Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Highly Enantioselective Addition of Aliphatic Aldehydes to 2-Hydroxychalcone Promoted by Cooperative Organocatalysts

Jiadong Hu, Yu-Qi Gao, Dongyang Xu, Le Chen, Wen Wen, Yi Hou, Lu Chen, and Weiqing Xie*

Table of Contents

1.	General Information	2
2.	Conditions Optimization for Enantioselective Construction of Flavonoids	3
3.	General Procedure for the Preparation of 2-Hydroxychalcones	5
4.	Enantioselective Construction of Flavonoids	8
5.	Derivatization of Flavonoid 3a and 3p	15
6.	X-ray Crystal Data for Compound 6	18
7.	HPLC Charts for Enantioenriched Flavonoids	24
8.	¹ H & ¹³ C NMR Data for Substrate Scope and Derivatization	44
9.	References	98

1. General Information

Unless otherwise noted, reagents were obtained from commercial sources and used without further purification. Non-aqueous reaction were conducted under an inert atmosphere of argon in flame-dried glassware. Anhydrous solvent were treated as follow: tetrahydrofuran and diethyl ether were distilled from sodium under argon atmosphere, dichcloromethane and toluene was distilled distilled from calciumhydride under argon atmosphere. Anhydrous chloroform, acetonitrile, 1,2-dichloroethane, methanol and ethyl acetate were commercial available (Adamas, SafeDry, with molecular sieves).

Thin layer chromatography was conducted on Merck 60 F254 pre-coated silica gel plates. Column chromatography was carried out by normal silica gel (40-60 μ m, 200-400 mesh, Silicycle P60). NMR data including ¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE III 500MHz. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CHCl₃ @ 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Coupling constants are given in Hz.

Low mass spectra were measured on a Shimadzu LCMS-2010EV mass spectrometer (ESI). High resolution mass spectra were obtained from IonSpec 4.7 Tesla FTMS mass spectrometer (MALDI), Bruker APEXIII 7.0 TESLA FTMS (ESI).

Optical rotations were measured on a Anton Paar MCP 300 polarimeter and are reported as follows: $[\alpha]_D^{rt}$ (*c* in g per 100 mL, solvent).

2. Conditions Optimization for Enantioselective Construction of Flavonoids

2.1. General Procedure for the Model Reaction

A 10 mL Schlenk tube was charged with the *amine* (10 mol%), *acid* (10 mol%), *2-hydroxychalcone* **1a** (0.1 mmol), and *phenylpropyl aldehyde* **2a** (0.15 mmol) dissolved in solvent (1 mL). The vial was then sealed and positioned approximately 5 cm away from the light source. A household full spectrum 24 W compact fluorescent light (CFL) bulb was used for irradiating the reaction mixture. A fan was placed above the reaction apparatus for insuring the reaction temperature at RT. The reaction mixture was stirred at this condition until all *2-hydroxychalcone* **1a** was consumed as judged by TLC. The solvent was removed under vacuum. The residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1:40, v/v) to afford the product.

2.2. The Screening of Solvents for the Model Reaction

Table S1. The Screening of Solvents for the Model Reaction^{*a*}

Entry	Solvent	Yield (%) ^b	<i>ee</i> (%) (major, minor) ^{<i>c</i>}	dr ^c
1	MTBE	86	83, 60	2:1
2	DIPE	79	92, 83	2:1
3	2-MeTHF	85	93, 89	2:1
4	THF	71	93, 86	2:1
5	Et ₂ O	71	94, 83	2:1
6	CH ₃ CN	90	55, 27	2:1
7	EtOAc	79	77, 55	2:1
8	CH_2Cl_2	91	43, 17	2:1
9	MeOH	18	15, 15	2:1

^a Conditions: A mixture of 2-hydroxylchalcone **1a** (0.1 mmol), aldehyde **2a** (0.1 mmol), **A1** (10 mol %) and **C1** (10 mol %) in **solvent** (1.0 mL) was irradiated by 24W CFL at RT for 24 h

^c Determined by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, $t_{major} = 10.55$ min, $t_{minor} = 11.70$ min)

^b Isolated yield

2.3. The Screening of Amine & Acid Promoter for the Model Reaction

Table S2. The Screening of Amine & Acid for the Model Reaction^{*a*}

Entry	Amine	Acid	Yield (%) ^{<i>b</i>}	ee (%) (major, minor) ^c	dr ^c
1	A1	(±)-CSA	35	28, 19	1:1
2	A1	TFA	59	79, 58	1:1
3	A1	TsOH	15	32, 21	1:1
4	A1	C1	71	94, 83	2:1
5 ^d	A1	C1	ND	NA	NA
6	A1		ND	NA	NA
7		C1	ND	NA	NA
8	A1	C2	74	95, 55	3: 1
9	A1	C3	91	79, 20	2.5: 1
10	A1	C4	74	68, -10	2:1
11	A1	C5	72	95, 71	3: 1
12	A2	C2	82	95, 91	2:1
13	A3	C2	29	-38, 12	2:1
14	A4	C2	81	98, 53	12: 1
15	A4	(S)-C2	73	68, 41	3: 1

^a Conditions: A mixture of 2-hydroxylchalcone **1a** (0.1 mmol), aldehyde **2a** (0.1 mmol), **amine catalyst** (10 mol %) and **Br\phinsted acid** (10 mol %) in Et₂O (1.0 mL) was irradiated by 24W CFL at RT for 24 h

^b Isolated yield

^c Determined by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, $t_{major} = 10.55$ min, $t_{minor} = 11.70$ min)

^d Run in dark

ND not detected, NA not assigned.

3. General Procedure for the Preparation of 2-Hydroxychalcones

General procedure A¹:

The *salicylaldehyde* (1.0 equiv.) and *corresponding phosphorane* (1.2 equiv) were stirred in CH_3CN (0.25 M) at 60°C until all salicylaldehyde was consumed completely as judged by TLC. The reactions were cooled down to RT, concentrated *in vacuo* and purified by column chromatography (silica gel) to afford the corresponding 2-hydroxychalcones **1**.

This compound was prepared according to the general procedure A as a yellow solid (2.13 g, 95% yield in 10 mmol scale).

¹H NMR (500 MHz, MeOD): δ 8.11 (d, J = 15.8 Hz, 1H), 8.04-7.99 (m, 2H), 7.78 (d, J = 15.8 Hz, 1H), 7.67-7.63 (m, 1H), 7.62-7.57 (m, 1H), 7.54-7.49 (m, 2H), 7.27-7.21 (m, 1H), 6.90-6.85 (m, 2H). ¹³C NMR (126 MHz, MeOD): δ 193.27, 158.86, 142.65, 139.65, 133.92, 133.06, 130.47, 129.73,

129.52, 123.09, 122.67, 120.86, 117.09.

HRMS (ESI): exact mass calcd for C₁₅H₁₃O₂: m/z 225.0910 [M+H]⁺, found: m/z 225.0911.

This compound was prepared according to the general procedure A as a yellow solid (417 mg, 88% yield in 2 mmol scale).

¹**H** NMR (500 MHz, (CD₃)₂CO): δ 9.12 (s, 1H), 8.17 (d, *J* = 15.8 Hz, 1H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.87 (d, *J* = 15.8 Hz, 1H), 7.82-7.79 (m, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.30-7.25 (m, 1H), 7.02-6.98 (m, 1H), 6.95-6.90 (m, 1H), 2.42 (s, 3H).

¹³C NMR (126 MHz, (CD₃)₂CO): δ 189.83, 157.83, 144.11, 140.05, 136.97, 132.48, 130.11, 129.76, 129.34, 123.08, 122.58, 120.89, 117.10, 21.55.

HRMS (ESI): exact mass calcd for $C_{16}H_{15}O_2$: m/z 239.1067 [M+H]⁺, found: m/z 239.1068.

This compound was prepared according to the general procedure A as a yellow solid (421 mg, 83% yield in 2 mmol scale).

¹**H** NMR (500 MHz, (CD₃)₂CO): δ 9.11 (s, 1H), 8.18-8.10 (m, 3H), 7.89 (d, J = 15.7 Hz, 1H), 7.82-7.78 (m, 1H), 7.30-7.25 (m, 1H), 7.09-7.04 (m, 2H), 7.01-6.97 (m, 1H), 6.95-6.90 (m, 1H), 3.90 (s, 3H).

¹³C NMR (126 MHz, (CD₃)₂CO): δ 188.57, 164.31, 157.75, 139.54, 132.35, 132.30, 131.46, 129.70, 123.16, 122.42, 120.86, 117.06, 114.68, 55.93.

HRMS (ESI): exact mass calcd for $C_{16}H_{15}O_3$: m/z 255.1016 [M+H]⁺, found: m/z 255.1017.

This compound was prepared according to the general procedure A as a yellow solid (2.20 g, 85% yield in 10 mmol scale).

¹**H NMR (500 MHz, (CD₃)₂CO):** δ 9.16 (s, 1H), 8.19 (d, J = 15.8 Hz, 1H), 8.14-8.10 (m, 2H), 7.86 (d, J = 15.7 Hz, 1H), 7.82-7.79 (m, 1H), 7.60-7.56 (m, 2H), 7.31-7.27 (m, 1H), 7.02-6.98 (m, 1H), 6.95-6.90 (m, 1H).

¹³C NMR (126 MHz, (CD₃)₂CO): δ 189.22, 157.98, 140.98, 139.12, 138.07, 132.79, 130.97, 129.88, 129.67, 122.86, 122.09, 120.92, 117.14.

HRMS (ESI): exact mass calcd for $C_{15}H_{12}ClO_2$: m/z 259.0520 [M+H]⁺, found: m/z 259.0522.

This compound was prepared according to the general procedure A as a yellow solid (509 mg, 84% yield in 2 mmol scale).

¹**H** NMR (500 MHz, (CD₃)₂CO): δ 9.13 (s, 1H), 7.76 (d, J = 16.3 Hz, 1H), 7.73-7.70 (m, 1H), 7.69-7.66 (m, 1H), 7.54-7.48 (m, 2H), 7.46-7.42 (m, 1H), 7.31-7.26 (m, 1H), 7.23 (d, J = 16.3 Hz, 1H), 6.99-6.95 (m, 1H), 6.94-6.90 (m, 1H).

¹³C NMR (126 MHz, (CD₃)₂CO): δ 195.12, 157.80, 142.80, 142.72, 134.08, 133.10, 132.14, 129.94, 129.83, 128.47, 126.85, 122.39, 121.02, 119.69, 117.14.

HRMS (ESI): exact mass calcd for $C_{15}H_{12}O_2Br$: m/z 303.0015 [M+H]⁺, found: m/z 303.0015.

This compound was prepared according to the general procedure A as a yellow solid (438 mg, 92% yield in 2 mmol scale).

¹**H NMR (500 MHz, (CD₃)₂CO):** δ 9.06 (s, 1H), 8.15 (d, J = 15.7 Hz, 1H), 8.11-8.08 (m, 2H), 7.83 (d, J = 15.8 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.64-7.60 (m, 1H), 7.57-7.52 (m, 2H), 6.83 (s, 1H), 6.78-6.74 (m, 1H), 2.29 (s, 3H).

¹³C NMR (126 MHz, (CD₃)₂CO): δ 190.37, 157.92, 143.39, 140.64, 139.65, 133.29, 129.81, 129.46, 129.12, 121.96, 121.46, 120.35, 117.60, 21.51.

HRMS (ESI): exact mass calcd for $C_{16}H_{15}O_2$: m/z 239.1067 [M+H]⁺, found: m/z 239.1068.

This compound was prepared according to the general procedure A as a yellow solid (477 mg, 94% yield in 2 mmol scale).

