Electronic Supplementary Material for

Ligand regulating for manganese-catalyzed enantioselective epoxidation of olefins without acid

Daqian Xu,^{+,a,b} Qiangsheng Sun,^{+,a} Jin Lin^a and Wei Sun^{a,*}

^{*a*} State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.

Email: wsun@licp.cas.cn

^b School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China

⁺ These authors contributed equally to this work.

Table of Contents

1. General Information	S2
2. Synthesis of (<i>S</i> , <i>S</i>)-BPMB N4 Ligand and (<i>S</i> , <i>S</i>)-BPMB-Mn Complexes	S3
3. General procedure for asymmetric epoxidation of olefins	S5
4. CSI-MS Studies	S12
5. O ¹⁸ labeling Experiment in the Asymmetric Epoxidation of Styrene	S14
6. References	S15
7. Copies of NMR for epoxides 2a-2k and 4a-4i	S16
8. Copies of HPLC or GC spectra of epoxides	S37

1. General Information

All the solvents and reagents were obtained from commercial sources and used without purification unless stated otherwise. $H_2^{18}O$ (> 97% ^{18}O) was obtained from Shanghai Research Institute of Chemical Industry Co. Ltd. *tert*-Butyl hydroperoxide (TBHP, 70% in water) was purchased from TCI company. Column chromatography was generally performed on silica gel (200-300 mesh) and TLC inspections were on silica gel GF₂₅₄ plates. Cinnamamides were prepared according to the reported procedures.¹

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance III 400 MHz spectrometer operating at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR in deuterated solvent. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. High resolution mass spectra (HRMS) were performed on a Bruker micro TOF-Q^{II} spectrometer (ESI). Cryospray ionization mass spectrometry (CSI-MS) was carried out with a Bruker compact Q-TOF spectrometer and the temperature of the nebulizing and drying gases was set at -25 °C. X-ray crystallographic data were collected on a Bruker SMART CCD1000 diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 296(2)K. GC-MS was recorded by an Agilent 7890A/5975C. High pressure liquid chromatography (HPLC) analysis was performed on a Waters-Breeze instrument (2487 Dual λ Absorbance Detector and 1525 Binary HPLC Pump). Chiralpak OD-H, AD-H, OJ, AS, OB, IC columns were purchased from Daicel Chemical Industries, LTD. Gas chromatography (GC) analysis was performed on a Agilent 7890 GC with a CP-Chirasil-Dex CB column.

2. Synthesis of (S,S)-BPMB N4 Ligand and (S,S)-BPMB-Mn Complexes

Mn complexe C1, [Mn(BPMB)(H₂O)(OTf)](OTf)

Compound 1-Boc and 1 were prepared according to the reported method from L-Boc-proline.²

Compound 1 (1.0 equiv) was dissolved in methanol (20 mL) under Argon atmosphere at RT, glyoxal (55% in water, 0.55 equiv) was added and stirred for 2 h until the solvent change to purple, NaBH(OAc)₃ (3 equiv) was added in two portions, then the mixture was stirred at RT for 10 h until the raw materials was consumed. At this point, solvent was evaporated and the reaction was quenched with NH₄Cl. Afterwards, the mixture was extracted with CHCl₃ (3×10 mL) and the combined organic phases was washed with NaHCO₃ and brine, and dried over Na₂SO₄. After the solvent was evaporated, the residue was purified using column chromatography (Methanol/ Ethyl acetate 1:3) to give the target product (*S*,*S*)-BPMB as a white solid.

[α]20 D= -141 (c 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.6 Hz, 2H), 7.33 – 7.16 (m, 6H), 3.76 (m, 2H), 3.72 (s, 6H), 3.12 (m, 2H), 2.62 (m, 2H), 2.36 (s, 2H), 2.28 – 2.08 (m, 4H), 2.03 – 1.71 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 142.2, 136.7, 122.2, 121.8, 119.4, 109.0, 64.3, 53.5, 53.2, 30.1, 30.1, 23.1. HRMS (ESI-MS) m/z Calcd for [C₂₆H₃₃N₆, M+H]⁺: 429.2761; Found: 429.2777.

 $[Mn(S,S-BPMB)(H_2O)(OTf)](OTf)$ complex C1 was synthesized according to the reported method from (S,S)-BPMB and Mn(OTf)₂ in MeCN. HRMS (ESI-MS) m/z Calcd for $[C_{26}H_{32}N_6Mn]^{2+}$: 241.6033; Found: 241.6025.

 $[Mn(S,S-BPMB)(H_2O)(ClO_4)](ClO_4)$ complex C2 was synthesized according to the reported method from (S,S)-BPMB and $Mn(ClO_4)_2$ ·6H₂O in MeCN. HRMS (ESI-MS) m/z Calcd for $[C_{26}H_{33}N_6Mn]^{2+}$: 241.6033; Found: 241.6031.

