 
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Figure S9 – (a) 𝛔𝐩𝐩 measurements for MLP emulators trained on with a fixed number of 
samples (Nset = 3000) with varying distribution across the ensembles in a library of λ = 800 nm 
FDTD simulations. For example, the training set ‘k ≤ 4’ was composed of the entire set of 
simulations from the k = 0, k = 1, and k = 2 ensembles, 1500 randomly-sampled k = 3 
simulations and 1500 k = 4 simulations.  No simulations from the k = 7 or k = 9 ensembles were 
included in the training set.  Each line represents the 𝛔𝐩𝐩 measurement (averaged over eight 
unique models) for testing on the complete library of the targeted ensemble.  (b) 𝛔𝐩𝐩 
measurements for MLP emulators (solid lines) trained on the ‘k ≤ 10’ training set as a function of 
Nset.  𝛔𝐩𝐩 was also calculated for varied contributions from each ensemble.  The ‘X’ data 
represents 𝛔𝐩𝐩  measurements for a model trained with the entire set of simulations for k = 0-2 
ensembles, 500 simulations from k = 3, 500 from k = 4, 2500 from k = 5, 2500 from k = 6, 6000 
from k = 8, and 6000 from k = 10.  (c) Scatter plots showing the distribution of integrated 
absorption values for all of the test data from each ensemble, using emulators trained on the ‘X’ 
composition in (b).  For each configuration in the ensemble, the x-coordinate of the point 
represents the FDTD-derived absorption for the configuration while the y-coordinate represents 
the MLP-predicted absorption.  The black ‘X’ in each plot indicates the average of the predicted 
(y-coordinate) and the FDTD-determined (x-coordinate) absorption for that ensemble. 
 
 
 