¹**H NMR (500 MHz, (CD₃)₂CO):** δ 9.23 (s, 1H), 8.16-8.07 (m, 3H), 7.79-7.73 (m, 2H), 7.63-7.59 (m, 1H), 7.56-7.51 (m, 2H), 6.58-6.51 (m, 2H), 3.81 (s, 3H).

¹³C NMR (126 MHz, (CD₃)₂CO): δ 190.32, 164.05, 159.56, 140.68, 139.91, 133.24, 131.38, 129.51, 129.15, 119.97, 116.29, 107.56, 102.33, 55.80.

HRMS (ESI): exact mass calcd for $C_{16}H_{15}O_3$: m/z 255.1016 [M+H]⁺, found: m/z 255.1016.

This compound was prepared according to the general procedure A as a yellow solid (545 mg, 90% yield in 2 mmol scale).

¹**H** NMR (500 MHz, (CD₃)₂CO): δ 9.64 (s, 1H), 8.13-8.06 (m, 3H), 7.91 (d, *J* = 15.8 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 7.63 (t, *J* = 7.3 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 2H), 7.21 (s, 1H), 7.11 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (126 MHz, (CD₃)₂CO): δ 190.22, 158.49, 139.32, 139.12, 133.59, 131.21, 129.56, 129.26, 125.29, 124.08, 123.16, 122.53, 120.00.

HRMS (ESI): exact mass calcd for $C_{15}H_{12}O_2Br$: m/z 303.0015 [M+H]⁺, found: m/z 303.0015.

This compound was prepared according to the general procedure A as a yellow solid (443 mg, 93% yield in 2 mmol scale).

¹**H NMR (500 MHz, (CD₃)₂CO):** δ 8.92 (s, 1H), 8.16 (d, *J* = 15.8 Hz, 1H), 8.12-8.06 (m, 1H), 7.87 (d, *J* = 15.8 Hz, 1H), 7.66-7.61 (m, 2H), 7.58-7.53 (m, 2H), 7.10 (dd, *J* = 8.3, 2.2 Hz, 1H), 6.89 (d, *J* = 8.3 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (126 MHz, (CD₃)₂CO): δ 190.44, 155.92, 140.71, 139.66, 133.48, 133.45, 129.94, 129.92, 129.59, 129.27, 122.71, 122.29, 117.12, 20.53.

HRMS (ESI): exact mass calcd for $C_{16}H_{15}O_2$: m/z 239.1067 [M+H]⁺, found: m/z 239.1066.

The *corresponding salicylaldehyde* was prepared followed with a modification of *Kimpe's* method² and compound Ip was prepared according to the general procedure A as a yellow solid (13.35 g, 85% yield in 50 mmol scale).

¹**H NMR (500 MHz, (CD₃)₂CO):** δ 8.66 (s, 1H), 8.27 (d, *J* = 15.7 Hz, 1H), 8.07 (d, *J* = 15.9 Hz, 1H), 8.03-7.99 (m, 2H), 7.62-7.57 (m, 1H), 7.55-7.51 (m, 2H), 6.37 (s, 1H), 3.96 (s, 3H), 3.95 (s, 3H), 3.77 (s, 3H).

¹³C NMR (126 MHz, (CD₃)₂CO): δ 191.06, 157.96, 156.03, 152.42, 140.23, 136.69, 132.96, 131.20, 129.41, 128.92, 122.20, 105.91, 89.35, 61.15, 56.43, 56.35.

HRMS (ESI): exact mass calcd for $C_{18}H_{19}O_5$: m/z 315.1227 [M+H]⁺, found: m/z 315.1230.

4. Enantioselective Construction of Flavonoids

General procedure B: A 10 mL Schlenk tube was charged with the *A4* (10 mol%), *C2* (10 mol%), 2-hydroxychalcone 1 (0.1 mmol), and corresponding aldehyde 2 (0.15 mmol) dissolved in Et_2O (1 mL). The vial was then sealed and positioned approximately 5 cm away from the light source. A household full spectrum 24 W compact fluorescent light (CFL) bulb was used for irradiating the reaction mixture. A fan was paced above the reaction apparatus for insuring the reaction temperature at RT. The reaction mixture was stirred at this condition until all 2-hydroxychalcone 1 was consumed as judged by TLC. The solvent was removed under vacuum. The residue was purified by flash column chromatography to afford the product.

This compound was prepared according to the general procedure B as a pale-yellow oil (27.5 mg, 81% yield, 98% *ee*, d.r. = 12: 1, in 0.1 mmol scale; 1.411 g, 83% yield, 98% *ee*, d.r. = 10: 1, in 5.0 mmol scale) and was isolated as a mixture of diastereoisomers. Spectral data for the main isomer is reported. $[\alpha]_D^{25.0} = 19.3$ (*c* 0.255, CHCl₃).

Enantiomeric excess was found to be 98% by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, $t_{major} = 10.55$ min, $t_{minor} = 11.70$ min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.83 (s, 1H), 7.74-7.69 (m, 2H), 7.44-7.35 (m, 3H), 7.25-7.16 (m, 4H), 7.15-7.08 (m, 3H), 7.03-6.98 (m, 2H), 5.41 (d, *J* = 4.8 Hz, 1H), 4.36-4.32 (m, 1H), 3.10-3.01 (m, 2H), 2.75-2.67 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 203.43, 152.73, 151.07, 139.55, 133.97, 128.97, 128.59, 128.54, 128.37, 127.94, 126.33, 124.94, 124.14, 121.03, 117.07, 96.31, 61.54, 34.98, 31.21.

HRMS (ESI): exact mass calcd for $C_{24}H_{19}O_2$: m/z 339.1380 [M-H]⁻, found: m/z 339.1380.

This compound was prepared according to the general procedure B as a pale-yellow oil (25.0 mg, 90% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 8: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{23.6} = 82.8 (c \ 0.095, \text{CHCl}_3).$

Enantiomeric excess was found to be 96% by chiral HPLC (ChiralPak AD-H & IC column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, t_{major} = 15.60 min, t_{minor} = 17.88 min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.86 (d, J = 1.9 Hz, 1H), 7.71-7.65 (m, 2H), 7.43-7.35 (m, 3H), 7.27-7.21 (m, 1H), 7.18-7.13 (m, 1H), 7.12-7.07 (m, 2H), 5.38 (d, J = 4.9 Hz, 1H), 4.24-4.19 (m, 1H), 2.61-2.54 (m, 1H), 1.86-1.74 (m, 1H), 1.52-1.43 (m, 1H), 0.88 (t, J = 7.5 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 204.46, 152.70, 150.87, 134.01, 128.86, 128.49, 128.14, 124.89, 123.94, 121.56, 116.90, 96.81, 61.55, 35.06, 18.49, 12.60.

HRMS (ESI): exact mass calcd for $C_{19}H_{17}O_2$: m/z 277.1223 [M-H]⁻, found: m/z 277.1224.

This compound was prepared according to the general procedure B as a pale-yellow oil (23.0 mg, 75% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 10: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{23.8} = 74.1 \ (c \ 0.060, \ CHCl_3).$

Enantiomeric excess was found to be 97% by chiral HPLC (ChiralPak AD-H & IC column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, $t_{maior} = 14.04$ min, $t_{minor} = 16.19$ min).

¹**H** NMR (500 MHz, CDCl₃): δ 9.84 (d, J = 1.9 Hz, 1H), 7.70-7.67 (m, 2H), 7.42-7.34 (m, 3H), 7.26-7.21 (m, 1H), 7.17-7.13 (m, 1H), 7.11-7.07 (m, 2H), 5.37 (d, J = 4.9 Hz, 1H), 4.23-4.18 (m, 1H), 2.67-2.60 (m, 1H), 1.81-1.73 (m, 1H), 1.44-1.36 (m, 1H), 1.31-1.24 (m, 1H), 1.22-1.09 (m, 3H), 0.77 (t, J = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 204.61, 152.69, 150.83, 134.04, 128.86, 128.50, 128.14, 128.11, 124.89, 123.93, 121.47, 116.90, 96.80, 59.68, 35.16, 30.15, 24.85, 22.73, 13.91.

HRMS (ESI): exact mass calcd for C₂₁H₂₁O₂: m/z 305.1536 [M-H]⁻, found: m/z 305.1537.

This compound was prepared according to the general procedure B as a pale-yellow oil (21.1 mg, 72% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 5: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{24.2} = 84.6 (c \ 0. \ 250, \text{CHCl}_3).$

Enantiomeric excess was found to be 95% by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = 99:1, 214 nm, 0.7 mL/min, $t_{major} = 18.41$ min, $t_{minor} = 24.69$ min).

¹**H** NMR (500 MHz, CDCl₃): δ 9.79 (d, J = 3.1 Hz, 1H), 7.71-7.67 (m, 2H), 7.42-7.34 (m, 3H), 7.25-7.20 (m, 1H), 7.15-7.11 (m, 1H), 7.11-7.05 (m, 2H), 5.58 (d, J = 5.2 Hz, 1H), 4.22-4.17 (m, 1H), 2.51-2.46 (m, 1H), 2.28-2.19 (m, 1H), 1.06 (d, J = 6.9 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 205.08, 152.70, 150.54, 134.10, 128.81, 128.51, 128.47, 128.06, 124.90, 123.77, 122.34, 116.99, 98.48, 65.45, 33.75, 26.55, 22.21, 19.90.

HRMS (ESI): exact mass calcd for C₂₀H₁₉O₂: m/z 291.1380 [M-H]⁻, found: m/z 291.1380.

This compound was prepared according to the general procedure B as a pale-yellow oil (24.1 mg, 83% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 11: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{25.0} = 80.0 (c \ 0.398, CHCl_3).$

Enantiomeric excess was found to be 98% by chiral HPLC (ChiralPak AD-H & IC column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, t_{maior} = 15.93 min, t_{minor} = 17.46 min).

¹H NMR (500 MHz, CDCl₃): δ 9.85 (d, J = 1.4 Hz, 1H), 7.71-7.67 (m, 2H), 7.43-7.36 (m, 3H), 7.26-7.23 (m, 1H), 7.18-7.14 (m, 1H), 7.12-7.08 (m, 2H), 5.73-5.64 (m, 1H), 5.39 (d, J = 4.8 Hz, 1H), 5.02-4.94 (m, 2H), 4.31-4.26 (m, 1H), 2.80-2.75 (m, 1H), 2.56-2.48 (m, 1H), 2.23-2.16 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 203.94, 152.69, 151.00, 135.57, 133.91, 128.92, 128.51, 128.26, 128.06, 124.88, 124.02, 121.17, 117.06, 116.94, 96.47, 58.99, 34.70, 29.62.

HRMS (ESI): exact mass calcd for C₂₀H₁₇O₂: m/z 289.1223 [M-H]⁻, found: m/z 289.1224.

This compound was prepared according to the general procedure B as a pale-yellow oil (20.6 mg, 63% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 6: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{25.0} = 14.6 (c \ 0.123, \text{CHCl}_3).$

Enantiomeric excess was found to be 95% by chiral HPLC (ChiralPak IC column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, t_{major} = 12.56 min, t_{minor} = 13.72 min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.86 (s, 1H), 7.71-7.66 (m, 2H), 7.43-7.36 (m, 3H), 7.25 (d, *J* = 7.1 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.13-7.09 (m, 2H), 5.32 (d, *J* = 4.8 Hz, 1H), 4.27 (t, *J* = 4.1 Hz, 1H), 3.14 (t, *J* = 6.7 Hz, 2H), 2.74-2.67 (m, 1H), 1.90-1.78 (m, 1H), 1.64-1.55 (m, 1H), 1.46-1.34 (m, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 203.37, 152.59, 151.11, 133.79, 129.00, 128.52, 128.40, 127.96, 124.90, 124.13, 120.92, 117.07, 96.05, 59.41, 51.27, 34.93, 27.31, 22.20.