Fig. S1 The crystal structures of manganese complexes with different N4 ligands.

3. General Procedure for Asymmetric Epoxidation of Olefin

$$\mathbb{R}^{1}$$
 \mathbb{R}^{3} \mathbb{C}^{1} , 0.5 mol%; TBHP, 1.5 equiv \mathbb{R}^{1} \mathbb{C}^{2} \mathbb{R}^{3} \mathbb{C}^{1} \mathbb{C}^{3} \mathbb{C}^{1} \mathbb{C}^{3} \mathbb{C}^{3}

Olefin substrate (0.25 mmol), Mn catalyst (0.5 mol %) and MeCN (1.0 mL) were added to a 10 mL flask containing a small stir bar. Then TBHP (1.5 equiv, 70% in water, diluted in 0.5 mL of MeCN) was added via a syringe pump over 1 h with stirring at room temperature, and the mixture was stirred for additional 1h (for chalcones) or 3h (for cinnamamides) respectively. After the reaction, products were purified by column chromatography with silica gel to get pure products.

2a. trans-(2R, 3S)-Epoxy-1, 3-diphenyl-propan-1-one³

White solid, 82% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 7.92 (m, 2H), 7.67 – 7.57 (m, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.42 – 7.34 (m, 5H), 4.31 (d, *J* = 1.9 Hz, 1H), 4.08 (d, *J* = 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 193.0, 135.5, 135.4, 134.0, 129.0, 128.9, 128.8, 128.3, 125.8, 61.03, 59.4.

HPLC: Chiralcel OD-H column; hexanes: isopropanol 90/10, 1.0 mL/min, 254 nm, $t_R(minor) = 8.7 min$, $t_R(major) = 9.6 min$, 93% ee.

2b. ((2R,3S)-3-(naphthalen-2-yl)oxiran-2-yl)(phenyl)methanone³

White solid, 90% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 8.05 (dd, J = 8.6, 1.7 Hz, 1H), 8.00 – 7.82 (m, 3H), 7.59 (m, 2H), 7.48 – 7.38 (m, 5H), 4.44 (d, J = 1.9 Hz, 1H), 4.16 (d, J = 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.9, 135.9, 135.6, 132.8, 132.4, 130.4, 129.7, 129.0, 129.0, 128.8, 128.8, 127.8, 127.0, 125.8, 123.6, 61.0, 59.5.

HPLC: Chiralcel AD-H column; hexanes: isopropanol 90/10, 1.0 mL/min, 254 nm, $t_R(minor) = 15.4 min$, $t_R(major) = 17.4 min$, 95% ee.

2c. ((2R,3S)-3-(3-chlorophenyl)oxiran-2-yl)(phenyl)methanone³

White solid, 89% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.91 (m, 2H), 7.57 – 7.54 (m, 1H), 7.44 – 7.40 (m, 2H), 7.28 – 7.24 (m, 3H), 7.20 – 7.18 (m, 1H), 4.19 (d, *J* = 1.8 Hz, 1H), 3.98 (d, *J* = 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 137.6, 135.3, 134.9, 134.1, 130.1, 129.2, 128.9, 128.3, 125.7, 124.1, 60.7, 58.5.

HPLC: Chiralcel OJ column; hexanes: isopropanol 90/10, 1.0 mL/min, 254 nm, $t_R(minor) = 10.8 min$, $t_R(major) = 11.5 min$, 97% ee.

2d. ((2R,3S)-3-(4-chlorophenyl)oxiran-2-yl)(phenyl)methanone³

White solid, 83% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.99 (m, 2H), 7.64 – 7.62 (m, 1H), 7.50 (dd, J = 10.7, 4.8 Hz, 2H), 7.40 – 7.38 (m, 2H), 7.32 – 7.30 (m, 2H), 4.26 (d, J = 1.9 Hz, 1H), 4.06 (d, J = 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.7, 135.3, 134.9, 134.1, 134.0, 129.0, 128.9, 128.3, 127.1, 60.9, 58.7.

HPLC: Chiralcel IC column; hexanes: isopropanol 85/15, 1.0 mL/min, 254 nm, $t_R(minor) = 16.5$ min, $t_R(major) = 17.4$ min), 84% ee.

2e. ((2R,3S)-3-(4-bromophenyl)oxiran-2-yl)(phenyl)methanone³

White solid, 87% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 8.00 (m, 2H), 7.65 – 7.57 (m, 1H), 7.56 – 7.50 (m, 4H), 7.28 – 7.26 (m, 2H), 4.26 (d, *J* = 1.9 Hz, 1H), 4.07 (d, *J* = 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.7, 135.3, 134.9, 134.1, 134.0, 129.0, 128.9, 128.3, 127.1, 60.9, 58.7.

