Convenient Fabrication of Core-Shell Sn@TiO₂ Anode for Lithium Storage From Tinplate Electroplating Sludge

Zhihua Lin, ^{‡ a} Xueming Liu, ^{‡ a} Xunhui Xiong, ^{* a} Shizhong Wei, ^b Weizhen Liu, ^a and Zhang Lin^{* a}

Z. Lin, X. Liu, Prof. X. Xiong, Prof. W. Liu, Prof. Z. Lin

Guangzhou Key Laboratory of Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, P. R. China

E-mail: esxxiong@scut.edu.cn;

S. Wei

National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang, Henan 471003, P. R. China

‡ These authors contributed equally to this work.

Experimental

Method

Pretreatment of the electroplating sludge: The electroplating sludge comes from Fujian Zhongrida Metal Co. Ltd. First, the electroplating sludge was dried at 80°C for 12 h and the dired solid was ground to a small powder. Then 10 g dired sludge powder was stirred with 100 ml 0.7 M NaOH solution. Subsequently, the mixture was transferred to a 200 ml Teflon-lined stainless steel autoclave and heated at 230 °C for 2 h. The extracting solution was obtained by filtration.

Preparation of Al@TiO(OH)₂ precursor: Specifically, 0.5 g of TiOSO₄ (reagent grade, Sigma-Aldrich) and 30 g of H₂SO₄ (ACS grade, 1.0 N, Guangzhou Chemical Reagent Factory) were dissolved in 1000 ml deionized water. Then, 0.135 mg of Al powder (approximately 150 nm in diameter, 99.9%, Hongwu New Material) was added to the saturated TiOSO₄ solution. After vigorously agitating the solution using an ultrasonic cleaner for 30 min, it was stirred for 10/60/120 min to form Tio₂ shell and partial etch Al. The obtained powders were filtered and washed with deionized water and ethanol three times and dried at 80 °C overnight.

Preparation of Sn@TiO₂: Typically, 0.2g Al@TiO(OH)₂ precusor was added in 100 ml extraction solution and impregnated for 6 h until there is no more bubble in the solution. The resulting solution was then filtered in a vacuum system and washed three times with ethanol. After drying in a vacuum oven at 80°C for 7 h, the Sn@TiO₂ was synthesized by annealed at 450 °C for 2 h with a temperature rate of 2 °C min⁻¹ at N₂ atmosphere.

Material characterization

X-ray diffraction patterns were performed on a Rigaku D/max 2500 using Cu Ka radiation in the 2 θ range of 10°–90° with a scan step of 0.12° s⁻¹. Raman and X-ray photoelectron spectroscopy (XPS) measurements were conducted on a Renishaw

RM1000 microspectrometer and a Thermo K-Alpha XPS spectrometer, respectively. Brunauer–Emmett–Teller (BET) specific surface areas were obtained using a Micromeritics ASAP 2020 analyzer at the liquid-nitrogen boiling point (77 K). Material morphology was measured by FESEM (Hitachi S-4800) and TEM (JEM-2010 JEOL, 200 kV).

Electrochemical measurements

The sodium-storage properties of all the samples were characterized by making CR2032 coin-type cell in an Ar glove box. Porous polypropylene based membrane (Celgard) (ϕ 19 mm) was used as separator, and Li foil (ϕ 15 mm) as the anode. The working electrode (ϕ 13 mm) was prepared by mixing the Sn@TiO₂ composite, acetylene black, and the polyvinylidene fluoride bond (PVDF) with a mass ratio of 8:1:1 in N-methyl-2-pyrrolidone solvent. Generally, the active material has a mass load of approximately 1.5 \sim 1.7 g cm⁻². The electrolyte was a solution containing 1.0 M LiPF₆ in EC/DEC/EMC (1/1/1 by volume), and the used amount of electrolyte is about 30 µL in each cell. The CV measurements were conducted using a CHI660E electrochemical workstation. The responses of the test cycle performance and rated capacity were recorded by the LAND-BT2013A Measurement System at 25°C.

Fig. S1. SEM imaged of pure Al powder.

Fig. S2. (a) High resolution XPS spectra of Sn 2d and (b) High resolution XPS spectra of Ti 2p of

Sn@TiO₂.

Fig. S3. (a) XRD patterns and (b) SEM image of Sn electrode without TiO₂ coating.

Fig. S4. Cycling performance at 0.2 A g⁻¹ of Sn@TiO₂ with different reaction time.

Fig. S5. SEM of $Sn@TiO_2$ after 100 cycles at 0.2 A g⁻¹.

Fig. S6. Cycling performance at 0.5 A g^{-1} of Sn electrode without TiO₂ coating.