Supporting Information

Copper-Catalyzed Alkylarylation of Vinylarenes with Cycloalkylsilyl

Peroxides and Boronic Acids

Shuo Yang^a, Pin Gao,^{*,a} Meng-Ting Suo^a, Shu-Xin Gao^a, Xin-Hua Duan^{a,b} and Li-Na Guo^{*,a}

^{*a*}Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.

^bState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou

730000, P. R. China.

Email: guoln81@ xjtu.edu.cn

gaopin@xjtu.edu.cn.

Table of Contents

General Information	S2
General Procedure for the Synthesis of Peroxides	S3
Optimization of Reaction Conditions	S4
Representative Procedure for the Reaction of Vinylarenes 1, Boronic Acids	S13
2 and Cycloalkylsilyl Peroxides 3	
1 mmol Scale Reaction	S14
Investigation of the Reaction Mechanism	S15
Characterization of Products 4, 5, 6, 7 and 9	S17
References	S44
¹ H NMR and ¹³ C NMR Spectra of the Cycloalkylsilyl Peroxides	S45
¹ H NMR and ¹³ C NMR Spectra of the Products 4 , 5 , 6 , 7 and 9	S47

General Information

All catalytic reactions were conducted in oven-dried Schlenk-tube under an atmosphere of nitrogen. Reactions were monitored by thin layer chromatography (aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60F-254.) and visualized using UV light. Column chromatography purifications were carried out using 200-300 mesh silica gel. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Advance III-400 and Bruker Advance III-600 in solvents as indicated. Chemical shift are reported in ppm from TMS with the solvent resonance as internal standard (CDCl₃: ¹H NMR: $\delta = 7.26$; ¹³C NMR: $\delta = 77.0$). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). FT-IR spectra were recorded on a Bruker V 70 spectrometer and only major peaks are reported in cm⁻¹. HRMS were obtained on WATERS I-Class VION IMS QTof. Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification.

General Procedure for the Synthesis of Peroxides

All of cycloalkylsilyl peroxides were prepared according to the literature.¹ All of the NMR spectra of known compounds were in full accordance with the data in the literatures.

Unknown Compound:

MeO_OOSiMe₃

((1-methoxycyclopentyl)peroxy)trimethylsilane (3g): colorless oil; R_f 0.60 (EtOAc/petroleum ether = 1:30); ¹H NMR (400 MHz, CDCl₃) δ = 3.30 (s, 3H), 1.99 – 1.92 (m, 2H), 1.74 – 1.63 (m, 6H), 0.20 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ = 117.00, 50.37, 33.67, 23.92, -1.26. IR (neat): v_{max} 2959, 2906, 2876, 2831, 1468, 1452, 1439, 1408, 1331, 1310, 1250, 1190, 1161, 1103, 1049, 1032, 997, 972, 893, 841, 743, 692, 617 cm⁻¹; HRMS (ESI) calcd for C₉H₂₁O₃Si [M+H]⁺205.1254, found 205.1255.

Optimization of Reaction Conditions

General Procedure for the Reaction of Styrene 1a, Phenylboronic Acid 2a and Cyclopentylsilyl Peroxide 3a

In an N₂-filled glovebox, to an oven dried 10 mL Schlenk-tube containing a magnetic stir bar was added catalyst, ligand, phenylboronic acid **2a** and Base. Subsequently, a solution of styrene **1a** and cyclopentyl silyl peroxide **3a** in solvent was injected into the tube by syringe. Then, the reaction mixture was moved outside the glovebox and stirred at the specified temperature for the indicated reaction time. After that, the mixture was diluted with EtOAc (10 mL) and saturated saline (10 mL). The organic phase was washed with saturated brine (3×8 mL) and the water phase was extracted with EtOAc (3×6 mL). The combined organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethylacetate 120:1) directly to give the desired product **4a** as a white solid. The results are summarized as following

Table S1. Optimization of the Reaction of Styrene 1a, Boronic Acid 2a andCycloalkylsilyl Peroxide 3a

Control Experiment^a

$\bigcirc \frown$	+ () B(OH);	Ph OOTMS	Cu(CH ₃ CN) ₄ PF ₆ (10 mol %) dtbpy (10 mol %) Na ₂ CO ₃ (2.0 equiv) 10w blue LEDs DME (1.0 ml), rt. 12 b	Ph	
1a 0.4 mmol	2a 0.4 mmol	3a 0.2 mmol	Divir (1.0 mL), it, iz ii		4a
Entry	[Cu]	Ligand	hv	Base	Yield(%) ^b
1	+	+	+	+	40
2^c	-	+	+	+	0
3 ^{<i>d</i>}	+	-	+	+	15
4 ^e	+	+	-	+	42
5 ^f	+	+	+	-	9

^{*a*}Reaction conditions: **1a** (41.7 mg, 0.4 mmol), **2a** (48.8 mg, 0.4 mmol), **3a** (50.1 mg, 0.2 mmol), Cu(CH₃CN)₄PF₆ (7.5 mg, 10 mol %), d*t*bpy (5.4 mg, 10 mol %), Na₂CO₃ (42.4 mg, 0.4 mmol), DMF (1 mL), the reaction mixture was stirred at room temperature for 12 h. ^{*b*}Yields were determined by NMR using CH₂Br₂ as internal standard. ^{*c*}Without Cu. ^{*d*}Without ligand. ^{*e*}No hv. ^{*f*}Without base.

$\bigcirc \frown$	+ B(OH) ₂ +	Ph_OOTMS	Cu(CH ₃ CN) ₄ PF ₆ (10 mol %) dtbpy (10 mol %) Na ₂ CO ₃ (2.0 equiv) DMF (1.0 mL), rt, 12 h	Ph O	
1a	2a	3a		4a	
	Entry	Rati	o (1a : 2a : 3a)	Yield $(\%)^b$	
	1		2:2:1	42	
	2		1 : 1.5 : 1.5	36	
	3		1:2:2	55	
	4		1:2.5:2	54	
	5		1.5 : 1 : 2	30	

Substrate ratio^a

*a*Reaction conditions: **1a** (x mmol), **2a** (y mmol), **3a** (z mmol), $Cu(CH_3CN)_4PF_6$ (7.5 mg, 10 mol %), dtbpy (5.4 mg, 10 mol %), Na_2CO_3 (42.4 mg, 0.4 mmol), DMF (1 mL), the reaction mixture was stirred at room temperature for 12 h. *b*Yields were determined by NMR using CH_2Br_2 as internal standard.

Catalyst^a

	+ B(OH) ₂ +	Ph_OOTMS	Catalyst (10 mol %) dtbpy (10 mol %) Na ₂ CO ₃ (2.0 equiv)	Ph			
1a 0.2 mmol	2a 0.4 mmol	3a 0.4 mmol	DMF (1.0 mL), π, 12 n	4a			
Entry		Cata	alyst	Yield $(\%)^b$			
	1	Cu(CH ₃	CN) ₄ PF ₆	55			
	2	С	uI	52			
	3	Cu	OTf	34			
	4	CuOAc		43			
	5 Cu0		CuCl				
	6	CuBr		CuBr		48	
	7	CuSCN		57			
	8	Cu(CH ₃	CN) ₄ BF ₄	35			
	9	Cu	ıTc	28			
	10	Fe	Cl ₂	0			
	11	NiBr ₂ diglyme		NiBr ₂ ·diglyme		0	
	12	NiCl ₂ (py) ₄		NiCl ₂ (py) ₄		0	
	13	Pd	Cl ₂	0			
	14	Pd(C	$(\mathbf{Ac})_2$	0			

^{*a*}Reaction conditions: **1a** (20.8 mg, 0.2 mmol), **2a** (48.8 mg, 0.4 mmol), **3a** (100.2 mg, 0.4 mmol), Catalyst (10 mol %), d*t*bpy (5.4 mg, 10 mol %), Na₂CO₃ (42.4 mg, 0.4 mmol), DMF (1 mL), the reaction mixture was stirred at room temperature for 12 h. ^{*b*}Yields were determined by NMR using CH₂Br₂ as internal standard. Ligand^a

Entry	Ligand	Yield $(\%)^b$
1	-	29
2	L1	57
3	L2	44
4	L3	49
5	L4	39
6	L5	61
7	L6	70
8	L7	65
9	L8	40
10	L9	37
11	L10	43
12	L11	58
13	L12	55
14	L13	55
15	L14	54
16	L15	55
17	L16	30
18	L17	trace
19	L18	42
20	L19	37
21	L20	51
22	L21	30
23	L22	31

^{*a*}Reaction conditions: **1a** (20.8 mg, 0.2 mmol), **2a** (48.8 mg, 0.4 mmol), **3a** (100.2 mg, 0.4 mmol), CuSCN (2.4 mg, 10 mol %), Ligand (10 mol %), Na₂CO₃ (42.4 mg, 0.4 mmol), DMF (1 mL), the reaction mixture was stirred at room temperature for 12 h. ^{*b*}Yields were determined by NMR using CH_2Br_2 as internal standard.

+ + + +	Ph OOTMS L6 (10 mol %) Base (2.0 equiv) DMF (1.0 mL), rt, 12 h	Ph O 4a
0.2 mmol 0.4 mmol	0.4 mmol	-
Entry	Base	Yield $(\%)^b$
1	Na ₂ CO ₃	70
2	Li ₂ CO ₃	58
3	Cs ₂ CO ₃	50
4	K ₂ CO ₃	53
5	KHCO ₃	56
6	NaHCO ₃	68
7	NaOAc	trace
8	NaOH	45
9	Na ₃ PO ₄	59
10	Na ₂ HPO ₄	54
11	NaF	58
12	Et ₃ N	43
13	DBU	trace

Base^a

^{*a*}Reaction conditions: **1a** (20.8 mg, 0.2 mmol), **2a** (48.8 mg, 0.4 mmol), **3a** (100.2 mg, 0.4 mmol), CuSCN (2.4 mg, 10 mol %), L6 (6.27 mg, 10 mol %), Base (0.4 mmol), DMF (1 mL), the reaction mixture was stirred at room temperature for 12 h. ^{*b*}Yields were determined by NMR using CH₂Br₂ as internal standard.

+ B(OH);	Ph_OOTMS CuSCN (10 mol %) + Na ₂ CO ₃ (2.0 equiv)	→ Ph O
1a 2a 0.2 mmol 0.4 mmol	Solvent (1.0 mL), rt, 12 0.4 mmol	2 h 4a
Entry	Solvent	Yield $(\%)^b$
1	DMF	70
2	DMAc	48
3	DMSO	58
4	MeOH	10
5	MeCN	33
6	1,4-dioxane	53
7	THF	54
8	MTBE	trace
9	Toluene	0
10	PhCF ₃	0
11	Cyclohexane	0
12	DMF : DCM = 4 : 1	51

Solvent^a

^{*a*}Reaction conditions: **1a** (20.8 mg, 0.2 mmol), **2a** (48.8 mg, 0.4 mmol), **3a** (100.2 mg, 0.4 mmol), CuSCN (2.4 mg, 10 mol %), L6 (6.27 mg, 10 mol %), Na₂CO₃ (42.4 mg, 0.4 mmol), Solvent (1 mL), the reaction mixture was stirred at room temperature for 12 h. ^{*b*}Yields were determined by NMR using CH₂Br₂ as internal standard.

