Electronic Supplementary Information

Optical Property Control of π -Electronic Systems Bearing Lewis Pairs by Ion Coordination

Takahiro Yanbe, Kei Mizuguchi, Ryohei Yamakado* and Shuji Okada

Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992–8510, Japan

Table of Contents	
1. Synthetic procedures and spectroscopic data	S2
Fig. S1,2 ¹ H and ¹³ C NMR spectra.	S3
2. Optical properties	S5
Fig. S3–5 UV/vis absorption and fluorescence spectra.	S5
Table S1 Fluorescence quantum yields.	S5
3. Theoretical studies	S6
Fig. S6,7 Optimized structures.	S6
Fig. S8–10 Assignment of TD-DFT based absorption and fluorescence transitions.	S6
Table S2 Summary of TD-DFT calculation.	S7
Cartesian coordination of optimized structures.	S7
4. Ion-binding properties	S13
Fig. S11–16 ¹¹ B and ³¹ P NMR spectral changes upon the addition of anion/cation.	S13
Table S3,4 Summary of ¹¹ B and ³¹ P NMR chemical shifts.	S15
Fig. S17–21 UV/vis absorption and fluorescence spectral changes upon the addition of anion/cation.	S16
Fig. S22 Emission colour coordinates of 1a with various ion pairs in the CIE 1931 chromaticity diagram.	S17
Table S5 Summary of emission colour coordinates of 1a.	S18
Fig. S23 Photographs and fluorescence quantum yields of 1a with various ion pairs.	S18

1. Synthetic procedures and spectroscopic data

General procedures. Starting materials were purchased from Kanto Chemical, TCI, and Sigma-Aldrich, and used without further purification unless otherwise stated. All reactions were performed under dry nitrogen atmosphere unless otherwise noted. ¹H, ¹³C, ¹¹B, and ³¹P NMR spectra used in the characterization of products were recorded on a JEOL ECZ-600 (¹H: 600 MHz, ¹³C: 150 MHz, ¹¹B: 115 MHz, ³¹P: 242 MHz) spectrometer with chemical shifts (in ppm) relative to tetramethylsilane (¹H), solvent (¹³C), BF₃ (¹¹B), and H₃PO₄ (³¹P) as references. UV-visible absorption spectra were recorded on JASCO V-750ST spectrometer using a 10 mm quartz cell. Fluorescence spectra were recorded on JASCO FP-8600 fluorescence spectrometer. Quantum yield (QY) measurements have been carried out by using Hamamatsu absolute quantum yield measurement system C9920-02G TLC analyses were carried out on aluminum sheets coated with silica gel 60 (Merck 5554). Column chromatography was performed on Mightysil Si60 (Kanto Chemical).

Synthesis of 1a

4-Diphenylphosphinophenylacetylene^[S1] (0.22 g, 0.77 mmol), CuI (4.7 mg, 0.025 mmol), and Pd(PPh₃)₄ (28 mg, 0.025 mmol) were added to a solution of (4-iodophenyl)dimesitylborane^[S2] (0.23 g, 0.51 mmol) in toluene (20 mL) and *i*-Pr₂NH (10 mL), and the mixture was stirred overnight at 80 °C. After CH₂Cl₂ was added, the reaction mixture was washed with saturated aq. NH₄Cl. A combined organic phase was dried over Na₂SO₄ and solvents were removed by a rotary evaporator. The residue was chromatographed over silica gel column (SiO₂; eluent: hexane/ethyl acetate = 1/3) to afford **1a** as a white solid (0.37 g, quant). R_f = 0.4 (chloroform/hexane = 5/1); ¹H-NMR (600 MHz, CDCl₃) δ (ppm) 7.49 (4H, s), 7.37–7.30 (14H), 6.82 (4H, s), 2.31 (6H, s), 2.00 (12H, s); ¹³C-NMR (150 MHz, CDCl₃) δ (ppm) 140.82, 138.84, 136.62, 136.55, 136.08, 133.88, 133.75, 133.47, 133.34, 131.50, 131.06, 128.94, 128.60, 128.21, 126.33, 123.24, 91.16, 90.70, 23.41, 21.22; ¹¹B-NMR (192 MHz, CH₂Cl₂) δ (ppm) 73.24; ³¹P-NMR (242 MHz, CH₂Cl₂) δ (ppm) –4.45. HRESI-TOF-MS: *m/z* (% intensity): 611.3045 (100). Calcd for C₄₄H₄₁BP ([M+H]⁺): 611.3041.

Synthesis of 1b

4-Diphenylaminophenylacetylene^[S3] (0.26 g, 0.96 mmol), CuI (6.1 mg, 0.032 mmol), and Pd(PPh₃)₄ (0.037 g, 0.032 mmol) were added to a solution of (4-iodophenyl)dimesitylborane^[S2] (0.29 g, 0.64 mmol) in toluene (27 mL) and *i*-Pr₂NH (13 mL) at 80 °C, and the mixture was stirred overnight. After CH₂Cl₂ was added, the reaction mixture was washed with saturated aq. NH₄Cl. A combined organic phase was dried over Na₂SO₄ and solvents were removed by a rotary evaporator. The residue was chromatographed over silica gel column (SiO₂; eluent: hexane/CHCl₃ = 3/2) to afford **1b** as a yellow solid (0.31 g, 0.52 mmol, 81%). $R_f = 0.6$ (hexane/CHCl₃ = 3/2); ¹H-NMR (600 MHz, CDCl₃) δ (ppm) 7.47 (4H, m), 7.37 (2H, d, J = 8.1 Hz), 7.28 (4H, dd, J = 7.6, 7.2 Hz), 7.11 (4H, d, J = 7.2 Hz), 7.07 (2H, t, J = 7.6 Hz), 7.00 (2H, d, J = 8.1 Hz), 6.82 (4H, s), 2.31 (6H, s), 2.00 (12H, s); ¹³C-NMR (150 MHz, CDCl₃) δ (ppm) 148.10, 147.10, 145.37, 141.54, 140.81, 138.75, 136.14, 132.62, 130.86, 129.39, 128.19, 126.99, 125.05, 123.62, 122.08, 115.69, 91.99, 89.01, 23.42, 21.22; ¹¹B-NMR (192 MHz, CH₂Cl₂) δ (ppm) 72.80. ESI-TOF-MS: *m/z* (% intensity): 593.323. Calcd for C₄₄H₄₀BN ([M]⁺): 593.621.

