SLAP reagents for the photocatalytic synthesis of C3/C5-

substituted, N-unprotected selenomorpholines and 1,4-

selenazepanes

Supporting Information

Contents

SLAP reagents for the photocatalytic synthesis of C3/C5-subst	ituted, N-
unprotected selenomorpholines and 1,4-selenazepanes	1
1. General Information	2
2. Optimization of Reaction Conditions	3
3. Synthesis of Seleno-SLAP reagents	5
4. Synthesis of aldehydes	9
5. Synthesis of Selenomorpholines and 1,4-selenazepanes	144
6. Scale-up Reaction of 7a	
7. Antifungal screening/Determination of MIC	277
8. Mechanism	29
9. References	
10. NMR Spectra	
11. HRMS Data	1044

1. General Information

Reactions with anhydrous solvents were carried out under N₂ atmosphere in oven-dried glassware. TLC plates were stained using potassium permanganate or ninhydrin solutions. Flash column chromatography was performed with silica gel (200-300 mesh). Petroleum ether (PE, b.p. 60-90 °C), ethyl acetate (EA) and methanol (MeOH) are used for column purification. All the N-heterocyclic compounds were purified by silica gel column chromatography with appropriate eluents with 0.1% NEt₃ v/v.

Commercial grade reagents and solvents were used without further purification except as indicated below. Anhydrous acetonitrile (MeCN), dichloromethane (DCM) and tetrahydrofuran (THF) were dried and purified by passing through a neutral alumina column under N_2 (solvent purification system). Cu(OTf)₂ was purchased from STREM Chemicals Inc.

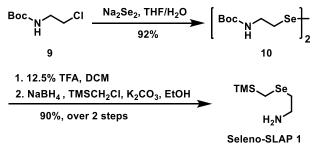
¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker Avance spectrometers (400 MHz or 600 MHz for ¹H NMR, and 101 MHz or 151 MHz for ¹³C NMR). ¹H NMR chemical shifts are expressed in parts per million (δ) downfield from tetramethylsilane (with the CDCl₃ peak at 7.26 ppm used as a standard). ¹³C NMR chemical shifts are expressed in parts per million (δ) downfield from tetramethylsilane (with the cDCl₃ at 77.16 ppm used as a standard). All ¹³C spectra were measured with complete proton decoupling. NMR coupling constants (*J*) are reported in Hertz (Hz), and splitting patterns are indicated as follows: br, broad; s, singlet; d, doublet; dd, doublet of doublet; dd, double of doublet; dt, doublet of triplet; td, triplet of doublet; t, triplet; q, quartet; m, multiplet. High Resolution Mass Spectrometric data was recorded on Bruker 1290 UPLC / microTOF-Q II and Q Exactive HF (Q ExactiveTM HF/UltiMateTM 3000 RSLCnano). Low Resolution Mass Spectrometric data were recorded on Shimadzu LCMS-8040 (ESI).

2. Optimization of Reaction Conditions

For optimization studies, selected seleno-SLAP 1 4we and (trifluoromethyl)benzaldehyde as a substrate. Condensation of seleno-SLAP 1 with the above-mentioned aldehyde in the presence of 4 Å molecular sieves produced the corresponding imine (Table S1). The reaction was filtered and concentrated, and then the crude mixture was used directly without any further purification for optimization of the photo-mediated selenomorpholine formation reaction. 1H NMR measurements of the crude reaction mixtures were used to calculate the yields from the optimization studies. Initially, we tried the standard reaction conditions, i.e. using 1 mol% of Ir[(ppy)2dtbbpy]PF6, in acetonitrile (0.1 M) at room temperature under blue light.9a However, no product was formed, suggesting that the oxidation potential of the Ir(III) photoredox catalyst was not sufficient enough for seleno-SLAP 1 to form the challenging selenomorpholine from a-silyl selenide. Rest of the conditions were discussed in the article.

Me₃Si ∕∕S H₂N Seleno-SI	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ &$	Se N H 3a
Entry ^[a]	Lewis acids	Yield ^[b]
		(%)
1	Without Lewis acids	N.R.
2	2 Equiv of Fe(OTf) ₃	N.R.
3	2 Equiv of Lewis acids, such as Sc(OTf) ₃ , In(OTf) ₃ ,	<10%
	Er(OTf) ₃ , Yb(OTf) ₃ or Bi(OTf) ₃	
4	2 Equiv of other Ni or Cu source, such as NiCl ₂ \cdot 6H ₂ O,	NR
	$Ni(cod)_2$, $Cu(acac)_2$, $Cu(OAc)_2$, $Cu(NO_3)_2$, $CuCl$ or	
	CuI	
5	Cu(OTf) ₂ (2.0 equiv)	52
6	Cu(OTf) ₂ (1.0 equiv)	35
7	Cu(OTf) ₂ (1.5 equiv)	41
8	Cu(OTf) ₂ (1.0 equiv) + In(OTf) ₃ (0.5 equiv)	65 (56) ^[c]
9	$Cu(OTf)_2 (1.0 \text{ equiv}) + Gd(OTf)_3 (0.5 \text{ equiv})$	<10
10	$Cu(OTf)_2 (1.0 \text{ equiv}) + Er(OTf)_3 (0.5 \text{ equiv})$	22
11	$Cu(OTf)_2 (1.0 \text{ equiv}) + Yb(OTf)_3 (0.5 \text{ equiv})$	27
12	Cu(OTf) ₂ (1.0 equiv) + Bi(OTf) ₃ (0.5 equiv)	45
13 ^[d]	$Cu(OTf)_2 (1.0 \text{ equiv}) + In(OTf)_3 (0.5 \text{ equiv})$	57

