# **Supplementary Information**

# Poly(hydroxyurethane): Catalytic Applicability for the Cyclic Carbonate Synthesis from Epoxides and CO<sub>2</sub>

Suguru Motokucho<sup>†,\*</sup> and Hiroshi Morikawa<sup>‡</sup>

<sup>†</sup>Chemistry and Material Engineering Program, Nagasaki University, 1-14, Bunkyo-Machi, Nagasaki-shi 852-8521, Japan

<sup>‡</sup>Department of Applied Chemistry, Kanagawa Institute of Technology, 1030, Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan

\*Corresponding author: Suguru Motokucho, E-mail: motoku@nagasaki-u.ac.jp

Total: 14 pages, 10 figures, 3 tables, and 1 scheme

# **Table of Contents**

| 1. Materials and methods                                                                                                                                      | S2         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
| 2. Synthesis and characterization                                                                                                                             |            |  |
| 3. Estimation of conversion and selectivity by <sup>1</sup> H-NMR                                                                                             |            |  |
| <b>Figure S1</b> . <sup>1</sup> H-NMR (CDCl <sub>3</sub> ) spectra of PGE, the reaction mixture, and <b>PGE-5CC</b> .                                         |            |  |
| <b>Figure S2</b> . <sup>1</sup> H-NMR (DMSO- $d_6$ ) spectra of the pristine PHU and PHU after the reaction by filtration.                                    | <b>S</b> 5 |  |
| Figure S3. FT-IR spectra of the pristine PHU and PHU after the reaction by filtration.                                                                        | <b>S6</b>  |  |
| Figure S4. GPC profiles of the pristine and recovered PHU.                                                                                                    | <b>S6</b>  |  |
| Figure S5. <sup>1</sup> H-NMR spectrum of the PHU synthesized from 5CC-12 and 1,6-hexamethylenediamine.                                                       | <b>S7</b>  |  |
| Figure S6. GPC profiles of the pristine PHU and PHU synthesized from 5CC-12 and 1,6-hexamethylenediamine.                                                     |            |  |
| Figure S7. <sup>1</sup> H-NMR spectra of PHU and its mixture with PGE.                                                                                        |            |  |
| Figure S8. <sup>1</sup> H-NMR spectra of TMS-PHU and its mixture with PGE.                                                                                    | <b>S8</b>  |  |
| <b>Figure S9</b> . <sup>1</sup> H-NMR (CDCl <sub>3</sub> ) spectra of the pristine TMS-PHU and the TMS-PHU recovered after reaction by filtration.            |            |  |
| Figure S10. GPC profiles of the pristine and recovered TMS-PHU.                                                                                               | <b>S9</b>  |  |
| Table S1. Weights of the added and recovered PHU.                                                                                                             |            |  |
| <b>Table S2</b> . $M_{\rm n}$ , $M_{\rm w}$ , and $\mathcal{D}$ ( $M_{\rm w}/M_{\rm n}$ ) of the added and recovered PHU.                                     |            |  |
| <b>Table S3</b> . $M_n$ , $M_w$ , and $D(M_w/M_n)$ of the added and recovered TMS-PHU.                                                                        | <b>S10</b> |  |
| <b>Scheme S1</b> . PHU-catalyzed syntheses of 5CCs ( <b>5CC-9</b> and <b>5CC-10</b> ) through the reaction of optically active epoxides and CO <sub>2</sub> . |            |  |
| 4. Characterization of 5CCs                                                                                                                                   | <b>S12</b> |  |

#### 1. Materials and methods

Poly(hydroxyurethane)<sup>1)</sup> (PHU (HPU A-0110)) and modified PHU containing a trimethylsilyl protecting group (TMS-PHU (HPU A0110-TMS)) were supplied by Dainichiseika Color & Chemicals Mfg. Co., Ltd. (Tokyo, Japan). Phenyl glycidyl ether (PGE) and other epoxides were purchased from TCI (Tokyo, Japan). Butyric acid glycidyl ester used as a precursor of 5CC-8 was prepared as described in the literature<sup>2</sup>). 18-Crown-6 was purchased from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan) and used without further purification. All reagents and solvents were of reagent grade and used as received unless stated otherwise.

<sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance (NMR) spectra (400 MHz <sup>1</sup>H and 100 MHz <sup>13</sup>C) were recorded on a JNM-GX400 spectrometer (JEOL, Ltd., Japan) in CDCl<sub>3</sub> or dimethyl sulfoxide- $d_6$  (DMSO- $d_6$ ) at room temperature (approximately 20 °C), and chemical shifts were determined using tetramethylsilane as an internal standard. Fourier transform infrared (FT-IR) spectra were recorded on a JASCO FTIR 460 KY Plus spectrometer (Tokyo, Japan), and transmission spectra were obtained using KBr discs. The number- and weight-average molecular weights ( $M_n$  and  $M_w$ , respectively) and polydispersity index ( $D = M_w/M_n$ ) values of polymer samples were estimated by gel permeation chromatography (GPC) using a JASCO (JASCO Corp., Japan) high-performance liquid chromatography system (pump: PU-2060; reflective index detector: RI-2031; column oven: CO-4060) equipped with a polystyrene gel column (SB-804 HQ; Shodex Co. Ltd., Japan). Dimethylformamide (DMF) eluent containing 10 mmol/L LiBr was passed at a flow rate of 1.0 mL/min. The system was calibrated with polystyrene standards. Optical rotations were measured in the 50mm length cell of a JASCO P-2200 digital polarimeter at a temperature of 21 °C and the average value was calculated from the results of ten independent measurements.

#### 2. Synthesis and characterization

Synthesis of PGE-5CC and separation of PHU: In a typical procedure, 750 mg (5.00 mmol) PGE was added to a mixture of 277 mg (1.00 mmol) PHU and 6.6 mg (0.025 mmol) 18-crown-6 in a 200-mL autoclave. After pouring liquid CO<sub>2</sub>, the autoclave was sealed and weighed on an electronic balance BPS6K01 (Asone, Japan; resolution: 0.1 g; capability: 6.000 kg) to calculate the weight of CO<sub>2</sub> in the reactor set to 39.0 g (890 mmol). Subsequently, the autoclave was heated to 120 °C for 16 h, cooled, and depressurized by venting the reactor bulb. Using an aliquot of the reaction mixture, a CDCl<sub>3</sub> solution for <sup>1</sup>H-NMR studies was prepared by removing the insoluble PHU fraction. The conversion of PGE and its selectivity for PGE-5CC production were estimated using the NMR singlet signal of 18-crown-6 as an internal standard.

The reaction mixture was dissolved in tetrahydrofuran and poured into a large amount of diethyl ether to precipitate a white solid. After filtration, the obtained solid was dried under vacuum at 40 °C for 20 h to recover PHU (269 mg), which was examined by <sup>1</sup>H-NMR, FT-IR, and GPC techniques. The filtrate was concentrated, and the crude product was purified by SiO<sub>2</sub> column chromatography (eluent: hexane/ethyl acetate = 4/1, v/v) to obtain 942 mg (4.85 mmol) **PGE-5CC** as a white solid corresponding to 97% yield.

The reaction, purification, and analysis steps were individually performed to evaluate the effects of variations in the reaction time (4–16 h) and temperature (90–150 °C) on the PGE conversion and its selectivity for **PGE-5CC** production.

**Estimation of the molar ratio of urethane groups ([urethane groups]<sub>0</sub>) to PGE:** The molar amount of PHU urethane groups was estimated by the following equation:

$$[urethane \ groups]_{0} = \frac{[weight \ of \ PHU \ (g)]}{[molecular \ weight \ of \ PHU \ repeating \ unit \ [544.64]]} \times 2$$
(S1)

From the molar amounts of urethane groups and PGE, the molar ratio [urethane groups] $_0/[PGE]_0$  was determined.