[S1] Mei, X.; Jiayun, L.; Jiajian, P.; Ying, B.; Guodong, Z.; Wenjun, X.; Guoqiao, L.; *Appl. Organometal. Chem.* 2014, **28**, 120–126.

[S2] Lei, J.; Qi, F.; Mao-sen, Y.; Zhi-qiang, L.; Yu-xiang, S.; Hong-feng, C. Org. Lett. 2010, 12, 5192-5195.

[S3] Krishna, P.; Ravi, M. A.; Thomas, H. K. J. Phys. Chem. A 2010, 114, 4542-4549.

Fig. S1 ¹H NMR (top) and ¹³C NMR (bottom) spectra of 1a in CDCl₃ at 25 °C.

Fig. S2 ¹H NMR (top) and ¹³C NMR (bottom) spectra of 1b in CDCl₃ at 25 °C.

2. Optical properties

Fig. S3 (a) UV/vis absorption and (b) fluorescence spectra of **1a** (red) and **1b** (blue) in CH_2Cl_2 (10⁻⁵ M). The fluorescence spectra were obtained by excitation at the respective absorption maxima.

Fig. S4 UV/vis absorption (left) and fluorescence (right) spectra of (a) **1a** and (b) **1b** in hexane (purple), ethyl acetate (blue), THF (green), CH_2Cl_2 (orange), DMF (red), and MeCN (dark red) (10^{-5} M). The fluorescence spectra were obtained by excitation at the respective absorption maxima.

Fig. S5 (a) UV/vis absorption and (b) fluorescence spectra of 1a in spin-coated film.

Table S1 Fluorescence quantum yields of 1a and 1b in CH₂Cl₂, film state, and powder state.

compound	$\Phi_{ m solution}$ (%)	Φ_{film} (%)	Φ_{powder} (%)
1a	6	27	36
1b	86	49	41

3. Theoretical studies

DFT calculations. DFT calculations of the geometrical optimization were carried out by Gaussian 16 program.^[S4] In addition, the solvent (CH_2Cl_2) effect was included through the SCRF-PCM method.^[S5] Unless stated, all the structures are confirmed to be minimum-energy structures with no imaginary frequencies. The B3LYP functional was chosen because it well reproduces the energy of the ground state and the lowest singlet (S_1) excited state in all compounds. The lowest six singlet–singlet transitions were computed by the time-dependent density functional theory (TD-DFT) calculation.

Fig. S6 Optimized structures of 1a and 1b at B3LYP/6-31G(d,p) level.

Fig. S7 Optimized structures of 1a-F⁻, 1a-CN⁻, 1b-F⁻, and 1b-CN⁻ at B3LYP/6-31G(d,p) level (PCM = CH₂Cl₂).

Fig. S8 Assignment of TD-DFT based absorption and fluorescence transitions of (a) **1a** and (b) **1b** calculated at B3LYP/6-311+G(d,p)//B3LYP/6-31G(d,p) level (PCM = CH_2Cl_2). In S₀ state, while the HOMO of **1b** is localized on the triphenylamine moiety, that of **1a** is localized on the phosphorus and phenylene phosphorus units. In contrast, the LUMO of **1a** and **1b** were similar. Therefore, the HOMO–LUMO gap of **1b** is smaller than that of **1a** because of the higher energy of the HOMO of **1b**.

Fig. S9 Assignment of TD-DFT based absorption and fluorescence transitions of (a) $1a-F^-$ and (b) $1a-CN^-$ calculated at B3LYP/6-311+G(d,p)/B3LYP/6-31G(d,p) level (PCM = CH₂Cl₂).

Fig. S10 Assignment of TD-DFT based absorption and fluorescence transitions of (a) $1b-F^-$ and (b) $1b-CN^-$ calculated at B3LYP/6-311+G(d,p)//B3LYP/6-31G(d,p) level (PCM = CH₂Cl₂).

Table S2 Summary of TD-DFT calculation at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d,p) level (PCM = CH₂Cl₂) for photophysical data.

	Ab	sorption		E	mission	
	Transition (f)	E(eV)	$\lambda_{abs} (nm)$	Transition (f)	E(eV)	λ_{em} (nm)
1a	$S_1 \leftarrow S_0 (1.372)$	3.144	394	$S_1 \rightarrow S_0 (0.106)$	1.941	639
1a –F [–]	$S_1 \leftarrow S_0 (1.227)$	3.374	367	$S_1 \rightarrow S_0 (0.791)$	2.681	462
1a-CN-	$S_1 \leftarrow S_0 (1.499)$	3.432	361	$S_1 \rightarrow S_0 (1.260)$	2.876	431
1b	$S_1 \leftarrow S_0 (1.195)$	2.706	458	$S_1 \rightarrow S_0 (1.235)$	2.405	516
1b–F-	$S_1 \leftarrow S_0 (1.569)$	3.186	389	$S_1 \rightarrow S_0 (1.692)$	2.835	437
1bCN	$S_1 \leftarrow S_0 (1.562)$	3.181	390	$S_1 \rightarrow S_0 (1.652)$	2.827	438

Cartesian Coordination of 1a

B3LYP/6-31G(d,p) -2067.0381622 hartree C,-2.7372687617,0.4900899744,0.1144645696 C,-3.9499815991,0.5841536998,0.159717139 C,-5.3674279659,0.6963539828,0.2179985801 C,-6.1473342336,-0.320065197,0.8032776652 C,-6.0226817447,1.8330201904,-0.2989171735 C,-7.5328765448,-0.2053829814,0.8650323165 H,-5.6542107414,-1.1985834932,1.2069260814 C,-7.4051766681,1.943266661,-0.2225943338 H,-5.4333087763,2.6266009386,-0.7465447915 $\begin{array}{l} C, -8.187866798, 0.9244630546, 0.3501002804\\ H, -8.1099623054, -1.0026860022, 1.3216223491\\ H, -7.8878367406, 2.83733525, -0.6088437265\\ C, -10.5831669922, 0.6220885562, -1.2359603166\\ C, -9.8286352956, -0.1952536701, -2.0916823605\\ C, -11.8476573111, 1.0578903885, -1.6656616\\ C, -10.3309258796, -0.5733092477, -3.3382763089\\ H, -8.8436408002, -0.533821662, -1.7860628981\\ C, -12.3538958374, 0.6712671955, -2.9061889695\\ H, -12.4359095653, 1.7094004427, -1.0244284678\\ C, -11.5946565991, -0.1445931146, -3.7469875613\\ H, -9.7331085477, -1.204347789, -3.9900402937\end{array}$