Concentration^a

1a 2a 0.2 mmol 0.4 mmol	Ph OOTMS CuSCN (10 mol %) L6 (10 mol %) Na ₂ CO ₃ (2.0 equiv) DMF (x mL), rt, 12 h 0.4 mmol	Ph O 4a
Entry	Concentration (<i>x</i> mL)	Yield (%) ^b
1	0.5	63
2	1	70
3	2	62
4	3	58

^{*a*}Reaction conditions: **1a** (20.8 mg, 0.2 mmol), **2a** (48.8 mg, 0.4 mmol), **3a** (100.2 mg, 0.4 mmol), CuSCN (2.4 mg, 10 mol %), L6 (6.27 mg, 10 mol %), Na₂CO₃ (42.4 mg, 0.4 mmol), DMF (*x* mL), the reaction mixture was stirred at room temperature for 12 h. ^{*b*}Yields were determined by NMR using CH₂Br₂ as internal standard.

Temperature^a

1a 0.2 mmol	+ B(OH) ₂ + 2a 0.4 mmol	Ph_OOTMS 	CuSCN (10 mol %) L6 (10 mol %) <u>Na₂CO₃ (2.0 equiv)</u> MF (1.0 mL), <i>Temp.</i> , 12 h	Ph 4a	
	Entry	Tei	np. (<i>x</i> °C)	Yield (%	(o) ^b
	1		rt	70	
	2		40	60	
	3		50	58	

*a*Reaction conditions: **1a** (20.8 mg, 0.2 mmol), **2a** (48.8 mg, 0.4 mmol), **3a** (100.2 mg, 0.4 mmol), CuSCN (2.4 mg, 10 mol %), L6 (6.27 mg, 10 mol %), Na₂CO₃ (42.4 mg, 0.4 mmol), DMF (1 mL), the reaction mixture was stirred at x °C for 12 h. *b*Yields were determined by NMR using CH₂Br₂ as internal standard.

Loading of catalyst^a

1a 0.2 mmol	+ B(C 2a 0.4 mmol	DH) ₂ Ph OOTh + 3a 0.4 mmol	MS CuSCN (<i>x</i> mol %) L6 (<i>x</i> mol %) Na ₂ CO ₃ (2.0 equiv) DMF (1.0 mL), rt,12 h	Ph	4a	
	Entry	Load	ling ($x \mod \%$)	Yiel	ld (%) ^b	
	1		10		70	
	2		5		80	
	3		2.5		51	

^{*a*}Reaction conditions: **1a** (20.8 mg, 0.2 mmol), **2a** (48.8 mg, 0.4 mmol), **3a** (100.2 mg, 0.4 mmol), CuSCN (x mol %), L6 (x mol %), Na₂CO₃ (42.4 mg, 0.4 mmol), DMF (1 mL), the reaction mixture was stirred at room temperature for 12 h. ^{*b*}Yields were determined by NMR using CH₂Br₂ as internal standard.

Representative Procedure for the Reaction of Vinylarenes 1, Boronic Acids 2 and Cycloalkylsilyl Peroxides 3

In an N₂-filled glovebox, to an oven dried 10 mL Schlenk-tube containing a magnetic stir bar was added CuSCN (1.2 mg, 5 mol %), 4,4'-dibromo-2,2'-bipyridine (3.1 mg, 5 mol %), boronic acids **2** (0.4 mmol) and Na₂CO₃ (42.4 mg, 0.4 mmol). Subsequently, a solution of vinylarenes **1** (0.2 mmol) and cycloalkylsilyl peroxides **3** (0.4 mmol) in DMF (1 mL) was injected into the tube by syringe. Then, the reaction mixture was moved outside the glovebox and stirred at room temperature for 12 h. After that, the mixture was diluted with EtOAc (10 mL) and saturated saline (10 mL). The organic phase was washed with saturated brine (3×8 mL) and the water phase was extracted with EtOAc (3×6 mL). The combined organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel directly to give the desired product **4-6** in isolated yields list in Table 2 and Table 3.

1 mmol Scale Reaction

In an N₂-filled glovebox, to an oven dried 50 mL round bottom flask containing a magnetic stir bar was added CuSCN (6.1 mg, 5 mol %), 4,4'-dibromo-2,2'-bipyridine (15.7 mg, 5 mol %), 4-vinylbiphenyl **1b** (180.3 mg, 1 mmol), 3,5-dimethylphenylboronic acid **2l** (300.0 mg, 2 mmol) and Na₂CO₃ (212.0 mg, 2 mmol). Subsequently, a solution of and cyclopentyl silyl peroxide **3a** (501.0 mg, 2 mmol) in DMF (5 mL) was injected into the tube by syringe. Then, the reaction mixture was moved outside the glovebox and stirred at room temperature for 12 h. After that, the mixture was diluted with EtOAc (10 mL) and saturated saline (10 mL). The organic phase was washed with saturated brine (6×8 mL) and the water phase was extracted with EtOAc (3×6 mL). The combined organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethylacetate 80:1) directly to give the desired product **5k** in 68% isolated yield as a white solid.

Investigation of the Reaction Mechanism

Radical Trapping Experiments

When 2.0 equiv of TEMPO was added to the reaction under the standard conditions, no product **4a** was detected. Meanwhile, the TEMPO-adduct **7** was isolated in 80% yield. This result indicates that radical intermediate was probably involved in this transformation.

When 4.0 equiv of BHT was added to the reaction under the standard conditions, the yield of **4a** was reduced to 26% yield. This result indicates that the reaction might proceed via a radical pathway.

Radical Clock Experiment

In an N₂-filled glovebox, to an oven dried 10 mL Schlenk-tube containing a magnetic stir bar was added CuSCN (1.2 mg, 5 mol %), 4,4'-dibromo-2,2'-bipyridine (3.1 mg, 5 mol %), phenylboronic acid **2a** (48.8 mg, 0.4 mmol) and Na₂CO₃ (42.4 mg, 0.4 mmol). Subsequently, a solution of **8** (44.1 mg, 0.2 mmol) and cycloalkylsilyl peroxide **3a** (100.2 mg, 0.4 mmol) in DMF (1 mL) was injected into the tube by syringe. Then, the reaction mixture was moved outside the glovebox and stirred at room temperature for 12 h. After that, the mixture was diluted with EtOAc (10 mL) and saturated saline (10 mL). The organic phase was washed with saturated brine (3×8 mL) and the water phase was extracted with EtOAc (3×6 mL). The combined

organic phase was dried over Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethylacetate 120:1) directly to give the desired product **9** in 58% isolated yield as colorless oil with $6.7 : 1 \ Z/E$ ratio. This result indicates that radical intermediate was probably involved in this transformation.

Characterization of Products 4, 5, 6, 7 and 9

1,7,7-triphenylheptan-1-one (4a): white solid, mp: 93–94 °C (72%, 49.3 mg); R_f 0.32 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.92 (d, *J* = 7.2 Hz, 2H), 7.58 – 7.49 (m, 1H), 7.46 – 7.42 (m, 2H), 7.29 – 7.19 (m, 8H), 7.20 – 7.11 (m, 2H), 3.88 (t, *J* = 7.8 Hz, 1H), 2.90 (t, *J* = 7.4 Hz, 2H), 2.10 – 1.99 (m, 2H), 1.74 – 1.66 (m, 2H), 1.45 – 1.37 (m, 2H), 1.35 – 1.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.42, 145.16, 137.04, 132.84, 128.51, 128.36, 128.01, 127.82, 126.01, 51.28, 38.44, 35.48, 29.23, 27.81, 24.12 ppm; IR (neat): ν_{max} 3022, 2929, 2858, 1723, 1682, 1590, 1494, 1449, 1407, 1361, 1259, 1218, 1070, 1021, 969, 800, 740, 695 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₆NaO [M+Na]⁺ 365.1876, found 365.1868.

7-([1,1'-biphenyl]-4-yl)-1,7-diphenylheptan-1-one (4b): white solid, mp: 95–96 °C (71%, 60.0 mg); R_f 0.32 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.96 (d, *J* = 7.2 Hz, 2H), 7.60 – 7.51 (m, 5H), 7.47 – 7.42 (m, 4H), 7.36 – 7.28 (m, 7H), 7.22 – 7.19 (m, 1H), 3.96 (t, *J* = 7.8 Hz, 1H), 2.94 (t, *J* = 7.4 Hz, 2H), 2.14 – 2.10 (m, 2H), 1.77 – 1.72 (m, 2H), 1.50 – 1.43 (m, 2H), 1.41 – 1.34 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.41, 145.05, 144.30, 140.92, 138.89, 137.01, 132.85, 128.65, 128.51, 128.43, 128.19, 128.00, 127.83, 127.10, 126.99, 126.95, 126.09, 50.95, 38.41, 35.47, 29.21, 27.81, 24.07 ppm; IR (neat): v_{max} 3028, 2930, 2859, 1683, 1594, 1488, 1452, 1406, 1364, 1217, 1075, 1006, 836, 758, 697 cm⁻¹; HRMS (ESI) calcd for C₃₁H₃₀NaO [M+Na]⁺ 441.2189, found 441.2194.

4-(7-oxo-1,7-diphenylheptyl)phenyl acetate (4c): colorless oil (43%, 34.4 mg); R_f 0.10 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.93 (d, *J* = 6.6 Hz, 2H), 7.56 – 7.52 (m, 1H), 7.46 – 7.43 (m, 2H), 7.28 – 7.25 (m, 2H), 7.23 – 7.19 (m, 4H), 7.18 – 7.15 (m, 1H), 6.99 – 6.97 (m, 2H), 3.88 (t, *J* = 7.8 Hz, 1H), 2.91 (t, *J* = 7.2 Hz, 2H), 2.26 (s, 3H), 2.08 - 1.99 (m, 2H), 1.73 – 1.68 (m, 2H), 1.44 – 1.37 (m, 2H), 1.33 – 1.28 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.42, 169.52, 148.78, 144.76, 142.71, 137.01, 132.85, 128.68, 128.51, 128.41, 128.01, 127.82, 126.13, 121.28, 50.67, 38.41, 35.52, 29.18, 27.76, 24.07, 21.11 ppm; IR (neat): v_{max} 2919, 1756, 1679, 1501, 1451, 1366, 1259, 1203, 1079, 1015, 908, 801, 749, 695 cm⁻¹; HRMS (ESI) calcd for C₂₇H₂₈NaO₃ [M+Na]⁺ 423.1931, found 423.1923.

7-(4-chlorophenyl)-1,7-diphenylheptan-1-one (4d): colorless oil (60%, 45.2 mg); R_f 0.45 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.92 (d, J = 6.6 Hz, 2H), 7.55 – 7.50 (m, 1H), 7.44 – 7.41 (m, 2H), 7.27 – 7.24 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.20 – 7.13 (m, 5H), 3.85 (t, J = 7.8 Hz, 1H), 2.90 (t, J = 7.5 Hz, 2H), 2.06 – 1.97 (m, 2H), 1.72 – 1.67 (m, 2H), 1.44 – 1.37 (m, 2H), 1.31 – 1.26 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.30, 144.58, 143.64, 136.96, 132.85, 131.66, 129.13, 128.49, 128.44, 127.96, 127.68, 126.20, 50.56, 38.32, 35.30, 29.11, 27.68, 24.00 ppm; IR (neat): v_{max} 3029, 2931, 2859, 1683, 1592, 1490, 1451, 1407, 1362, 1260, 1217, 1092, 1016, 811, 750, 695 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₅ClNaO [M+Na]⁺ 399.1486, found 399.1483.