HRMS (ESI): exact mass calcd for C₂₀H₁₈N₃O₂: m/z 332.1405 [M-H]⁻, found: m/z 332.1405.

This compound was prepared according to the general procedure B as a pale-yellow oil (22.5 mg, 67% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 6: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{25.0} = 20.0 \ (c \ 0.088, \text{CHCl}_3).$

Enantiomeric excess was found to be 96% by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, t_{major} = 19. 82 min, t_{minor} = 25. 07 min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.86 (s, 1H), 7.69-7.65 (m, 2H), 7.42-7.35 (m, 3H), 7.27-7.23 (m, 1H), 7.19-7.16 (m, 1H), 7.13-7.08 (m, 2H), 5.30 (d, *J* = 4.7 Hz, 1H), 4.29 (t, *J* = 4.2 Hz, 1H), 3.56 (s, 3H), 2.84-2.80 (m, 1H), 2.34-2.17 (m, 2H), 2.14-2.04 (m, 1H), 1.74-1.66 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 203.20, 173.38, 152.52, 151.10, 133.79, 128.98, 128.49, 128.38, 128.05, 124.90, 124.06, 120.67, 117.08, 95.92, 58.62, 51.67, 34.81, 32.03, 20.34.

HRMS (ESI): exact mass calcd for $C_{21}H_{19}O_4$: m/z 335.1289 [M-H]⁻, found: m/z 335.1290.

This compound was prepared according to the general procedure B as a pale-yellow oil (30.4 mg, 86% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 17: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{25.0} = 4.3 \ (c \ 0.328, \text{CHCl}_3).$

Enantiomeric excess was found to be 98% by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = 98:2, 214 nm, 0.7 mL/min, t_{minor} = 17.85 min, t_{major} = 20.09 min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.83 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.25-7.18 (m, 6H), 7.15-7.09 (m, 3H), 7.01 (d, *J* = 7.4 Hz, 2H), 5.36 (d, *J* = 4.8 Hz, 1H), 4.36-4.29 (m, 1H), 3.10-3.01 (m, 2H), 2.71 (q, *J* = 9.9 Hz, 1H), 2.40 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 203.52, 152.78, 151.12, 139.62, 138.95, 131.20, 129.22, 128.97, 128.57, 128.31, 127.94, 126.30, 124.85, 124.05, 121.10, 117.06, 95.43, 61.60, 35.00, 31.17, 21.42. HRMS (ESI): exact mass calcd for $C_{25}H_{21}O_2$: m/z 353.1547 [M-H]⁻, found: m/z 353.1543.

This compound was prepared according to the general procedure B as a pale-yellow oil (34.1 mg, 92% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 11: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{24.1} = 7.8 (c \ 0.055, \text{CHCl}_3).$

Enantiomeric excess was found to be 95% by chiral HPLC (ChiralPak IB-3 column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, $t_{minor} = 13.60$ min, $t_{major} = 14.13$ min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.82 (s, 1H), 7.67-7.62 (m, 2H), 7.25-7.16 (m, 4H), 7.14-7.06 (m, 3H), 7.02-6.98 (m, 2H), 6.96-6.91 (m, 2H), 5.27 (d, J = 4.7 Hz, 1H), 4.33-4.29 (m, 1H), 3.85 (s, 3H), 3.09-3.00 (m, 2H), 2.74-2.64 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 203.57, 160.28, 152.78, 150.87, 139.65, 128.97, 128.57, 128.30, 127.95, 126.65, 126.33, 126.30, 124.04, 121.13, 117.03, 113.91, 94.53, 61.63, 55.52, 34.99, 31.15. HRMS (ESI): exact mass calcd for $C_{25}H_{21}O_3$: m/z 369.1496 [M-H]⁻, found: m/z 369.1496.

This compound was prepared according to the general procedure B as an off-white solid (32 mg, 85% yield, 98% *ee*, d.r. = 7: 1, in 0.1 mmol scale; 1.358 g, 91% yield, 96% *ee*, d.r. = 6: 1, in 5.0 mmol scale) and was isolated as a mixture of diastereoisomers. Spectral data for the main isomer is reported. $[\alpha]_D^{25.0} = -2.0$ (*c* 0.098, CHCl₃).

Enantiomeric excess was found to be 98% by chiral HPLC (ChiralPak AD-H & IC column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, t_{minor} = 23.32 min, t_{major} = 24.68 min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.82 (s, 1H), 7.66-7.61 (m, 2H), 7.40-7.36 (m, 2H), 7.32-7.26 (m, 1H), 7.22-7.17 (m, 3H), 7.16-7.11 (m, 2H), 7.10-7.07 (m, 1H), 7.03-6.98 (m, 2H), 5.39 (d, *J* = 4.7 Hz, 1H), 4.35-4.30 (m, 1H), 3.10-2.98 (m, 2H), 2.73-2.67 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 203.30, 152.50, 150.05, 139.39, 134.77, 132.36, 128.93, 128.72, 128.61, 128.44, 127.92, 126.38, 126.19, 124.30, 120.86, 117.02, 96.76, 61.42, 34.79, 31.21.

HRMS (ESI): exact mass calcd for C₂₄H₁₈ClO₂: m/z 373.0990 [M-H]⁻, found: m/z 373.0990.

This compound was prepared according to the general procedure B as a pale-yellow oil (37.7 mg, 90% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 12: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{\rm D}^{25.0} = 35.5 \ (c \ 0.255, \text{CHCl}_3).$

Enantiomeric excess was found to be 99% by chiral HPLC (ChiralPak AD-H & IC column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, t_{major} = 18.60 min, t_{minor} = 19.56 min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.83 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.50-7.47 (m, 1H), 7.38-7.34 (m, 1H), 7.27-7.19 (m, 5H), 7.17-7.12 (m, 2H), 7.08-7.02 (m, 3H), 5.15 (d, *J* = 4.6 Hz, 1H), 4.33 (t, *J* = 4.1 Hz, 1H), 3.24 (dd, *J* = 14.2, 10.5 Hz, 1H), 3.12-3.05 (m, 1H), 2.84 (dd, *J* = 14.2, 3.9 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 203.48, 152.87, 151.48, 139.62, 136.20, 133.51, 131.02, 130.49, 129.00, 128.64, 128.43, 128.02, 127.45, 126.37, 124.28, 122.59, 120.80, 117.06, 101.45, 61.37, 35.24, 31.40.

HRMS (ESI): exact mass calcd for $C_{24}H_{18}BrO_2$: m/z 417.0485 [M-H]⁻, found: m/z 417.0490.

This compound was prepared according to the general procedure B as a pale-yellow oil (30.4 mg, 86% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 13: 1). Spectral data for the main isomer is reported.

 $\left[\alpha\right]_{D}^{25.0} = 7.7 \ (c \ 0.458, \text{CHCl}_3).$

Enantiomeric excess was found to be 98% by chiral HPLC (ChiralPak AD-H & IC column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, $t_{maior} = 19.62 \text{ min}$, $t_{minor} = 22.52 \text{ min}$).

¹**H NMR (500 MHz, CDCl₃):** δ 9.83 (s, 1H), 7.73-7.69 (m, 2H), 7.44-7.36 (m, 3H), 7.23-7.17 (m, 2H), 7.15-7.08 (m, 2H), 7.05-7.01 (m, 2H), 6.96-6.92 (m, 2H), 5.40 (d, *J* = 4.7 Hz, 1H), 4.31-4.28 (m, 1H), 3.08-3.00 (m, 2H), 2.75-2.67 (m, 1H), 2.37 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 203.59, 152.55, 151.02, 139.68, 138.44, 134.09, 128.99, 128.90, 128.57, 128.52, 127.65, 126.27, 125.06, 124.92, 117.87, 117.42, 96.42, 61.53, 34.73, 31.20, 21.22. **HRMS (ESI):** exact mass calcd for $C_{25}H_{21}O_2$: m/z 353.1547 [M-H]⁻, found: m/z 353.1545.

This compound was prepared according to the general procedure B as a pale-yellow oil (32.5 mg, 88% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 8: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{25.0} = -1.2$ (*c* 0.318, CHCl₃).

Enantiomeric excess was found to be 95% by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, $t_{minor} = 19.12$ min, $t_{major} = 38.47$ min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.83 (s, 1H), 7.73-7.68 (m, 2H), 7.44-7.37 (m, 3H), 7.22-7.18 (m, 2H), 7.16-7.09 (m, 2H), 7.04-7.00 (m, 2H), 6.74-6.69 (m, 1H), 6.66-6.63 (m, 1H), 5.41 (d, *J* = 4.7 Hz, 1H), 4.30-4.25 (m, 1H), 3.84 (s, 3H), 3.07-3.00 (m, 2H), 2.74-2.67 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 203.61, 159.69, 153.44, 150.90, 139.69, 133.95, 128.97, 128.94, 128.58, 128.54, 128.52, 126.29, 124.92, 112.90, 111.21, 101.71, 96.72, 61.59, 55.61, 34.45, 31.15. HRMS (ESI): exact mass calcd for $C_{25}H_{21}O_3$: m/z 369.1496 [M-H]⁻, found: m/z 369.1497.

This compound was prepared according to the general procedure B as a pale-yellow oil (29.7 mg, 71% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 4: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{25.0} = 1.2 (c \ 0.303, \text{CHCl}_3).$

Enantiomeric excess was found to be 95% by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = 98:2, 214 nm, 0.7 mL/min, t_{major} = 23.32 min, t_{minor} = 28.22 min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.81 (s, 1H), 7.70-7.66 (m, 2H), 7.45-7.38 (m, 3H), 7.26-7.17 (m, 4H), 7.17-7.12 (m, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 7.03-6.99 (m, 2H), 5.42 (d, *J* = 4.8 Hz, 1H), 4.31-4.26 (m, 1H), 3.08-3.00 (m, 2H), 2.75-2.67 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 203.05, 153.26, 150.87, 139.07, 133.44, 129.21, 129.17, 128.93, 128.64, 128.60, 127.18, 126.43, 124.87, 121.13, 120.27, 120.25, 96.40, 61.22, 34.51, 31.28.

HRMS (ESI): exact mass calcd for C₂₄H₁₈BrO₂: m/z 417.0485 [M-H]⁻, found: m/z 417.0488.

This compound was prepared according to the general procedure B as a pale-yellow oil (29.4 mg, 83% yield in 0.1 mmol scale) and was isolated as a mixture of diastereoisomers (d.r. = 3.5: 1). Spectral data for the main isomer is reported.

 $[\alpha]_{D}^{25.0} = 11.0 (c \ 0.223, \text{CHCl}_3).$

Enantiomeric excess was found to be 92% by chiral HPLC (ChiralPak IB-3 & IC column, hexane/i-PrOH = 98:2, 214 nm, 0.7 mL/min, t_{major} = 21.52 min, t_{minor} = 23.77 min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.83 (s, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.43-7.36 (m, 3H), 7.23-7.17 (m, 2H), 7.13 (t, *J* = 7.5 Hz, 1H), 7.06-6.98 (m, 5H), 5.38 (d, *J* = 4.3 Hz, 1H), 4.31-4.28 (m, 1H), 3.11-3.01 (m, 2H), 2.71 (d, *J* = 12.0 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 203.61, 151.11, 150.63, 139.66, 134.07, 133.52, 129.02, 128.96, 128.90, 128.55, 128.51, 128.10, 126.29, 124.92, 120.54, 116.78, 96.03, 61.40, 35.04, 31.12, 20.99. **HRMS (ESI):** exact mass calcd for $C_{25}H_{21}O_2$: m/z 353.1547 [M-H]⁻, found: m/z 353.1547.