H,-13.3351619627,1.0154145798,-3.2203058235 H,-11.9827900083,-0.4389474554,-4.717806121 C,-10.5871125586,-0.1463268631,1.5570526367 C,-10.991463867,-1.4206918308,1.1313794175 C,-10.6402675351,0.1519684493,2.9290804718 C,-11.4268933751,-2.3729170048,2.0549949454 H,-10.970420632,-1.6689447116,0.0750982819 C,-11.0639602637,-0.8030254679,3.8526544804 H,-10.3514546465,1.1417287033,3.2736350101 C,-11.4605510462,-2.0686209456,3.4165878593 H,-11.7392967915,-3.3542303402,1.7088515983 H,-11.0945663608,-0.5558222053,4.9099711514 H,-11.8002152638,-2.8108324365,4.1332035438 P,-10.0169902148,1.2084316394,0.4285399096 C,-1.3197010441,0.3826806677,0.0684488873 C,-0.5366895725,1.4157629127,-0.488084674 C,-0.6670655184,-0.7577282747,0.5825297056 C,0.8462865481,1.2986472922,-0.5337269846 H,-1.0304178901,2.2978603455,-0.8832240823 C,0.7185176106,-0.8446790611,0.5519947408 H,-1.2623034273,-1.5591576121,1.0084766874 C,1.5198349806,0.1734541541,-0.0096412983 H,1.4297226401,2.1000011326,-0.978360365 H,1.2017331675,-1.7244391785,0.9679425487 B,3.086205714,0.0644143681,-0.0458663293 C,3.811782312,-0.8496382764,1.0258871582 C,3.8780857732,0.8772282412,-1.1523424551 C,4.6898625289,-1.8976195162,0.6333593867 C,3.6009871555,-0.651536025,2.416872397 C,4.8927269207,1.8089944417,-0.7993183456 C,3.5879498277,0.7070356906,-2.532286511 C,5.2964054082,-2.7061461251,1.5985019264 C,4.9779883727,-2.2031507969,-0.8224612488 C,4.2499396792,-1.4663355129,3.3515856 C,2.7073140254,0.4470120879,2.9645282209 C,5.5560356382,2.5357987992,-1.7917366342 C,5.2716206994,2.0763596339,0.6432626089 C,4.2959749075,1.4338159033,-3.4962544951 C,2.5384624454,-0.2685019263,-3.033198861 C,5.0920527529,-2.5095903828,2.9665564708 H,5.9557322005,-3.5077954829,1.2716937643 H,4.0780179789,-2.5307304353,-1.3559517532 H.5.3638876427,-1.3293431767,-1.3533247297 H,5.7145929301,-3.006516334,-0.9095472439 H,4.093186447,-1.2761980624,4.4116843601 H,2.6852474456,1.3348154674,2.3291496834 H,1.6704401518,0.1075577719,3.0651641375 H,3.0480751063,0.756499138,3.9572165768 C,5.2763523806,2.3639657083,-3.1498163307 H,6.3205577606,3.2511459656,-1.4952123573 H,4.4304663772,2.4810313969,1.2178631857 H,5.5990482209,1.1671682621,1.1541783953 H,6.0825451765,2.8077393656,0.7003978321 H,4.07380935,1.2652971288,-4.5482644274 H,2.4431334761,-1.1529197011,-2.3993625936 H,1.5469859956,0.1960514696,-3.0747329163 H,2.7834971208,-0.6085471447,-4.0439747452 C,5.7481035193,-3.4059802569,3.9888739332 C,5.9992689239,3.1708128954,-4.2013704457 H,5.1576915978,-4.3161335738,4.1543513775

H,6.7439629033,-3.723030288,3.6638110992 H,5.8495172647,-2.9043833601,4.9557704751 H,5.9883926645,2.6661917437,-5.1718507298 H,5.529868521,4.1531412318,-4.3391801041 H,7.0425472626,3.34914474,-3.9223723689

Cartesian Coordination of 1b

B3LYP/6-31G(d,p) -1780.4381759 hartree C,-2.7427035373,-0.0046940995,-0.0024636841 C,-3.9606298543,-0.0098277107,-0.0055541536 C,-5.3816011394,-0.0158387566,-0.0091398116 C,-6.1065392606,-0.9927465565,0.7043135467 C,-6.1111635197,0.9549272431,-0.7262554867 C,-7.4935357977,-1.0031343056,0.6966698378 H,-5.5652021793,-1.7552525743,1.2548073879 C,-7.498219916,0.9535982107,-0.7255978375 H,-5.5735209298,1.7219939902,-1.2740268003 C,-8.2157006262,-0.0278089561,-0.0162768174 H,-8.0301367007,-1.7717602972,1.241581256 H.-8.0385436916,1.7176816335,-1.2732125843 C,-10.3467280191,0.3322420372,-1.1945998316 C,-9.9501783948,-0.1512095365,-2.4513431628 C,-11.4651848384,1.1756420086,-1.1090149188 C,-10.6533666028,0.2144764609,-3.5972644623 H,-9.0921416436,-0.8112838409,-2.5224233209 C,-12.1729216829,1.5207824309,-2.2586344143 H,-11.7734103669,1.5544267089,-0.1403393105 C,-11.7700115481,1.0480938522,-3.5090882105 H,-10.3336090656,-0.1677732965,-4.5623821839 H,-13.0363176372,2.1746107819,-2.1757053072 H,-12.3197505959,1.3249437598,-4.4032772684 C,-10.3495252003,-0.4058354389,1.1513142002 C,-11.4604171751,-1.2585977862,1.0601248723 C,-9.9633748233,0.0809002469,2.4100261087 C,-12.1710029902,-1.609693378,2.206177186 H,-11.7605751144,-1.6399388313,0.0899203369 C,-10.6692230515,-0.2907018445,3.5524036713 H,-9.111276998,0.7481512876,2.4854095019 C,-11.7783698398,-1.1336655274,3.4586322836 H,-13.0284487971,-2.2707488134,2.1189198517 H,-10.357543915,0.0941980991,4.5191095898 H,-12.330254666,-1.4151368282,4.3500524653 C,-1.3214203833,0.0012651185,0.0011292028 C,-0.6025277249,1.0236964154,-0.6546450778 C,-0.5973033521,-1.015113479,0.660551165 C,0.7857535313,1.0139222225,-0.656305549 H,-1.1505558327,1.8119470371,-1.1610196294 C,0.7908204876,-0.9936995025,0.6692246341 H,-1.1412550072,-1.8079398937,1.1641700359 C,1.528982925,0.01321238,0.0083247471 H,1.3187499473,1.8036813344,-1.1785166037 H,1.3277751755,-1.7789698365,1.1941419327 B,3.097720219,0.0197808992,0.0122903062 C,3.8602965029,-0.7278496987,1.1843152355 C,3.8599365039,0.7738249835,-1.1558603206 C,4.8118013413,-1.7495108377,0.9141945326 C,3.608329369,-0.4034122517,2.5443704696 C,4.8014118547,1.8034410477,-0.8808901491 C,3.6176627618,0.447311848,-2.5171867632

