## **Electronic Supplementary Information**

## **Experimental section**

*Materials:* GO, copper sulfate (CuSO<sub>4</sub>), ammonium chloride (NH<sub>4</sub>Cl), hydrazine hydrate (N<sub>2</sub>H<sub>4</sub>·H<sub>2</sub>O), salicylic acid (C<sub>7</sub>H<sub>6</sub>O<sub>3</sub>), sodium citrate (C<sub>6</sub>H<sub>5</sub>Na<sub>3</sub>O<sub>7</sub>), sodium hypochlorite (NaClO), sodium hydroxide (NaOH), hydrochloric acid (HCl), ethanol (CH<sub>3</sub>CH<sub>2</sub>OH), sodium monophosphate (NaH<sub>2</sub>PO<sub>2</sub>) and carbon paper (CP) were bought from Beijing Chemical Corporation. Para-(dimethylamino) benzaldehyde (C<sub>9</sub>H<sub>11</sub>NO), sodium nitroferricyanide (III) dihydrate (Na<sub>2</sub>Fe(CN)<sub>5</sub>NO·2H<sub>2</sub>O), and Nafion were purchased from Aladdin Ltd. (Shanghai, China). The water used throughout all experiments was purified through a Millipore system.

*Preparation of Cu<sub>3</sub>P-rGO:* Aqueous solution of CuSO<sub>4</sub> (100 mL, 0.05 M) and NaOH (40 mL, 0.25 M) was dissolved in homogeneous GO aqueous dispersion (1mg/mL) under stirring for 2 h. After that, the product was separated by centrifuging, and further washing was done with Millipore water. Finally, the nanocomposite sample was freeze-dried for 24 h. The product and NaH<sub>2</sub>PO<sub>2</sub> (mass ratio 1: 5) were put into two boats separately and then annealed at 300 °C for 2 h under argon flow with a ramping rate of 2 °C min<sup>-1</sup>. In addition, Cu<sub>3</sub>P was also prepared according to the same method only without adding GO. In addition, Cu-rGO was also prepared through annealing product at 300 °C for 2 h under Ar/H<sub>2</sub> atmosphere (volume ratio = 9:1) atmosphere without adding NaH<sub>2</sub>PO<sub>2</sub>.

*Preparation of Cu<sub>3</sub>P-rGO/CP electrode:* 10 mg Cu<sub>3</sub>P-rGO powders and 40  $\mu$ L of Nafion solution (5 wt%) were dispersed in 960  $\mu$ L mixed solution containing 720  $\mu$ L ethanol and 240  $\mu$ L H<sub>2</sub>O by 2 h sonication to form a homogeneous ink. Then, 10  $\mu$ L Cu<sub>3</sub>P-rGO was loaded on a CP with area of 1 x 1 cm<sup>2</sup> and dried under ambient condition.

*Characterizations:* X-ray diffraction (XRD) analysis was performed using a LabX XRD-6100 X-ray diffractometer with Cu K $\alpha$  radiation ( $\lambda = 1.5418$  Å) at 40 kV and 40 mA. Scanning electron microscope (SEM) measurements were recorded on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV.

Transmission electron microscopy (TEM) images were obtained from a Zeiss Libra 200FE transmission electron microscope operated at 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. The absorbance data of spectrophotometer were measured on SHIMADZU UV-2700 ultraviolet-visible (UV-Vis) spectrophotometer.

Electrochemical measurements: Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) using a standard three-electrode system using Cu<sub>3</sub>P-rGO/CP loaded on carbon paper (Cu<sub>3</sub>PrGO/CP; Cu<sub>3</sub>P-rGO loading: 0.1 mg cm<sup>-2</sup>) as the working electrode, graphite rod as the counter electrode, and saturated Ag/AgCl electrode as the reference electrode. The potentials reported in this work were converted to reversible hydrogen electrode (RHE) scale via calibration with the following equation: E (vs. RHE) = E (vs. Ag/AgCl) +  $0.059 \times pH + 0.197$  V. Prior to use, the electrochemical cell was immersed in 0.05 M H<sub>2</sub>SO<sub>4</sub> solution for 24 h and then washed with deionized water to eliminate contaminants. In the process of electrochemical measurement, N<sub>2</sub> (99.999%) was firstly bubbled into 0.05 M H<sub>2</sub>SO<sub>4</sub> to remove the possible NH<sub>3</sub>, then bubbled into a Cu impurity trap, which composed of 2 g Cu-Zn-Al oxide catalyst to remove the possible NO<sub>x</sub> contaminants, and finally bubbled up at the bottom of the cathodic compartment to saturate the 0.1 M HCl (the HCl electrolyte was purged with N2 for 0.5 h before the measurement). All experiments were carried out at room temperature. For electrochemical N<sub>2</sub> reduction, chrono-amperometry tests were conducted in N<sub>2</sub>saturated 0.1 M HCl solution.