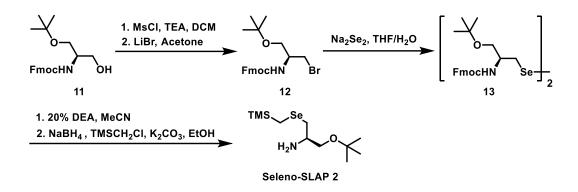
Table S1: Screening and optimization of reaction conditions with imine.

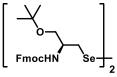

[a] All reactions were performed on a 0.1 mmol scale; [b] Yield determined by ¹H NMR spectroscopy with benzyl methyl ether as an internal standard; [c] Isolated yield; [d] Reaction performed for 36 h. N.R. = no reaction.

$Me_{3}Si \xrightarrow{Se}_{H_{2}N} \xrightarrow{F_{3}C} \underbrace{\overset{0}{\text{H}}_{A \text{ MS}}}_{\text{CH}_{2}Cl_{2}, \text{ RT}} \xrightarrow{Me_{3}Si \xrightarrow{Se}_{N}} \underbrace{\overset{Lewis acids}{\text{Ir}[(ppy)_{2}dtbbpy](1 \text{ mol}\%)}}_{\text{Blue Light, RT, 48h}} \xrightarrow{F_{3}C} \underbrace{F_{3}C} \xrightarrow{Se}_{F_{3}C} \xrightarrow{F_{3}C} F$				
Entry ^[a]	Lewis acids	Yield ^[b] (%)		
1	2 Equiv of Lewis acids, such as Ce(OTf) ₃ ,	N.R.		
	La(OTf) ₃ , Nd(OTf) ₃ , InCl ₃			
2	2 Equiv of non-metallic Lewis acids, such as	N.R.		
	BF ₃ ·MeCN, BBr ₃ , TMSOTf			
3	$Cu(OTf)_2 (1.0 \text{ equiv}) + Ce(OTf)_3 (1.0 \text{ equiv})$	N.R.		
4	$Cu(OTf)_2 (1.0 \text{ equiv}) + La(OTf)_3 (1.0 \text{ equiv})$ N.R.			
5	$Cu(OTf)_2 (1.0 \text{ equiv}) + Nd(OTf)_3 (1.0 \text{ equiv})$ N.R.			
6	$Cu(OTf)_2$ (1.0 equiv) + InCl ₃ (1.0 equiv)	N.R.		
7	$Cu(OTf)_2 (1.0 \text{ equiv}) + In(OTf)_3 (0.5 \text{ equiv})$	32%		
8	$Cu(OTf)_2 (1.0 equiv) + In(OTf)_3 (1.0 equiv) 35\%$			
9	Cu(OTf) ₂ (1.0 equiv) + In(OTf) ₃ (2.0 equiv)	48%		
10	$Cu(OTf)_2 (1.0 \text{ equiv}) + In(OTf)_3 (2.5 \text{ equiv})$	40%		

Table S2: Optimization of reaction conditions for 1,4-selenazepanes.

[a] All reactions were performed on a 0.1 mmol scale; [b] Yield determined by 1 H NMR spectroscopy with 1,3,5-Trimethoxybenzene as an internal standard; NR = no reaction.


3. Synthesis of Seleno-SLAP reagents

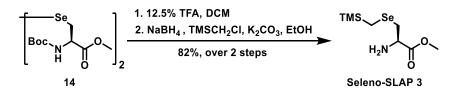

Synthesis of Seleno-SLAP 1

 $\begin{bmatrix} Boc, N \\ H \end{bmatrix}^{Se}_{2}$ $\begin{array}{c} \text{Di-tert-butyl (diselanediylbis(ethane-2,1-diyl))dicarbamate (10).} \\ To an ice-cooled solution of Na₂Se₂¹ (1 N, 18 mL, 18 mmol, 0.6 equiv) \\ was added tert-butyl (2-chloroethyl)carbamate 9 (5.39 g, 30 mmol, 18 mmol) \\ \end{array}$

1.0 equiv) in THF (40 mL) dropwise. Then the reaction was stirred at room temperature overnight. The reaction was removed to a separating funnel and extracted with EA. The organic layer was then dried over Na₂SO₄. The solvent was evaporated in vacuo and purification of the crude compound by column chromatography (PE/EA, 4:1) to yield **10** as yellow solid (6.16 g, 92%). ¹H NMR (400 MHz, CDCl₃) δ 5.07 (br s, 2H), 3.47 (q, *J* = 6.1 Hz, 4H), 2.99 (t, *J* = 6.6 Hz, 4H), 1.44 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 79.7, 41.1, 29.6, 28.5. Spectral data matches with the literature data.²