C,5.4508425915,-2.4124342048,1.9657548997 C,5.1467686255,-2.1819129413,-0.4987603403 C,4.2905015001,-1.0725332727,3.5669040186 C,2.6297988867,0.679639349,2.9614280767 C,5.4402237612,2.4717531593,-1.9291825282 C,5.1255339895,2.2385758067,0.5337565135 C,4.2994115596,1.1221656197,-3.5362210689 C,2.6503907857,-0.6439060648,-2.9391800746 C,5.2075780426,-2.0902662884,3.3031476679 H.6.1667435583,-3.1979999416,1.7321729032 H,4.275795899,-2.6043299544,-1.0131487327 H,5.5021967342,-1.3462017824,-1.1068999862 H,5.9229438064,-2.9521737177,-0.4934465735 H,4.0991849174,-0.7864570861,4.5994545802 H,2.5659965816,1.4968174456,2.2398679002 H,1.6153329971,0.2811676247,3.0733329155 H,2.9218202821,1.1081124255,3.9250470609 C,5.206535466,2.1475764465,-3.2677904038 H,6.1482741605,3.2633175237,-1.6919518091 H,4.2483160253,2.6530992584,1.0439264771 H,5.4854185865,1.4059569246,1.1435213851 H,5.8948271231,3.0157273346,0.5323630284 H,4.1157907232,0.8345250087,-4.569733214 H,2.5902428309,-1.4618697762,-2.2181881433 H,1.6330811796,-0.254107654,-3.0556771664 H,2.9505641199,-1.0695138336,-3.9015608109 C,5.9003695873,-2.8304806991,4.4218630825 C,5.8987724077,2.8936177944,-4.3829731537 H,5.3532418497,-3.7426928813,4.6919238807 H,6.9119358435,-3.1344575844,4.1352788896 H,5.9727614141,-2.2164711803,5.3244347562 H,5.9814558504,2.2800490567,-5.2849624929 H,5.3450534358,3.8008802706,-4.6562558484 H,6.9060488633,3.2066032381,-4.0910340379 N,-9.6292363458,-0.0337848437,-0.0198366795

Cartesian Coordination of 1a-F-

B3LYP/6-31G(d,p) (PCM = CH_2Cl_2) -2167.0385932 hartree C,0.7219472007,-0.1116940405,-0.8276047957 C,1.939488143,-0.151184619,-0.8716729144 C,3.3613759833,-0.187319845,-0.9274989492 C,4.1144472361,-0.7661086314,0.1148462797 C,4.0542292081,0.353326769,-2.0319009827 C,5.5050816226,-0.7936873124,0.0581545987 H,3.5974781687,-1.1895790997,0.9700928369 C,5.4422141949,0.3095806988,-2.0848430258 H,3.4910439611,0.7958504055,-2.8471652574 C,6.1957648883,-0.2523957434,-1.038192546 H,6.0571471004,-1.2428126774,0.8773065572 H,5.9500031182,0.7168759582,-2.9554821398 C,8.5381521076,1.3738815963,-0.5341157625 C,7.72722489,2.1661042709,0.2936324238 C,9.8099661991,1.8551227628,-0.8888810733 C,8.180984085,3.4016062979,0.7611815343 H,6.7367923759,1.8200889068,0.5717268426 C,10.267550673,3.0845467087,-0.4136872533 H,10.443916383,1.2647548303,-1.5457537654 C,9.4519487,3.8621860039,0.4116192056 H,7.5401200738,4.0035318485,1.3991320011