This compound was prepared according to the general procedure B as a pale-yellow oil (46.2 mg, 90% yield, 98% *ee*, d.r. = 21: 1, in 0.1 mmol scale; 4.874 g, 93% yield, 98% *ee*, d.r. > 40: 1, in 10.0 mmol scale) and was isolated as a mixture of diastereoisomers. Spectral data for the main isomer is reported.

NOTE: The **A4** and **C2** could be could be recovered by column chromatography on silica gel (MeOH/CH2Cl2 = 1: 100) and these two organocatalysts could be further used without noticeable loss of reactivity.

 $[\alpha]_{D}^{25.0} = 88.5 (c \ 0.265, \text{CHCl}_3).$

Enantiomeric excess was found to be 98% by chiral HPLC (ChiralPak OD-H column, hexane/i-PrOH = 9:1, 214 nm, 0.7 mL/min, $t_{major} = 9.08 \text{ min}$, $t_{minor} = 14.42 \text{ min}$).

¹**H** NMR (500 MHz, CDCl₃): δ 9.83 (s, 1H), 7.70 (d, J = 6.9 Hz, 2H), 7.38 (t, J = 7.2 Hz, 2H), 7.36-7.32 (m, 1H), 6.25 (s, 1H), 5.42 (d, J = 5.4 Hz, 1H), 4.31-4.27 (m, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 3.82 (s, 3H), 3.50-3.41 (m, 2H), 2.87-2.80 (m, 1H), 1.81-1.71 (m, 1H), 1.57-1.40 (m, 2H), 1.38-1.29 (m, 1H), 0.80 (s, 9H), -0.05 (s, 3H), -0.06 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): 204.63, 152.41, 152.31, 150.57, 147.27, 133.90, 131.65, 128.75, 128.48, 124.81, 104.03, 97.40, 91.75, 62.91, 61.54, 57.17, 56.56, 55.72, 31.15, 30.77, 25.99, 21.36, 18.34, -5.25, -5.28.

HRMS (ESI): exact mass calcd for C₂₉H₃₉O₆Si: m/z 511.2510 [M-H]⁻, found: m/z 511.2509.

5. Derivatization of Flavonoid 3a and 3p

The aldehyde **3a** (34.0 mg, 0.1 mmol, 1.0 equiv.) and *Ethyl* (*triphenylphosphoranylidene*)acetate **4** (52.2 mg, 0.15 mmol, 1.5 equiv.) were stirred in CH_3CN (1 mL) at 60°C until all aldehyde **3a** was consumed completely as judged by TLC. The reactions were cooled down to room temperature, concentrated *in vacuo* and purified by flash column chromatography (ethyl acetate/petroleum ether = 1/40, v/v) to afford *unsaturated ester5* (38.8 mg, 95% yield) as a colorless oil.

 $[\alpha]_{D}^{25.0} = 86.0 (c \ 0.168, \text{CHCl}_3).$

Enantiomeric excess was found to be 98% by chiral HPLC (ChiralPak AD-H & OD-H column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, t_{major} = 16.29 min, t_{minor} = 18.12 min).

¹**H NMR (500 MHz, CDCl₃):** δ 7.77-7.74 (m, 2H), 7.46-7.42 (m, 2H), 7.41-7.37 (m, 1H), 7.29-7.23 (m, 2H), 7.21-7.17 (m, 2H), 7.16-7.10 (m, 3H), 7.05-6.99 (m, 1H), 6.98-6.95 (m, 2H), 5.74 (dd, *J* = 15.7, 1.0 Hz, 1H), 5.56 (d, *J* = 4.9 Hz, 1H), 4.22-4.14 (m, 2H), 3.92 (t, *J* = 4.3 Hz, 1H), 2.95-2.89 (m, 1H), 2.79 (dd, *J* = 14.1, 3.6 Hz, 1H), 2.64 (dd, *J* = 14.1, 10.7 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 166.35, 152.67, 150.90, 149.28, 139.86, 134.21, 128.95, 128.83, 128.51, 128.34, 128.23, 128.17, 126.06, 124.95, 123.85, 123.13, 121.85, 116.84, 96.60, 60.40, 52.42, 39.85, 35.66, 14.35.

HRMS (ESI): exact mass calcd for C₂₈H₂₇O₃: m/z 411.1955 [M+H]⁺, found: m/z 411.1954.

To a solution of *aldehyde* **3a** (170.0 mg, 0.5 mmol, 1.0 equiv.) in anhydrous $CH_2Cl_2/MeOH(10/1)$ 11 mL was added *NaBH*₄ (38.0 mg, 1.0 mmol, 2.0 equiv.) portionwise at 0 °C. The resulting mixture was stirred until all *aldehyde* **3a** were consumed completely as judged by TLC. The reaction mixture was quenched with saturated NaHCO₃ carefully and extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried with anhydrous Na_2SO_4 and evaporated. The residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1/40 to 1/20, v/v) to afford the *alcohol* **6a** (162.4 mg, 95%) as a colorless oil.

 $[\alpha]_{D}^{25.0} = 5.2 (c \ 0.413, \text{CHCl}_3).$

Enantiomeric excess was found to be 98% by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = $80:20, 214 \text{ nm}, 0.7 \text{ mL/min}, t_{\text{minor}} = 5.89 \text{ min}, t_{\text{major}} = 7.21 \text{ min}$).

¹**H** NMR (500 MHz, CDCl₃): δ 7.73 (d, J = 7.6 Hz, 2H), 7.43-7.38 (m, 2H), 7.37-7.32 (m, 1H), 7.26-7.15 (m, 4H), 7.13-7.05 (m, 3H), 6.97 (d, J = 7.3 Hz, 2H), 5.59 (d, J = 4.8 Hz, 1H), 4.09-4.04 (m, 1H), 3.70-3.57 (m, 2H), 2.68-2.59 (m, 1H), 2.37 (t, J = 12.3 Hz, 1H), 2.28-2.18 (m, 1H), 1.32 (s, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 152.84, 150.34, 140.84, 134.43, 128.93, 128.63, 128.49, 128.42, 128.27, 127.72, 125.99, 124.82, 123.79, 123.24, 116.65, 97.37, 62.89, 51.43, 35.47, 33.84.

HRMS (ESI): exact mass calcd for $C_{24}H_{23}O_2$: m/z 343.1693 [M+H]⁺, found: m/z 343.1694.

To a solution of *alcohol* **6a** (68.4 mg, 0.2 mmol, 1.0 equiv.) in anhydrous CH_2Cl_2 2 mL was added *p*-*Toluenesulfonic acid* (34.4 mg, 0.2 mmol, 1.0 equiv.) portionwise at 0 °C. The resulting mixture was stirred until all *alcohol* **6a** were consumed completely as judged by TLC. The reaction mixture was quenched with saturated NaHCO₃ carefully and extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried with anhydrous Na_2SO_4 and evaporated. The residue was purified by flash column chromatography (ethyl acetate/petroleum ether = 1/60, v/v) to afford **6** (62.7 mg, 92%) as a white solid.

 $[\alpha]_{D}^{25.0} = 13.6 (c \ 0.220, \text{CHCl}_3).$

Enantiomeric excess was found to be 98% by chiral HPLC (ChiralPak AD-H column, hexane/i-PrOH = 95:5, 214 nm, 0.7 mL/min, $t_{major} = 8.12$ min, $t_{minor} = 9.42$ min).

¹**H NMR (500 MHz, CDCl₃):** δ 7.61 (d, J = 7.5 Hz, 2H), 7.40-7.16 (m, 9H), 7.12-7.03 (m, 2H), 6.97 (t, J = 7.4 Hz, 1H), 3.83-3.75 (m, 1H), 3.48 (t, J = 11.5 Hz, 1H), 3.14-3.06 (m, 1H), 2.58-2.49 (m, 2H), 2.30-2.20 (m, 2H), 2.12-2.04 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 156.26, 142.48, 139.35, 129.94, 129.03, 128.69, 128.50, 128.40, 128.24, 126.40, 125.47, 122.36, 120.31, 115.62, 98.22, 64.94, 41.08, 37.59, 36.33, 34.88.

HRMS (ESI): exact mass calcd for $C_{24}H_{23}O_2$: m/z 343.1693 [M+H]⁺, found: m/z 343.1693.

To a solution of *aldehyde* 3p (512 mg, 1.0 mmol, 1.0 equiv.) in anhydrous toluene 5 mL was added *DBU* (30.4 mg, 0.2 mmol, 0.2 equiv.) at 80 °C. The resulting mixture was stirred until the ratio of 3p and *2-epi-3p* not changed anymore as judged by TLC. The reactions were cooled down to room temperature, concentrated *in vacuo* and purified by flash column chromatography (ethyl acetate/petroleum ether = 1/50 to 1/30, v/v) to afford 3p (249 mg, 49%) as a colorless oil and (ethyl acetate/petroleum ether = 1/10, v/v) to afford *2-epi-3p* (254 mg, 50%) as a colorless oil. $[\alpha]_D^{25.0} = 89.4$ (*c* 0.413, CHCl₃).

Enantiomeric excess was found to be 95% by chiral HPLC (ChiralPak OD-H column, hexane/i-PrOH = 9:1, 214 nm, 0.7 mL/min, $t_{major} = 10.76$ min, $t_{minor} = 19.26$ min).

¹**H NMR (500 MHz, CDCl₃):** δ 9.63 (d, J = 2.1 Hz, 1H), 7.72 (d, J = 7.1 Hz, 2H), 7.42-7.36 (m, 2H), 7.36-7.31 (m, 1H), 6.24 (s, 1H), 5.61 (d, J = 5.5 Hz, 1H), 4.12-4.09 (m, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.78 (s, 3H), 3.65-3.55 (m, 2H), 2.60-2.56 (m, 1H), 1.73-1.64 (m, 1H), 1.63-1.50 (m, 3H), 0.86 (s, 9H), 0.01 (s, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 204.49, 152.48, 152.31, 150.24, 146.91, 133.70, 131.48, 128.76, 128.43, 124.76, 103.53, 98.34, 91.47, 77.36, 62.87, 61.47, 57.38, 56.44, 55.37, 31.38, 30.79, 25.98, 21.71, 18.33, -5.25.

HRMS (ESI): exact mass calcd for C₂₉H₃₉O₆Si: m/z 511.2510 [M-H]⁻, found: m/z 511.2508.

Entry	Conditions	Results
1	<i>t</i> -BuOK, <i>t</i> -BuOH, 40 °C	Complex
2	K ₂ CO ₃ , MeOH, 40 °C	32% (55% S.M.)
3	DBU, toluene, 40 °C	48% (51% S.M.)
4	DBU, toluene, 80 °C	50% (49% S.M.)
5	DBU, toluene, 120 °C	46% (43% S.M.)
6	Basic Al ₂ O ₃ , toluene, 40 °C	48% (45% S.M.)
7	Basic Al ₂ O ₃ , CH ₂ Cl ₂ , 40 °C	47% (46% S.M.)
8	LDA, THF, -78 °C to rt	22% (58% S.M.)
9	LiHMDS, THF, -78 °C to rt	25% (51% S.M.)