*Determination of NH<sub>3</sub>:* The produced NH<sub>3</sub> was spectrophotometrically determined by the indophenol blue method.<sup>1</sup> In detail, 2 mL electrolyte was taken from the cathodic chamber, and then 2 mL of 1 M NaOH solution containing 5% salicylic acid and 5% sodium citrate was added into this solution. Subsequently, 1 mL of 0.05 M NaClO and 0.2 mL of 1% C<sub>5</sub>FeN<sub>6</sub>Na<sub>2</sub>O·2H<sub>2</sub>O were add into the above solution. After standing at room temperature for 2 h, UV-Vis absorption spectrum was measured at a wavelength of 655 nm. The concentration-absorbance curve was calibrated using standard  $NH_4^+$  solution with a serious of concentrations. The fitting curve (y = 0.432x + 0.062, R<sup>2</sup> = 0.999) shows good linear relation of absorbance value with  $NH_4^+$  concentration.

*Determination of*  $N_2H_4$ :  $N_2H_4$  in the electrolyte was estimated by the method of Watt and Chrisp.<sup>2</sup> The mixture solution of 5.99 g C<sub>9</sub>H<sub>11</sub>NO, 30 mL HCl and 300 mL ethanol was used as a color reagent. Typically, 5 mL electrolyte was removed from the electrochemical reaction vessel and added into 5 mL above prepared color reagent 10 min at room temperature. Moreover, the absorbance of the resulting solution was measured at a wavelength of 455 nm. The obtained calibration curve of N<sub>2</sub>H<sub>4</sub> is y = 0.71x + 0.035, R<sup>2</sup> = 0.999.

*Calculations of NH<sub>3</sub> yield rate and FE:* NH<sub>3</sub> yield was calculated using the following equation:

NH<sub>3</sub> yield =  $[NH_4^+] \times V/(m_{cat.} \times t)$ 

FE was calculated according to following equation:

 $FE = 3 \times F \times [NH_4^+] \times V/(18 \times Q)$ 

Where  $[NH_4^+]$  is the measured  $NH_4^+$  concentration; V is the volume of the cathodic reaction electrolyte; t is the potential applied time;  $m_{cat.}$  is the loaded quality of catalyst; F is the Faraday constant; and Q is the quantity of applied electricity.

Details of Density Functional Theory (DFT) Calculations: Density functional theory (DFT) was carried out by the Vienna ab initio Simulation Package (VASP).<sup>3,4</sup> The ion-electron interactions were described by Projector augmented wave (PAW)<sup>5</sup> method. The generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof (PBE) form <sup>6,7</sup> was employed. A cut-off energy for plane wave basis set was set to 400 eV and geometry optimizations were performed until the residual force on each atom becomes less than 0.03 eV/Å. A (3×3×1) Gamma-center mesh k-point was used for the calculation, and more than 15 Å of vacuum in z-direction was included for the slab model to avoid the interaction between two periodic units. The optimized Cu<sub>3</sub>P (100) surface was shown in Fig. S8. The adsorption energies (E<sub>ads</sub>) of the NRR intermediates were determined by E<sub>ads</sub> = E<sub>tot</sub> - E<sub>slab</sub> - E<sub>adsorbate</sub>, where E<sub>tot</sub>, E<sub>slab</sub> and E<sub>adsorbate</sub> represent the total energies of the species adsorbed slab system, the

clean slab, and the adsorbate, respectively. The calculations of Gibbs free energy change ( $\Delta G$ ) was computed by  $\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S + neU$  for each step, which is based on the computational hydrogen electrode (CHE) model proposed by Nørskov e. al,<sup>8</sup> where  $\Delta E$  is the reaction energy directly obtained from DFT computation;  $\Delta E_{ZPE}$  and  $\Delta S$  are the changes in zero-point energies and entropy, respectively; T is the temperature, which is set to be 298.15 K in this work; n and U are the number of electrons transferred and the applied potential, respectively. In this study, the entropies of molecules in the gas phase were obtained from the NIST database.