H,11.254582615,3.4393192818,-0.6959934122 H,9.8022894455,4.8239488708,0.77465136 C,8.5838000383,-1.4610515969,0.0686386172 C,8.8910422937,-1.1071087883,1.3917219885 C,8.7235656523,-2.8052600001,-0.3170567048 C,9.3174128219,-2.0735460544,2.3054787997 H,8.7999848929,-0.0735475875,1.7100520319 C,9.139723527,-3.7727268853,0.5981523866 H,8.5083874237,-3.0953292099,-1.3424134306 C,9.4400797663,-3.4078334488,1.9125164233 H,9.5525066406,-1.7827027086,3.325403652 H,9.2382353687,-4.8074045598,0.2828554992 H,9.7727987288,-4.1575577748,2.6243321382 C,-0.7002399898,-0.0548176895,-0.7800911519 C,-1.4305321568,0.6291681993,-1.7744290057 C,-1.4213918612,-0.6865084355,0.2552028506 C,-2.8196356737,0.6865835456,-1.7118195517 H,-0.8935530368,1.1078648706,-2.5892629974 C,-2.8106777604,-0.616246289,0.289668937 H,-0.8774990216,-1.2344473958,1.02010343 C,-3.5625458626,0.0895740532,-0.6719034573 H,-3.3625050358,1.2052931018,-2.4965628769 H,-3.3324327163,-1.1327296355,1.0919129019 B,-5.2123608157,0.1668812917,-0.6990142291 C,-5.7714796925,-1.337748642,-0.2411286393 C,-5.9454290249,1.4618832639,0.0698220104 C,-6.1600639143,-1.6720395153,1.0848107497 C,-5.7984769953,-2.4074397776,-1.1848371652 C,-7.3453767223,1.6460170969,-0.1500547798 C,-5.3120208397,2.4606459298,0.8581032729 C,-6.59782121,-2.9660970527,1.4144514084 C,-6.1301177808,-0.6762174094,2.2324477314 C,-6.2457861776,-3.6857639862,-0.8221841733 C,-5.3164917214,-2.2543750622,-2.617892512 C,-8.0352874933,2.7412668237,0.3858207465 C,-8.1772850152,0.6658957304,-0.9579978333 C,-6.035948046,3.5483498388,1.3793182958 C,-3.8363382648,2.4398712756,1.2172468526 C,-6.6678591631,-3.9909939861,0.4731969726 H,-6.8869904358,-3.175281594,2.4439533652 H,-5.2079399231,-0.0912444202,2.2530433731 H,-6.9509797701,0.0451222022,2.1719747676 H.-6.2162323224,-1.1996302371,3.1909300102 H,-6.2509900944,-4.4724752167,-1.5763659969 H,-5.9638220466,-1.5994477609,-3.2046577524 H,-4.3201580659,-1.8051835304,-2.6588515201 H,-5.2719499037,-3.2325705474,-3.1087955625 C,-7.39999442,3.7167258853,1.1566735389 H,-9.1039320379,2.8336234201,0.1934333622 H,-7.7517754313,0.519046621,-1.9513030826 H,-8.2047920477,-0.3207369444,-0.4844954336 H,-9.2077045544,1.0225670724,-1.0581489201 H,-5.5074460326,4.287490368,1.980262276 H,-3.5490262013,1.5284265433,1.7494856181 H,-3.1929119359,2.4912890661,0.3352857398 H,-3.591448855,3.2907609685,1.8614387028 C,-7.1782840584,-5.3671777338,0.8340733181 C,-8.1536780347,4.9092612562,1.6989134614 H,-6.631042844,-6.1524201421,0.3012674527 H,-7.0850920407,-5.5600508346,1.9076758287

H,-8.2387960178,-5.4867122737,0.5753305908 H,-7.6199871419,5.3745375836,2.5337270612 H,-8.2932838433,5.6827773784,0.9321737954 H,-9.1523657676,4.6284632841,2.0512401498 F,-5.5416541517,0.3975823984,-2.1132971978 P,8.0355924424,-0.2661035615,-1.237366896

Cartesian Coordination of 1a-CN-

B3LYP/6-31G(d,p) (PCM = CH_2Cl_2) -2160.0134297 hartree

C,0.5263750312,-0.0057447658,0.843550566 C,1.7440179854,0.0409232568,0.8575597161 C,3.1666625681,0.0947183581,0.8716436376 C,3.8767941313,0.7141815826,-0.17705302 C,3.9016257121,-0.4649567546,1.9384066747 C,5.2678588185,0.7642195084,-0.1624084784 H,3.3263491845,1.1520030276,-1.0036727043 C,5.289765066,-0.398757809,1.9498102996 H,3.3714000963,-0.9394887431,2.7577127378 C,6.0008079687,0.2053649884,0.8968219832 H,5.7867385648,1.2445526264,-0.9853986509 H,5.8310213036,-0.8217454049,2.7923287611 C,8.3512980234,-1.3811829877,0.322750754 C,7.5256279584,-2.1863941674,-0.4774186812 C,9.6420903102,-1.8416856487,0.6338744265 C,7.9832393627,-3.414434629,-0.9605335732 H,6.5211794407,-1.8559585649,-0.7220878832 C,10.1031847523,-3.0635376313,0.1427767857 H,10.2885459893,-1.2409815592,1.2687839296 C,9.2727265295,-3.8543233616,-0.6547314342 H,7.3310506057,-4.0266074106,-1.5768822562 H,11.1049270517,-3.4020334309,0.3911449401 H,9.6260873621,-4.8101965097,-1.0301280972 C,8.3323602345,1.4528856326,-0.2843301809 C,8.6044797747,1.1002579518,-1.6154247869 C,8.4591631784,2.8006529992,0.0934603699 C,8.9843491625,2.0713440924,-2.544582216 H,8.5215483634,0.0643018001,-1.9280667033 C,8.8280596859,3.7726647955,-0.8371122679 H,8.2706514181,3.0899857329,1.124247666 C,9.0940304002,3.4089965137,-2.1591943727 H,9.1928509067,1.781638402,-3.5705733321 H.8.9170001702,4.8100576049,-0.5279948221 H,9.3900527291,4.1625153223,-2.8831048859 C,-0.896883871,-0.0575714217,0.8255373677 C,-1.6138531299,-0.7374153253,1.8303443207 C,-1.6347320391,0.5823389699,-0.1912606472 C,-3.0051314954,-0.7779395247,1.800378686 H,-1.0684078089,-1.2278948479,2.6318594487 C,-3.0252322596,0.5331674752,-0.1922593301 H,-1.1046147965,1.1237600137,-0.9699678665 C,-3.7686179771,-0.1603404802,0.7864616254 H,-3.5188180606,-1.3081281719,2.5977150133 H.-3.5539955709,1.0607715396,-0.9804398521 B,-5.4297739224,-0.1715303129,0.769566136 C,-5.9034120926,1.3318207256,0.2182233538 C,-6.2157654504,-1.4683133807,0.0343437033 C,-6.2421060248,1.5731440004,-1.1448458037 C,-5.881716808,2.4801002982,1.062804683 C,-7.6435406103,-1.5217575343,0.0990572853