7-(4-bromophenyl)-1,7-diphenylheptan-1-one (4e): colorless oil (53%, 44.5 mg); R_f 0.44 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.92 (d, *J* = 6.6 Hz, 2H), 7.56 – 7.52 (m, 1H), 7.45 – 7.43 (m, 2H), 7.38 – 7.36 (m, 2H), 7.28 – 7.23 (m, 2H), 7.20 – 7.14 (m, 3H), 7.10 – 7.08 (m, 2H), 3.84 (t, *J* = 7.8 Hz, 1H), 2.91 (t, *J* = 7.5 Hz, 2H), 2.06 – 1.97 (m, 2H), 1.72 – 1.67 (m, 2H), 1.45 – 1.37 (m, 2H), 1.32 – 1.26 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.35, 144.50, 144.18, 136.98, 132.88, 131.41, 129.57, 128.52, 128.47, 127.99, 127.69, 126.24, 119.78, 50.64, 38.35, 35.26, 29.13, 27.69, 24.02 ppm; IR (neat): v_{max} 3028, 2931, 2858, 1682, 1591, 1486, 1451, 1404, 1361, 1216, 1072, 1008, 967, 816, 748, 697 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₅BrNaO [M+Na]⁺ 443.0981, found 443.0980.

methyl 4-(7-oxo-1,7-diphenylheptyl)benzoate (4f): white solid, mp: 54–55 °C (65%, 52.0 mg); R_f 0.20 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.94 – 7.91 (m, 4H), 7.55 – 7.52 (m, 1H), 7.45 – 7.43 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.30 – 7.25 (m, 2H), 7.22 – 7.20 (d, J = 7.2 Hz, 2H), 7.18 – 7.16 (m, 1H), 3.94 (t, J = 7.8 Hz, 1H), 3.87 (s, 3H), 2.91 (t, J = 7.5 Hz, 2H), 2.09 – 2.04 (m, 2H), 1.73 – 1.68 (m, 2H), 1.44 – 1.39 (m, 2H), 1.33 – 1.25 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.33, 166.99, 150.55, 144.19, 136.97, 132.87, 129.75, 128.50, 127.98, 127.85, 127.78, 126.31, 51.93, 51.24, 38.34, 35.16, 29.12, 27.69, 24.00 ppm; IR (neat): v_{max} 2937, 1717, 1682, 1602, 1498, 1443, 1363, 1275, 1183, 1103, 1016, 801, 746, 697 cm⁻¹; HRMS (ESI) calcd for C₂₇H₂₈NaO₃ [M+Na]⁺ 423.1931, found 423.1923.

4-(7-oxo-1,7-diphenylheptyl)benzonitrile (4g): white solid, mp: 74–75 °C (45%, 33.1 mg); R_f 0.13 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.93 (d, *J* = 7.2 Hz, 2H), 7.58 – 7.53 (m, 3H), 7.47 – 7.44 (m, 2H), 7.34 – 7.32 (m, 2H), 7.31 – 7.28 (m, 2H), 7.22 – 7.19 (m, 3H), 3.95 (t, *J* = 7.8 Hz, 1H), 2.93 (t, *J* = 7.5 Hz, 2H), 2.12 – 2.00 (m, 2H), 1.76 – 1.69 (m, 2H), 1.47 – 1.39 (m, 2H), 1.36 – 1.27 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.23, 150.75, 143.41, 136.92, 132.90, 132.21, 128.64, 128.57, 128.51, 127.94, 127.72, 126.59, 118.94, 109.84, 51.27, 38.25, 34.95, 29.03, 27.61, 23.91 ppm; IR (neat): v_{max} 3059, 2932, 2860, 2226, 1682, 1597, 1497, 1452, 1409, 1363, 1261, 1217, 1081, 1018, 806, 741, 697 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₅NNaO [M+Na]⁺ 390.1828, found 390.1823.

7-(3-bromophenyl)-1,7-diphenylheptan-1-one (4h): colorless oil (52%, 43.7 mg); R_f 0.38 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.94 (d, *J* = 7.2 Hz, 2H), 7.58 – 7.53 (m, 1H), 7.47 – 7.45 (m, 2H), 7.39 (s, 1H), 7.32 – 7.27 (m, 3H), 7.24 – 7.12 (m, 5H), 3.86 (t, *J* = 7.8 Hz, 1H), 2.93 (t, *J* = 7.2 Hz, 2H), 2.09 – 2.00 (m, 2H), 1.75 – 1.70 (m, 2H), 1.47 – 1.39 (m, 2H), 1.34 – 1.29 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.36, 147.60, 144.22, 136.99, 132.87, 130.82, 129.95, 129.15, 128.52, 128.51, 127.99, 127.75, 126.48, 126.32, 122.49, 50.98, 38.37, 35.25, 29.13, 27.69, 24.02 ppm; IR (neat): v_{max} 3059, 2930, 2858, 1682, 1583, 1457, 1361, 1214, 1075, 1001, 878, 753, 696 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₅BrNaO [M+Na]⁺ 443.0981, found 443.0980.

7-(2-chlorophenyl)-1,7-diphenylheptan-1-one (4i): colorless oil (58%, 43.6 mg); R_f 0.44 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.92 (d, *J* = 6.6 Hz, 2H), 7.56 – 7.51 (m, 1H), 7.45 – 7.43 (m, 2H), 7.32 – 7.28 (m, 2H), 7.27 – 7.23 (m, 4H), 7.22 – 7.14 (m, 2H), 7.09 (td, *J* = 7.5, 1.8 Hz), 4.46 (t, *J* = 7.8 Hz, 1H), 2.91 (t, *J* = 7.2 Hz, 2H), 2.08 – 1.97 (m, 2H), 1.73 – 1.68 (m, 2H), 1.46 – 1.38 (m, 2H), 1.37 – 1.30 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.43, 143.66, 142.44, 137.01, 134.20, 132.86, 129.60, 128.52, 128.44, 128.31, 128.14, 128.01, 127.19, 126.88, 126.17, 46.54, 38.43, 35.19, 29.19, 27.55, 24.09 ppm; IR (neat): v_{max} 3061, 2924, 2857, 1682, 1590, 1449, 1363, 1259, 1211, 1083, 1026, 801, 744, 691 cm⁻¹; HRMS (ESI) calcd for C₂₅H₂₅ClNaO [M+Na]⁺ 399.1486, found 399.1476.

7-(naphthalen-2-yl)-1,7-diphenylheptan-1-one (4j): white solid, mp: 67–68 °C (70%, 54.7 mg); R_f 0.36 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.94 (d, *J* = 6.6 Hz, 2H), 7.83 – 7.79 (m, 2H), 7.77 – 7.73 (m, 2H), 7.57 – 7.53 (m, 1H), 7.48 – 7.42 (m, 4H), 7.36 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.33 – 7.27 (m, 4H), 7.21 – 7.18 (m, 1H), 4.08 (t, *J* = 7.8 Hz, 1H), 2.93 (t, *J* = 7.2 Hz, 2H), 2.25 – 2.13 (m, 2H), 1.77 – 1.72 (m, 2H), 1.52 – 1.43 (m, 2H), 1.43 – 1.35 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.42, 145.01, 142.57, 136.99, 133.49, 132.83, 132.08, 128.50, 128.38, 127.99, 127.93, 127.67, 127.52, 126.73, 126.08, 125.87, 125.82, 125.29, 51.26, 38.40, 35.20, 29.21, 27.80, 24.07 ppm; IR (neat): v_{max} 3051, 2928, 2857, 1680, 1591, 1500, 1449, 1363, 1212, 1075, 963, 853, 812, 744, 694 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₈NaO [M+Na]⁺ 415.2032, found 415.2026.

1,7-diphenyl-7-(pyridin-2-yl)heptan-1-one (4k): colorless oil (57%, 39.3 mg); R_f 0.21 (EtOAc/petroleum ether = 1:10); ¹H NMR (600 MHz, CDCl₃) δ = 8.56 – 8.54 (m, 1H), 7.92 (d, *J* = 7.8 Hz, 2H), 7.55 – 7.52(m, 2H), 7.45 – 7.42 (m, 2H), 7.34 – 7.32 (m, 2H), 7.30 – 7.24 (m, 2H), 7.20 – 7.14 (m, 1H), 7.14 (d, *J* = 7.9 Hz, 1H), 7.09 – 7.04 (m, 1H), 4.04 (t, *J* = 7.8 Hz, 1H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.29 – 2.23 (m, 1H), 2.11 – 2.05 (m, 1H), 1.72 – 1.67 (m, 2H), 1.45 – 1.40 (m, 2H), 1.35 – 1.28(m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.47, 163.96, 149.18, 143.82, 137.01, 136.33, 132.82, 128.49, 128.41, 127.99, 127.97, 126.30, 122.61, 121.17, 53.69, 38.42, 34.81, 29.18, 27.70, 24.11 ppm; IR (neat): ν_{max} 3059, 2930, 2857, 1682, 1585, 1442, 1363, 1260, 1216, 1019, 799, 749, 695 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₆NO [M+H]⁺ 344.2009, found 344.2009.

1,7-diphenyl-7-(1-tosyl-1H-indol-3-yl)heptan-1-one (4l): colorless oil (63%, 67.4 mg); R_f 0.32 (EtOAc/petroleum ether = 1:10); ¹H NMR (400 MHz, CDCl₃) δ = 7.96 – 7.90 (m, 3H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.47 – 7.43 (m, 3H), 7.25 – 7.15 (m, 9H), 7.11 – 7.05 (m, 1H), 4.00 (t, *J* = 7.4 Hz, 1H), 2.92 (t, *J* = 7.4 Hz, 2H), 2.32 (s, 3H), 2.17 – 2.09 (m, 1H), 2.02 – 1.92 (m, 1H), 1.73 – 1.66 (m, 2H), 1.47 – 1.28 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.35, 144.73, 143.36, 136.94, 135.54, 135.08, 132.90, 130.60, 129.75, 128.53, 128.40, 127.99, 127.76, 126.84, 126.67, 126.38, 124.55, 123.00, 122.61, 120.09, 113.71, 42.51, 38.38, 35.31, 29.16, 27.59, 24.10, 21.51 ppm; IR (neat): v_{max} 3059, 2927, 2859, 1682, 1595, 1445, 1367, 1269, 1174, 1125, 1020, 971, 911, 805, 744, 686, 576, 535 cm⁻¹; HRMS (ESI) calcd for C₃₄H₃₃NNaO₃S [M+Na]⁺ 558.2073, found 558.2080.