Table S4 The Condition Optimization for the Isomerization of Compound 3p

6. X-ray Crystal Data for Compound 6

Identification code	11	
Empirical formula	C24 H22 O2	
Formula weight	342.42	
Temperature	296(2) K	
Wavelength	1.54178 A	
Crystal system, space group	Orthorhombic, P 21 21 21	
Unit cell dimensions	a = 6.87350(10) A alpha = 90 deg.	
	b = 8.75670(10) A beta = 90 deg.	
	c = 31.8081(4) A gamma = 90 deg.	
Volume	1914.50(4) A^3	
Z, Calculated density	4, 1.188 Mg/m^3	
Absorption coefficient	0.581 mm^-1	
F(000)	728	
Crystal size	0.32 x 0.28 x 0.12 mm	
Theta range for data collection	5.24 to 68.10 deg.	
Limiting indices	-7<=h<=6, -9<=k<=10, -37<=l<=37	
Reflections collected / unique	9180 / 3341 [R(int) = 0.0357]	
Completeness to theta $= 68.10$	96.1 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7530 and 0.5067	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	3341 / 0 / 236	
Goodness-of-fit on F^2	1.023	
Final R indices [I>2sigma(I)]	R1 = 0.0363, $wR2 = 0.0935$	
R indices (all data)	R1 = 0.0401, $wR2 = 0.0965$	
Absolute structure parameter	-0.1(2)	
Extinction coefficient	0.0080(5)	
Largest diff. peak and hole	0.114 and -0.131 e.A^-3	

Table S5. Crystal data and structure refinement for compound 6

Table S6. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for compound 6

	Х	У	Z	U(eq)	
O(1)	4709(2)	9198(1)	1495(1)	56(1)	
O(2)	4225(2)	6717(1)	1257(1)	50(1)	
C(1)	11(3)	11014(2)	1281(1)	76(1)	
C(2)	627(4)	12483(2)	1201(1)	90(1)	
C(3)	2572(4)	12840(2)	1227(1)	83(1)	
C(4)	3898(3)	11728(2)	1328(1)	67(1)	
C(5)	3272(3)	10248(2)	1401(1)	53(1)	
C(6)	1313(3)	9860(2)	1382(1)	56(1)	
C(7)	716(2)	8251(2)	1485(1)	55(1)	
C(8)	2150(2)	7644(2)	1807(1)	53(1)	

C(9) 4162(2) 7666(2) 1613(1) 47(1) C(10) 2821(2) 7077(2) 937(1) 53(1) C(11) 758(2) 7180(2) 1102(1) 52(1) C(12) -664(3) 7639(2) 753(1) 65(1) C(13) -1060(3) 6370(2) 445(1) 55(1) C(14) -2560(3) 5373(2) 517(1) 68(1) C(15) -2957(4) 4208(3) 238(1) 91(1) C(16) -1842(5) 4020(3) -113(1) 97(1) C(17) -333(4) 4978(3) -183(1) 92(1) C(18) 48(3) 6151(3) 87(1) 75(1) C(20) 6595(3) 5721(2) 1873(1) 65(1) C(21) 7980(3) 5236(3) 2158(1) 85(1) C(24) 6215(3) 8032(3) 2253(1) 73(1) H(1A) -1310 10791 1267 91 H(2A) -272 13232 1129							
C(10) 2821(2) 7077(2) 937(1) 53(1) C(11) 758(2) 7180(2) 1102(1) 52(1) C(12) -664(3) 7639(2) 753(1) 65(1) C(13) -1060(3) 6370(2) 445(1) 55(1) C(14) -2560(3) 5373(2) 517(1) 68(1) C(15) -2957(4) 4208(3) 238(1) 91(1) C(16) -1842(5) 4020(3) -113(1) 97(1) C(17) -333(4) 4978(3) -183(1) 92(1) C(18) 48(3) 6151(3) 87(1) 75(1) C(19) 5717(2) 7125(2) 1914(1) 53(1) C(20) 6595(3) 5721(2) 1873(1) 65(1) C(21) 7980(3) 533(4) 2540(1) 91(1) C(24) 6215(3) 8032(3) 2253(1) 73(1) H(1A) -1310 10791 1267 91 H(2A) -272 13232 1129	С	(9)	4162(2)	7666(2)	1613(1)	47(1)	
C(11) 758(2) 7180(2) 1102(1) 52(1) C(12) -664(3) 7639(2) 753(1) 65(1) C(13) -1060(3) 6370(2) 445(1) 55(1) C(14) -2560(3) 5373(2) 517(1) 68(1) C(15) -2957(4) 4208(3) 238(1) 91(1) C(16) -1842(5) 4020(3) -113(1) 97(1) C(17) -333(4) 4978(3) -183(1) 92(1) C(18) 48(3) 6151(3) 87(1) 75(1) C(20) 6595(3) 5721(2) 1873(1) 65(1) C(21) 7980(3) 5236(3) 2158(1) 85(1) C(22) 8488(3) 6142(4) 2490(1) 93(1) C(23) 7589(3) 7534(4) 2540(1) 91(1) C(24) 6215(3) 8032(3) 2253(1) 73(1) H(1A) -1310 10791 1267 91 H(2A) -272 13232 1129	С	(10)	2821(2)	7077(2)	937(1)	53(1)	
C(12) -664(3) 7639(2) 753(1) 65(1) C(13) -1060(3) 6370(2) 445(1) 55(1) C(14) -2560(3) 5373(2) 517(1) 68(1) C(15) -2957(4) 4208(3) 238(1) 91(1) C(16) -1842(5) 4020(3) -113(1) 97(1) C(17) -333(4) 4978(3) -183(1) 92(1) C(18) 48(3) 6151(3) 87(1) 75(1) C(19) 5717(2) 7125(2) 1914(1) 53(1) C(20) 6595(3) 5721(2) 1873(1) 65(1) C(21) 7980(3) 5236(3) 2158(1) 85(1) C(22) 8488(3) 6142(4) 2490(1) 93(1) C(23) 7589(3) 7534(4) 2540(1) 91(1) C(24) 6215(3) 8032(3) 2253(1) 73(1) H(1A) -1310 10791 1267 91 H(2A) -272 13232 1129	С	(11)	758(2)	7180(2)	1102(1)	52(1)	
C(13) -1060(3) 6370(2) 445(1) 55(1) C(14) -2560(3) 5373(2) 517(1) 68(1) C(15) -2957(4) 4208(3) 238(1) 91(1) C(16) -1842(5) 40020(3) -113(1) 97(1) C(17) -333(4) 4978(3) -183(1) 92(1) C(18) 48(3) 6151(3) 87(1) 75(1) C(19) 5717(2) 7125(2) 1914(1) 53(1) C(20) 6595(3) 5721(2) 1873(1) 65(1) C(21) 7980(3) 5236(3) 2158(1) 85(1) C(22) 8488(3) 6142(4) 2490(1) 93(1) C(23) 7589(3) 7534(4) 2540(1) 91(1) C(24) 6215(3) 8032(3) 2253(1) 73(1) H(1A) -1310 10791 1267 91 H(2A) -272 13232 1129 107 H(3A) 2988 13834 1176	С	(12)	-664(3)	7639(2)	753(1)	65(1)	
C(14) -2560(3) 5373(2) 517(1) 68(1) C(15) -2957(4) 4208(3) 238(1) 91(1) C(16) -1842(5) 4020(3) -113(1) 97(1) C(17) -333(4) 4978(3) -183(1) 92(1) C(18) 48(3) 6151(3) 87(1) 75(1) C(19) 5717(2) 7125(2) 1914(1) 53(1) C(20) 6595(3) 5721(2) 1873(1) 65(1) C(21) 7980(3) 5236(3) 2158(1) 85(1) C(22) 8488(3) 6142(4) 2490(1) 93(1) C(23) 7589(3) 7534(4) 2540(1) 91(1) C(24) 6215(3) 8032(3) 2253(1) 73(1) H(1A) -1310 10791 1267 91 H(2A) -272 13232 1129 107 H(3A) 2988 13834 1176 99 H(4A) 5214 11967 1347 81	С	(13)	-1060(3)	6370(2)	445(1)	55(1)	
C(15) -2957(4) 4208(3) 238(1) 91(1) C(16) -1842(5) 4020(3) -113(1) 97(1) C(17) -333(4) 4978(3) -183(1) 92(1) C(18) 48(3) 6151(3) 87(1) 75(1) C(19) 5717(2) 7125(2) 1914(1) 53(1) C(20) 6595(3) 5721(2) 1873(1) 65(1) C(21) 7980(3) 5236(3) 2158(1) 85(1) C(22) 8488(3) 6142(4) 2490(1) 93(1) C(23) 7589(3) 7534(4) 2540(1) 91(1) C(24) 6215(3) 8032(3) 2253(1) 73(1) H(1A) -1310 10791 1267 91 H(2A) -272 13232 1129 107 H(3A) 2988 13834 1176 99 H(4A) 5214 11967 1347 81 H(7A) -594 8256 1606 66	С	(14)	-2560(3)	5373(2)	517(1)	68(1)	
C(16)-1842(5)4020(3)-113(1)97(1)C(17)-333(4)4978(3)-183(1)92(1)C(18)48(3)6151(3)87(1)75(1)C(19)5717(2)7125(2)1914(1)53(1)C(20)6595(3)5721(2)1873(1)65(1)C(21)7980(3)5236(3)2158(1)85(1)C(22)8488(3)6142(4)2490(1)93(1)C(23)7589(3)7534(4)2540(1)91(1)C(24)6215(3)8032(3)2253(1)73(1)H(1A)-131010791126791H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(14A)-381795588078H(12B)-135850860278H(12A)-21173240-303117H(15A)-2173240-303117H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A) <td>С</td> <td>(15)</td> <td>-2957(4)</td> <td>4208(3)</td> <td>238(1)</td> <td>91(1)</td> <td></td>	С	(15)	-2957(4)	4208(3)	238(1)	91(1)	
C(17)-333(4)4978(3)-183(1)92(1)C(18)48(3)6151(3)87(1)75(1)C(19)5717(2)7125(2)1914(1)53(1)C(20)6595(3)5721(2)1873(1)65(1)C(21)7980(3)5236(3)2158(1)85(1)C(22)8488(3)6142(4)2490(1)93(1)C(23)7589(3)7534(4)2540(1)91(1)C(24)6215(3)8032(3)2253(1)73(1)H(1A)-131010791126791H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(11A)3846160120063H(12A)-1883795588078H(12A)-135850860278H(14A)-3319548375782H(15A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(2A)62525090165078H(21A)8569 <t< td=""><td>С</td><td>(16)</td><td>-1842(5)</td><td>4020(3)</td><td>-113(1)</td><td>97(1)</td><td></td></t<>	С	(16)	-1842(5)	4020(3)	-113(1)	97(1)	
C(18)48(3)6151(3)87(1)75(1)C(19)5717(2)7125(2)1914(1)53(1)C(20)6595(3)5721(2)1873(1)65(1)C(21)7980(3)5236(3)2158(1)85(1)C(22)8488(3)6142(4)2490(1)93(1)C(23)7589(3)7534(4)2540(1)91(1)C(24)6215(3)8032(3)2253(1)73(1)H(1A)-131010791126791H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(2A)943158202680112H(23A)790881462769110	С	(17)	-333(4)	4978(3)	-183(1)	92(1)	
C(19)5717(2)7125(2)1914(1)53(1)C(20)6595(3)5721(2)1873(1)65(1)C(21)7980(3)5236(3)2158(1)85(1)C(22)8488(3)6142(4)2490(1)93(1)C(23)7589(3)7534(4)2540(1)91(1)C(24)6215(3)8032(3)2253(1)73(1)H(1A)-131010791126791H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(11A)3846160120063H(12A)-1883795588078H(12A)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	С	(18)	48(3)	6151(3)	87(1)	75(1)	
C(20)6595(3)5721(2)1873(1)65(1)C(21)7980(3)5236(3)2158(1)85(1)C(22)8488(3)6142(4)2490(1)93(1)C(23)7589(3)7534(4)2540(1)91(1)C(24)6215(3)8032(3)2253(1)73(1)H(1A)-131010791126791H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(10B)3168804580963H(12A)-1883795588078H(12A)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	С	(19)	5717(2)	7125(2)	1914(1)	53(1)	
C(21)7980(3)5236(3)2158(1)85(1)C(22)8488(3)6142(4)2490(1)93(1)C(23)7589(3)7534(4)2540(1)91(1)C(24)6215(3)8032(3)2253(1)73(1)H(1A)-131010791126791H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(10A)2875630072063H(10B)3168804580963H(11A)-1883795588078H(12B)-135850860278H(12A)-21173240-303117H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	С	(20)	6595(3)	5721(2)	1873(1)	65(1)	
C(22)8488(3)6142(4)2490(1)93(1)C(23)7589(3)7534(4)2540(1)91(1)C(24)6215(3)8032(3)2253(1)73(1)H(1A)-131010791126791H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12B)-135850860278H(12B)-135850860278H(14A)-3319548375782H(15A)-29903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	С	(21)	7980(3)	5236(3)	2158(1)	85(1)	
C(23)7589(3)7534(4)2540(1)91(1)C(24)6215(3)8032(3)2253(1)73(1)H(1A)-131010791126791H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	С	(22)	8488(3)	6142(4)	2490(1)	93(1)	
C(24) $6215(3)$ $8032(3)$ $2253(1)$ $73(1)$ $H(1A)$ -1310 10791 1267 91 $H(2A)$ -272 13232 1129 107 $H(3A)$ 2988 13834 1176 99 $H(4A)$ 5214 11967 1347 81 $H(7A)$ -594 8256 1606 66 $H(8A)$ 2125 8277 2057 64 $H(8B)$ 1802 6610 1886 64 $H(10A)$ 2875 6300 720 63 $H(10B)$ 3168 8045 809 63 $H(11A)$ 384 6160 1200 63 $H(12A)$ -1883 7955 880 78 $H(12B)$ -135 8508 602 78 $H(14A)$ -3319 5483 757 82 $H(15A)$ -3990 3548 290 109 $H(16A)$ -2117 3240 -303 117 $H(17A)$ 452 4837 -418 111 $H(18A)$ 1072 6814 30 90 $H(20A)$ 6252 5090 1650 78 $H(21A)$ 8569 4288 2124 102 $H(22A)$ 9431 5820 2680 112 $H(23A)$ 7908 8146 2769 110	С	(23)	7589(3)	7534(4)	2540(1)	91(1)	
H(1A)-131010791126791H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(11B)3168804580963H(12B)-135850860278H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	С	(24)	6215(3)	8032(3)	2253(1)	73(1)	
H(2A)-272132321129107H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(1A)	-1310	10791	1267	91	
H(3A)298813834117699H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(15A)-3319548375782H(15A)-21173240-303117H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(2A)	-272	13232	1129	107	
H(4A)521411967134781H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(3A)	2988	13834	1176	99	
H(7A)-5948256160666H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(4A)	5214	11967	1347	81	
H(8A)21258277205764H(8B)18026610188664H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(7A)	-594	8256	1606	66	
H(8B)18026610188664H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(8A)	2125	8277	2057	64	
H(10A)2875630072063H(10B)3168804580963H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(8B)	1802	6610	1886	64	
H(10B)3168804580963H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	i(10A)	2875	6300	720	63	
H(11A)3846160120063H(12A)-1883795588078H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	i(10B)	3168	8045	809	63	
H(12A)-1883795588078H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(11A)	384	6160	1200	63	
H(12B)-135850860278H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(12A)	-1883	7955	880	78	
H(14A)-3319548375782H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(12B)	-135	8508	602	78	
H(15A)-39903548290109H(16A)-21173240-303117H(17A)4524837-418111H(17A)45268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	[(14A)	-3319	5483	757	82	
H(16A)-21173240-303117H(17A)4524837-418111H(17A)45268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	Н	(15A)	-3990	3548	290	109	
H(17A)4524837-418111H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110	H	H(16A)	-2117	3240	-303	117	
H(18A)107268143090H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110H(11A)1056605060506050	H	H(17A)	452	4837	-418	111	
H(20A)62525090165078H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110H(24A)5620562056205620	H	H(18A)	1072	6814	30	90	
H(21A)856942882124102H(22A)943158202680112H(23A)790881462769110H(1144)116411701100	H	H(20A)	6252	5090	1650	78	
H(22A)943158202680112H(23A)790881462769110H(24A)5627655965596559	H	H(21A)	8569	4288	2124	102	
H(23A) 7908 8146 2769 110	H	H(22A)	9431	5820	2680	112	
	H	H(23A)	7908	8146	2769	110	
H(24A) 5626 8979 2288 88	H	I(24A)	5626	8979	2288	88	

