Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Experimental Section

Synthesis of MnMoO₄/RGO

All the chemicals are of analytical grade and used as received. MnMoO₄/RGO was synthesized by a facile microwave-assisted hydrothermal method. In brief, 10 mg of GO was dispersed in 30 mL of deionized water under ultrasonic dispersion for 1 h, to which 0.1 mmol of Na₂MoO₄·2H₂O and 0.1 mmol of Mn(CH₃COO)₂·4H₂O were co-added under magnetic stirring to form a homogeneous solution. The mixture was sealed into a quartz vial, and treated by a microwave oven (2450 MHz) for 20 min. After cooling, the precipitates were separated by centrifugation, washed with ethanol and distilled water several times and then dried at 60°C for 12 h. The dried precipitates were placed into a horizontal quartz tube and heated to 800 °C for 3 h under Ar atmosphere to obtain MnMoO₄/RGO. For comparison, RGO were prepared by the same procedure without addition of Na₂MoO₄·2H₂O and Mn(CH₃COO)₂·4H₂O.

Electrochemical experiments

The electrochemical measurements were carried out with an electrochemical workstation (CHI Instruments, Shanghai Chenhua Instrument Corp., China). A conventional three-electrode cell was employed with a carbon cloth (CC) sample as working electrode, an Ag/AgCl electrode as reference electrode, and a graphite rod as counter electrode. All potentials were referenced to reversible hydrogen electrode (RHE) by following equation: E_{RHE} (V)= $E_{Ag/AgCl}$ +0.197+0.059×pH. The CC substrate was pretreated by soaking it in 0.5 M H₂SO₄ for 12 h, and then washed with deionized water several times and dried at 60 °C for 24 h. To prepare working electrode, 1 mg catalyst and 5 µL of Nafion (5 wt%) were ultrasonically dispersed in 100 µL of ethyl alcohol to form a homogeneous ink. Then 20 µL of catalyst ink was loaded on a 1×1 cm² CC substrate and dried under ambient condition. The NRR tests were performed using an H-type two-compartment electrochemical cell separated by a Nafion 211 membrane. The Nafion membrane was pretreated by boiling it in 5% H₂O₂ solution for 1 h, 0.5 M H₂SO₄ for 1 h and deionized water for 1 h in turn. During each

electrolysis, ultra-high-purity N_2 gas (99.999%) was continuously purged into the cathodic chamber at a flow rate of 20 mL min⁻¹. After each NRR electrolysis, the produced NH₃ and possible N_2H_4 were quantitatively determined by the indophenol blue method[2], and approach of Watt and Chrisp[3], respectively.

Determination of NH₃

4 mL of electrolyte was removed from the electrochemical reaction vessel. Then 50 μ L of solution containing NaOH (0.75 M) and NaClO ($\rho_{Cl} = \sim 4$), 500 μ L of solution containing 0.32 M NaOH, 0.4 M C₇H₆O₃, and 50 μ L of C₅FeN₆Na₂O solution (1 wt%) were respectively added into the electrolyte. After standing for 2 h, the UV-Vis absorption spectrum was measured and the concentration-absorbance curves were calibrated by the standard NH₄Cl solution with a series of concentrations.

NH₃ yield (
$$\mu$$
g h⁻¹ mg⁻¹_{cat}) = $\frac{c_{\rm NH_3} \times V}{t \times m}$ (1)

Faradaic efficiency was calculated by the following equation:

Faradaic efficiency (%) =
$$\frac{3 \times F \times c_{\rm NH_3} \times V}{17 \times Q} \times 100\%$$
 (2)

where c_{NH3} (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time and m (mg) is the mass loading of the catalyst on CC. F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the quantity of applied electricity.

Determination of N₂H₄

5 mL of electrolyte was removed from the electrochemical reaction vessel. The 330 mL of color reagent containing 300 mL of ethyl alcohol, 5.99 g of $C_9H_{11}NO$ and 30 mL of HCl were prepared, and 5 mL of color reagent was added into the electrolyte. After stirring for 10 min, the UV-Vis absorption spectrum was measured and the concentration-absorbance curves were calibrated by the standard N_2H_4 solution with a series of concentrations.