(88,98,138,148)-3-(7-oxo-1,7-diphenylheptyl)-6,7,8,9,11,12,13,14,15,16-

decahydro-17H-cyclopenta[a]phenanthren-17-one (4m): colorless oil (60%, 62.3 mg, dr = 1:1); R_f 0.10 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.95 – 7.90 (m, 2H), 7.57 – 7.51 (m, 1H), 7.45 – 7.41 (m, 2H), 7.29 – 7.21 (m, 4H), 7.20 – 7.12 (m, 2H), 7.05 – 7.00 (m, 1H), 6.95 (s, 1H), 3.81 (t, *J* = 7.8 Hz, 1H), 2.91 (t, *J* = 7.2 Hz, 2H), 2.87 – 2.84 (m, 2H), 2.51 (d, *J* = 8.6 Hz, 0.5H), 2.46 (d, *J* = 8.6 Hz, 0.5H), 2.40 – 2.35 (m, 1H), 2.27 – 2.21 (m, 1H), 2.13 (d, *J* = 8.8 Hz, 0.5H), 2.09 (d, *J* = 8.8 Hz, 0.5H), 2.08 – 1.91 (m, 5H), 1.75 – 1.66 (m, 2H), 1.63 – 1.54 (m, 2H), 1.52 – 1.45 (m, 3H), 1.44 – 1.36 (m, 3H), 1.34 – 1.25 (m, 2H), 0.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 220.95, 200.38, 145.20, 142.62, 137.29, 136.94, 136.27, 136.25, 132.83, 128.47, 128.32, 128.28, 127.96, 127.75, 125.92, 125.27, 125.25, 125.04, 124.99, 50.88, 50.86, 50.41, 47.92, 44.20, 38.41, 38.03, 35.80, 35.49, 31.51, 29.41, 29.20, 27.83, 26.49, 25.55, 24.04, 21.50, 13.78 ppm; IR (neat): v_{max} 3024, 2929, 2861, 1736, 1684, 1594, 1494, 1452, 1406, 1367, 1259, 1216, 1085, 1015, 912, 806, 733, 698 cm⁻¹; HRMS (ESI) calcd for C₃₇H₄₂NaO₂ [M+Na]⁺ 541.3077, found 541.3078.

7-([1,1'-biphenyl] -4-yl) -7- (4-methoxyphenyl) -1-phenylheptan-1-one (5a): colorless oil (63%, 56.4 mg); R_f 0.30 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.95 (d, *J* = 7.2 Hz, 2H), 7.59 – 7.53 (m, 3H), 7.52 – 7.50 (m, 2H), 7.47 – 7.41 (m, 4H), 7.36 – 7.28 (m, 3H), 7.21 – 7.19 (m, 2H), 6.87 – 6.84 (m, 2H), 3.90 (t, *J* = 7.8 Hz, 1H), 3.78 (s, 3H), 2.94 (t, *J* = 7.2 Hz, 2H), 2.10 – 2.06 (m, 2H), 1.77 – 1.72 (m, 2H), 1.48 – 1.43 (m, 2H), 1.38 – 1.33 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.44, 157.86, 144.73, 140.96, 138.79, 137.19, 137.02, 132.85, 128.71, 128.65, 128.52, 128.09, 128.01, 127.08, 126.97, 126.95, 113.80, 55.16, 50.06, 38.42, 35.64, 29.21, 27.81, 24.09 ppm; IR (neat): v_{max} 2918, 1677, 1597, 1500, 1450, 1248, 1177, 1082, 1025, 805, 748, 689 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₂NaO₂ [M+Na]⁺ 471.2295, found 471.2286.

7-([1,1'-biphenyl]-4-yl)-7-(4-(tert-butyl)phenyl)-1-phenylheptan-1-one (5b): colorless oil (71%, 67.1 mg); R_f 0.41 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.96 (d, *J* = 7.2 Hz, 2H), 7.61 – 7.50 (m, 5H), 7.47 – 7.42 (m, 4H), 7.35 – 7.32(m, 5H), 7.22 (d, *J* = 8.4 Hz, 2H), 3.93 (t, *J* = 7.8 Hz, 1H), 2.94 (t, *J* = 7.5 Hz, 2H), 2.13 – 2.09 (m, 2H), 1.78 – 1.73 (m, 2H), 1.50 – 1.43 (m, 2H), 1.40 – 1.35 (m, 2H), 1.32 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.43, 148.73, 144.49, 142.01, 140.98, 138.81, 137.03, 132.84, 128.64, 128.51, 128.23, 128.00, 127.32, 127.07, 126.95, 125.29, 50.54, 38.43, 35.60, 34.29, 31.35, 29.24, 27.85, 24.09 ppm; IR (neat): v_{max} 3029, 2951, 2862, 1684, 1481, 1453, 1405, 1362, 1263, 1214, 1105, 1013, 825, 756, 694 cm⁻¹; HRMS (ESI) calcd for C₃₅H₃₈NaO [M+Na]⁺ 497.2815, found 497.2822

7,7-di([1,1'-biphenyl]-4-yl)-1-phenylheptan-1-one (5c): colorless oil (51%, 50.6 mg); R_f 0.31 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.96 (d, *J* = 7.2 Hz, 2H), 7.60 – 7.58 (m, 4H), 7.57 – 7.54 (m, 5H), 7.48 – 7.41 (m, 6H), 7.39 – 7.31 (m, 6H), 4.00 (t, *J* = 7.8 Hz, 1H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.17 – 2.14 (m, 2H), 1.79 – 1.74 (m, 2H), 1.51 – 1.46 (m, 2H), 1.44 – 1.39 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.41, 144.19, 140.91, 138.98, 137.02, 132.86, 128.67, 128.52, 128.21, 128.00, 127.17, 127.02, 126.96, 50.64, 38.41, 35.48, 29.22, 27.83, 24.07 ppm; IR (neat): v_{max} 3030, 2929, 2858, 1683, 1595, 1519, 1484, 1452, 1406, 1364, 1262, 1216, 1086, 1018, 803, 753, 695 cm⁻¹; HRMS (ESI) calcd for C₃₇H₃₄NaO [M+Na]⁺ 517.2502, found 517.2506.

7-([1,1'-biphenyl]-4-yl)-7-(4-chlorophenyl)-1-phenylheptan-1-one (5d): white solid, mp: 59–60 °C (68%, 61.7 mg); R_f 0.33 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.92 (d, *J* = 7.2 Hz, 2H), 7.57 – 7.46 (m, 5H), 7.44 – 7.38 (m, 4H), 7.33 – 7.27 (m, 1H), 7.26 – 7.21 (m, 4H), 7.20 – 7.15 (m, 2H), 3.89 (t, *J* = 7.8 Hz, 1H), 2.91 (t, *J* = 7.4 Hz, 2H), 2.11 – 1.97 (m, 2H), 1.74 – 1.67 (m, 2H), 1.46 – 1.37 (m, 2H), 1.36 – 1.27 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.32, 143.70, 143.53, 140.76, 139.09, 136.95, 132.87, 131.76, 129.16, 128.67, 128.52, 128.51, 128.08, 127.97, 127.17, 127.07, 126.93, 50.25, 38.34, 35.33, 29.13, 27.72, 24.00 ppm; IR (neat): v_{max} 3030, 2929, 2858, 1682, 1592, 1486, 1451, 1405, 1363, 1260, 1215, 1087, 1011, 819, 754, 694 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₉ClNaO [M+Na]⁺ 475.1799, found 475.1800.

7-([1,1'-biphenyl]-4-yl)-7-(4-bromophenyl)-1-phenylheptan-1-one (5e): colorless oil (41%, 40.7 mg); R_f 0.32 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (d, *J* = 6.8 Hz, 2H), 7.60 – 7.49 (m, 5H), 7.49 – 7.39 (m, 6H), 7.36 – 7.31 (m, 1H), 7.29 – 7.27 (m, 2H), 7.16 – 7.14 (m, 2H), 3.90 (t, *J* = 7.8 Hz, 1H), 2.94 (t, *J* = 7.4 Hz, 2H), 2.14 – 2.00 (m, 2H), 1.77 – 1.70 (m, 2H), 1.50 – 1.40 (m, 2H), 1.39 – 1.30 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.34, 144.06, 143.60, 140.76, 139.12, 136.94, 132.89, 131.48, 129.58, 128.68, 128.52, 128.08, 127.98, 127.19, 127.08, 126.94, 119.86, 50.32, 38.35, 35.27, 29.13, 27.72, 24.00 ppm; IR (neat): v_{max} 3026, 2927, 2857, 1682, 1519, 1483, 1451, 1405, 1364, 1261, 1215, 1078, 1012, 805, 754, 694 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₉BrNaO [M+Na]⁺ 519.1294, found 519.1295.

7-([1,1'-biphenyl] -4-yl) -7- (4-trifluoromethylphenyl) -1-phenylheptan-1-one (**5f**): colorless oil (34%, 33.1 mg); R_f 0.61 (EtOAc/petroleum ether = 1:10); ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (d, *J* = 6.8 Hz, 2H), 7.58 – 7.52 (m, 7H), 7.49 – 7.37 (m, 6H), 7.36 – 7.33 (m, 1H), 7.32 – 7.29 (m, 2H), 4.01 (t, *J* = 7.8 Hz, 1H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.15 – 2.07 (m, 2H), 1.78 – 1.70 (m, 2H), 1.49 – 1.42 (m, 2H), 1.40 – 1.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.32, 149.15, 143.14, 140.70, 139.32, 136.95, 132.92, 128.70, 128.54, 128.15, 128.13, 127.98, 127.28, 127.15, 126.96, 125.40 (q, *J* = 3.7 Hz), 124.23 (q, *J* = 270.1 Hz), 50.77, 38.34, 35.23, 29.14, 27.73, 23.98 ppm; IR (neat): v_{max} 3031, 2929, 2859, 1683, 1609, 1481, 1453, 1411, 1366, 1324, 1261, 1217, 1164, 1119, 1070, 1015, 830, 755, 694 cm⁻¹; HRMS (ESI) calcd for $C_{32}H_{29}F_3NaO$ [M+Na]⁺ 509.2063, found 509.2070.

7-([1,1'-biphenyl] -4-yl) -7- (3-methoxyphenyl) -1-phenylheptan-1-one (5g): colorless oil (64%, 57.3 mg); R_f 0.23 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.95 (d, *J* = 6.6 Hz, 2H), 7.59 – 7.53 (m, 3H), 7.52 – 7.51(m, 2H), 7.47 – 7.41 (m, 4H), 7.35 – 7.30 (m, 3H), 7.23 (t, *J* = 7.8 Hz, 1H), 6.90 – 6.89 (m, 1H), 6.85 – 6.84 (m, 1H), 6.75 – 6.73 (m, 1H), 3.92 (t, *J* = 7.8 Hz, 1H), 3.79 (s, 3H), 2.94 (t, *J* = 7.2 Hz, 2H), 2.12 – 2.08 (m, 2H), 1.77 – 1.72 (m, 2H), 1.48 – 1.43 (m, 2H), 1.40 – 1.35 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.42, 159.61, 146.73, 144.13, 140.93, 138.93, 137.01, 132.84, 129.36, 128.65, 128.51, 128.14, 128.00, 127.11, 126.99, 126.95, 120.29, 114.03, 110.90, 55.09, 50.97, 38.42, 35.41, 29.21, 27.81, 24.08 ppm; IR (neat): v_{max} 3024, 2921, 2850, 1677, 1589, 1479, 1448, 1362, 1255, 1142, 1082, 1036, 798, 741, 692 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₂NaO₂ [M+Na]⁺ 471.2295, found 471.2301.