Table S7. Bond lengths [A] and angles [deg] for compound 6

O(1)-C(5)	1.381(2)	O(2)-C(9)-C(19)	107.66(13)
O(1)-C(9)	1.444(2)	O(1)-C(9)-C(19)	105.80(13)
O(2)-C(9)	1.4044(19)	O(2)-C(9)-C(8)	110.41(13)

(O(2)-C(10)	1.4378(19)	O(1)-C(9)-C(8)	110.84(14)
(C(1)-C(2)	1.377(3)	C(19)-C(9)-C(8)	112.62(13)
(C(1)-C(6)	1.388(3)	O(2)-C(10)-C(11)	113.37(14)
(C(1)-H(1A)	0.9300	O(2)-C(10)-H(10A)	108.9
(C(2)-C(3)	1.376(3)	C(11)-C(10)-H(10A)	108.9
(C(2)-H(2A)	0.9300	O(2)-C(10)-H(10B)	108.9
(C(3)-C(4)	1.372(3)	C(11)-C(10)-H(10B)	108.9
(C(3)-H(3A)	0.9300	H(10A)-C(10)-H(10B)	107.7
(C(4)-C(5)	1.386(2)	C(10)-C(11)-C(12)	111.22(15)
(C(4)-H(4A)	0.9300	C(10)-C(11)-C(7)	109.16(14)
(C(5)-C(6)	1.390(3)	C(12)-C(11)-C(7)	113.68(14)
(C(6)-C(7)	1.504(2)	C(10)-C(11)-H(11A)	107.5
(C(7)-C(8)	1.517(2)	C(12)-C(11)-H(11A)	107.5
(C(7)-C(11)	1.536(2)	C(7)-C(11)-H(11A)	107.5
(C(7)-H(7A)	0.9800	C(13)-C(12)-C(11)	113.16(14)
(C(8)-C(9)	1.514(2)	C(13)-C(12)-H(12A)	108.9
(C(8)-H(8A)	0.9700	C(11)-C(12)-H(12A)	108.9
(C(8)-H(8B)	0.9700	C(13)-C(12)-H(12B)	108.9
(C(9)-C(19)	1.512(2)	C(11)-C(12)-H(12B)	108.9
(C(10)-C(11)	1.514(2)	H(12A)-C(12)-H(12B)	107.8
(C(10)-H(10A)	0.9700	C(14)-C(13)-C(18)	117.65(19)
(C(10)-H(10B)	0.9700	C(14)-C(13)-C(12)	119.79(18)
(C(11)-C(12)	1.533(2)	C(18)-C(13)-C(12)	122.56(19)
(С(11)-Н(11А)	0.9800	C(13)-C(14)-C(15)	120.8(2)
(C(12)-C(13)	1.507(3)	C(13)-C(14)-H(14A)	119.6
(C(12)-H(12A)	0.9700	C(15)-C(14)-H(14A)	119.6
(C(12)-H(12B)	0.9700	C(16)-C(15)-C(14)	120.3(2)
(C(13)-C(14)	1.370(3)	C(16)-C(15)-H(15A)	119.8
(C(13)-C(18)	1.382(3)	C(14)-C(15)-H(15A)	119.8
(C(14)-C(15)	1.379(3)	C(17)-C(16)-C(15)	119.4(2)
(C(14)-H(14A)	0.9300	C(17)-C(16)-H(16A)	120.3
(C(15)-C(16)	1.365(4)	C(15)-C(16)-H(16A)	120.3
(C(15)-H(15A)	0.9300	C(16)-C(17)-C(18)	120.6(2)
(C(16)-C(17)	1.353(4)	C(16)-C(17)-H(17A)	119.7
(C(16)-H(16A)	0.9300	C(18)-C(17)-H(17A)	119.7
(C(17)-C(18)	1.366(3)	C(17)-C(18)-C(13)	121.2(2)
(C(17)-H(17A)	0.9300	C(17)-C(18)-H(18A)	119.4
(C(18)-H(18A)	0.9300	C(13)-C(18)-H(18A)	119.4
(C(19)-C(20)	1.376(3)	C(20)-C(19)-C(24)	118.68(19)
(C(20)-C(19)-C(9)	121.94(17)	C(21)-C(20)-H(20A)	119.5
(C(24)-C(19)-C(9)	119.31(18)	C(22)-C(21)-C(20)	120.4(3)
(C(19)-C(20)-C(21)	120.9(2)	C(22)-C(21)-H(21A)	119.8
(C(19)-C(20)-H(20A)	119.5	C(20)-C(21)-H(21A)	119.8

C(21)-C(22)-C(23)	119.3(2)	C(24)-C(23)-H(23A)	119.7
C(21)-C(22)-H(22A)	120.4	C(19)-C(24)-C(23)	120.2(2)
C(23)-C(22)-H(22A)	120.4	C(19)-C(24)-H(24A)	119.9
C(22)-C(23)-C(24)	120.6(3)	C(23)-C(24)-H(24A)	119.9
C(22)-C(23)-H(23A)	119.7		

Table S8. Torsion angles [deg] for compound 6

C(6)-C(1)-C(2)-C(3)	-1.1(4)	
C(1)-C(2)-C(3)-C(4)	0.8(4)	
C(2)-C(3)-C(4)-C(5)	0.3(4)	
C(9)-O(1)-C(5)-C(4)	174.29(16)	
C(9)-O(1)-C(5)-C(6)	-5.6(2)	
C(3)-C(4)-C(5)-O(1)	179.02(19)	
C(3)-C(4)-C(5)-C(6)	-1.1(3)	
C(2)-C(1)-C(6)-C(5)	0.3(3)	
C(2)-C(1)-C(6)-C(7)	178.1(2)	
O(1)-C(5)-C(6)-C(1)	-179.37(17)	
C(4)-C(5)-C(6)-C(1)	0.7(3)	
O(1)-C(5)-C(6)-C(7)	2.8(3)	
C(4)-C(5)-C(6)-C(7)	-177.11(18)	
C(1)-C(6)-C(7)-C(8)	-146.89(19)	
C(5)-C(6)-C(7)-C(8)	30.8(2)	
C(1)-C(6)-C(7)-C(11)	94.0(2)	
C(5)-C(6)-C(7)-C(11)	-88.2(2)	
C(6)-C(7)-C(8)-C(9)	-60.74(18)	
C(11)-C(7)-C(8)-C(9)	61.64(17)	
C(10)-O(2)-C(9)-O(1)	-65.69(16)	
C(10)-O(2)-C(9)-C(19)	179.81(13)	
C(10)-O(2)-C(9)-C(8)	56.51(17)	
C(5)-O(1)-C(9)-O(2)	95.67(16)	
C(5)-O(1)-C(9)-C(19)	-148.64(14)	
C(5)-O(1)-C(9)-C(8)	-26.3(2)	
C(7)-C(8)-C(9)-O(2)	-61.37(18)	
C(7)-C(8)-C(9)-O(1)	59.95(17)	
C(7)-C(8)-C(9)-C(19)	178.26(14)	
C(9)-O(2)-C(10)-C(11)	-52.27(18)	
O(2)-C(10)-C(11)-C(12)	177.34(13)	
O(2)-C(10)-C(11)-C(7)	51.12(19)	
C(6)-C(7)-C(11)-C(10)	62.24(19)	
C(8)-C(7)-C(11)-C(10)	-56.44(17)	
C(6)-C(7)-C(11)-C(12)	-62.6(2)	
C(8)-C(7)-C(11)-C(12)	178.76(14)	
C(10)-C(11)-C(12)-C(13)	73.6(2)	