(9*H*-fluoren-9-yl)methyl (*S*)-(1-bromo-3-(tert-butoxy)propan-2yl)carbamate (12). To a solution of alcohol (prepared as reported methods)³ (3.69 g, 10 mmol, 1.0 equiv) in DCM (30 mL) was added methanesulfonyl chloride (0.85 mL, 11 mmol, 1.1 equiv) dropwise at 0 °C in an ice bath and then triethylamine (1.66 mL, 12 mmol, 1.2 equiv) was added. The resulting solution was stirred for 2 h, lithium bromide (8.7 g, 100 mmol, 10.0 equiv) and acetone (15 mL) were added to the solution at 0 °C and then left to stir at room temperature overnight. The solvents were removed and the residue was dissolved in EA and poured into a separation funnel. The organic layer was washed with H₂O, saturated NaHCO₃ and brine. The organic layer was then dried over Na₂SO₄. The solvent was evaporated in vacuo and directly used for next step.

Bis((9*H*-fluoren-9-yl)methyl) ((2*S*,2'S)-diselanediylbis(3-(tertbutoxy)propane-1,2-diyl))dicarbamate (13). To an ice-cooled solution of Na₂Se₂ (1 N, 10 mL) was added bromide in THF (30 mL) dropwise. Then the reaction was stirred at room temperature

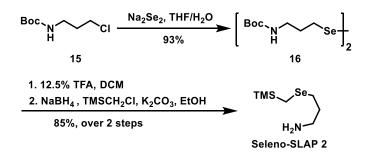

overnight. The reaction was removed to a separating funnel and extracted with DCM. The organic layer was then dried over Na₂SO₄. The solvent was evaporated in vacuo and flush through a pad of silica. The solvent was then concentrated and directly used for next step. ESI-HRMS calcd for $C_{44}H_{52}N_2O_6Se_2Na$ [M + Na] 887.2048, found 887.2083.

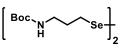
(*R*)-1-(*tert*-Butoxy)-3-(((trimethylsilyl)methyl)selanyl)propan-2-amine (Seleno-SLAP 2). To an ice-cooled solution of diselenide in MeCN (20 mL) was added diethylamine (5 mL) and then the mixture was stirred for 3 h at room temperature. After the reaction

was completed, the solvent was evaporated under vacuum. Then deprotected diselenide was dissolved in EtOH (50 mL), the yellow solution was degassed for 15 min and then cooled to 0 °C. NaBH₄ (0.42 g, 11 mmol, 2.2 equiv) was added slowly under N₂ and the mixture was stirred at 0 °C for 20 min. (Chloromethyl)trimethylsilane (1.35 g, 11 mmol, 2.2 equiv) and K₂CO₃ (1.38 g, 10 mmol, 1.0 equiv) were added and the reaction was heated to 50 °C for 4 h. Then the reaction was filtered and concentrated in vacuo. The

resulting mixture was purified by column chromatography (PE/EA, 4:1 to 2:1) to give **Seleno-SLAP 2** as colorless oil (1.92 g, 65%, calculated from alcohol). ¹H NMR (400 MHz, CDCl₃) δ 3.30 (dd, J = 8.6, 4.4 Hz, 1H), 3.16 (dd, J = 8.5, 6.7 Hz, 1H), 3.01 – 2.92 (m, 1H), 2.65 (dd, J = 12.3, 4.7 Hz, 1H), 2.42 (dd, J = 12.3, 8.1 Hz, 1H), 1.66 (q, J = 12.2 Hz, 4H), 1.11 (s, 9H), 0.02 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 72.8, 66.1, 50.9, 32.6, 27.6, 9.3, -1.3. ESI-HRMS calcd for C₁₁H₂₈NOSeSi [M + H] 298.1100, found 298.1107.

Synthesis of Seleno-SLAP 3

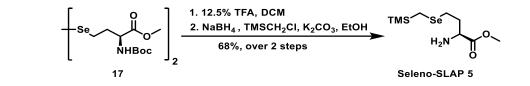


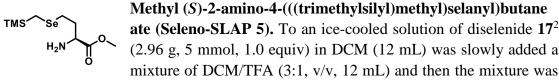

TMS

Methyl (*R*)-2-amino-3-(((trimethylsilyl)methyl)selanyl)propano ate (Seleno-SLAP 3). To an ice-cooled solution of diselenide 14² (2.82 g, 5 mmol, 1.0 equiv) in DCM (12 mL) was slowly added a