7-([1,1'-biphenyl]-4-yl)-7-(3-fluorophenyl)-1-phenylheptan-1-one (5h): white solid, mp: 72–73 °C (64%, 56.2 mg); R_f 0.39 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.94 (d, *J* = 7.2 Hz, 2H), 7.58 – 7.51 (m, 5H), 7.49 – 7.39 (m, 4H), 7.33 – 7.23 (m, 4H), 7.06 (d, *J* = 8.0 Hz, 1H), 6.98 – 6.95 (m, 1H), 6.88 (td, *J* = 8.4, 2.4 Hz, 1H), 3.94 (t, *J* = 7.8 Hz, 1H), 2.94 (t, *J* = 7.4 Hz, 2H), 2.09 – 2.04 (m, 2H), 1.77 – 1.70 (m, 2H), 1.50 – 1.40 (m, 2H), 1.39 – 1.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.36, 162.94 (d, *J* = 243.9 Hz), 147.76 (d, *J* = 6.6 Hz), 143.51, 140.81, 139.19, 137.01, 132.88, 129.81 (d, *J* = 8.2 Hz), 128.69, 128.53, 128.14, 128.00, 127.22, 127.09, 126.97, 123.55 (d, *J* = 1.4 Hz), 114.64 (d, *J* = 10.6 Hz), 112.99 (d, *J* = 21.0 Hz), 50.70, 38.39, 35.34, 29.18, 27.75, 24.06 ppm; IR (neat): v_{max} 3031, 2931, 2859, 1682, 1590, 1520, 1483, 1448, 1407, 1363, 1253, 1137, 1078, 1009, 967, 839, 750, 694 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₉FNaO [M+Na]⁺ 459.2095, found 459.2010.

7-([1,1'-biphenyl] -4-yl) -7- (2-methoxyphenyl) -1-phenylheptan-1-one (5i): colorless oil (61%, 54.7 mg); R_f 0.27 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.96 (d, *J* = 7.2 Hz, 2H), 7.61 – 7.53 (m, 3H), 7.52 – 7.50 (m, 2H), 7.47 – 7.41 (m, 4H), 7.38 – 7.28 (m, 4H), 7.21 – 7.18 (m, 1H), 6.97 – 6.95 (m, 1H), 6.87 – 6.86 (m, 1H), 4.47 (t, *J* = 7.8 Hz, 1H), 3.81 (s, 3H), 2.94 (t, *J* = 7.2 Hz, 2H), 2.10 – 2.06 (m, 2H), 1.78 – 1.73 (m, 2H), 1.49 – 1.44 (m, 2H), 1.41 – 1.36 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.49, 156.98, 144.31, 141.08, 138.49, 137.02, 133.51, 132.81, 128.61, 128.49, 128.00, 127.54, 126.99, 126.92, 126.87, 126.80, 120.52, 110.67, 55.42, 42.66, 38.47, 34.76, 29.25, 27.74, 24.12 ppm; IR (neat): v_{max} 2932, 1683, 1592, 1485, 1452, 1364, 1241, 1022, 802, 753, 695 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₂NaO₂ [M+Na]⁺ 471.2295, found 471.2298.

7-([1,1'-biphenyl]-4-yl)-7-(2-chlorophenyl)-1-phenylheptan-1-one (5j): white solid, mp: 94–95 °C (62%, 55.9 mg); R_f 0.38 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 7.2 Hz, 2H), 7.61 – 7.50 (m, 5H), 7.49 – 7.40 (m, 4H), 7.39 – 7.30 (m, 5H), 7.25 (td, *J* = 7.6, 1.6 Hz, 1H), 7.14 (td, *J* = 7.6, 1.6 Hz, 1H), 4.55 (t, *J* = 7.8 Hz, 1H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.14 – 2.05 (m, 2H), 1.79 – 1.72 (m, 2H), 1.54 – 1.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.37, 142.76, 142.31, 140.83, 139.00, 136.97, 134.18, 132.85, 129.63, 128.65, 128.50, 128.41, 127.99, 127.26, 127.02, 126.94, 46.20, 38.40, 35.20, 29.18, 27.56, 24.05 ppm; IR (neat): v_{max} 3060, 2929, 2858, 1683, 1592, 1477, 1454, 1407, 1364, 1260, 1214, 1083, 1033, 802, 752, 694 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₉ClNaO [M+Na]⁺ 475.1799, found 475.1802.

7-([1,1'-biphenyl]-4-yl)-7-(3,5-dimethylphenyl)-1-phenylheptan-1-one (5k): white solid, mp: 75–76 °C (70%, 61.9 mg); R_f 0.45 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.97 (d, *J* = 7.2 Hz, 2H), 7.62 – 7.52 (m, 5H), 7.50 – 7.42 (m, 4H), 7.38 – 7.31 (m, 3H), 6.93 (s, 2H), 6.86 (s, 1H), 3.89 (t, *J* = 7.8 Hz, 1H), 2.96 (t, *J* = 7.4 Hz, 2H), 2.32 (s, 6H), 2.14 – 2.08 (m, 2H), 1.80 – 1.73 (m, 2H), 1.52 – 1.43 (m, 2H), 1.43 – 1.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.42, 144.96, 144.49, 140.96, 138.74, 137.76, 136.98, 132.83, 128.63, 128.49, 128.14, 127.98, 127.81, 127.06, 126.92, 125.59, 50.91, 38.42, 35.47, 29.23, 27.85, 24.06, 21.38 ppm; IR (neat): v_{max} 3023, 2927, 2859, 1684, 1598, 1480, 1453, 1407, 1365, 1261, 1216, 1083, 1016, 838, 740, 695 cm⁻¹; HRMS (ESI) calcd for C₃₃H₃₄NaO [M+Na]⁺ 469.2502, found 469.2512.

7-([1,1'-biphenyl]-4-yl)-7-(3,5-difluorophenyl)-1-phenylheptan-1-one (51): colorless oil (51%, 46.6 mg); ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (d, *J* = 7.2 Hz, 2H), 7.60 – 7.50 (m, 5H), 7.47 – 7.41 (m, 4H), 7.37 – 7.31 (m, 1H), 7.29 – 7.27 (m, 2H), 6.84 – 6.76 (m, 2H), 6.66 – 6.60 (m, 1H), 3.91 (t, *J* = 7.8 Hz, 1H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.12 – 1.99 (m, 2H), 1.77 – 1.70 (m, 2H), 1.48 – 1.41 (m, 2H), 1.38 – 1.31(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.31, 161.95 (d, *J* = 246.5 Hz), 161.92 (d, *J* = 246.5 Hz), 149.21 (t, *J* = 8.2 Hz), 142.68, 140.67, 139.48, 136.97, 132.91, 128.71, 128.54, 128.09, 127.99, 127.33, 127.18, 126.98, 110.62 (dd, *J* = 24.7, 11.7 Hz, 2C), 101.58 (t, *J* = 25.2 Hz), 50.67 (t, *J* = 1.75 Hz), 38.35, 35.13, 29.12, 27.67, 24.00 ppm; IR (neat): υ_{max} 2927, 2857, 1793, 1681, 1591, 1519, 1450, 1308, 1262, 1210, 1114, 1081, 981, 839, 803, 749, 692 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₈F₂NaO [M+Na]⁺ 477.2000, found 477.1999.

7-([1,1'-biphenyl]-4-yl)-7-(3-chloro-4-fluorophenyl)-1-phenylheptan-1-one (5m): colorless oil (55%, 52.1 mg); R_f 0.35 (EtOAc/petroleum ether = 1:20); ¹H NMR (600 MHz, CDCl₃) δ = 7.93 (d, *J* = 7.2 Hz, 2H), 7.58 – 7.49 (m, 5H), 7.45 – 7.40 (m, 4H), 7.34 – 7.29 (m, 1H), 7.28 (dd, *J* = 7.2, 2.4 Hz, 1H), 7.26 (s, 1H), 7.24 (d, *J* = 3.0 Hz, 1H), 7.12 – 7.09 (m, 1H), 7.03 (t, *J* = 8.7 Hz, 1H), 3.88 (t, *J* = 7.8 Hz, 1H), 2.92 (t, *J* = 7.2 Hz, 2H), 2.10 – 1.97 (m, 2H), 1.75 – 1.70 (m, 2H), 1.45 – 1.40 (m, 2H), 1.37 – 1.29 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ = 200.31, 156.53 (d, *J* = 246.0 Hz), 143.21, 142.21 (d, *J* = 4.4 Hz), 140.70, 139.33, 136.99, 132.90, 129.73, 128.71,

128.53, 128.06, 127.98, 127.40 (d, J = 7.5 Hz), 127.29, 127.15, 126.96, 120.69 (d, J = 17.6 Hz), 116.41 (d, J = 20.9 Hz), 50.00, 38.33, 35.38, 29.10, 27.69, 23.99 ppm; IR (neat): v_{max} 3032, 2931, 2859, 1741, 1682, 1592, 1493, 1452, 1405, 1364, 1253, 1065, 1010, 884, 828, 749, 694 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₈ClFNaO [M+Na]⁺ 493.1705, found 493.1702.

7-([1,1'-biphenyl]-4-yl)-7-(naphthalen-2-yl)-1-phenylheptan-1-one (5n): white solid, mp: 106–107 °C (50%, 46.8 mg); R_f 0.37 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (d, J = 6.8 Hz, 2H), 7.87 – 7.75 (m, 4H), 7.61 – 7.51 (m, 5H), 7.51 – 7.31 (m, 10H), 4.13 (t, J = 7.8 Hz, 1H), 2.95 (t, J = 7.4 Hz, 2H), 2.29 – 2.16 (m, 2H), 1.80 – 1.72 (m, 2H), 1.54 – 1.38 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.39, 144.14, 142.44, 140.87, 138.94, 136.97, 133.49, 132.83, 132.11, 128.65, 128.49, 128.30, 128.08, 127.97, 127.67, 127.54, 127.11, 127.00, 126.94, 126.69, 125.91, 125.86, 125.33, 50.94, 38.39, 35.21, 29.22, 27.82, 24.05 ppm; IR (neat): v_{max} 3053, 2929, 2858, 1682, 1594, 1491, 1452, 1406, 1365, 1262, 1216, 1085, 1017, 809, 750, 694 cm⁻¹; HRMS (ESI) calcd for C₃₅H₃₂NaO [M+Na]⁺ 491.2345, found 491.2351.

7-([1,1'-biphenyl]-4-yl)-7-(furan-3-yl)-1-phenylheptan-1-one (50): colorless oil (65%, 53.5 mg); R_f 0.33 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.93 (d, *J* = 8.4 Hz, 2H), 7.60 – 7.49 (m, 5H), 7.45 – 7.39 (m, 4H), 7.35 – 7.23 (m, 5H), 6.26 (s, 1H), 3.78 (t, *J* = 7.6 Hz, 1H), 2.92 (t, *J* = 7.2 Hz, 2H), 2.04 – 1.87 (m,

2H), 1.75 – 1.68 (m, 2H), 1.50 – 1.28 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.38, 143.72, 142.89, 140.88, 139.07, 138.80, 136.97, 132.85, 129.11, 128.66, 128.51, 128.11, 127.98, 127.08, 127.02, 126.95, 110.32, 41.91, 38.39, 35.73, 29.12, 27.56, 24.06 ppm; IR (neat): v_{max} 3027, 2927, 2857, 1680, 1586, 1490, 1449, 1407, 1362, 1257, 1210,1148, 1074, 1016, 865, 795, 741, 691 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₈NaO₂ [M+Na]⁺ 431.1982, found 431.1989.