C(7)-C(11)-C(12)-C(13)	-162.73(16)	
C(11)-C(12)-C(13)-C(14)	89.7(2)	
C(11)-C(12)-C(13)-C(18)	-89.7(2)	
C(18)-C(13)-C(14)-C(15)	-0.9(3)	
C(12)-C(13)-C(14)-C(15)	179.6(2)	
C(13)-C(14)-C(15)-C(16)	0.8(4)	
C(14)-C(15)-C(16)-C(17)	0.6(4)	
C(15)-C(16)-C(17)-C(18)	-1.8(4)	
C(16)-C(17)-C(18)-C(13)	1.6(4)	
C(14)-C(13)-C(18)-C(17)	-0.3(3)	
C(12)-C(13)-C(18)-C(17)	179.17(19)	
O(2)-C(9)-C(19)-C(20)	-15.2(2)	
O(1)-C(9)-C(19)-C(20)	-132.06(16)	
C(8)-C(9)-C(19)-C(20)	106.72(18)	
O(2)-C(9)-C(19)-C(24)	167.80(15)	
O(1)-C(9)-C(19)-C(24)	50.97(19)	
C(8)-C(9)-C(19)-C(24)	-70.3(2)	
C(24)-C(19)-C(20)-C(21)	-1.4(3)	
C(9)-C(19)-C(20)-C(21)	-178.41(17)	
C(19)-C(20)-C(21)-C(22)	0.7(3)	
C(20)-C(21)-C(22)-C(23)	0.8(3)	
C(21)-C(22)-C(23)-C(24)	-1.4(3)	
C(20)-C(19)-C(24)-C(23)	0.8(3)	
C(9)-C(19)-C(24)-C(23)	177.85(16)	
C(22)-C(23)-C(24)-C(19)	0.6(3)	

7. HPLC Charts for Enantioenriched Flavonoids

HPLC Report

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		10.907	361842.1	4583935.2	27.9153	
2	2		11.598	269666.2	3622589.9	22.0609	
3	3		12.107	319724.9	4561087.6	27.7762	
4	4		15.048	210421.0	3653237.4	22. 2476	
Tota	1			1161654.1	16420850.2	100.0000	

HPLC Report

Recording Time:2016.10.10 22:15

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	98% ee , dr = 11.92: 1
1	1		10.548	1336831.9	17691878.3	91.3483	
2	2		11.282	23211.7	355327.7	1.8347	
3	3		11.698	9141.2	174517.3	0.9011	
4	4		14.532	61383.9	1145767.9	5. 9159	
Tota	1			1430568.8	19367491.2	100.0000	

Figure S2 HPLC Charts of Compound 3a

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		15.713	496354.8	5864903.1	29. 3217	
2	2		16.807	327904.6	4095677.5	20. 4764	
3	3		18.007	428538.1	5976005.7	29.8771	
4	4		19.152	278536.8	4065347.8	20. 3248	
Tota	1			1531334.3	20001934.1	100. 0000	

HPLC Report

Sample Name:HJD-VI-1-1 AD-H+IC 214 955 0.7 Recording Time:2016.10.20 13:50

No.	PeakNo	ID. Name	R. Time	PeakHe i ght	PeakArea	Conc	96% ee , dr = 7.85: 1
1	1		15. 597	1694723.0	19930525.2	86.7424	
2	2		16.657	75285.0	898347.6	3. 9098	
3	3		17.875	34837.8	447406.2	1.9472	
4	4		19.002	122065.4	1700391.2	7.4005	
Tota	1			1926911.2	22976670. 2	100.0000	

Figure S3 HPLC Charts of Compound 3b

Sample Name:HJD-V-96-3 AD-H+IC 214 955 0.7 Recording Time:2016.10.19 21:26

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		13.957	819090.2	8687684.3	33. 2112	
2	2		14.748	382617.0	4408930.3	16.8544	
3	3		16.065	695429.6	8646910.0	33.0554	
4	4		16.507	342127.3	4415353.4	16.8790	
Tota	1			2239264.2	26158877.9	100, 0000	

HPLC Report

Sample Name:HJD-VI-1-3 AD-H+IC 214 955 0.7 Recording Time:2016.10.19 16:53

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	97% ee , dr = 9.88 : 1
1	1		14.042	1166509.9	12470805.4	89. 4385	
2	2		14.848	26732.3	274152.2	1.9662	
3	3		16.190	15686.4	192069.8	1. 3775	
4	4		16.623	77878.4	1006414.6	7.2178	
Tota	1			1286807.0	13943442.0	100.0000	

Figure S4 HPLC Charts of Compound 3c

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		18.898	482741.8	12106686.7	27. 1811	
2	2		21.882	295144.3	10180238.5	22.8560	
3	3		25.132	346659.7	12124210.7	27. 2204	
4	4		32. 790	198119.7	10129727.5	22. 7425	
Tota	1			1322665.5	44540863.5	100.0000	

HPLC Report

Sample Name:HJD-VI-1-2 AD-H 214 991 0.7

Recording Time:2016.10.20 17:46

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	95% ee , dr = 4.56 :1
1	2		18, 407	869193.7	21479032.6	80. 1582	
2	3		21.190	104422.3	3912226.5	14.6001	
3	4		24.690	15056.4	495370. 5	1.8487	
4	5		32.298	21133.3	909176.5	3. 3930	
Tota	1			1009805.8	26795806.2	100.0000	1

Figure S5 HPLC Charts of Compound 3d

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		15.902	266335.3	3239307.9	29.7237	
2	2		16.450	186414.5	2207130.7	20. 2525	
3	3		17.448	238983.8	3183093.3	29.2078	
4	4		18.698	156544.0	2268550.4	20. 8161	
Tota	1			848277.6	10898082.4	100. 0000	

HPLC Report

Sample Name:HJD-VI-1-5 AD-H+IC 214 955 0.7 Recording Time:2016.10.19 17:16

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	98% ee , dr = 11.08: 1
1	1		15.932	1565743.9	19379302.8	90.8743	
2	2		16.475	44784.9	618213.9	2.8990	
3	3		17.455	13984.9	179723.0	0.8428	
4	4		18.723	78294.7	1148152.2	5. 3840	
Tota	1			1702808.4	21325391.9	100, 0000	

Figure S6 HPLC Charts of Compound 3e

Total			1222641.5	19173959.2	100.0000	
4	4	14.840	75575.7	1408299.6	7.3449	
3	3	13.723	23468.2	408483.8	2.1304	
2	2	13.107	76320.4	1264689.6	6.5959	
1	1	12.557	1047277.3	16092486.2	83.9289	

12

PeakArea

14

16

Conc

18

20 Min

95% ee, dr = 6.17: 1

0

2

No. PeakNo ID. Name

4

6

R. Time

8

PeakHe i ght

10

Figure S7 HPLC Charts of Compound 3f

No.	PeakNo	ID. Name	R. Time	PeakHe ight	PeakArea	Conc	
1	1		18.132	104268.5	2251489.0	19.4421	
2	2		20.032	145597.5	3527306.8	30.4591	
3	3		22.740	81645.8	2254478.1	19.4679	
4	4		25.223	116931.9	3547189.6	30.6308	
Tota	1			448443.7	11580463.6	100.0000	

HPLC Report

Sample Name:CL-I-72-1 AD-H 955 214 0.7

Recording Time:2018.03.07 16:38

No.	PeakNo	ID. Name	R. Time	PeakHe ight	PeakArea	Conc	96% ee, $dr = 5.91:1$
1	1		17.922	58170.2	1273450.2	7.2914	
2	2		19.823	601515.1	14647672.5	83.8683	
3	3		22.557	46859.3	1254261.0	7.1815	
4	4		25.073	9871.6	289709.3	1.6588	
Tota	1			716416.3	17465093.0	100.0000	

Figure S8 HPLC Charts of Compound 3g

No.	PeakNo	ID. Name	R. Time	PeakHe i ght	PeakArea	Conc	
1	1		17.755	177484.9	3855852.1	35.6040	
2	2		19.010	65230.5	1564067.6	14.4422	
3	3		19.965	151842.9	3848497.7	35.5361	
4	4		36.032	32250.4	1561404.3	14.4176	
Tota	1			426808.7	10829821.7	100.0000	

HPLC Report

Sample Name:CL-I-49-1 AD-H 214 982 0.7

Recording Time:2018.01.26 19:20

No.	PeakNo	ID. Name	R. Time	PeakHe ight	PeakArea	Conc	98% ee, dr = 16.92: 1
1	1		17.848	6466.1	216742.5	1.0648	
2	2		19.132	16573.2	394070.3	1.9360	
3	3		20.090	744263.0	19001745.2	93.3532	
4	4		36.082	15702.7	742114.0	3.6459	
Tota	1			783005.0	20354672.0	100.0000	

Figure S9 HPLC Charts of Compound 3h

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		12.998	793926.7	10817165.9	22, 9221	
2	2		13.632	868340.6	12760718.2	27.0406	
3	3		14.198	848674.2	13014973.7	27. 5794	
4	4		15.482	423336.2	10598044.3	22. 4578	
Tota	1			2934277.7	47190902.0	100.0000	

HPLC Report

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	95% ee, dr = 10.86: 1
1	1		12.973	20306.0	309158.0	3. 0688	
2	2		13.598	15784.0	246067.6	2.4426	
3	3		14.132	521499.4	8978980.9	89.1285	
4	4		16.157	14964.4	539991.2	5. 3601	
Tota	1			572553.8	10074197.7	100.0000	

Figure S10 HPLC Charts of Compound 3i

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		24.632	139360.3	3285220.6	29.0122	
2	2		25.940	139033.9	3289314.4	29.0484	
3	3		27.173	95985.0	2377212.3	20.9935	
4	4		33.615	73422.2	2371821.9	20. 9459	
Tota	1			447801.4	11323569.2	100.0000	

HPLC Report

Sample Name:HJD-VI-3-1 AD-H+IC 214 955 0.7 Recording Time:2016.10.24 20:37

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	98% ee , dr = 7.13: 1
1	1		23.315	5132.3	96836.7	0.9780	
2	2		24.682	388421.5	8586036.4	86.7131	
3	3		25.865	12260.9	298301.3	3.0126	
4	4		31. 373	31187.1	920490.6	9, 2963	
Tota	1			437001.8	9901665.1	100.0000	

Figure S11 HPLC Charts of Compound 3j

Sample Name:HJD-VI-6-2 AD-H+IC 214 955 0.7 Recording Time:2016.12.05 14:29

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		18, 715	1054808.5	16001825.8	27. 1351	
2	2		19.665	977447.9	15983708.5	27. 1044	
3	3		21.432	743099.2	13437659.9	22. 7869	
4	4		23. 082	705755.7	13547735.8	22.9736	
Tota	1			3481111.5	58970929.8	100.0000	