^o mixture of DCM/TFA (3:1, v/v, 12 mL) and then the mixture was stirred for 4 h at room temperature. After the reaction, the solvent was evaporated under vacuum and most TFA was removed. Then deprotected diselenide was dissolved in EtOH (25 mL) and triethylamine was used to neutralize the remaining TFA. The yellow solution was degassed for 15 min and then cooled to 0 °C. NaBH₄ (0.42 g, 11 mmol, 2.2 equiv) was added slowly under N₂ and the mixture was stirred at 0 °C for 20 min. (Chloromethyl)trimethylsilane (1.35 g, 11 mmol, 2.2 equiv) and K₂CO₃ (0.69 g, 5 mmol, 1.0 equiv) were added and the reaction was heated to 50 °C for 4 h. Then the reaction was filtered and concentrated in vacuo. The resulting mixture was purified by column chromatography (PE/EA, 5:1 to 2:1) to give **Seleno-SLAP 3** as yellow oil (2.2 g, 82%). ¹H NMR (600 MHz, CDCl₃) δ 3.70 (s, 3H), 3.66 (dd, *J* = 7.5, 4.8 Hz, 1H), 2.89 (dd, *J* = 12.5, 4.8 Hz, 1H), 2.79 (dd, *J* = 12.5, 7.5 Hz, 1H), 1.80 – 1.70 (m, 4H), 0.06 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 174.7, 54.4, 52.2, 32.1, 9.8, -1.3. ESI-HRMS calcd for C₈H₂₀NO₂SeSi [M + H] 270.0423, found 270.0431.

Synthesis of Seleno-SLAP 4

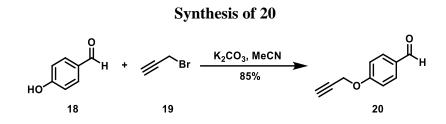



Di*-tert*-butyl (diselanediylbis(propane-3,1-diyl))dicarbamate (16). To an ice-cooled solution of Na₂Se₂ (1 *N*, 18 mL, 18 mmol, 0.6 equiv) was added *tert*-butyl (3-chloropropyl)carbamate 15

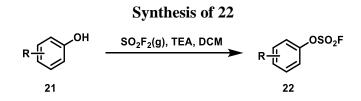
(5.81 g, 30 mmol, 1.0 equiv) in THF (40 mL) dropwise. Then the reaction was stirred at room temperature overnight. The reaction was removed to a separating funnel and extracted with EA. The organic layer was then dried over Na₂SO₄. The solvent was evaporated in vacuo and purification of the crude compound by column chromatography (PE/EA, 4:1) to yield **16** as yellow solid (6.64 g, 93%). ¹H NMR (400 MHz, CDCl₃) δ 4.73 (s, 2H), 3.20 (q, *J* = 6.6 Hz, 4H), 2.90 (t, *J* = 7.3 Hz, 4H), 1.91 (p, *J* = 7.0 Hz, 4H), 1.42 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 79.3, 40.2, 31.5, 28.5, 26.8. ESI-HRMS calcd for C₁₆H₃₂N₂NaO₄Se₂ [M + Na] 499.0588, found 499.0596.

3-(((Trimethylsilyl)methyl)selanyl)propan-1-amine (Seleno-SLAP 4). To an ice-cooled solution of diselenide 16 (4.76 g, 10 mmol, 1.0 equiv) in DCM (36 mL) was slowly added a mixture of DCM/TFA (3:1, v/v, 36 mL) and then the mixture was stirred for 4 h at room temperature. After the reaction, the solvent was evaporated under vacuum and most TFA was removed. Then deprotected diselenide was dissolved in EtOH (50 mL) and triethylamine was used to neutralize the remaining TFA. The yellow solution was degassed for 15 min and then cooled to 0 °C. $NaBH_4$ (0.84 g, 22 mmol, 2.2 equiv) was added slowly under N_2 and the mixture was stirred at 0 °C for 20 min. (Chloromethyl)trimethylsilane (2.70 g, 22 mmol, 2.2 equiv) and K₂CO₃ (1.38 g, 10 mmol, 1.0 equiv) were added and the reaction was heated to 50 °C for 4 h. Then the reaction was filtered and concentrated in vacuo. The resulting mixture was purified by column chromatography (PE/EA, 1:1) to give Seleno-SLAP 4 as brown solid (3.81 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 6.18 (s, 2H), 3.04 – 2.98 (m, 2H), 2.58 (t, J = 7.1 Hz, 2H), 1.99 (p, J = 7.1 Hz, 2H), 1.71 (s, 2H), 0.08 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 40.2, 28.2, 22.6, 8.9, -1.2. ESI-HRMS calcd for C₇H₂₀NSeSi [M + H] 226.0525, found 226.0533.