HPLC: Chiralcel AD-H column; hexanes: isopropanol 90/10, 1.0 mL/min, 254 nm, $t_R(minor) = 13.3 min$, $t_R(major) = 15.0 min$, 95% ee.

2f. phenyl((2R,3S)-3-(4-(trifluoromethyl)phenyl)oxiran-2-yl)methanone³

White solid, 46% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.3 Hz, 2H), 7.43 - 7.32 (m, 5H), 4.27 (d, J = 1.8 Hz, 1H), 4.09 (d, J = 1.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ

192.6, 138.0, 135.3, 135.0, 129.3, 128.9, 128.8, 127.5, 125.9 (q, $J_{C-F} = 4$ Hz), 123.4 (d, $J_{C-F} = 271$ Hz), 61.3, 59.5.

HPLC, Chiralcel IC column; hexanes: isopropanol 90/10, 1.0 mL/min, 254 nm, $t_R(minor) = 12.2 min$, $t_R(major) = 11.1 min, 88\%$ ee.

2g. (4-chlorophenyl)((2R,3S)-3-phenyloxiran-2-yl)methanone³

White solid, 90% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.46 – 7.41 (m, 2H), 7.40 – 7.36 (m, 5H), 4.24 (d, *J* = 1.9 Hz, 1H), 4.07 (d, *J* = 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 140.6, 135.3, 133.7, 129.8, 129.3, 129.2, 128.8, 125.8, 61.0, 59.4.

HPLC: Chiralcel OJ column; hexanes: isopropanol 90/10, 1.0 mL/min, 254 nm, $t_R(minor) = 15.2 min$, $t_R(major) = 12.7 min$, 95% ee.

2h. (4-methoxyphenyl)((2R,3S)-3-phenyloxiran-2-yl)methanone³

White solid, 82% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 9.2 Hz, 2H), 7.39-7.38 (m, 5H), 6.97 – 6.94 (m, 2H), 4.26 (d, J = 1.9 Hz, 1H), 4.07 (d, J = 1.9 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.3, 164.2, 135.7, 130.7, 128.9, 128.7, 128.6, 125.8, 114.1, 60.8, 59.1, 55.5.

HPLC: Chiralcel IC column; hexanes: isopropanol 80/20, 1.0 mL/min, 254 nm, $t_R(minor) = 24.6 min$, $t_R(major) = 25.9 min$, 90% ee.

2i. (4-chlorophenyl)((2R,3S)-3-(p-tolyl)oxiran-2-yl)methanone⁴

White solid, 84% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.36 – 7.27 (m, 4H), 4.23 (d, J = 1.8 Hz, 1H), 4.05 (d, J = 1.7 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 145.2, 134.8, 134.1, 132.9, 129.6, 129.0, 128.4, 127.1, 60.8, 58.6, 21.8.

HPLC: Chiralcel AD-H column; hexanes: isopropanol 90/10, 1.0 mL/min, 254 nm, $t_R(minor) = 15.2 min$, $t_R(major) = 18.6 min$, 94% ee.

2j. (4-chlorophenyl)((2R,3S)-3-(4-chlorophenyl)oxiran-2-yl)methanone³

White solid, 65% yield, ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 6.8 Hz, 2H), 7.46 – 7.40 (m, 2H), 7.38 – 7.30 (m, 2H), 4.19 (d, J = 1.8 Hz, 1H), 4.06 (d, J = 1.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 140.7, 135.0, 133.7, 133.5, 129.8, 129.3, 129.0, 127.0, 60.9, 58.7.

HPLC: Chiralcel OJ column; hexanes: isopropanol 95/5, 1.0 mL/min, 254 nm, $t_R(minor) = 25.6 min$, $t_R(major) = 28.6 min$, 93% ee.

2k (2R,3'S)-3'-phenyl-3,4-dihydro-1H-spiro[naphthalene-2,2'-oxiran]-1-one³

White solid, 87% yield, ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 7.8, 0.9 Hz, 1H), 7.40 (td, J = 7.5, 1.3 Hz, 1H), 7.33 – 7.18 (m, 6H), 7.18 – 7.01 (m, 1H), 4.24 (s, 1H), 2.70 (dd, J = 8.4, 4.0 Hz, 2H), 2.44 – 2.23 (m, 1H), 1.73 (dt, J = 13.5, 4.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 134.2, 134.0, 132.6, 128.7, 128.3, 128.3, 127.6, 126.9, 126.6, 64.3, 64.0, 27.3, 25.2.