Nuclear magnetic resonance measurement

¹H nuclear magnetic resonance (NMR) measurement was carried out using ${}^{15}N_2$ (99 % isotopic purity) as the feed gas. Prior to NMR measurement, ${}^{15}N_2$ was purified by an acid trap (0.05 M H₂SO₄) to eliminate the NO_x and NH₃ contaminants [1]. The NRR experiment using ¹⁵N₂ was conducted at -0.40 V vs. RHE for 2 h. After NRR electrolysis, 4 mL of electrolyte was concentrated to ~1 mL and further acidized to pH ~2. The obtained electrolyte was mixed with 0.1 mL of deuterium oxide (D₂O) containing 100 ppm of dimethyl sulphoxide (DMSO) and 70 µL of D₂O for NMR spectroscopy measurement (500 MHz Bruker superconducting-magnet NMR spectrometer).

Characterizations

X-ray diffraction (XRD) pattern was recorded on a Rigaku D/max 2400 diffractometer. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were carried out on a Tecnai G² F20 microscope. X-ray photoelectron spectroscopy (XPS) analysis was conducted on a PHI 5702 spectrometer. The UV-vis absorbance measurements were performed on a MAPADA P5 spectrophotometer.

Calculation details

Spin-polarized DFT calculations were conducted using the plane-wave technique with exchange-correlation interactions modeled by the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional, as implemented in the Cambridge sequential total energy package (CASTEP) [4]. DFT-D method was employed to calculate the van der Waals (vdW) interaction. The Brillouin zone was sampled with $3\times3\times1$ k-points. The convergence of energy and forces were set to be 2×10^{-5} eV and 0.02 eV Å⁻¹, respectively. The kinetic cutoff energy for the plane wave basis was set at 450 eV. A 2 × 2 supercell with a vacuum layer of 15 Å was constructed, and then the MnMoO₄ (220) facet was cleaved to simulate the surface properties of MnMoO₄.

The Gibbs free energy (ΔG , 298 K) of reaction steps is calculated by [5]:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{3}$$

where ΔE is the adsorption energy, ΔZPE is the zero point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state. The entropies of free gases were acquired from the NIST database.

Fig. S1. Raman spectra of MnMoO₄/RGO.

Fig. S2. (a) UV-Vis absorption spectra of indophenol assays with NH_4Cl after incubated for 2 h at ambient conditions. (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S3. (a) UV-Vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S4. LSV curves of MnMoO₄/RGO in Ar- and N₂- saturated solutions.

Fig. S5. (a) Amounts of produced H_2 and (b) corresponding FE of H_2 yield at various potentials.

The FE for H₂ yield can be calculated by [6]

FE (%) =
$$\frac{2 \times F \times n}{Q} \times 100\%$$
 (4)

where Q is the quantity of applied electricity. F is the Faraday constant, n is the actually produced H₂ (mol) obtained by gas chromatography (GC) analysis[7]. Combing the data with the FE for NH₃ selectivity (Fig. 2c), the unaccounted values result presumably from the capacitance of the support, and the dynamic hydrogen adsorption on the catalyst, as well as the uncontrollable experimental error[8].

Fig. S6. (a) UV–vis absorption spectra of the electrolytes after 2 h of NRR electrolysis (-0.4 V) over $MnMoO_4/RGO$ and RGO, and (b) corresponding NH_3 yields.

Fig. S7. UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after 2 h electrolysis on $MnMoO_4/RGO$ at -0.4 V in N₂-saturated solution, Ar-saturated solutions, N₂-saturated solution at open circuit and N₂-saturated solution on pristine CC.

Fig. S8. Mass of produced $\rm NH_3$ after NRR electrolysis at various times (1-4 h) on MnMoO_4/RGO at -0.4 V.

Fig. S9. TEM image of MnMoO₄/RGO after stability test.

Fig. S10. XPS spectra of MnMoO₄/RGO after stability test: (a) Mn2p; (b) Mo3d; (c) O1s.

Fig. S11. Free energy diagrams of *H adsorption (G_{*H}) on Mn and Mo atoms of MnMoO₄ (220) facet.