Synthesis of Seleno-SLAP 5



stirred for 4 h at room temperature. After the reaction, the solvent was evaporated under vacuum and most TFA was removed. Then deprotected diselenide was dissolved in EtOH (25 mL) and triethylamine was used to neutralize the remaining TFA. The yellow


8 / 230

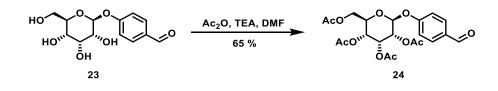
solution was degassed for 15 min and then cooled to 0 °C. NaBH₄ (0.42 g, 11 mmol, 2.2 equiv) was added slowly under N₂ and the mixture was stirred at 0 °C for 20 min. (Chloromethyl)trimethylsilane (1.35 g, 11 mmol, 2.2 equiv) and K₂CO₃ (0.69 g, 5 mmol, 1.0 equiv) were added and the reaction was heated to 50 °C for 4 h. Then the reaction was filtered and concentrated in vacuo. The resulting mixture was purified by column chromatography (PE/EA, 5:1 to 2:1) to give **Seleno-SLAP 5** as yellow oil (1.92 g, 68%). ¹H NMR (400 MHz, CDCl₃) δ 3.70 (s, 3H), 3.56 (dd, *J* = 8.1, 5.0 Hz, 1H), 2.69 – 2.56 (m, 2H), 2.12 – 2.01 (m, 1H), 1.90 – 1.80 (m, 1H), 1.70 (d, *J* = 1.1 Hz, 2H), 1.54 (s, 2H), 0.07 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 54.4, 52.2, 35.1, 22.6, 8.8, -1.2. ESI-HRMS calcd for C₉H₂₂NO₂SeSi [M + H] 284.0580, found 284.0587.

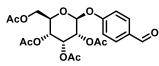
4. Synthesis of aldehydes

4-(Prop-2-yn-1-yloxy)benzaldehyde (20). To a solution of 4-hydroxybenzaldehyde (0.25 g, 2 mmol, 1.0 equiv) and anhydrous K_2CO_3 (0.28 g, 2 mmol, 1.0 equiv) in 10 mL acetone was added propargyl bromide (0.36 g, 3 mmol, 1.5 equiv). The resulting mixture was heated under reflux for 6 h, then the remaining solution was filtered and washed with acetone. After concentration, the residue was purified by column chromatography (PE/EA, 10:1) to give **20** as a white solid (0.27 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.90 – 7.83 (m, 2H), 7.12 – 7.06 (m, 2H), 4.78 (d, J = 2.4 Hz, 2H), 2.57 (t, J = 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 190.9, 162.5, 132.0, 130.7, 115.3, 77.7, 76.5, 56.1. Spectral data matches with the literature data.⁴

Aryl Fluorosulfonates are synthesized followed the reported method.

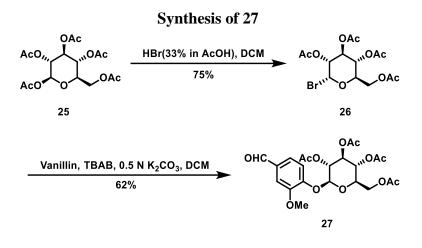
<u>General procedure</u>: In a 25 mL flask equipped with a stirring bar, phenol **21** (2 mmol, 1.0 equiv) and triethylamine were dissolved in 10 mL DCM. SO_2F_2 was introduced by bubbling through the solution. The reaction was stirred for 4-12 h at room temperature before concentrating under vacuum. The residue was purified by column chromatography to give pure products.

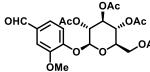

4-Formylphenyl sulfurofluoridate (22a). Colorless yellow oil, сно 0.39 g, 95%. ¹H NMR (600 MHz, CDCl₃) δ 10.05 (s, 1H), 8.05 – FO₂SO² 8.00 (m, 2H), 7.55 – 7.50 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 190.2, 153.6, 136.2, 132.0, 121.9. ¹⁹F NMR (376 MHz, CDCl₃) δ 39.1.



3-Formylphenyl sulfurofluoridate (22b). Light yellow oil, 0.37 g, 90%. ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.95 (dt, J = 7.5, 1.3 Hz, 1H), 7.86 (dt, J = 2.4, 1.1 Hz, 1H), 7.70 (t, J = 7.9 Hz, 1H), 7.61 (ddt, J = 8.2, 2.2, 1.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 189.9, 150.6, 138.6, 131.5, 130.2, 126.8, 121.3. ¹⁹F NMR (376 MHz, CDCl₃) δ 38.5.

4-Formyl-2-methoxyphenyl sulfurofluoridate (22c). White solid, сно 0.38 g, 82%.¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.58 (d, J = 1.5 Hz, 1H), 7.55 - 7.49 (m, 2H), 4.00 (s, 3H). ¹³C NMR (101) FO₂S MHz, CDCl₃) δ 190.4, 152.2, 142.9, 137.2, 124.1, 123.3, 112.2, 56.7. 19 F NMR (376 MHz, CDCl₃) δ 41.0. Spectral data matches with the literature data.⁵