HPLC: Chiralcel AD-H column; hexanes: isopropanol 90/10, 1.0 mL/min, 254 nm, $t_R(minor) = 12.6 min$, $t_R(major) = 10.8 min$, 96% ee.

4a. (2S,3R)-N,N-dibenzyl-3-phenyloxirane-2-carboxamide¹

White solid, 87% yield, $[\alpha]20 \text{ D} = -54 (c \ 0.1, \text{CHCl}_3)$. ¹H NMR (400 MHz, CDCl₃) δ 7.36 -7.25 (m, 11H), 7.24 -7.13 (m, 4H), 4.70 - 4.60 (m, 2H), 4.53 (s, 2H), 4.12 (s, 1H), 3.69 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.2, 136.5, 135.8, 135.3, 129.0, 128.7, 128.6, 128.5, 127.9, 127.7, 126.6, 125.6, 58.0, 57.4, 49.3, 48.7. HRMS (ESI-MS) m/z Calcd for C₂₃H₂₁NO₂Na [M+Na] +: 366.1465, found: 366.1467.

HPLC: Chiralcel AS-H column; hexanes: isopropanol 75/25, 0.8 mL/min, 210 nm, $t_R(minor) = 52.8 min$, $t_R(major) = 49.6 min$, 99.7% ee.

4b tert-butyl benzyl((2S,3R)-3-phenyloxirane-2-carbonyl)carbamate³

White solid, 80% yield, $[\alpha]20 D = +190$ (c 0.35, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.23 (m, 10H), 4.89 (q, J = 14.6 Hz, 2H), 4.33 (d, J = 1.9 Hz, 1H), 4.02 (d, J = 1.9 Hz, 1H), 1.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 152.5, 137.4, 135.6, 128.7, 128.5, 128.4, 128.0, 127.5, 126.1, 84.4, 59.6, 58.9, 47.9, 27.7. HRMS (ESI-MS) m/z Calcd for C₁₃H₁₅NO₂Na [M+Na]⁺: 376.1525, found: 376.1527.

HPLC: Chiralcel AS-H column; hexanes: isopropanol 75/25, 1.0 mL/min, 203 nm, $t_R(minor) = 13.2 min$, $t_R(major) = 21.5 min$, 91% ee.

4c (2S,3R)-N-methyl-N,3-diphenyloxirane-2-carboxamide1

White solid, 90% yield, $[\alpha]20 D = +39.4$ (c 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.22 (m, 8H), 7.15 – 7.12 (m, 2H), 4.16 (d, J = 1.8 Hz, 1H), 3.38 (s, 3H), 3.24 (d, J = 1.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 142.1, 135.4, 129.8, 128.6, 128.4, 128.1, 126.8, 125.7, 58.2, 56.7, 37.7. HRMS (ESI-MS) m/z Calcd for C₁₃H₁₅NO₂Na [M+Na]⁺: 276.0999, found: 276.0995.

HPLC: Chiralcel AS-H column; hexanes: isopropanol 90/10, 0.8 mL/min, 220 nm, $t_R(minor) = 18.8 min$, $t_R(major) = 30.3 min$, 99% ee.

4d (2S,3R)-N,N-diethyl-3-phenyloxirane-2-carboxamide

White solid, 80% yield, $[\alpha]20 \text{ D} = -82 \text{ (c } 0.9, \text{ CHCl}_3)$. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 5H), 4.08 (d, J = 1.8 Hz, 1H), 3.59 (d, J = 2.0 Hz, 1H), 3.50 – 3.39 (m, 4H), 1.22 – 1.15 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 135.8, 128.7, 128.6, 125.7, 57.6, 57.2, 41.5, 40.9, 14.9, 12.9. HRMS (ESI-MS) calcd for C₁₃H₁₇NO₂Na [M+Na]⁺: 242.1157, found: 242.1159

HPLC: Chiralcel AS-H column; hexanes: isopropanol 70/30, 0.7 mL/min, 203 nm, 35 °C, $t_R(minor) = 18.5 \text{ min}, t_R(major) = 22.9 \text{ min}, 99.5\%$ ee.

4e (2S,3R)-N,N-dibenzyl-3-(p-tolyl)oxirane-2-carboxamide1

White solid, 83% yield, $[\alpha]20 D = -59$ (c 0.4, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 8H), 7.16 – 7.07 (m, 6H), 4.64 (s, 2H), 4.53 (s, 2H), 4.10 (d, J = 1.8 Hz, 1H), 3.68 (d, J = 1.9 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 138.6, 136.5, 135.8, 132.3, 129.2, 129.0, 128.7, 128.6, 127.9, 127.7, 126.6, 125.6, 58.1, 57.4, 49.2, 48.6, 21.2. HRMS (ESI-MS) m/z Calcd for C₂₄H₂₃NO₂Na [M+Na]⁺: 380.1621, found: 380.1624.