C,-5.5850907255,-2.5735039712,-0.602370291 C,-6.6186601584,2.8527041087,-1.5843350155 C,-6.2048052819,0.5032335982,-2.2233411448 C, -6.2693263867, 3.7416047818, 0.5879592859C,-5.4084883562,2.4384023915,2.504268304 C,-8.3588008804,-2.6023306755,-0.4349144581 C,-8.4877236656,-0.4226126309,0.7200377993 C,-6.3398838498,-3.6388155988,-1.1235606417 C,-4.0852728634,-2.6974301689,-0.8040618838 C,-6.6671466079,3.9537968741,-0.7315738767 H,-6.8717758081,2.9889511354,-2.6350000313 H,-5.3317551624,-0.1461668575,-2.135753649 H,-7.0818307749,-0.1504507869,-2.1889277987 H,-6.1782444626,0.9715899187,-3.2129826179 H,-6.2426745299,4.5880710115,1.273015839 H,-6.1442279862,1.9844248134,3.1744717925 H,-4.4887032949,1.8575850729,2.6131106968 H,-5.2102789336,3.4526807986,2.8653150794 C,-7.7293278601,-3.6845586568,-1.0497723938 H,-9.4458243864,-2.5936979118,-0.3667092573 H.-8.2370979896,-0.2562730834,1.7708699672 H,-8.3478385814,0.5345084319,0.2106762237 H,-9.5494071631,-0.6830215934,0.6664539725 H,-5.8135294634,-4.4601739674,-1.6076547908 H,-3.6628102519,-1.836940619,-1.3292236339 H,-3.5408158257,-2.7760573946,0.1403083471 H,-3.8588567227,-3.5915570758,-1.3934908109 C,-7.1195671209,5.3121074492,-1.2145190232 C,-8.5164701933,-4.8567693831,-1.5877515348 H,-6.6083334332,6.1193988574,-0.6798644955 H,-6.9294850283,5.4409981023,-2.2849265657 H,-8.1968500902,5.45659555,-1.0591919416 H,-7.9517534465,-5.4017288799,-2.3507475272 H,-8.7646853078,-5.574041249,-0.7944549292 H,-9.4637256542,-4.5345558328,-2.0332937014 P,7.8457373712,0.2515363976,1.0401507906 C,-5.8527643023,-0.4384441524,2.3131411254 N,-6.1265972443,-0.7512470138,3.4048524255

Cartesian Coordination of 1b-F-

B3LYP/6-31G(d,p) (PCM = CH_2Cl_2) -1880.436935 hartree C,0.602952428,0.059498019,-0.4413611071 C,1.8175360457,0.0297709672,-0.3393136081 C,3.2348939125,-0.0018319704,-0.2137807138 C,3.8567763864,-0.7116206167,0.8354269811 C.4.0647793632.0.678110335.-1.1303730735 C,5.2386802493,-0.7311882369,0.9683930335 H,3.2406628172,-1.236380783,1.5584960066 C,5.4474137105,0.645636918,-1.0072999577 H,3.6118890117,1.2228185563,-1.9525660588 C,6.0592252416,-0.0547030585,0.047968761 H,5.6918565349,-1.2710897726,1.7926647947 H,6.0637927921,1.1650435037,-1.7329756564 C,8.2362391758,1.0898103429,-0.0862042453 C,7.7959236566,2.3494424131,0.3523980776 C,9.4485706252,0.9993456206,-0.7895663392 C,8.5495595048,3.4905883716,0.0826652151 H,6.8649182102,2.4283908056,0.9034786037 C,10.2046132225,2.1437789823,-1.038000049

H,9.7923467235,0.0313917871,-1.1384090072 C,9.7598651151,3.3965293266,-0.6087542934 H.8.1936310133,4.4564265245,0.4294385109 H,11.1396295932,2.0549061674,-1.5836024835 H,10.3475274857,4.286673025,-0.8104382151 C,8.1260875712,-1.2720330436,0.5968790778 C,9.1522353093,-1.2235856484,1.5542352079 C,7.7580131932,-2.5136798975,0.0538197644 C,9.7992165106,-2.3930613922,1.9505871644 H,9.4373498111,-0.2690070569,1.9836725895 C,8.3982339614,-3.6800224439,0.4696840582 H,6.9714714419,-2.5584017408,-0.6920564828 C,9.4245212402,-3.6281632312,1.416135939 H,10.5907508204,-2.3377758874,2.6923563759 H,8.1010909896,-4.632028198,0.0394594443 H,9.9255064218,-4.5377358509,1.7325554527 C,-0.8172636077,0.099534945,-0.5480376349 C,-1.4514633384,0.8323582362,-1.5731108739 C,-1.6334738317,-0.5991566236,0.3663461833 C,-2.8408016466,0.870658653,-1.6550219885 H.-0.8405698358,1.363896799,-2.2983363328 C,-3.0200112976,-0.5441342673,0.2589231137 H,-1.1641978795,-1.1856072313,1.1519410517 C,-3.679281634,0.2077842695,-0.7346046329 H,-3.3054970879,1.4282108838,-2.4633060743 H,-3.6138104625,-1.1111905593,0.9719330816 B,-5.3189282444,0.2695064221,-0.9281300499 C,-5.9068533035,-1.2516598647,-0.5720676931 C,-6.1422655037,1.5366107859,-0.2028881087 C,-6.4190019475,-1.6264195839,0.7006316227 C,-5.8290765088,-2.2945800475,-1.5419616251 C,-7.5115367472,1.7206436615,-0.5677732646 C,-5.6061478888,2.51403605,0.6786007525 C,-6.8696226841,-2.9332900252,0.9516700283 C,-6.5102968854,-0.6623027305,1.8716901495 C,-6.2933359497,-3.5871567865,-1.258638846 C,-5.2155144887,-2.0958753257,-2.9179218864 C,-8.2635582771,2.7976249192,-0.0811492191 C,-8.2434768146,0.7586993214,-1.4865596213 C,-6.3900257061,3.5843121869,1.1465750668 C,-4.1795385731,2.487032058,1.1989720795 C,-6.8344890586,-3.9325703445,-0.0191678883 H,-7.2534241089,-3.1744410634,1.9425991691 H,-5.5909249586,-0.0885551396,2.0106386595 H,-7.3131501787,0.0694428248,1.7404260126 H,-6.7056316583,-1.2103720127,2.7997922605 H,-6.2157912666,-4.3527157217,-2.0303166657 H,-5.8249158437,-1.4497725604,-3.5537309657 H,-4.2356830632,-1.6149819557,-2.854097852 H,-5.0928543064,-3.0613707663,-3.4206376158 C,-7.7222209655,3.7546153248,0.7795012983 H,-9.3058743421,2.8899851698,-0.3854739369 H,-7.718993149,0.6525269967,-2.4368253764 H.-8.3004416767,-0.2441923573,-1.0513783127 H,-9.2647398695,1.1049277564,-1.6768210236 H,-5.9361327771,4.3076712221,1.8231233108 H,-3.9340066497,1.5445916764,1.6956770781 H,-3.4431527071,2.6093920516,0.4002587652 H,-4.0252186112,3.2943198404,1.9224725288 C,-7.3611969362,-5.3226693615,0.2541381779