Synthesis of 24


(2R,3R,4R,5R,6S)-2-(acetoxymethyl)-6-(4-formylphen oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (24). To a solution of helicid 23 (1.0 g, 3.5 mmol, 1.0 equiv) in dry DMF (8 mL) were added acetic anhydride (1.79 g, 17.5

mmol, 5.0 equiv) and triethylamine (1.48 g, 14.7 mmol, 4.2 equiv) under stirring at 0 °C. The resulting mixture was stirred for 2 h at 0 °C, then for 12 h at room temperature. The reaction mixture was diluted with water and extracted with EA. The combined organic phase was washed with brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure to give light yellow solid. The crude product was recrystallized in ethanol to yield 24 as white solid (1.03 g, 65%). ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 7.89 – 7.81 (m, 2H), 7.16 – 7.09 (m, 2H), 5.75 (t, *J* = 3.0 Hz, 1H), 5.47 (d, *J* = 8.1 Hz, 1H), 5.19 (dd, J = 8.1, 3.1 Hz, 1H), 5.05 (dd, J = 9.8, 2.8 Hz, 1H), 4.33 – 4.19 (m, 3H), 2.17 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) § 191.2, 170.8, 170.6, 170.5, 169.8, 161.7, 132.3, 117.2, 99.0, 71.8, 71.1, 68.8, 67.2, 61.8, 21.2, 21.1, 21.0. Spectral data matches with the literature data.⁶

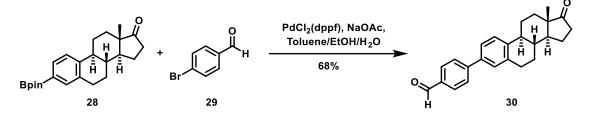
(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-bromotetrahydro-2*H*pyran-3,4,5-triyl triacetate(26). To the solution of β -D-Glucose pentaacetate (3.90 g, 10 mmol, 1.0 equiv) in anhydrous DCM (30 mL) was added HBr (33% w/w in acetic acid, 20 mL) dropwise under N₂

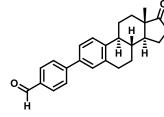
at 0 °C. The reaction was warmed to room temperature and stirred overnight. The reaction mixture was neutralized by saturated NaHCO₃ solution and product was extracted with EA, dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography (PE/EA 3:1) to give pure product **26** (3.08 g, 75%) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 6.60 (d, J = 4.2 Hz, 1H), 5.56 (t, J = 9.9 Hz, 1H), 5.16 (t, J = 9.9 Hz, 1H), 4.84 (dd, J = 10.0, 4.2 Hz, 1H), 4.34 – 4.29 (m, 2H), 4.14 – 4.10 (m, 1H), 2.10 (s, 3H), 2.09 (s, 3H), 2.05 (s, 3H), 2.03 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 170.0, 169.9, 169.6, 86.7, 72.3, 70.7, 70.3, 67.3, 61.1, 20.8, 20.8, 20.8, 20.7. Spectral data matches with the literature data.⁷

OAc

AcO,

Br

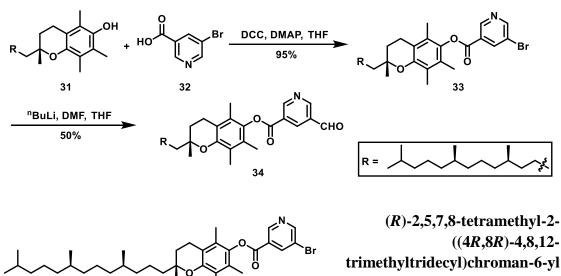

"OAc


.OAc

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(acetoxymethyl)-6-(4-formyl-2-meth oxyphenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (27). Vanillin (0.46 g, 3 mmol, 1.0 equiv), bromide 26 (1.85 g, 4.5 mmol, 1.5 equiv) and tetrabutylammonium bromide

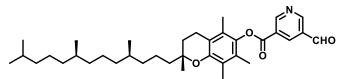
(0.48 g, 1.5 mmol, 0.5 equiv) were dissolved in dichloromethane (10 mL). Potassium carbonate solution (0.5 N, 10 mL) was added and the mixture was stirred vigorously for 3h at 45 °C. Ethyl acetate (30 mL) was added, and the organic phase was washed subsequently three times with water, brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified twice by crystallization from ethanol to yield **27** as a white solid (0.90 g, 62%). ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 7.45 – 7.39 (m, 2H), 7.21 (d, *J* = 7.9 Hz, 1H), 5.33 – 5.29 (m, 2H), 5.20 – 5.14 (m, 1H), 5.12 – 5.09 (m, 1H), 4.27 (dd, *J* = 12.3, 5.2 Hz, 1H), 4.18 (dd, *J* = 12.3, 2.6 Hz, 1H), 3.89 (s, 3H), 3.85 (ddd, *J* = 10.0, 5.1, 2.6 Hz, 1H), 2.07 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 2.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.0, 170.6, 170.4, 169.5, 169.4, 151.2, 151.1, 133.0, 125.5, 118.3, 110.9, 99.9, 72.5, 72.4, 71.2, 68.4, 62.0, 56.3, 20.8, 20.7, 20.7. Spectral data matches with the literature data.⁸