**Fig. S1**. SEM image of Cu<sub>3</sub>P-rGO.



Fig. S2. SAED pattern taken from Cu<sub>3</sub>P-rGO.



Fig. S3. (a) XPS spectrum of Cu<sub>3</sub>P-rGO and (b) Auger electron spectrum in the Cu 2p.



**Fig. S4.** (a) UV-Vis absorption spectra of indophenol assays with  $NH_4^+$  concentrations after incubated for 2 h at room temperature. (b) Calibration curve used for calculation of  $NH_4^+$  concentrations.



Fig. S5. (a) UV-Vis absorption spectra of various  $N_2H_4$  concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of  $N_2H_4$ concentrations.



**Fig. S6.** (a) Ion chromatogram analysis for the  $NH_4^+$  ions. (b) Calibration curve used for estimation of  $NH_4^+$ . (c) Ion chromatogram data for the electrolytes at a series of potentials after electrolysis for 2 h. (d)  $NH_3$  yields for  $Cu_3P$ -rGO/CP at corresponding potentials.



Fig. S7.  $NH_3$  yields and FEs for  $Cu_3P$ -rGO/CP at -0.45 V with different loadings.



**Fig. S8.** UV-Vis absorption spectra of the electrolyte stained with indophenol indicator after charging at -0.45 V for 2 h under different electrochemical conditions.



Fig. S9. UV-Vis absorption spectra of the electrolytes estimated by the method of Watt and Chrisp before and after 2 h electrolysis in  $N_2$  atmosphere at -0.45 V.



**Fig. S10.** (a) Time-dependent current density curves of  $Cu_3P$ -rGO/CP at -0.45 V for continuous cycles. (b) UV-Vis absorption spectra of the electrolytes stained with NH<sub>3</sub> color agent for continuous cycles.



**Fig. S11.** Side views (a) and upper exposed surface (b-c) of the optimized  $Cu_3P$  (100) surface.

| Catalyst                                                         | Electrolyte                           | NH <sub>3</sub> yield                                          | FE (%) | Ref.      |
|------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|--------|-----------|
| Cu <sub>3</sub> P-rGO                                            | 0.1 M HCl                             | 26.38 $\mu$ g h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub> | 10.11  | This work |
| α-Au/CeO <sub>x</sub> -RGO                                       | 0.1 M HCl                             | $8.3 \ \mu g \ h^{-1} \ m g^{-1}_{cat.}$                       | 10.1   | 9         |
| TA-reduced Au/TiO <sub>2</sub>                                   | 0.1 M HCl                             | 21.4 $\mu g h^{-1} m g^{-1}{}_{cat.}$                          | 8.11   | 10        |
| MoN NA/CC                                                        | 0.1 M HCl                             | $18.42 \ \mu g \ h^{-1} \ cm^{-2}$                             | 1.15   | 11        |
| MoO <sub>3</sub>                                                 | 0.1 M HCl                             | 29.43 $\mu g h^{-1} m g^{-1}_{cat.}$                           | 1.9    | 12        |
| VN/TM                                                            | 0.1 M HCl                             | $5.14 \ \mu g \ h^{-1} \ cm^{-2}$                              | 2.25   | 13        |
| Bi <sub>4</sub> V <sub>2</sub> O <sub>11</sub> /CeO <sub>2</sub> | 0.1 M HCl                             | 23.21 $\mu$ g h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub> | 10.16  | 14        |
| Mo <sub>2</sub> N                                                | 0.1 M HCl                             | 78.4 $\mu$ g h <sup>-1</sup> mg <sup>-1</sup> <sub>cat.</sub>  | 4.5    | 15        |
| NPC                                                              | 0.05 M H <sub>2</sub> SO <sub>4</sub> | 23.8 $\mu g h^{-1} m g^{-1}_{cat.}$                            | 1.42   | 16        |
| Mo nanofilm                                                      | 0.01 M H <sub>2</sub> SO <sub>4</sub> | $1.89 \ \mu g \ h^{-1} \ cm^{-2}$                              | 0.72   | 17        |
| Pd <sub>0.2</sub> Cu <sub>0.8</sub> /rGO                         | 0.1 M KOH                             | $2.8 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$                        | 4.5    | 18        |
| Ru/C                                                             | 2.0 M KOH                             | $0.21 \ \mu g \ h^{-1} \ cm^{-2}$                              | 0.28   | 19        |
| γ-Fe <sub>2</sub> O <sub>3</sub>                                 | 0.1 M KOH                             | $0.212 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$                   | 1.9    | 20        |
| Fe <sub>2</sub> O <sub>3</sub> -CNT                              | KHCO3                                 | $0.22 \ \mu g \ h^{-1} \ cm^{-2}$                              | 0.15   | 21        |
| CuO/RGO                                                          | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | $11.02 \ \mu g \ h^{-1} \ cm^{-2}$                             | 3.9    | 22        |
| TiO <sub>2</sub> -rGO                                            | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | 15.13 $\mu g h^{-1} m g^{-1}_{cat.}$                           | 3.3    | 23        |
| Fe <sub>2</sub> O <sub>3</sub> nanorods                          | 0.1 M Na <sub>2</sub> SO <sub>4</sub> | $15.9 \ \mu g \ h^{-1} \ m g^{-1} \ _{cat.}$                   | 0.94   | 24        |
| dendritic Cu                                                     | 0.1 M HCl                             | 25.63 $\mu g h^{-1} m g^{-1}_{cat.}$                           | 15.12  | 25        |