HPLC: Chiralcel IC column; hexanes: isopropanol 90/10, 1.5 mL/min, 220 nm, $t_R(minor) = 34.3$ min, $t_R(major) = 22.9$ min, 99.5% ee.

4f (2S,3R)-N,N-dibenzyl-3-(4-bromophenyl)oxirane-2-carboxamide1

White solid, 86% yield, $[\alpha]20 \text{ D} = -42$ (c 0.4, CHCl₃), ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.36 (m, 2H), 7.36 – 7.23 (m, 8H), 7.12 (d, J = 6.8 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 4.72 (d, J = 14.6 Hz, 1H), 4.58 (d, J = 14.6 Hz, 1H), 4.53 (d, J = 4.1 Hz, 2H), 4.06 (d, J = 1.8 Hz, 1H), 3.62 (d, J = 1.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 136.4, 135.9, 134.5, 131.7, 129.1, 128.8, 128.6, 128.0, 127.8, 127.3, 126.5, 122.7, 57.5, 49.4, 49.0. HRMS (ESI-MS) m/z Calcd for C₂₃H₂₀BrNO₂Na [M+Na] ⁺: 444.0572, found: 444.0570.

HPLC: Chiralcel IC column; hexanes: isopropanol 90/10, 1.5 mL/min, 220 nm, $t_R(minor) = 32.9$ min, $t_R(major) = 36.7$ min, 94% ee.

4g (2S,3R)-N,N-dibenzyl-3-(4-(trifluoromethyl)phenyl)oxirane-2-carboxamide¹

White solid, 42% yield, $[\alpha]20 D = -12$ (c 0.18, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.35 – 7.26 (m, 10H), 7.13 (d, J = 6.8 Hz, 2H), 4.76 (d, J = 14.6 Hz, 1H), 4.58 (d, J = 14.8 Hz, 1H), 4.55 (d, J = 5.8 Hz, 2H), 4.16 (d, J = 1.5 Hz, 1H), 3.64 (d, J = 1.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 139.5, 136.4, 135.9, 130.9 (q, $J_{C-F} = 33$ Hz), 129.1, 128.8, 128.6, 128.0, 127.8, 126.5, 125.6 (q, $J_{C-F} = 3.6$ Hz), 124.0 (d, $J_{C-F} = 293.0$ Hz), 57.6, 57.3, 50.1, 49.1. HRMS (ESI-MS) m/z Calcd for C₁₃H₁₅NO₂Na [M+Na] +: 434.1344, found: 434.1340.

HPLC: Chiralcel IC column; hexanes: isopropanol 90/10, 0.8 mL/min, 220 nm, $t_R(minor) = 36.6 min$, $t_R(major) = 38.8 min$, 98% ee.

4h ((2S,3R)-3-phenyloxiran-2-yl)(pyrrolidin-1-yl)methanone

White solid, 60% yield, $[\alpha]20 \text{ D} = -71$ (c 0.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.26 (m, 5H), 4.13 (d, J = 1.8 Hz, 1H), 3.70 – 3.58 (m, 1H), 3.60 – 3.37 (m, 5H), 2.11 – 1.72 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 135.8, 128.7, 128.6, 125.7, 57.5, 57.5, 46.4, 46.0, 26.1, 23.9. HRMS (ESI-MS) m/z Calcd for C₁₃H₁₅NO₂Na [M+Na]: 240.0995, found: 240.0984.

HPLC: Chiralcel AS-H column; hexanes: isopropanol 70/30, 0.7 mL/min, 203 nm, 35 °C, $t_R(minor) = 30.9 \text{ min}, t_R(major) = 54.3 \text{ min}, 98\%$ ee.

4i 3-((2S,3R)-3-phenyloxirane-2-carbonyl)oxazolidin-2-one

White solid, 70% yield, $[\alpha]20 \text{ D} = -19$ (c 0.6, MeOH). ¹H NMR (400 MHz, CD₃OD) δ 7.47 (d, J = 7.4 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.24 (t, J = 7.3 Hz, 1H), 5.39 (d, J = 2.8 Hz, 1H), 5.05 (d, J = 2.7 Hz, 1H),

4.48 - 4.42 (m, 1H), 4.34 (dd, J = 17.0, 8.7 Hz, 1H), 4.08 - 4.01 (m, 1H), 3.92 - 3.86 (m, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 174.3, 155.5, 142.6, 128.9, 128.4, 127.5, 75.8, 75.1, 64.5, 43.9. HRMS (ESI-MS) m/z Calcd for C₁₂H₁₁NO₄Na [M+Na]⁺: 256.0587, found: 256.0580.