HPLC Report

Sample Name:HJD-VI-3-2 AD-H+IC 214 955 0.7 Recording Time:2016.12.05 12:08

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	99% ee, $dr = 11.64$: 1
1	1		18.598	1292273.5	19877983.3	91. 5711	
2	2		19.557	9317.3	112813.5	0.5197	
3	3		21.315	33949.7	604159.7	2.7832	
4	4		22.957	51162.9	1112738, 9	5. 1260	
Tota	1			1386703.4	21707695.4	100. 0000	

Figure S12 HPLC Charts of Compound 3k

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		19.613	773445.7	12465771.9	27. 3271	
2	2		20.963	608682.0	10390783.1	22. 7784	
3	3		22.468	647668.2	12435328.1	27.2604	
4	4		34.750	315139.1	10324923.8	22.6340	
Tota	1			2344934.9	45616806.9	100.0000	

HPLC Report

Sample Name:HJD-VI-3-4 AD-H+IC 214 955 0.7 Recording Time:2017.01.13 18:44

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	98% ee , dr = 12.62: 1
1	1		19.623	1484571.1	23972470.7	91. 7082	
2	2		20.982	24840.3	418060.4	1. 5993	
3	3		22.515	13191.7	246697.2	0.9438	
4	4		34.865	44990.1	1502702. 0	5. 7487	
Tota	1			1567593.1	26139930. 4	100. 0000	

Figure S13 HPLC Charts of Compound 31

Sample Name:HJD-VI-44-2 AD-H 214 955 0.7 Recording Time:2017.03.09 10:55

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		19.940	656040.2	16630094.2	30. 7018	
2	2		25.457	324272.8	10536836.3	19. 4527	
3	3		38.832	207696.9	10474848.0	19.3382	
4	4		41.490	294025.2	16524805.9	30. 5074	
Tota	1			1482035.1	54166584, 4	100, 0000	

HPLC Report

Sample Name:HJD-VI-44-1 AD-H 214 955 0.7 Recording Time:2017.03.08 16:04

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	95% ee, dr = 7.69: 1
1	1		19, 123	44393.9	1130060.0	2. 3900	
2	2		24.265	73170.2	2253500.6	4.7659	
3	3		36.898	66201.1	3188644.8	6.7436	
4	4		38. 465	732442.7	40711558.1	86. 1005	
Tota	1			916207.9	47283763. 5	100. 0000	

Figure S14 HPLC Charts of Compound 3m

No.	PeakNo	ID. Name	R. Time	PeakHe ight	PeakArea	Conc	
1	1		23.223	655684.0	18969563.0	37.2481	
2	2		25.025	212902.6	6547824.2	12.8571	
3	3		28.082	564944.8	19059713.5	37.4251	
4	4		40.507	123243.4	6350501.5	12.4697	
lota	1			1556774.9	50927602.2	100.0000	

HPLC Report

Sample Name:HJD-IX-1-1 AD-H 982 214 0.7

Recording Time:2017.12.30 00:02

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	95% ee, dr = 4.00 : 1
1	1		23. 323	977324.0	28812477.3	78. 1723	
2	2		25.198	29718.1	1375167.7	3. 7310	
3	3		28.215	19060.0	672352.0	1.8242	
4	4		40.548	115375.0	5997641.7	16.2725	
Tota	1			1141477.0	36857638.7	100. 0000	

Figure S15 HPLC Charts of Compound 3n

Sample Name:HJD-VI-41-2 IB-3+IC 214 982 0.7 Recording Time:2017.01.16 20:16

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		21.382	960530.5	17365626.9	27. 1947	
2	2		22.832	806141.4	14657356.7	22.9536	
3	3		23. 532	894323.9	17255693.1	27.0226	
4	4		28.540	555699.0	14577898.1	22. 8291	
Tota	1			3216694.8	63856574.8	100, 0000	

HPLC Report

Sample Name:HJD-VI-40-2 IB-3+IC 214 982 0.7 Recording Time:2017.01.16 20:52

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	92% ee, dr = 3.50: 1
1	1		21. 523	1112896.7	21281560.7	74. 4858	
2	2		23.040	65603.8	1381312.2	4.8346	
3	3		23.773	39208.0	936261.8	3.2769	
4	4		28.798	193819.6	4972152.3	17. 4026	
Tota	1			1411528.0	28571287.0	100. 0000	

Figure S16 HPLC Charts of Compound 30

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		9.200	470915.2	9413352.5	34.0786	
2	2		10.740	160268.4	4393328.5	15.9049	
3	3		14.373	268907.8	9428918.0	34. 1350	
4	4		19.282	87294.2	4386837.7	15.8814	
Tota	1			987385.5	27622436.7	100. 0000	

HPLC Report

Sample Name:HJD-VI-43-3 0D-H 214 91 0.7

Recording Time:2017.02.08 10:41

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	98% ee, dr = 21.08: 1
1	1		9.080	1228008.4	26557842.3	94. 3630	
2	2		10.707	3705.4	72695.6	0.2583	
3	3		14.423	8291.5	311094.9	1. 1054	
4	4		19.315	23315.0	1202716.9	4. 2734	
Tota	1			1263320.4	28144349.7	100.0000	

Figure S17 HPLC Charts of Compound 3p

Sample Name:HJD-VI-43-2 0D-H 214 91 0.7 Recording Time:2017.02.08 15:00

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		9.200	470915.2	9413352.5	34.0786	
2	2		10.740	160268.4	4393328.5	15.9049	
3	3		14.373	268907.8	9428918.0	34. 1350	
4	4		19.282	87294.2	4386837.7	15.8814	
Tota	1			987385 5	27622436 7	100.0000	

HPLC Report

Sample Name:CL-I-75 OD-H 91 214 0.7

Recording Time: 2019.01.11 14:55

No.	PeakNo	ID. Name	R. Time	PeakHe ight	PeakArea	Conc		95% ee
1	1		10.757	1519596.2	35696707.3	97.3714		
2	2		19.257	21973.7	963658.9	2.6286		
Total	L			1541569.8	36660366.2	100.0000		
No.	I	DName	Mi	(ug)	MO(ug)	Cm(ug/m3)	Cc(mg/m3)	

Figure S18 HPLC Charts of Compound 2-epi-3p

Sample Name:HJD-VII-61-2 AD-H+OD-H 214 955 0. Recording Time:2017.06.30 14:37

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		16.257	532510.6	8025044.2	34. 1544	
2	2		18.090	480579.5	8022779.2	34.1448	
3	3		19.680	195129.9	3741402.1	15.9233	
4	4		24.032	156759.4	3707133.1	15. 7775	
Tota	1			1364979.3	23496358.6	100.0000	

HPLC Report

Sample Name:HJD-VII-61-1 AD-H+OD-H 214 955 0.7Recording Time:2017.06.30 15:24

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	98% ee, dr = 21.73; 1
1	1		16.290	1667265.3	25338566.0	94. 5499	
2	2		18.123	16498.9	281977.9	1.0522	
3	3		19.757	28289.2	600395.6	2. 2404	
4	4		24.107	23427.7	578214.4	2. 1576	
Tota	1			1735481.1	26799153.9	100. 0000	

Figure S19 HPLC Charts of Compound 5

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		5.820	744922.7	6324099.8	49. 4047	
2	2		7,095	605478.6	6476514.5	50. 5953	
Tota	1			1350401.3	12800614.3	100.0000	

HPLC Report

Sample Name:HJD-VII-62-1 AD-H 8020 214 1.0 Recording Time:2017.12.29 11:11

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	98% ee
1	1		5.890	13245.9	99062.5	0. 6070	
2	2		7.207	1509996.1	16220100.6	99. 3930	
Tota	1			1523242.0	16319163.1	100. 0000	

Figure S20 HPLC Charts of Compound 6a

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	
1	1		8, 107	1098587.1	10438605.3	50. 6238	
2	2		9.373	919144.4	10181365.5	49. 3762	
Tota	1			2017731.5	20619970.8	100.0000	

HPLC Report

Sample Name:HJD-VII-63-1 AD-H 955 214 0.7 Recording Time:2017.12.29 22:23

No.	PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	Conc	98% ee
1	1		8, 115	927207.1	8781296.7	98. 9056	
2	2		9.423	7206.0	97170. 1	1.0944	
Tota	1			934413.1	8878466. 8	100.0000	6

Figure S21 HPLC Charts of Compound 6

8. ¹H & ¹³C NMR Data for Substrate Scope and Derivatization

Figure S22 ¹H and ¹³C NMR Spectrum of Compound 1a

Figure S23 ¹H and ¹³C NMR Spectrum of Compound 1h

Figure S24 ¹H and ¹³C NMR Spectrum of Compound 1i

Figure S25 ¹H and ¹³C NMR Spectrum of Compound 1j

Figure S26 ¹H and ¹³C NMR Spectrum of Compound 1k

Figure S27 ¹H and ¹³C NMR Spectrum of Compound 11

Figure S28 ¹H and ¹³C NMR Spectrum of Compound 1m

Figure S29 ¹H and ¹³C NMR Spectrum of Compound 1n

Figure S30 ¹H and ¹³C NMR Spectrum of Compound 10

Figure S31 ¹H and ¹³C NMR Spectrum of Compound 1p

Figure S32 ¹H and ¹³C NMR Spectrum of Compound 3a

Figure S33 ¹H and ¹³C NMR Spectrum of Compound 3b

Figure S34 ¹H and ¹³C NMR Spectrum of Compound 3c

Figure S35 ¹H and ¹³C NMR Spectrum of Compound 3d

Figure S36 ¹H and ¹³C NMR Spectrum of Compound 3e

Figure S37 ¹H and ¹³C NMR Spectrum of Compound 3f

Figure S38 ¹H and ¹³C NMR Spectrum of Compound 3g

Figure S39 ¹H and ¹³C NMR Spectrum of Compound 3h

Figure S40 ¹H and ¹³C NMR Spectrum of Compound 3i

Figure S41 ¹H and ¹³C NMR Spectrum of Compound 3j

Figure S42 ¹H and ¹³C NMR Spectrum of Compound 3k

Figure S43 ¹H and ¹³C NMR Spectrum of Compound 31

Figure S44 ¹H and ¹³C NMR Spectrum of Compound 3m

Figure S45 ¹H and ¹³C NMR Spectrum of Compound 3n

Figure S46 ¹H and ¹³C NMR Spectrum of Compound 30

Figure S47 ¹H and ¹³C NMR Spectrum of Compound 3p

Figure S48 ¹H and ¹³C NMR Spectrum of Compound 5

Figure S49 ¹H and ¹³C NMR Spectrum of Compound 6a

Figure S50 ¹H and ¹³C NMR Spectrum of Compound 6

Figure S51 ¹H and ¹³C NMR Spectrum of Compound 2-epi-3p

9. References

1. Barrios Antúnez, D. J., Greenhalgh, M. D., Fallan, C., Slawin, A. M. Z. & Smith, A. D. Enantioselective synthesis of 2,3-disubstituted trans-2,3-dihydrobenzofurans using a Brønsted base/thiourea bifunctional catalyst. *Org Biomol Chem* **14**, 7268-7274 (2016).

2. Maes, D. *et al.* Total synthesis of naturally occurring 5,6,7- and 5,7,8-trioxygenated coumarins. *Tetrahedron* **64**, 4438-4443 (2008).

3. Harrowven, D. C. *et al.* Potassium carbonate–silica: a highly effective stationary phase for the chromatographic removal of organotin impurities. *Chem. Commun.* **46**, 6335-6337 (2010).

4. Porzel, A. *et al.* Fissistigmatins A–D: Novel Type Natural Products with Flavonoid–Sesquiterpene Hybrid Structure from Fissistigma bracteolatum. *Tetrahedron* **56**, 865-872 (2000).