**Reactions of substituted epoxides with CO**<sub>2</sub>: Synthesis of **5CC-1** is given as an example here. First, 471 mg (5.09 mmol) epichlorohydrin was added to a mixture of 277 mg (1.00 mmol) PHU and 6.6 mg (0.025 mmol) 18-crown-6 in a 200-mL autoclave. The reaction was performed following the **PGE-5CC** synthesis procedure described above. After the reaction, the resulting crude product was purified by SiO<sub>2</sub> column chromatography (eluent: hexane/ethyl acetate = 7/1, v/v) to obtain 640 mg (4.68 mmol) **5CC-1** as a colorless oil with a 92% yield.

**Reaction of PGE with CO<sub>2</sub> using TMS-PHU catalyst**: A reaction similar to the PHU-catalyzed process was also performed in this study. 750 mg (5.00 mmol) PGE was added to a mixture of 350 mg (1.00 mmol) TMS-PHU and 6.6 mg (0.025 mmol) 18-crown-6 in a 200 mL autoclave. The autoclave filled with pressured CO<sub>2</sub> (5.2 MPa) was heated to 90 °C for 16 h. After the reaction, <sup>1</sup>H-NMR measurements were performed to estimate the conversion of PGE and selectivity for **PGE-5CC** production using an aliquot of the reaction mixture. The mixture was then re-precipitated from the CHCl<sub>3</sub> solution thrice using diethyl ether three times to recover 270 mg of TMS-PHU as a white solid. The resulting diethyl ether solution was concentrated, and the crude product was purified by SiO<sub>2</sub> column chromatography (eluent: hexane/ethyl acetate = 4/1, v/v) to obtain 476 mg (2.45 mmol) **PGE-5CC** as a white solid corresponding to a 49% yield.

Synthesis of PHU from the reaction of 5CC-12 and 1,6-hexamethylenediamine: 1,6-hexamethylenediamine (1.16 g, 10 mmol) was added to a solution of 5CC-12 (4.28 g, 10 mmol) in DMF (20 mL) under nitrogen atmosphere. The mixture was stirred for 24 h at 100 °C. The reaction mixture was poured into 450 mL of diethyl ether resulting in the precipitate of a white solid. The precipitate was collected by filtration, washed with diethyl ether, and dried *in vacuo* at 50 °C to give PHU as a white solid (4.77 g, 87 % yield). The obtained PHU exhibited <sup>1</sup>H-NMR spectrum and GPC profile very similar to that of the PHU supplied by Dainichiseika Color & Chemicals Mfg. Co., Ltd.

 $M_{\rm n} = 1.02 \times 10^4, M_{\rm w} = 2.18 \times 10^4, D = 2.14.$ 

<sup>1</sup>H-NMR spectrum and GPC profile were shown in **Figure S5** and **S6**.

### **3.** Estimations of PGE conversion and selectivity by <sup>1</sup>H-NMR (see Figure S1)

The conversion of PGE and selectivity for **PGE-5CC** production were estimated via the following equations:

Conversion of PGE (%) = 
$$(1 - \frac{f/200}{X/24}) \times 100$$
 (S2)

Selectivity of the reaction for the production of PGE-5CC (%) =  $\frac{F/200}{X/24}/(1-\frac{f/200}{X/24}) \times 100$  (S3)

where f = integral ratio of PGE methine protons (from Figure S1)

*F* = integral ratio of **PGE-5CC** methine protons (from Figure S1)

X = integral ratio of 18-crown-6 used as an internal standard.



**Figure S1**. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) spectra of a) PGE, b) the reaction mixture, and c) **PGE-5CC**. Reaction conditions: 90 °C, 16 h, and 5.2 MPa CO<sub>2</sub> pressure in the presence of PHU ([urethane groups]<sub>0</sub>/[PGE]<sub>0</sub> = 0.20). Signal *X* is generated by 18-crown-6.



Figure S2. <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>) spectra of the pristine PHU and PHU after the reaction by filtration.



Figure S3. FT-IR spectra of the pristine PHU and PHU after the reaction by filtration.