HPLC: Chiralcel IC column; hexanes: isopropanol 75/25, 0.8 mL/min, 210 nm, $t_R(minor) = 37.0 min$, $t_R(major) = 44.7 min$, 87% ee.

4. CSI-MS Studies

4.1 CSI-MS Experiment for [Mn(IV)(O)(S,S-BPMB)]²⁺ and [Mn(IV)(O)(S,S-BPMB)(OTf)]⁺

The solution of TBHP (70% in water, diluted to 0.5mM, 1.0 mL) was added to a solution of [Mn(*S*,*S*-BPMB)(H₂O)(OTf)](OTf) complex (C1) (0.05 mM, 1mL), and the mixture was stirred at room temperature for 5 min. The solution was injected directly into the Q-TOF spectrometer (CSI-MS at - 25° C).

Fig. S2 Full CSI-MS spectrum of the reaction mixture ($[Mn(S,S-BPMB)(H_2O)(OTf)](OTf)$ complex (C1) and 10 equiv of TBHP in MeCN at -25 °C.

4.2 CSI-MS Experiment for ¹⁸O-labelled water experiment

 H_2O^{18} (10 µl, 0.55 mmol) was added to a solution of [Mn(*S*,*S*-BPMB)(H_2O)(OTf)](OTf) complex (C1) (0.05 mM, 1 mL), then TBHP (10 equiv) was added, and the mixture was stirred at room temperature for 5 min. Afterwards, the solution was injected directly into the Q-TOF spectrometer (CSI-MS at -25°C).

Fig. S3 (a) CSI-MS spectrum of the solution showing the signal of $[Mn(IV)(O)(S,S-BPMB)]^{2+}$, **I-1** at m/z 249.10. (b) CSI-MS spectrum of $[Mn(IV)(O)(S,S-BPMB)]^{2+}$ partial exchanged by H₂¹⁸O. (c) CSI-MS spectrum of the solution showing the signal of $[Mn(IV)(O)(S,S-BPMB)(OTf)]^+$, **I-2** at m/z 648.15. (d) CSI-MS spectrum of $[Mn(IV)(O)(S,S-BPMB)(OTf)]^+$ partial exchanged by H₂¹⁸O.

4.3 CSI-MS Experiment for the Asymmetric Epoxidation of Styrene

The solution of TBHP (70% in water, diluted to 0.5 mM, 1.0 mL) was added to a solution of [Mn(*S*,*S*-BPMB)(H₂O)(OTf)](OTf) complex (C1) (0.05 mM, 1mL). After the mixture was stirred at room temperature for 5 min, styrene (100 μ l, about 10000 equiv) was added to the system. The solution was monitored every 5 min by using Q-TOF spectrometer (CSI-MS at -25°C).

Fig. S4 CSI-MS spectrum of the solution showing the signal of $[Mn(IV)(O)(S,S-BPMB)(OTf)-(styrene oxide)]^+$, **I-3** at m/z 752.19.

Fig. S5 Enantioselective epoxidation induced by the manganese complex without acid.

5. O¹⁸ labeling Experiment in the Asymmetric Epoxidation of Styrene

Styrene (0.2 mmol), Mn catalyst (0.5 mol %), H_2O^{18} (5 equiv, 20 mg) and MeCN (1.0 mL) were added to a 10 mL flask containing a small stir bar. Then TBHP (1.5 equiv, 70% in water, diluted in 0.5 mL of MeCN) was added via a syringe pump over 1 h with stirring at room temperature, and the mixture was stirred for an additional 1h. The product was detected by GC-MS, 10.2% ¹⁸O-labeled epoxide was observed on the basis of the MS spectrum.

References

1 (a) X. N. Chen, B. Gao, Y. J. Su and H. M. Huang, *Adv. Syn. Catal.*, 2017, **359**, 2535–2541; (b) W. F. Wang, Q. S. Sun, C. G. Xia and W. Sun, *Chin. J. Catal.*, 2018, **39**, 1463–1469.

2 G. Balboni, R. Guerrini, S. Salvadori, C. Bianchi, D. Rizzi, S. D. Bryant, and L. H. Lazarus, J. Med. Chem., 2002, 45, 713–720.