7-([1,1'-biphenyl]-4-yl)-1-phenyl-7-(thiophen-3-yl)heptan-1-one (5p): colorless oil (42%, 35.7 mg); R_f 0.29 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.93 (d, *J* = 6.8 Hz, 2H), 7.58 – 7.48 (m, 5H), 7.45 – 7.39 (m, 4H), 7.34 – 7.22 (m, 4H), 7.01 – 7.00 (m, 1H), 6.94 (dd, *J* = 4.8, 1.2 Hz, 1H), 3.99 (t, *J* = 7.8 Hz, 1H), 2.92 (t, *J* = 7.4 Hz, 2H), 2.15 – 1.96 (m, 2H), 1.75 – 1.68 (m, 2H), 1.46 – 1.29 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.40, 146.03, 143.87, 140.88, 138.99, 136.97, 132.86, 128.66, 128.51, 128.17, 127.99, 127.67, 127.11, 127.01, 126.94, 125.40, 120.00, 46.52, 38.40, 35.95, 29.15, 27.69, 24.06 ppm; IR (neat): v_{max} 2920, 2853, 1677, 1518, 1481, 1449, 1404, 1260, 1208, 1137, 1078, 1012, 751, 689 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₈NaOS [M+Na]⁺ 447.1753, found 447.1753.

tert-butyl-3-(1-([1,1'-biphenyl]-4-yl)-7-oxo-7-phenylheptyl)-1H-indole-1-

carboxylate (5q): colorless oil (53%, 58.6 mg); R_f 0.20 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 8.09 (s, 1H), 7.94 (d, *J* = 6.8 Hz, 2H), 7.59 – 7.48 (m, 6H), 7.46 – 7.26 (m, 9H), 7.17 – 7.11 (m, 1H), 4.12 (t, *J* = 7.6 Hz, 1H), 2.94

(t, J = 7.2 Hz, 2H), 2.26 – 2.18 (m, 1H), 2.09 – 2.03 (m, 1H), 1.80 – 1.72 (m, 2H), 1.70 (s, 9H), 1.54 – 1.39 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.41, 143.15, 140.88, 139.06, 136.98, 132.86, 128.65, 128.51, 128.25, 128.00, 127.10, 126.99, 126.94, 124.47, 124.21, 122.28, 119.68, 115.17, 42.19, 38.42, 35.38, 29.22, 28.22, 27.69, 24.11 ppm; IR (neat): v_{max} 2929, 1727, 1685, 1452, 1371, 1308, 1258, 1218, 1159, 1087, 1022, 802, 753, 695 cm⁻¹; HRMS (ESI) calcd for C₃₈H₃₉NNaO₃ [M+Na]⁺ 580.2822, found 580.2831.

7-([1,1'-biphenyl]-4-yl)-1-phenyl-7-(9-phenyl-9H-carbazol-2-yl)heptan-1-one (5r): yellow oil (62%, 72.3 mg): R_f 0.53 (EtOAc/petroleum ether = 1:10); ¹H NMR (400 MHz, CDCl₃) δ = 8.20 – 8.18 (m, 1H), 8.10 (s, 1H), 7.97 – 7.95 (m, 2H), 7.63 – 7.53 (m, 9H), 7.49 – 7.39 (m, 9H), 7.38 – 7.29 (m, 4H), 4.19 (t, *J* = 7.8 Hz, 1H), 2.96 (t, *J* = 7.4 Hz, 2H), 2.30 – 2.24 (m, 2H), 1.83 – 1.75 (m, 2H), 1.57 – 1.45 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.43, 145.13, 141.01, 140.96, 139.44, 138.71, 137.70, 136.95, 136.75, 132.80, 129.75, 128.62, 128.47, 128.17, 127.97, 127.22, 127.09, 126.94, 126.90, 126.16, 125.78, 123.37, 123.25, 120.24, 119.73, 119.06, 109.75, 109.69, 50.87, 38.41, 35.89, 29.25, 27.93, 24.08 ppm; IR (neat): ν_{max} 3054, 2928, 2858, 1683, 1595, 1492, 1453, 1407, 1360, 1328, 1229, 1078, 1015, 911, 806, 741, 696 cm⁻¹; HRMS (ESI) calcd for C₄₃H₃₇NNaO [M+Na]⁺ 606.2767, found 606.2774.

7-([1,1'-biphenyl]-4-yl)-1-phenyl-7-(quinolin-3-yl)heptan-1-one (5s): colorless oil (37%, 34.7 mg); R_f 0.60 (EtOAc/petroleum ether = 1:2); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.86$ (d, J = 2.4 Hz, 1H), 8.08 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 2.4 Hz, 1H), 7.95 – 7.92 (m, 2H), 7.81 – 7.78 (m, 1H), 7.69 – 7.65 (m, 1H), 7.60 – 7.50 (m, 6H), 7.46 – 7.40 (m, , 4H), 7.38 – 7.30 (m, 3H), 4.16 (t, J = 7.8 Hz, 1H), 2.94 (t, J = 7.2 Hz, 2H), 2.26 – 2.20 (m, 2H), 1.78 – 1.71 (m, 2H), 1.52 – 1.37 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 200.29$, 151.82, 146.86, 142.78, 140.66, 139.40, 137.68, 136.91, 133.34, 132.88, 129.07, 128.82, 128.69, 128.51, 128.28, 128.04, 127.96, 127.59, 127.35, 127.14, 126.96, 126.62, 48.55, 38.33, 35.16, 29.14, 27.76, 23.98 ppm; IR (neat): v_{max} 3032, 2928, 2858, 1682, 1592, 1489, 1453, 1409, 1369, 1463, 1217, 1085, 1017, 911, 797, 751, 695 cm⁻¹; HRMS (ESI) calcd for C₃₄H₃₂NO [M+H]⁺ 470.2478, found 470.2485.

(E)-7-([1,1'-biphenyl]-4-yl)-1,9-diphenylnon-8-en-1-one (5t): colorless oil (46%, 40.5 mg); $R_f 0.40$ (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, J = 7.2 Hz, 2H), 7.63 – 7.53 (m, 5H), 7.47 – 7.43 (m, 4H), 7.40 – 7.28 (m, 7H), 7.24 – 7.18 (m, 1H), 6.46 (d, J = 15.6 Hz, 1H), 6.37 (dd, J = 16.0, 7.6 Hz, 1H), 3.48 (q, J = 7.4 Hz, 1H), 2.96 (t, J = 7.4 Hz, 2H), 1.91 – 1.85 (m, 2H), 1.80 – 1.72 (m, 2H), 1.51 – 1.33 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.42, 143.63, 140.94, 139.08, 137.44, 136.96, 134.07, 132.85, 129.41, 128.68, 128.51, 128.44, 127.99, 127.97, 127.21, 127.03, 127.02, 126.98, 126.11, 48.75, 38.44, 35.61, 29.18, 27.42, 24.10 ppm; IR (neat): v_{max} 3026, 2926, 2857, 1682, 1593, 1487, 1451, 1405, 1365, 1261, 1214, 1078, 1015, 967, 833, 802, 750, 692 cm⁻¹; HRMS (ESI) calcd for C₃₃H₃₂NaO [M+Na]⁺ 467.2345, found 467.2351.

7-([1,1'-biphenyl]-4-yl)-7-phenyl-1-(p-tolyl)heptan-1-one (6a): white solid, mp: 69–70 °C (46%, 39.5 mg); R_f 0.47 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.82 (d, *J* = 8.4 Hz, 2H), 7.58 – 7.51 (m, 2H), 7.50 – 7.48 (m, 2H), 7.42 – 7.38 (m, 2H), 7.33 – 7.19 (m, 9H), 7.19 – 7.15 (m, 2H), 3.92 (t, *J* = 7.8 Hz, 1H), 2.88 (t, *J* = 8.0 Hz, 2H), 2.39 (s, 3H), 2.11 – 2.05 (m, 2H), 1.74 – 1.67 (m, 2H), 1.46 – 1.39 (m, 2H), 1.39 – 1.28 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.12, 145.05, 144.29, 143.57, 140.91, 138.85, 134.50, 129.18, 128.65, 128.42, 128.18, 128.13, 127.82, 127.09, 126.98, 126.95, 126.08, 50.94, 38.31, 35.46, 29.23, 27.82, 24.19, 21.59 ppm; IR (neat): v_{max} 3025, 2923, 2856, 1677, 1603, 1483, 1451, 1406, 1365, 1213, 1181, 1077, 1015, 807, 758, 696 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₂NaO [M+Na]⁺ 455.2345, found 455.2352

7-([1,1'-biphenyl]-4-yl)-1-(4-trifluoromethylphenyl)-7-phenylheptan-1-one (6b): white solid, mp: 55–56 °C (63%, 61.7 mg); R_f 0.42 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 8.04 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.61 – 7.56 (m, 2H), 7.55 – 7.53 (m, 2H), 7.46 – 7.42 (m, 2H), 7.37 – 7.29 (m, 7H), 7.22 – 7.19 (m, 1H), 3.97 (t, *J* = 7.8 Hz, 1H), 2.96 (t, *J* = 7.2 Hz, 2H), 2.16 – 2.10 (m, 2H), 1.80 – 1.72 (m, 2H), 1.52 – 1.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 199.27, 144.97, 144.22, 140.83, 139.56, 138.88, 134.11 (q, *J* = 32.3 Hz), 128.66, 128.43, 128.29, 128.17, 127.79, 127.08, 127.02, 126.91, 126.12, 125.59 (q, *J* = 3.7 Hz), 123.58 (q, *J* = 271.0 Hz), 50.92, 38.65, 35.41, 29.07, 27.75, 23.77 ppm; IR (neat): v_{max} 3029, 2931, 2860, 1691, 1593, 1491, 1453, 1408, 1323, 1170, 1127, 1068, 1014, 832, 761, 700 cm⁻¹; HRMS (ESI) calcd for C₃₂H₂₉F₃NaO [M+Na]⁺ 509.2063, found 509.2064.

7-([1,1'-biphenyl]-4-yl)-1-(3-fluorophenyl)-7-phenylheptan-1-one (6c): white solid, mp: 76–77 °C (68%, 59.7 mg); R_f 0.39 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.70 – 7.76 (m, 1H), 7.62 – 7.59 (m, 1H), 7.57 – 7.52 (m, 2H), 7.50 – 7.48 (m, 2H), 7.41 – 7.36 (m, 3H), 7.33 – 7.23 (m, 7H), 7.23 – 7.14 (m, 2H), 3.92 (t, *J* = 7.8 Hz, 1H), 2.88 (t, *J* = 7.2 Hz, 2H), 2.11 – 2.05 (m, 2H), 1.74 – 1.67 (m, 2H), 1.47 – 1.30 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 198.99 (d, *J* = 2.0 Hz), 162.78 (d, *J* = 246.2 Hz), 144.98, 144.23, 140.85, 139.03 (d, *J* = 5.9 Hz), 138.86, 130.15 (d, *J* = 7.6 Hz), 128.64, 128.42, 128.16, 127.79, 127.07, 126.98, 126.91, 126.10, 123.71 (d, *J* = 2.9 Hz), 119.84 (d, *J* = 21.3 Hz), 114.70 (d, *J* = 21.9 Hz), 50.92, 38.52, 35.42, 29.11, 27.78, 23.88 ppm; IR (neat): v_{max} 3029, 2930, 2859, 1687, 1590, 1486, 1446, 1362, 1252, 1160, 1079, 1015, 836, 761, 696 cm⁻¹; HRMS (ESI) calcd for C₃₁H₂₉FNaO [M+Na]⁺ 459.2095, found 459.2094.