C,-8.5380537737,4.9295938092,1.2674631765 H,-6.7935886564,-6.0828162617,-0.2931639412 H,-7.3127322147,-5.5674167592,1.3202290899 H,-8.4107853446,-5.4257446916,-0.0521508787 H,-8.1005899123,5.3750640711,2.1666035295 H,-8.5993403527,5.7222745383,0.5100584568 H,-9.567088893,4.6361143096,1.5027647351 N,7.4700118028,-0.0788834951,0.1810524137 F,-5.5037167338,0.5402930564,-2.3613031707

Cartesian Coordination of 1b-CN-

B3LYP/6-31G(d,p) (PCM = CH_2Cl_2) -1873.4119854 hartree C,0.7377699483,0.0640420142,-0.4019991587 C, 1.953438446, 0.0514102199, -0.313495126C,3.3731110932,0.0412200253,-0.2122519334 C,4.0293172617,-0.738150371,0.7638667539 C,4.1704322715,0.8125842511,-1.0841933498 C,5.4137212723,-0.7396040287,0.8688756832 H,3.4384777181,-1.3333502178,1.4526593598 C,5.5554280063,0.800089181,-0.989545499 H,3.6903029779,1.4132706096,-1.849962037 C,6.2022985415,0.0270610579,-0.0082395956 H,5.893673721,-1.3358756024,1.6371377892 H,6.1466052351,1.390934451,-1.680578726 C,8.3528471675,1.2211963657,-0.1112811078 C,7.9153492505,2.4325250562,0.4486146179 C,9.5320318955,1.2087025442,-0.8736165011 C,8.6389483182,3.6053239105,0.2387701993 H,7.010043059,2.4489126578,1.0461547274 C,10.2589140177,2.3831038476,-1.0626583283 H,9.8726934084,0.2780283287,-1.3148784732 C,9.816317412,3.5887351037,-0.5130647558 H,8.2862917353,4.5335687882,0.6788766129 H,11.1686653367,2.3558943308,-1.6554342638 H,10.3809547709,4.5027444648,-0.6684900974 C,8.3058613611,-1.1846785692,0.4025436342 C,9.363598127,-1.1814821702,1.3261220425 C,7.9434288905,-2.3925576117,-0.2153690873 C,10.0467999885,-2.3615472926,1.6159498598 H,9.6448051157,-0.2534467278,1.8125320777 C,8.6203216412,-3.5710357267,0.094699733 H,7.132961498,-2.4017487652,-0.9364432831 C,9.6780586534,-3.5636657225,1.0073363826 H,10.8625852968,-2.341425214,2.332799806 H,8.3270516166,-4.4964799211,-0.3923754467 H,10.2075913968,-4.4820552285,1.2408927089 C,-0.6834314297,0.0865513766,-0.5009582253 C,-1.3318913747,0.8511970656,-1.4919146482 C,-1.4882303892,-0.6602863829,0.383269806 C,-2.721481839,0.8710332383,-1.5727547258 H,-0.7339378498,1.4247590899,-2.1948769009 C,-2.8757562918,-0.6265994718,0.2766596002 H,-1.0120321968,-1.2686411578,1.1474045246 C,-3.551465232,0.151189142,-0.6869393923 H,-3.1798288445,1.4692483979,-2.3558438489 H,-3.4568099928,-1.2311207537,0.967100642 B,-5.2086878459,0.1590973507,-0.7953774974 C,-5.7268509779,-1.3654701082,-0.350912209 C,-6.0441835547,1.4285540119,-0.0652337541

C,-6.1810140451,-1.6662185207,0.9660885662 C,-5.6311387138,-2.4762546842,-1.2402028579 C,-7.4576010532,1.5166265949,-0.2648723895 C,-5.4639545221,2.4762933345,0.7043418835 C,-6.5926096387,-2.9629124278,1.3147458601 C,-6.233297637,-0.6460271122,2.0908460778 C,-6.0570896791,-3.7562858769,-0.8565308348 C,-5.0339874303,-2.3739316752,-2.631693887 C,-8.20627829,2.5764652028,0.265490032 C,-8.2527149894,0.4830444759,-1.0435762223 C,-6.2503815912,3.5237444031,1.2140686434 C,-3.9920228981,2.5528847686,1.0707405051 C,-6.5662417458,-4.0253378405,0.4134223434 H,-6.9344716777,-3.1447520936,2.3328616346 H,-5.3441100579,-0.0131482017,2.118066682 H,-7.0907676252,0.0277861493,2.0015657876 H,-6.3109767304,-1.157949531,3.0558974198 H,-5.9705684673,-4.5718938754,-1.5733473445 H,-5.7098780374,-1.8911104296,-3.343279773 H,-4.1102060054,-1.7894163467,-2.6352389616 H.-4.8020966378,-3.372209465,-3.0165299815 C,-7.6245468669,3.6052711572,1.0055606201 H,-9.2815977872,2.5938162307,0.0929278015 H,-7.9864721641,0.4816317129,-2.1045435247 H,-8.0774695908,-0.5306883602,-0.6762860102 H,-9.3243790812,0.6921904594,-0.968318848 H,-5.7630019641,4.3000509229,1.8021935958 H,-3.6325292486,1.6393028763,1.5506349892 H,-3.3508511769,2.7118590272,0.1998472116 H,-3.8219603657,3.3827591265,1.764021771 C,-7.056884896,-5.4024955253,0.7950312169 C,-8.4425944183,4.7590254895,1.537277406