7. Copies of NMR for BPMB ligand, epoxides 2a-2k and 4a-4i

° o

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

° ↓ °

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

8. Copies of HPLC or GC spectra of epoxides

	RT (min)	Area (Pa*s)	% Area
1	8.926	7446503	52.75
2	9.942	6671080	47.25

	RT (min)	Area (Pa*s)	% Area
1	8.759	1482252	3.60
2	9.689	37551008	96.40

	RT (min)	Area (Pa*s)	% Area
1	15.399	2010022	44.26
2	17.389	2468686	55.74

	RT (min)	Area (Pa*s)	% Area
1	15.387	444391	2.46
2	17.375	17591103	97.54

	RT (min)	Area (Pa*s)	% Area
1	11.055	9810830	49.05
2	11.737	10300276	50.95

	RT (min)	Area (Pa*s)	% Area
1	10.853	219874	1.46
2	11.514	14365136	98.54

	RT (min)	Area (Pa*s)	<mark>% Area</mark>
1	<mark>16.665</mark>	<mark>8672020</mark>	<mark>49.93</mark>
2	<mark>23.990</mark>	<mark>8696014</mark>	<mark>50.07</mark>

	RT (min)	<mark>Area (Pa*s)</mark>	<mark>% Area</mark>
1	16.521	<mark>1443117</mark>	7.92
2	<mark>17.410</mark>	<mark>16781355</mark>	<mark>92.08</mark>

	RT (min)	Area (Pa*s)	% Area
1	14.161	12582216	50.27
2	16.380	12445139	49.73

	RT (min)	Area (Pa*s)	% Area
1	13.301	279844	2.48
2	15.031	16988518	97.52

	RT (min)	Area (Pa*s)	% Area
1	12.257	3680056	50.86
2	12.749	3664587	49.14

	RT (min)	Area (Pa*s)	% Area
1	11.147	58802605	93.91
2	12.192	4759364	6.08

	RT (min)	Area (Pa*s)	% Area
1	12.474	2457653	45.68
2	15.455	2922037	54.32

	RT (min)	Area (Pa*s)	% Area
1	12.678	21054968	97.58
2	15.203	791342	2.42

	RT (min)	Area (Pa*s)	% Area
1	24.445	33481947	49.23
2	25.903	22850715	50.27
3.00 2.50 2.00 ₹ 1.50 1.00 0.50 0.00	· · · · · · · · · · · · · · · · · · ·		25.839
2.00	4.00 6.00 8.00 10.0	00 12.00 14.00 16.00 18.00 2 Minutes	20.00 22.00 24.00 26.00 28.00

	RT (min)	Area (Pa*s)	% Area
1	24.635	1885952	4.95
2	25.899	36222283	95.05

	RT (min)	Area (Pa*s)	% Area
1	15.887	266584	51.14
2	19.230	254668	48.86

	RT (min)	Area (Pa*s)	% Area
1	15.220	400130	3.12
2	18.607	12428715	96.88

	RT (min)	Area (Pa*s)	% Area
1	26.049	35911357	51.44
2	29.230	33896541	48.56

	RT (min)	Area (Pa*s)	% Area
1	25.568	413960	3.65
2	28.640	10921426	96.45

	RT (min)	Area (Pa*s)	% Area
1	10.758	20443472	50.80
2	12.983	19798802	49.20

	RT (min)	Area (Pa*s)	% Area
1	10.787	15758323	98.19
2	13.066	290795	1.81

	RT (min)	Area (Pa*s)	% Area
1	50.057	52288271	53.93
2	53.785	49537011	46.07
3.00		L	ـــــــــــــــــــــــــــــــــــــ
2.50			
₽ 1.50			
1.00			49.564

0.50										,	-52.754		
0.00- + 0.0	0	5.00	10.00	15.00	20.00	25.00	30.00 Minutes	35.00	40.00	45.00	50.00	55.00	60.00

	RT (min)	Area (Pa*s)	% Area
1	49.564	47861179	99.89
2	52.754	51079	0.11

	RT (min)	Area (Pa*s)	% Area
1	13.384	18798519	48.30
2	22.129	20123391	51.70

	RT (min)	Area (Pa*s)	% Area
1	13.186	70185	4.36
2	21.502	1532276	95.64

	RT (min)	Area (Pa*s)	% Area
1	19.520	18698724	44.81
2	31.374	23032424	55.19

	RT (min)	Area (Pa*s)	% Area
1	18.786	928454	0.58
2	30.323	158563603	99.42

	RT (min)	Area (Pa*s)	% Area
1	16.822	35151960	49.08
2	23.260	36471647	50.92

	RT (min)	Area (Pa*s)	% Area
1	18.540	325926	0.21
2	22.975	155956916	99.79

	RT (min)	Area (Pa*s)	% Area
1	33.917	12791372	43.12
2	53.754	16871192	56.88

	RT (min)	Area (Pa*s)	% Area
1	34.325	279620	0.29
2	53.458	95471391	99.71

	RT (min)	<mark>Area (Pa*s)</mark>	<mark>% Area</mark>
1	<mark>33.695</mark>	<mark>22366453</mark>	<mark>49.88</mark>
2	<mark>37.322</mark>	<mark>22475771</mark>	50.12