**Table S1.** Comparison of electrocatalytic  $N_2$  reduction performance for  $Cu_3P$ -rGO with other aqueous-based electrocatalysts under ambient conditions.

## References

- 1 D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836–841.
- 2 G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006–2008.
- 3 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 4 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.
- 5 P. E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953.
- 6 J. P. Perdew, J. Chevary, S. Vosko, K. A. Jackson, M. R. Pederson, D. Singh and C. Fiolhais, *Phys. Rev. B*, 1992, 46, 6671.
- 7 J. P. Perdew and Y. Wang, *Phys. Rev. B*, 1992, **45**, 13244.
- 8 A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy Environ. Sci.*, 2010, 3, 1311–1315.
- 9 S. Li, D. Bao, M. Shi, B. Wulan, J. Yan and Q. Jiang, *Adv. Mater.*, 2017, 29, 1700001.
- M. Shi, D. Bao, B. Wulan, Y. Li, Y. Zhang, J. Yan and Q. Jiang, *Adv. Mater.*, 2017, 29, 1606550.
- L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, ACS Sustainable Chem. Eng., 2018, 6, 9550–9554.
- 12 J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, J. Mater. Chem. A, 2018, 6, 12974–12977.
- 13 R. Zhang, Y. Zhang, X. Ren, G. Cui, A. M. Asiri, B. Zheng and X. Sun, ACS Sustainable Chem. Eng., 2018, 6, 9545–9549.
- 14 C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, Angew. Chem., Int. Ed., 2018, 57, 6073–6076.
- 15 X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, *Chem. Commun.*, 2018, 54, 8474–8477.
- 16 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186–1191.
- 17 D. Yang, T. Chen and Z. Wang, J. Mater. Chem. A, 2017, 5, 18967–18971.

- M. Shi, D. Bao, S. Li, B. Wulan, J. Yan and Q. Jiang, *Adv. Energy Mater.*, 2018, 8, 1800124.
- 19 V. Kordali, G. Kyriacou and C. Lambrou, *Chem. Commun.*, 2000, 17, 1673– 1674.
- J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.
  E. Sung, J. Choi and H. S. Park, *ACS Sustainable Chem. Eng.*, 2017, 5, 10986–10995.
- 21 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *Angew. Chem., Int. Ed.*, 2017, **56**, 2699–2703.
- F. Wang, Y. Liu, H. Zhang and K. Chu, *ChemCatChem*, 2019, 11, 1441–1447.
- 23 X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun and T. Li, J. Mater. Chem. A, 2018, 6, 17303–17306.
- X. Xiang, Z. Wang, X. Shi, M. Fan and X. Sun, *ChemCatChem*, 2018, 10, 4530–4535.
- C. Li, S. Mou, X. Zhu, F. Wang, Y. Wang, Y. Qiao, X. Shi, Y. Luo, B. Zheng, Q. Li and X. Sun, *Chem. Commun.*, 2019, 55, 14474–14477.