Figure S4. GPC profiles of the pristine and recovered PHU. DMF was used as the eluent.



**Figure S5**. <sup>1</sup>H-NMR (DMSO-*d*<sub>6</sub>) spectrum of the PHU synthesized from **5CC-12** and 1,6-hexamethylenediamine.



**Figure S6**. GPC profiles of the pristine PHU and PHU synthesized from **5CC-12** and 1,6-hexamethylenediamine.



**Figure S7**. <sup>1</sup>H-NMR (400 MHz) spectra of PHU (0.32 mmol of urethane moiety) and the mixture of PGE (0.64 mmol) and PHU (0.32 mmol) in 0.8 mL of DMSO- $d_6$ .



**Figure S8**. <sup>1</sup>H-NMR (400 MHz) spectra of TMS-PHU (0.32 mmol of urethane moiety) and the mixture of PGE (0.64 mmol) with TMS-PHU (0.32 mmol) in CDCl<sub>3</sub>.



**Figure S9**. <sup>1</sup>H-NMR (CDCl<sub>3</sub>) spectra of the pristine TMS-PHU and the TMS-PHU recovered after reaction by filtration.



Figure S10. GPC profiles of the pristine and recovered TMS-PHU. DMF was used as the eluent.

| Entry | Temp. / °C | Time / h | PHU weight / g | Weight of recovered PHU / g |
|-------|------------|----------|----------------|-----------------------------|
| 4     | 90         | 4        | 0.275          | 0.267                       |
| 5     | 90         | 11       | 0.274          | 0.269                       |
| 6     | 90         | 16       | 0.275          | 0.263                       |
| 8     | 120        | 4        | 0.277          | 0.266                       |
| 9     | 120        | 11       | 0.282          | 0.273                       |
| 10    | 120        | 16       | 0.277          | 0.269                       |
| 11    | 150        | 4        | 0.277          | 0.220                       |

 Table S1. Weights of the added and recovered PHU.

The entry numbers correspond to those of Table 1 in the main file.

| <b>Table S2</b> . $M_{\rm n}$ , $M_{\rm w}$ , and $D$ | $(M_{\rm w}/M_{\rm n})$ value | s of the added and | l recovered PHU. |
|-------------------------------------------------------|-------------------------------|--------------------|------------------|
|-------------------------------------------------------|-------------------------------|--------------------|------------------|

|                        | $M_{ m n}/10^4$ | $M_{ m w}$ /10 <sup>4</sup> | Đ    |
|------------------------|-----------------|-----------------------------|------|
| PHU                    | 1.03            | 2.19                        | 2.13 |
| Entry 11 (150 °C, 4 h) | 0.34            | 0.87                        | 2.59 |

 $M_n$ : number-average molecular weight;  $M_w$ : weight-average molecular weight; D: dispersity defined as  $M_w/M_n$ . The samples are identical to those analyzed in Figure S4.

|                   | $M_{\rm n}/10^4$ | $M_{ m w}$ /10 <sup>4</sup> | Đ    |
|-------------------|------------------|-----------------------------|------|
| TMS-PHU           | 2.33             | 4.55                        | 1.95 |
| Recovered TMS-PHU | 2.25             | 4.44                        | 1.97 |

 $M_n$ : number-average molecular weight;  $M_w$ : weight-average molecular weight; D: dispersity defined as  $M_w/M_n$ . The samples are identical to those analyzed in Figure S6.



Scheme S1. PHU-catalyzed syntheses of 5CCs (5CC-9 and 5CC-10) through the reaction of optically active epoxides and  $CO_2$ .

4. Characterization of 5CCs



**4-(chloromethyl)-1,3-dioxolan-2-one (5CC-1)**<sup>3, 4)</sup>: Colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.00–4.94 (m, 1H), 4.60 (dd, J = 8.4, 8.8 Hz, 1H), 4.42 (dd, J = 5.6, 8.8 Hz, 1H), 3.81–3.70 (m, 2H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.0, 74.2, 67.0, 43.5.