Catalyst	Electrolyte	Determination method	Optimum Potential (V Vs RHE)	NH3 yield (μg h ⁻¹ mg ⁻¹)	FE (%)	Ref.
Bi ₄ V ₂ O ₁₁ -CeO ₂ nanofibers	0.1 M HCl	Indophenol blue method	-0.2	23.21	10.16	[6]
CoP hollow nanocages	1.0 M KOH	Indophenol blue method	-0.4	10.78	7.36	[7]
S-doped carbon nanospheres	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.7	19.07	7.47	[8]
Fe_3S_4 nanosheets	0.1 M HCl	Indophenol blue method	-0.5	75.4	6.45	[9]
B ₄ C nanosheets	0.1 M HCl	Indophenol blue method	-0.75	26.57	15.95	[10]
Defect-rich MoS ₂ nanoflower	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.4	29.28	8.34	[11]
MoS ₂ with Li-S Interactions	0.1 M Li ₂ SO ₄	Indophenol blue method	-0.2	43.4	9.81	[12]
Mo ₂ C/C	0.5 M Li ₂ SO ₄	Nessler's reagent method	-0.3	11.3	7.8	[13]
MoO ₂ with oxygen vacancies	0.1 M HCl	Indophenol blue method	-0.15	12.2	8.2	[14]
Mo single atoms	0.1 M KOH	Indophenol blue method	-0.3	34	14.6	[15]
MoO ₃ nanosheets	0.1 M HCl	Indophenol blue method	-0.5	29.43	1.9	[16]
MoO ₂ /graphene	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.35	37.4	6.6	[17]
MnO particles	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.39	7.92	8.02	[18]
Mn ₃ O ₄ nanocubes	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.8	11.6	3	[19]
Mn ₃ O ₄ /RGO	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.85	17.4	3.52	[20]
MnO_2 - $Ti_3C_2T_x$ MXene nanohybrid	0.1 M HCl	Indophenol blue method	-0.55	34.12	11.39	[21]
MnMoO ₄ /RGO	0.5 M LiClO ₄	Indophenol blue method	-0.4	60.3	14.7 (-0.3 V)	This work

Table S1. Comparison of optimum NH₃ yield and Faradic efficiency (FE) for recently reported state-of-the-art NRR electrocatalysts at ambient conditions

Supplementary references

- [1]. B. Hu, M. Hu, L. C. Seefeldt and T. L. Liu, ACS Energy Lett., 2019, 4, 1053-1054.
- [2]. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836.
- [3]. G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006-2008.
- [4]. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220, 567-570.
- [5]. A. A. Peterson, *Energy Environ. Sci.*, 2010, **3**, 1311-1315.
- [6]. C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, Angew. Chem. Int. Edit., 2018, 130, 6181-6184.
- [7]. W. Guo, Z. Liang, J. Zhao, B. Zhu, K. Cai, R. Zou and Q. Xu, Small Methods, 2018, 2, 1800204.
- [8]. L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, *Small Methods*, 2018, 3, 1800251.
- [9]. X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma and G. Zheng, *Joule*, 2018, 2, 1610-1622.
- [10]. W. Qiu, X.-Y. Xie, J. Qiu, W.-H. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri and G. Cui, *Nat. Commun.*, 2018, 9, 3485.
- [11]. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri and L. Chen, Adv. Energy. Mater., 2018, 8, 1801357.
- [12]. Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang and H. Zhao, *Adv. Energy. Mater.*, 2019, 9, 1803935.
- [13]. H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue and H. Wang, Adv. Mater., 2018, 30, 1803694.
- [14]. G. Zhang, Q. Ji, K. Zhang, Y. Chen, Z. Li, H. Liu, J. Li and J. Qu, Nano Energy, 2019, 59, 10-16.
- [15]. L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lu, S. Bak, Z. Liang, S. Zhao and E. Stavitski, Angew. Chem. Int. Edit., 2018, 58, 2321-2325.
- [16]. J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, J. Mater. Chem. A, 2018, 6, 12974-12977.
- [17]. J. Wang, Y. P. Liu, H. Zhang, D. J. Huang and K. Chu, *Catal. Sci. Technol.*, 2019, 9, 4248-4254.
- [18]. Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, H. Guo, Y. Li, P. Gao, X. Shi, B. Li, B. Tang and X. Sun, *Adv. Sci.*, 2018, 1801182.
- [19]. X. Wu, L. Xia, Y. Wang, W. Lu, Q. Liu, X. Shi and X. Sun, Small, 2018, 14, 1803111.
- [20]. H. Huang, F. Gong, Y. Wang, H. Wang, X. Wu, W. Lu, R. Zhao, H. Chen, X. Shi, A. M. Asiri, T. Li, Q. Liu and X. Sun, *Nano Res.*, 2019, **12**, 1093-1098.
- [21]. W. Kong, F. Gong, Q. Zhou, G. Yu, L. Ji, X. Sun, A. M. Asiri, T. Wang, Y. Luo and Y. Xu, J. Mater. Chem. A, 2019, 7, 18823-18827.