Synthesis of 30



4-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14, 15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl) benzaldehyde (30). To a 35 mL of sealed tube were added estrone boronic ester⁹ (1.14 g, 3 mmol, 1.0 equiv), 4bromobenzaldehyde (0.56 g, 3 mmol, 1.0 equiv), NaOAc (0.74 g, 9 mmol, 3.0 equiv), and Pd(dppf)Cl₂ (88 mg, 0.12 mmol, 0.04 equiv) under N₂, followed by

toluene:EtOH:H₂O (15 mL) with stirring. The sealed tube was screw capped and heated to 100 °C (oil bath). After stirring for 8 h, the reaction mixture was cooled to room temperature, filtered through a pad of celite and concentrated. The residue was purified by column chromatography to give **30** as yellow solid (0.73 g, 68%). ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.47 – 7.37 (m, 3H), 3.05 – 2.98 (m, 2H), 2.58 – 2.45 (m, 2H), 2.37 (td, *J* = 10.9, 3.8 Hz, 1H), 2.23 – 1.97 (m, 4H), 1.72 – 1.63 (m, 2H), 1.61 – 1.47 (m, 4H), 0.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.8, 192.0, 147.2, 140.5, 137.4, 137.3, 135.2, 130.4, 128.1, 127.6, 126.3, 124.9, 50.7, 48.1, 44.6, 38.3, 36.0, 31.7, 29.7, 26.6, 25.9, 21.7, 14.0. ESI-HRMS calcd for C₂₅H₂₆NaO₂ [M + Na] 381.1825, found 381.1829.


Synthesis of 34

5-bromonicotinate (33). To a

solution of vitamin E 31 (2.15 g, 5 mmol, 1.0 equiv) in dry THF (25 mL) were added 5-

bromo-nicotinic acid (1.11 g, 5.5 mmol, 1.1 equiv), DCC (1.24 g, 6.0 mmol, 1.2 equiv) and DMAP (0.06 g, 0.5 mmol, 0.1 equiv). The resulting mixture was filtered and washed with THF. The solvent was removed under reduced pressure and the residue was purified by column chromatography to give **33** as yellow oil (2.92 g, 95%). ¹H NMR (400 MHz, CDCl₃) δ 9.35 (d, *J* = 1.8 Hz, 1H), 8.93 (d, *J* = 2.3 Hz, 1H), 8.62 (t, *J* = 2.1 Hz, 1H), 2.63 (t, *J* = 6.8 Hz, 2H), 2.13 (s, 3H), 2.06 (s, 3H), 2.01 (s, 3H), 1.83 (dq, *J* = 14.4, 6.9 Hz, 2H), 1.59 – 1.10 (m, 24H), 0.87 (t, *J* = 6.6 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 155.1, 150.0, 149.4, 140.3, 140.1, 127.1, 126.7, 125.0, 123.5, 121.0, 117.8, 75.4, 37.7 – 37.4 (m), 33.0 – 32.8 (m), 28.1, 25.0, 25.0, 24.6, 22.9, 22.8, 21.2, 20.8, 20.0 – 19.7 (m), 13.2, 12.4, 12.0. ESI-HRMS calcd for C₃₅H₅₂BrNNaO₃ [M + Na] 636.3023, found 636.3025.

(*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12trimethyltridecyl)chroman-6-yl 5-formylnicotinate (34). To a

solution of **33** (1.85 g, 3 mmol, 1.0 equiv) in dry THF (30 mL) at -110 °C was added ⁿBuLi 1.6 M in hexanes (1.97 mL, 3.15 mmol, 1.05 equiv) dropwise. After 5 min, dry DMF (0.47 mL, 6 mmol, 2 equiv) was added and stirred for another 30 min. The resulting mixture was quenched and extracted with EA. The solvent was removed under reduced pressure and the residue was purified by column chromatography to give **34** as yellow solid (0.85 g, 50%). ¹H NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 9.64 (d, *J* = 2.1 Hz, 1H), 9.33 (d, *J* = 2.1 Hz, 1H), 8.93 (t, *J* = 2.1 Hz, 1H), 2.63 (t, *J* = 6.8 Hz, 2H), 2.13 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H), 1.83 (dd, *J* = 14.2, 7.1 Hz, 2H), 1.45 – 1.11 (m, 24H), 0.86 (t, *J* = 6.6 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 189.9, 163.0, 155.8, 155.1, 150.0, 140.3, 137.9, 131.4, 126.7, 126.5, 125.0, 123.6, 117.9, 75.4, 39.5, 37.7 – 37.4 (m), 33.0 – 32.8 (m), 28.1, 25.0, 25.0, 24.6, 22.9, 22.8, 21.2, 20.8, 20.0 – 19.7 (m), 13.3, 12.4, 12.0. ESI-HRMS calcd for C₃₆H₅₃NNaO4 [M + Na] 586.3867, found 586.3846.

5. Synthesis of Selenomorpholines and 1,4-selenazepanes

General procedure for imine formation:

To a 10 mL oven-dried tube were added SLAP reagent (0.25 mmol, 1.00 equiv), the corresponding aldehyde (0.25 mmol, 1.00 equiv) and MS 4Å (ca. 100 mg/mmol). The tube was sealed with rubber stopper, exchanged the gas using N_2 for 3 times and then dry DCM (1.5 mL) was added. The reaction mixture was stirred at room temperature for 12 h and filtered through a HPLC filter. The filtrate was concentrated under reduced pressure to afford the imine and used directly for photo-cyclization.