**4-(butoxymethyl)-1,3-dioxolan-2-one (5CC-2)**<sup>5)</sup>: Colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  4.84–4.81 (m, 1H), 4.53–4.48 (m, 1H), 4.39 (dd, J = 6.0, 7.2 Hz, 1H), 3.70–3.66 (m, 1H), 3.62–3.58(m, 1H), 3.51(dd, J = 8.4, 8.4Hz, 2H), 1.61–1.52 (m, 2H), 1.41–1.32 (m, 2H), 0.92 (t, J = 6.8 Hz, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  155.0, 75.1, 71.7, 69.5, 66.2, 31.4, 19.0, 13.7.



**4-((benzyloxy)methyl)-1,3-dioxolan-2-one (5CC-3)**<sup>4, 5)</sup>: White solid; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.36–7.31 (m, 5H), 4.84–4.78 (m, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.57 (d, J = 12.0 Hz, 1H), 4.48 (dd, J = 8.4, 8.4 Hz, 1H), 4.38 (dd, J = 8.4, 6.1 Hz, 1H), 3.73–3.60 (m, 2H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.9, 137.0, 128.5, 128.0, 127.7, 74.9, 73.6, 68.8, 66.2.



**4-(tert-butoxymethyl)-1,3-dioxolan-2-one (5CC-4)**<sup>3)</sup>: Colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  4.82–4.76 (m, 1H), 4.49 (dd, J = 8.0, 8.0 Hz, 1H), 4.39 (dd, J = 8.0, 8.4 Hz, 1H), 3.65–3.51 (m, 2H), 1.20 (s, 9H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 155.2, 75.1, 73.7, 66.4, 61.2, 27.2.



**4-((prop-2-yn-1-yloxy)methyl)-1,3-dioxolan-2-one (5CC-5)**<sup>5)</sup>: Colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>): δ 4.89–4.84 (m, 1H), 4.52 (dd, *J* = 8.0, 8.0 Hz, 1H), 4.41 (dd, *J* = 6.0, 8.4 Hz, 1H), 4.30–4.19 (m, 2H), 3.82–3.73 (m, 2H), 2.51 (t, *J* = 2.3 Hz, 1H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>): δ 154.8, 78.5, 75.6, 74.6, 68.4, 66.2, 58.8.



**4-((allyloxy)methyl)-1,3-dioxolan-2-one (5CC-6)**<sup>3, 4)</sup>: Colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  5.91–5.83 (m, 1H), 5.32–5.22 (m, 2H), 4.85–4.81 (m, 1H), 4.51 (dd, J = 8.2, 8.2 Hz, 1H), 4.40 (dd, J = 6.0, 8.4 Hz, 1H), 4.08–4.05 (m, 2H), 3.70 (dd, J = 4.0, 11.2 Hz, 1H), 3.62 (dd, J = 4.0, 11.2 Hz, 1H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.9, 133.6, 117.9, 75.0, 72.6, 68.8, 66.2.



**4-Phenyl-1,3-dioxolan-2-one (5CC-7)**<sup>3–5)</sup>: White solid; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.46–7.35 (m, 5H), 5.68 (dd, J = 8.0, 8.0 Hz, 1H), 4.80 (dd, J = 8.0, 8.4 Hz, 1H), 4.35 (dd, J = 8.0, 8.4 Hz, 1H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.8, 135.7, 129.7, 129.2, 125.8, 78.0, 71.1.



(2-oxo-1,3-dioxolan-4-yl)methyl butyrate (5CC-8)<sup>6</sup>: Colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  4.99–4.94 (m, 1H), 4.58 (dd, J = 8.7, 8.5 Hz, 1H), 4.40–4.25 (m, 3H), 2.36 (t, J = 7.4 Hz, 2H), 1.71–1.62 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  173.0, 154.5, 73.8, 65.9, 62.7, 35.6, 18.1, 13.4.