	RT (min)	Area (Pa*s)	<mark>% Area</mark>
1	<mark>32.932</mark>	<mark>60145523</mark>	<mark>97.03</mark>
2	<mark>36.696</mark>	<mark>1840377</mark>	2.97

	RT (min)	Area (Pa*s)	<mark>% Area</mark>
1	<mark>37.954</mark>	<mark>10489162</mark>	<mark>49.74</mark>
2	<mark>39.522</mark>	10600556	<mark>50.26</mark>

	RT (min)	Area (Pa*s)	% Area	
1	<mark>36.633</mark>	205563	<mark>0.81</mark>	
2	<mark>38.840</mark>	<mark>25274574</mark>	<mark>99.19</mark>	

	RT (min)	Area (Pa*s)	<mark>% Area</mark>
1	<mark>29.825</mark>	<mark>24499128</mark>	<mark>49.98</mark>
2	<mark>52.821</mark>	<mark>24609799</mark>	<mark>50.11</mark>

	RT (min)	Area (Pa*s)	<mark>% Area</mark>
1	<mark>30.984</mark>	<mark>2022594</mark>	1.02
2	<mark>54.283</mark>	<mark>195366098</mark>	<mark>98.98</mark>

	RT (min) Area (Pa*s)		% Area	
1	36.228	44708235	46.42	
2	43.867	51643894	53.58	

	RT (min)	Area (Pa*s)	% Area
1	37.040	2160446	6.57
2	44.733	30742842	93.43

面积百分比报告

 排序
 :
 信号

 乘积因子:
 :
 1.0000

 稀释因子:
 :
 1.0000

 肉标使用乘积因子和稀释因子
 :
 1.0000

信号 1: FID1 A, 前部信号

面积。	峰	峰高 [nā]	峰面积 [nā*s]	峰宽 [min]	类型	保留时间 [min]	峰 #
					1		
1734	82.9	1.22419e4	2.81729e4	0.0348	/B S	4.023	1
4999	16.3	2024.91589	5555.26270	0.0410	BB T	4.149	2
7819	0.0	6.86199	26.56840	0.0602	BB	7.337	3
32540	0.3	18.37225	110.56200	0.0932	BV	19.686	4
2907	0.3	16.14630	111.80995	0.1078	ЛB	19.868	5
14	82.9 16.3 0.0 0.3	1.22419e4 2024.91589 6.86199 18.37225 16.14630	2.81729e4 5555.26270 26.56840 110.56200 111.80995	0.0348 0.0410 0.0602 0.0932 0.1078	/B S 3B T 3B 3V /B	4.023 4.149 7.337 19.686 19.868	1 2 3 4 5

面积百分比报告

排序	:	信号	
乘积因子:		:	1.0000
稀释因子:		:	1.0000
内标使用乘积因子和稀释	因子		

信号 1: FID1 A, 前部信号

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[pA*s]	[pA]	8
	-					
1	19.500	BV	0.0998	163.76114	25.55682	71.60809
2	19.708	VB	0.1046	64.92969	9.28622	28.39191

排序	:	信号	
乘积因子:		:	1.0000
稀释因子:		:	1.0000
内标使用乘积因子和稀	释因子	:	

信号 1: FID1 A, 前部信号

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积	
#	[min]		[min]	[pA*s]	[pA]	8	
							I
1	16.466	BV	0.0632	114.18850	27.65462	29.49682	
2	16 585	VB	0.0825	272 93286	46 50646	70 50318	

面积百分比报告

排序	:	信号	
乘积因子:		:	1.0000
稀释因子:		:	1.0000
内标使用乘积因子和精	希释因子		

信号 1: FID1 A, 前部信号

 \sim

峰	保留时间	类型	峰宽	峰面积	峰高	峰面积
#	[min]		[min]	[pA*s]	[pA]	8
1	4.678	BB S	0.0621	4.47914e4	9309.34766	84.38632
2	4.927	BV T	0.0455	157.79070	53.33381	0.29728
3	5.078	VB T	0.0780	7496.57422	1231.25378	14.12344
4	14.590	BB	0.0791	234.85864	43.40932	0.44247
5	16.622	BV	0.0728	196.74643	41.11325	0.37067
6	16.770	VB	0.0880	201.60826	35.08638	0.37983

面积百分比报告

排序	:	信号	
乘积因子:		:	1.0000
稀释因子:		:	1.0000
内标使用乘积因子和	稀释因子		

信号	1:	FID1	А,	前部信号

峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [pA*s]	峰高 [pA]	峰面积
	-					
1	16.564	BV	0.0628	20.93639	5.11071	30.25591
2	16.689	VB	0.0702	48.26129	10.79206	69.74409