H,-6.4966625784,-6.1868371959,0.2754359874 H,-6.9647447431,-5.5768940566,1.8718853133 H,-8.1150521536,-5.5392895791,0.5358998532 H,-7.9623999541,5.2249400591,2.4036259998 H,-8.5738206123,5.5430733563,0.7799373065 H,-9.444767536,4.4360174872,1.8385305722 N,7.6149355337,0.0211923535,0.0943043298 C,-5.5077607428,0.4883862281,-2.3555669495 N,-5.6913924923,0.8400850446,-3.4543174646

[S4 (Complete form of ref. 13 in the manuscript)] Gaussian 16 (Revision A.03), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. [S5] a) B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 106, 5151-5158; b) E. CancHs, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107, 3032-3041; c) M. Cossi, V. Barone, B. Mennucci, J. Tomasi, Chem. Phys. Lett. 1998, 286, 253-260.

4. Ion-binding properties

Fig. S11 ¹¹B NMR spectral changes of tris(pentafluorophenyl)borane (5.5 mM) upon the addition of F^- , CI^- , Br^- , AcO^- and CN^- as TBA salts (10 equiv) in CH_2Cl_2 . The chemical shifts of the boron–anion complexes were appeared at –3.9, – 3.8, –3.4, –3.9, and –3.8 ppm for F^- , CI^- , Br^- , CN^- , and AcO^- , respectively, whereas that of tris(pentafluorophenyl)borane was at 62 ppm,^[S5] indicating the formation of pyramidal four-coordinate boron centres.

Fig. S12 ¹¹B NMR spectral changes of **1a** (5.5 mM) upon the addition of F^- , CI^- , Br^- , AcO^- and CN^- as TBA salts (10 equiv) in CH_2Cl_2 . An unknown signal at -1.1 ppm, which observed with the addition of TBAF or TBACN, was probably derived from the complex with OH⁻ generated by H_2O with F^- or CN^- as the base, because the similar signal was observed by the addition of TBAOH.

Fig. S13 ¹¹B NMR spectral changes of **1a** (5.5 mM) upon the addition of F^- as TBA salt (0~1 equiv) in CH₂Cl₂. The signals of **1a**- F^- appeared at 5.04 ppm, whereas the signal of the free **1a** at 73 ppm decreased.

Fig. S14 ¹¹B NMR spectral changes of **1a** (5.5 mM) upon the addition of CN^- as TBA salt (0~1 equiv) in CH_2Cl_2 . The signals of **1a**– CN^- appeared at –13.38 ppm, whereas the signal of the free **1a** at 73 ppm decreased.

Fig. S15 ³¹P NMR spectral changes of 1a (5.5 mM) upon the addition of AgCN and CuCN (1 equiv.) in CH₂Cl₂.

Fig. S16 ³¹P NMR spectral changes of 1a (5.5 mM) upon the addition of AgCN (0.5, 1 equiv.) in CH₂Cl₂.

	Table S3 Summary of ¹¹ B NMR	chemical shift (δ , ppm)) data of 1a with	various anions in CH	Cl2
--	---	----------------------------------	--------------------------	----------------------	-----

	free	F-	AcO-	CN-
1a	73.24	5.04	-0.53	-13.38

Table S4 Summary of ³¹ P	NMR chemical shift (δ, ppn	n) data of 1a with	various ion pairs in CH ₂ Cl ₂ .	
free	AgCN	CuCN	AgCN+TBACN	CuCN+TBA

	C.		C CN		C CNLETDA CNL
	free	AgCN	CuCN	AgCN+IBACN	CuCN+IBACN
1a	-5.05	9.62	-3.59	-2.05	-5.38

Fig. S17 UV/vis absorption spectral changes of (a) **1a** and (b) **1b** upon the addition of (i) F^- , (ii) CN^- and (iii) AcO⁻ as TBA salts in CH₂Cl₂ (10⁻⁵ M).

Fig. S18 UV/vis absorption spectral changes of (a) 1a and (b) 1b, upon the addition of CuI in CH₃CN (5 × 10⁻⁶ M for 1a and 10⁻⁵ M for 1b).

Fig. S19 Emission spectra of (a) **1a** and (b) **1b** without ion pair (black), with 3 eq of TBAF (red) and with 3 eq of TBACN (blue) in CH_2Cl_2 (10⁻⁵ M). The fluorescence spectra were obtained by excitation at respective isosbestic points of anion titration. See Fig. S16.

Fig. S20 (a) UV/vis absorption and (b) emission spectral changes of **1a** (black) upon the addition of AgCN (red) and CuCN (blue) in CH₂Cl₂. (0.01 mM)

Fig. S21 (a) UV/vis absorption and (b) emission spectral changes of **1a** (solid line, black) upon the addition TBACN (1 eq, dotted line, black), TBAF (1 eq, dashed line, black) AgCN (1 eq, solid line, blue), CuCN (1 eq, solid line, red), TBACN/AgCN (1 eq, dotted line, blue) and TBACN/CuCN (1 eq, dotted line, red) in film state.

Fig. S22 Emission colour coordinates of 1a with various ion pairs in the CIE 1931 chromaticity diagram.

Table S5 Summary of emission colour coordinates of 1a with various ion pairs in the CIE 1931 chromaticity diagram.

	In CH ₂ Cl ₂	Film
1a	(0.205, 0.210)	(0.186, 0.255)
1a-F-	(0.211, 0.278)	(0.202, 0.224)
1aCN-	(0.177, 0.209)	(0.212, 0.203)
(NC)Ag-1a	-	(0.158, 0.130)
(NC)Ag-1a-CN-	-	(0.197, 0.218)
(NC)Cu-1a	-	(0.243, 0.389)
(NC)Cu-1a-CN ⁻	_	(0.299, 0.346)

Fig. S23 Photographs of 1a with various ion pairs under UV irradiation.

[S5] S. Mitu and M. C. Baird, Organometallics, 2006, 25, 4888-4896.