7-([1,1'-biphenyl]-4-yl)-1-(naphthalen-2-yl)-7-phenylheptan-1-one (6d): white solid, mp: 158–159 °C (53%, 49.4 mg); R_f 0.33 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 8.46 (s, 1H), 8.05 – 8.02 (m, 1H), 7.97 – 7.95 (m, 1H), 7.93 – 7.86 (m, 2H), 7.64 – 7.49 (m, 6H), 7.44 – 7.41 (m, 2H), 7.36 – 7.28 (m, 7H), 7.23 – 7.18 (m, 1H), 3.97 (t, *J* = 7.8 Hz, 1H), 3.08 (t, *J* = 7.4 Hz, 2H), 2.16 – 2.10 (m, 2H), 1.84 – 1.77 (m, 2H), 1.54 – 1.47 (m, 2H), 1.45 – 1.35 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.38, 145.04, 144.28, 140.89, 138.86, 135.45, 134.30, 132.48, 129.57, 129.49, 128.65, 128.43, 128.36, 128.30, 128.19, 127.82, 127.72, 127.09, 126.98, 126.94, 126.68, 126.09, 123.89, 50.94, 38.48, 35.47, 29.23, 27.83, 24.22 ppm; IR (neat): v_{max} 3029, 2927, 2858, 1678, 1594, 1480, 1456, 1366, 1266, 1177, 1085,
1022, 908, 811, 754, 700 cm⁻¹; HRMS (ESI) calcd for C₃₅H₃₂NaO [M+Na]⁺ 491.2345, found 491.2342.

7-([1,1'-biphenyl]-4-yl)-7-phenyl-1-(thiophen-2-yl)heptan-1-one (6e): colorless oil (48%, 40.9 mg); R_f 0.25 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.68 (dd, *J* = 4.0, 1.2 Hz, 1H), 7.62 – 7.56 (m, 3H), 7.53 – 7.51 (m, 2H), 7.46 – 7.40 (m, 2H), 7.36 – 7.27 (m, 7H), 7.22 – 7.18 (m, 1H), 7.11 (dd, *J* = 4.8, 3.6 Hz, 1H), 3.95 (t, *J* = 7.8 Hz, 1H), 2.87 (t, *J* = 7.4 Hz, 2H), 2.14 – 2.08 (m, 2H), 1.79 – 1.71 (m, 2H), 1.52 – 1.41 (m, 2H), 1.41 – 1.32 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 193.37, 145.00, 144.41, 144.26, 140.89, 138.85, 133.34, 131.65, 128.64, 128.42, 128.17, 127.99, 127.80, 127.08, 126.98, 126.93, 126.09, 50.92, 39.18, 35.43, 29.16, 27.75, 24.47 ppm; IR (neat): v_{max} 3027, 2927, 2858, 1661, 1597, 1485, 1453, 1412, 1362, 1259, 1022, 912, 804, 758, 727 cm⁻¹; HRMS (ESI) calcd for C₂₉H₂₈NaOS [M+Na]⁺ 447.1753, found 447.1752.

12-([1,1'-biphenyl]-4-yl)-12-phenyldodecan-6-one (6f): colorless oil (86%, 71.2 mg); R_f 0.44 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.57 – 7.55 (m, 2H), 7.52 – 7.49 (m, 2H), 7.44 – 7.40 (m, 2H), 7.34 – 7.26 (m, 7H), 7.21 – 7.16 (m, 1H), 3.92 (t, *J* = 7.8 Hz, 1H), 2.35 (t, *J* = 8.2 Hz, 4H), 2.10 – 2.04 (m, 2H), 1.58 – 1.51 (m, 4H), 1.38 – 1.24 (m, 8H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 211.62, 145.04, 144.30, 140.92, 138.89, 128.67, 128.44, 128.18, 127.82, 127.11, 127.01, 126.96, 126.11, 50.95, 42.78, 42.64, 35.48, 31.41, 29.17, 27.79, 23.64, 23.53, 22.45, 13.93 ppm; IR (neat): v_{max} 3027, 2956, 2920, 2857, 1708,

1597, 1453, 1408, 1368, 1261, 1083, 1022, 802, 757, 695 cm⁻¹; HRMS (ESI) calcd for C₃₀H₃₆NaO [M+Na]⁺ 435.2658, found 435.2658.

methyl 7-([1,1'-biphenyl]-4-yl)-7-phenylheptanoate (6g): colorless oil (60%, 44.6 mg); R_f 0.45 (EtOAc/petroleum ether = 1:30); ¹H NMR (400 MHz, CDCl₃) δ = 7.56 – 7.54 (m, 2H), 7.51 – 7.49 (m, 2H), 7.42 – 7.39 (m, 2H), 7.32 – 7.25 (m, 7H), 7.21 – 7.15 (m, 1H), 3.92 (t, *J* = 7.8 Hz, 1H), 3.64 (s, 3H), 2.27 (t, *J* = 7.5 Hz, 2H), 2.10 – 2.04 (m, 2H), 1.63 – 1.58 (m, 2H), 1.41 – 1.28 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 174.19, 145.03, 144.28, 140.94, 138.93, 128.66, 128.44, 128.18, 127.83, 127.12, 127.01, 126.97, 126.12, 51.43, 50.97, 35.48, 34.01, 29.10, 27.66, 24.77 ppm; IR (neat): ν_{max} 3057, 3026, 2999, 2856, 1601, 1581, 1562, 1543, 1520, 1362, 1331, 1308, 1115, 1088, 1074, 1030, 912, 644, 627 cm⁻¹ HRMS (ESI) calcd for C₂₆H₂₈NaO₂ [M+Na]⁺ 395.1982, found 395.1977.

8-([1,1'-biphenyl]-4-yl)-1,8-diphenyloctan-1-one (6h): white solid, mp: 74–75 °C (34%, 29.2 mg); R_f 0.35 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 7.2 Hz, 2H), 7.59 – 7.50 (m, 5H), 7.49 – 7.40 (m, 4H), 7.36 – 7.27 (m, 7H), 7.23 – 7.17 (m, 1H), 3.94 (t, *J* = 7.8 Hz, 1H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.12 – 2.07 (m, 2H), 1.77 – 1.68 (m, 2H), 1.46 – 1.30 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.49, 145.11, 144.37, 140.92, 138.84, 136.98, 132.85, 128.65, 128.51, 128.41, 128.17, 128.00, 127.82, 127.09, 126.98, 126.95, 126.07, 51.00, 38.50, 35.64, 29.46, 29.17, 27.89, 24.26 ppm; IR (neat): ν_{max} 3027, 2926, 2857, 1682, 1593, 1486, 1452, 1406, 1364, 1262, 1214, 1079, 1017, 914, 806, 759, 695 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₂NaO [M+Na]⁺ 455.2345, found 455.2346.

9-([1,1'-biphenyl]-4-yl)-1,9-diphenylnonan-1-one (6i): white solid (62%, 55.4 mg); R_f 0.37 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.98 (d, *J* = 7.2 Hz, 2H), 7.61 – 7.51 (m, 5H), 7.50 – 7.40 (m, 4H), 7.36 – 7.28 (m, 7H), 7.23 – 7.19 (m, 1H), 3.96 (t, *J* = 7.8 Hz, 1H), 2.96 (t, *J* = 7.4 Hz, 2H), 2.13 – 2.07 (m, 2H), 1.78 – 1.70 (m, 2H), 1.39 – 1.32 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.51, 145.15, 144.40, 140.91, 138.81, 136.98, 132.83, 128.64, 128.50, 128.40, 128.18, 127.99, 127.81, 127.06, 126.97, 126.93, 126.04, 50.99, 38.52, 35.65, 29.44, 29.27, 29.26, 27.95, 24.23 ppm; IR (neat): ν_{max} 3023, 2921, 2852, 1680, 1520, 1484, 1450, 1373, 1259, 1207, 1082, 1019, 802, 755, 694 cm⁻¹; HRMS (ESI) calcd for C₃₃H₃₄NaO [M+Na]⁺ 469.2502, found 469.2508.

10-([1,1'-biphenyl]-4-yl)-1,10-diphenyldecan-1-one (6j): white solid, mp: 83–84 °C (36%, 33mg); R_f 0.50 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.97 (d, *J* = 7.2 Hz, 2H), 7.58 – 7.51 (m, 5H), 7.48 – 7.40 (m, 4H), 7.35 – 7.27 (m, 7H), 7.21 – 7.17 (m, 1H), 3.94 (t, *J* = 7.8 Hz, 1H), 2.96 (t, *J* = 7.4 Hz, 2H), 2.11 – 2.05 (m, 2H), 1.76 – 1.69 (m, 2H), 1.40 – 1.28 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.57, 145.19, 144.45, 140.94, 138.82, 137.01, 132.84, 128.65, 128.51, 128.40, 128.19, 128.01, 127.84, 127.07, 126.97, 126.95, 126.05, 51.01, 38.57, 35.68, 29.56, 29.40, 29.29, 27.98, 24.29 ppm; IR (neat): v_{max} 3022, 2921, 2851, 1681, 1519, 1484, 1450, 1365, 1264, 1213, 1012, 807, 753, 694 cm⁻¹; HRMS (ESI) calcd for C₃₄H₃₆NaO [M+Na]⁺ 483.2658, found 483.2660.

14-([1,1'-biphenyl]-4-yl)-1,14-diphenyltetradecan-1-one (6k): white solid, mp: 84– 85 °C (37%, 38.2 mg); R_f 0.53 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 7.2 Hz, 2H), 7.59 – 7.38 (m, 9H), 7.35 – 7.26 (m, 7H), 7.21 – 7.16 (m, 1H), 3.93 (t, *J* = 7.8 Hz, 1H), 2.96 (t, *J* = 7.4 Hz, 2H), 2.10 – 2.04 (m, 2H), 1.77 – 1.69 (m, 2H), 1.38 – 1.24 (m, 18H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.63, 145.23, 144.49, 140.96, 138.82, 137.04, 132.84, 128.66, 128.52, 128.40, 128.20, 128.03, 127.85, 127.07, 126.98, 126.96, 126.04, 51.03, 38.61, 35.72, 29.64, 29.60, 29.58, 29.47, 29.35, 28.03, 24.35 ppm; IR (neat): v_{max} 3026, 2720, 2852, 1683, 1593, 1452, 1365, 1260, 1210, 1084, 1021, 802, 753, 694 cm⁻¹; HRMS (ESI) calcd for C₃₈H₄₄NaO [M+Na]⁺ 539.3284, found 539.3286.