(S)-4-(methoxymethyl)-1,3-dioxolan-2-one (5CC-9)<sup>7</sup>): Colorless oil; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.84–4.79 (m, 1H), 4.50 (dd, J = 8.0, 8.0 Hz, 1H), 4.38 (dd, J = 6.0, 8.0 Hz, 1H), 3.65 (dd, J = 4.0, 10.8 Hz, 1H), 3.57 (dd, J = 3.6, 10.8 Hz, 1H), 3.43 (s, 3H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.9, 75.0, 71.2, 65.9, 59.2. [a]<sup>21</sup><sub>D</sub> = -35.3 (c = 1.0, EtOH) [lit.7 [a]<sup>24</sup><sub>D</sub> = -36.5 (c = 1.0, EtOH, >98% ee (S))].



(*R*)-4-(phenoxymethyl)-1,3-dioxolan-2-one (5CC-10)<sup>4</sup>): White solid; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.28 (t, *J* = 8.0 Hz, 2H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 2H), 5.03–4.98 (m, 1H), 4.58 (dd, *J* = 8.4, 8.4 Hz, 1H), 4.50 (dd, *J* = 6.0, 8.8 Hz, 1H), 4.24 (dd, *J* = 4.0, 10.8 Hz, 1H), 4.10 (dd, *J* = 3.6, 10.8 Hz, 1H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  157.7, 154.7, 129.6, 121.8, 114.5, 74.2, 66.8, 66.1.

 $[a]_{D}^{21} = +18.0 \ (c = 1.0, \text{ EtOH}) \ [\text{lit.4} \ [a]_{D}^{20} = +18.3 \ (c = 1.2, \text{ EtOH}; 99\% \text{ ee} (R))].$ 



**4,4'-(((2,2-dimethylpropane-1,3-diyl)bis(oxy))bis(methylene))bis(1,3-dioxolan-2-one) (5CC-11)**<sup>1)</sup>: White solid; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) δ 4.85–4.82 (m, 2H), 4.54–4.36 (m, 4H), 3.73–3.70 (m, 2H), 3.60–3.57 (m, 2H), 3.29–3.23 (m, 4H), 0.88 (s, 6H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>, mixture of stereoisomers): δ 155.1, 76.7, 76.6, 75.2, 70.3, 70.0, 66.1, 36.2, 21.8.



**4,4'-(((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(methylene))bis(1,3-dioxolan-2-one) (5CC-12)**<sup>1)</sup>: White solid; <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.14 (d, J = 8.8 Hz, 4H), 6.81 (d, J = 8.8 Hz, 4H), 5.04–4.98 (m, 2H), 4.60 (dd, J = 8.5, 8.5 Hz, 2H), 4.52 (dd, J = 5.9, 8.5 Hz, 2H), 4.23 (dd, J = 4.3, 10.6 Hz, 2H), 4.12 (dd, J = 3.5, 10.7 Hz, 2H), 1.63 (s, 6H). <sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$ 155.4, 154.4, 144.1, 127.7,

## References

- 1) C. Wulf, M. Reckers, A. Perechodjuk, T. Werner, ACS Sustain. Chem. Eng., 2020, 8, 1651.
- 2) A. Beharaja, I. Ekladious, M. W. Grintaff, Angew. Chem. Int. Ed., 2019, 58, 1407.
- 3) H. Büttner, J. Steinbauer, T. Werner, ChemSusChem., 2015, 8, 2655.
- 4) S. Kaneko, S. Shirakawa, ACS Sustain. Chem. Eng., 2017, 5, 2836.
- 5) T. Fujihara, M. Inokuchi, T. Mizoe, K. Nogi, J. Terao, Y. Tsuji, Chem. Lett., 2017, 46, 968.
- S. Wu, Y. Zhang, B. Wang, E. H. M. Elageed, L. Ji, H. Wu, G. Gao, *Eur. J. Org. Chem.*, 2017, 2017, 753.
- 7) Authentic samples measured, https://www.tcichemicals.com/eshop/en/jp/commodity/M1456/ (accessed 2020/05/01).