7-([1,1'-biphenyl]-4-yl)-5-methyl-1,7-diphenylheptan-1-one (61): colorless oil (64%, 55.1 mg, dr = 1:1); R_f 0.41 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.95 (d, *J* = 8.4 Hz, 2H), 7.60 – 7.50 (m, 5H), 7.49 – 7.40 (m, 4H), 7.38 – 7.29 (m, 7H), 7.24 – 7.17 (m, 1H), 4.13 (dd, *J* = 9.2, 6.8 Hz, 1H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.23 – 2.16 (m, 1H), 1.92 – 1.66 (m, 3H), 1.55 – 1.38 (m, 2H), 1.37 – 1.27 (m, 1H), 1.00 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.37, 145.38, 144.62, 144.57, 143.83, 140.87, 140.84, 138.87, 138.82, 136.96, 132.84, 128.63, 128.49, 128.45, 128.41, 128.31, 128.11, 127.96, 127.95, 127.73, 127.10, 127.07, 126.98, 126.93, 126.91, 126.13, 126.03, 48.24, 48.21, 42.81, 42.79, 38.55, 36.49, 36.46, 29.97, 21.27, 21.24, 19.63, 19.58 ppm; IR (neat): v_{max} 3028, 2921, 1683, 1594, 1487, 1452, 1367, 1289, 1210, 1079, 1014, 830, 758, 696 cm⁻¹; HRMS (ESI) calcd for C₃₂H₃₂NaO [M+Na]⁺ 455.2345, found 455.2358.

Ethyl-2-(4-(2-([1,1'-biphenyl]-4-yl)-2-phenylethyl)-6-oxo-6-

phenylhexyl)phenyl)propanoate (6m): colorless oil (60%, 73.1 mg, dr = 1:1); R_f 0.15 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.90 (d, *J* = 6.8 Hz, 2H), 7.56 – 7.51 (m, 3H), 7.50 – 7.37 (m, 6H), 7.33 – 7.28 (m, 1H), 7.26 – 7.09 (m, 9H), 7.01 – 6.99 (m, 2H), 4.18 – 4.07 (m, 2H), 4.03 (t, *J* = 8.2 Hz, 1H), 3.68 (q, *J* = 7.2 Hz, 1H), 2.84 (t, *J* = 7.0 Hz, 2H), 2.60 (d, *J* = 6.8 Hz, 2H), 2.10 – 1.97 (m, 2H), 1.79 – 1.73 (m, 2H), 1.64 – 1.56 (m, 1H), 1.49 (d, *J* = 7.2 Hz, 3H), 1.44 – 1.38 (m, 2H), 1.22 – 1.16 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.22, 174.69, 144.94, 144.20, 143.65, 140.85, 140.82, 139.67, 138.90, 138.87, 138.85, 138.11, 138.09, 136.93, 132.88, 129.44, 129.43, 128.65, 128.51, 128.46, 128.39, 128.21, 127.97, 127.95, 127.84, 127.22, 127.10, 127.03, 127.00, 126.92, 126.15, 126.11, 60.63, 48.31, 48.29, 45.13, 45.11, 40.09, 40.05, 39.33, 38.54, 36.92, 36.88, 32.90, 20.63, 18.61, 18.57, 14.10 ppm; IR (neat): v_{max} 3026, 2925, 1729, 1684, 1594, 1484, 1452, 1369, 1325, 1256, 1170, 1082, 1021, 910, 805, 750, 698 cm⁻¹; HRMS (ESI) calcd for C₄₃H₄₄NaO₃ [M+Na]⁺ 631.3183, found 631.3187.

2-(3-(2-([1,1'-biphenyl]-4-yl)-2-phenylethyl)cyclopentyl)-1-phenylethan-1-one (**6n**): colorless oil (65%, 57.6 mg, dr = 1:1); R_f 0.42 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.98 – 7.95 (m, 2H), 7.61 – 7.50 (m, 5H), 7.50 – 7.40 (m, 4H), 7.37 – 7.27 (m, 7H), 7.21 (m, 1H), 4.01 (t, *J* = 7.8 Hz, 1H), 3.02 (d, *J* = 7.2, 1H), 2.96 (dd, *J* = 7.0, 3.0 Hz, 1H), 2.61 – 2.53(m, 0.5H), 2.42 – 2.34 (m, 0.5H), 2.17 – 2.11 (m, 2.5H), 2.02 – 1.76 (m, 3H), 1.71 – 1.64 (m, 0.5H), 1.53 – 1.46 (m, 0.5H), 1.37 – 1.25 (m, 2H), 1.23 – 1.11 (m, 0.5H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.21, 200.15, 145.06, 145.03, 144.97, 144.34, 144.30, 144.28, 144.23, 140.88, 138.85, 138.82, 137.09, 137.04, 132.83, 128.64, 128.48, 128.41, 128.18, 128.16, 128.12, 128.04, 128.02, 127.82, 127.80, 127.76, 127.08, 127.06, 126.97, 126.93, 126.92, 126.08, 126.06, 49.70, 49.60, 45.11, 42.62, 42.56, 40.41, 40.38, 38.39, 37.46, 36.27, 36.26, 35.83, 34.66, 32.97, 32.84, 32.81, 31.53, 31.35, 31.31 ppm; IR (neat): v_{max} 3028, 2928, 2858, 1682, 1594, 1487, 1450, 1404, 1370, 1273, 1211, 1078, 1005, 910, 831, 750, 696 cm⁻¹; HRMS (ESI) calcd for C₃₃H₃₂NaO [M+Na]⁺ 467.2345, found 467.2348.

1-phenyl-5-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentan-1-one (known compound) (7): colorless oil (83%, 105.3 mg); R_f 0.39 (EtOAc/petroleum ether = 1:20); ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 7.0 Hz, 2H), 7.58 – 7.51 (m, 1H), 7.47 – 7.43 (m, 2H), 3.78 (t, *J* = 6.4 Hz, 2H), 3.01 (t, *J* = 7.4 Hz, 2H), 1.87 – 1.80 (m, 2H), 1.65 – 1.58 (m, 2H), 1.54 – 1.40 (m, 5H), 1.34 – 1.27 (m, 1H), 1.15 (s, 6H), 1.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.28, 136.99, 132.84, 128.50, 127.99, 76.43, 59.60, 39.52, 38.55, 33.04, 28.40, 21.42, 20.08, 17.07 ppm; IR (neat): v_{max} 2933, 1687, 1593, 1455, 1365, 1256, 1134, 1065, 967, 795, 746, 696 cm⁻¹.

1,7,10,10-tetraphenyldec-7-en-1-one (9): colorless oil (58%, 53.0 mg, Z/E = 6.7 : 1); R_f 0.45 (EtOAc/petroleum ether = 1:30); ¹H NMR (400 MHz, CDCl₃) δ = 7.92 (d, *J* = 7.2 Hz, 2H), 7.56 – 7.51 (m, 1H), 7.45 – 7.42 (m, 2H), 7.29 – 7.16 (m, 15H), 7.14 – 7.09 (m, 1H), 5.55 (t, *J* = 7.0 Hz, 1H), 4.06 (t, *J* = 7.8 Hz, 1H), 2.94 (t, *J* = 7.4 Hz, 2H), 2.87 (t, *J* = 7.4 Hz, 2H), 2.43 (t, *J* = 7.4 Hz, 2H), 1.70 – 1.62 (m, 2H), 1.34 – 1.25 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ = 200.38, 144.63, 143.11, 141.20, 137.04, 132.85, 128.52, 128.38, 128.29, 128.22, 128.13, 128.08, 128.02, 126.82, 126.52, 126.41, 126.37, 126.18, 126.01, 51.69, 51.52, 38.43, 34.76, 29.80, 29.25, 28.17, 24.13; IR (neat): v_{max} 3026, 2928, 2857, 1952, 1883, 1808, 1681, 1591, 1490, 1447, 1360, 1263, 1218, 1080, 1022, 914, 801, 746, 692 cm⁻¹; HRMS (ESI) calcd for C₃₄H₃₄NaO [M+Na]⁺ 481.2502, found 481.2507.

References

(1) (a) R. Sakamoto, S. Sakurai and K. Maruoka, *Chem.-Eur. J.*, 2017, 23, 9030. (b) R.
Sakamoto, T. Kato, S. Sakurai and K. Maruoka, *Org. Lett.*, 2018, 20, 1400. (c) P. C.
Too, Y. L. Tnay and S. Chiba, *Beilstein J. Org. Chem.*, 2013, 9, 1217. (d) T. Seihara,
S. Sakurai, T. Kato, R. Sakamoto and K. Maruoka, *Org. Lett.*, 2019, 21, 2477. (e) J.-C.
Yang, L. Chen, F. Yang, P. Li and L.-N. Guo, *Org. Chem. Front.*, 2019, 6, 2792. (f) L.
Chen, J.-C. Yang, P. Xu, J.-J. Zhang, X.-H. Duan and L.-N. Guo, *J. Org. Chem.*, 2020, 85, 3973. (h) K. Zmitek, M. Zupan, S. Stavber and J. Iskra, *J. Org. Chem.*, 2007, 72, 6534.

¹H NMR and ¹³C NMR Spectra of Cycloalkylsilyl Peroxides

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of cycloalkylsilyl

7 265 247 262 247 262 7 148 7 148 6 979 6 979 6 959 6 959 7 112 8 112 8 112 8 112 8 112 8 094 8 112 8 094 8 106 9 3 641 3 641 25225251 25225252 25225252 252252 25235 25235 25235 25235 25235 25235 25235 25235 25235 25235 25235 25235 25235 25235 2525 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 2555 255 1.444 1.436 1.429 .180 1.162 1.454 .197 3.623 2.304 ------Ph ,OOTMS ΟEt 31 lhi 00 03 03 03 01--00 $\begin{array}{c} 02\\ 03\\ 09\\ 03\\ 03\\ \end{array}$ 05-**4**-2.1 • ⁻]0. (• i 10 9 8 6 5 3 141.55 139.92 137.94 128.96 128.96 127.65 127.14 127.14 126.94 -174.65 60.58 49.07 45.09 45.09 37.70 32.13 221.50 118.54 14.08 --1.20 Ph ,OOTMS Ö OEt 31 160 200 180 140 120 100 80 60 40 20 ò

peroxide 31 (known compound)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of cycloalkylsilyl

peroxide 3g

¹H NMR and ¹³C NMR Spectra of the Products 4, 5, 6, 7 and 9

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4a

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4b

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4c

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4d

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4e

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4f

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4g

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4h

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4i

ò

-2

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4j

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 4k

000001000000	00000000000000000000000000000000000000	400000000000000000000000000000000000000
440000000400440	00004044000000000000000000000000000000	000440000000000000000000000000000000000
0000000000000	0004440000000000000000	20000000000000000000000000000000000000

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4m

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 5a

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 5b

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 5c

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5e

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5f

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 5g

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5h

9959 9959 944511 94052 9405 9405 9405 9405 9405 9405 9405 9405	00000000000000000000000000000000000000	956 936 917	957 939 921	1110 0091 0072 7755 7755 77355 77355 7337 33710 33710 3351
		3.99 9.62	2.9	2222111111111 222211111111111111111111

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectra of product 5i

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5j

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 51

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5n

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 50

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5q

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5r

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 5s

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6c

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6d

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6e

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6f

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6g

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6h

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6i

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6j

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6k

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6l

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6m

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6n

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 9