General procedure for ketimine formation:

To a 10 mL oven-dried tube were added SLAP reagent (0.25 mmol, 1.00 equiv), the corresponding ketone (0.25 mmol, 1.00 equiv) and titanium(IV) isopropoxide (0.11 mL, 1.50 equiv). The tube was sealed with rubber stopper, exchanged the gas using N_2 for 3 times and then dry DCM (1.0 mL) was added. The reaction mixture was stirred at room temperature for 12 h and concentrated under reduced pressure to afford the ketimine and used directly for photo-cyclization.

General procedure for photo-cyclization:

To a solution of the corresponding imine or ketimine (0.25 mmol, 1.00 equiv) in dry MeCN (2.5 mL, 0.05 M), Cu(OTf)₂ (90.4 mg, 0.25 mmol, 1.00 equiv), In(OTf)₃ (0.5 equiv or 2.0 equiv), and Ir[(ppy)₂dtbbpy]PF₆ (2.3 mg, 2.50 μ mol, 0.01 equiv) were added. For the N-containing heterocyclic aldehydes, additional BF₃•MeCN (0.2 mL/equiv, N+1 equiv) was added to the reaction. The reaction was stirred for 24 (for selenomorpholines synthesis) or 48 h (for 1,4-selenazepanes synthesis) at room temperature under the exposure of blue LEDs (30 W) with a cooling fan to maintain the temperature. NH₄OH (2 mL) was added and the mixture was extracted with DCM (10 mL x 3). The combined organic layers were washed with brine (5 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography to afford the desired product.

F₂C

3-(4-(Trifluoromethyl)phenyl)selenomorpholine (3a). Purification by flash column chromatography (PE/EA, 2:1) afforded **3a** (41 mg, 56% yield) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.1 Hz, 2H), 7.48 (d, *J* = 8.1 Hz, 2H), 4.08 (d, *J* = 10.6 Hz, 1H), 3.63

(dt, J = 12.6, 3.4 Hz, 1H), 3.28 (td, J = 12.4, 2.1 Hz, 1H), 3.05 – 2.87 (m, 2H), 2.44 (d, J = 12.2 Hz, 2H), 1.73 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 130.0 (q, J = 32.4 Hz), 126.9, 125.8 (q, J = 3.8 Hz), 124.2 (q, J = 272.0 Hz), 63.2, 50.0, 24.7, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5. Spectral data matches with the literature data.²

3-(4-Fluoro-2-methylphenyl)selenomorpholine (3b). Purification by flash column chromatography (PE/EA, 3:1) afforded **3b** (27 mg, 41% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, *J* = 8.5, 6.0 Hz, 1H), 6.96 – 6.81 (m, 2H), 4.16 (dd, *J* = 10.8, 2.1 Hz, 1H), 3.63

(dt, J = 12.6, 3.1 Hz, 1H), 3.27 (td, J = 12.3, 2.3 Hz, 1H), 2.99 (td, J = 12.1, 3.1 Hz, 1H), 2.89 (dd, J = 12.0, 10.7 Hz, 1H), 2.50 – 2.32 (m, 5H), 1.64 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.7 (d, J = 245.3 Hz), 139.1 (d, J = 3.2 Hz), 137.2 (d, J = 7.6 Hz), 127.2 (d, J = 8.3 Hz), 117.1 (d, J = 20.9 Hz), 113.1 (d, J = 20.6 Hz), 58.9, 50.5, 23.9, 19.5 (d, J = 1.7 Hz), 18.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.0. ESI-HRMS calcd for C₁₁H₁₅FNSe [M + H] 260.0348, found 260.0351.

3-(3-(Trifluoromethyl)phenyl)selenomorpholine (3c). Purification by flash column chromatography (PE/EA, 3:1) afforded **3c** (38 mg, 52% yield) as light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.64 (s, 1H), 7.54 (t, *J* = 8.0 Hz, 2H), 7.45 (t, *J* = 7.7 Hz, 1H), 4.09 (dd, *J* = 10.9, 2.2 Hz, 1H), 3.63 (dt, *J* = 12.5, 3.2 Hz, 1H), 3.28 (td, *J* = 12.4, 2.2 Hz, 1H), 3.00 (td, *J*

= 12.1, 3.1 Hz, 1H), 2.95 (dd, J = 12.1, 10.9 Hz, 1H), 2.48 – 2.42 (m, 2H), 1.77 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 146.1, 131.2 (q, J = 32.3 Hz), 130.1, 129.3, 124.7 (q, J = 3.8 Hz), 124.2 (q, J = 271.6 Hz), 123.4 (q, J = 3.8 Hz), 63.2, 50.0, 24.8, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. ESI-HRMS calcd for C₁₁H₁₃F₃NSe [M + H] 296.0160, found 296.0169.

3-(3-Methoxyphenyl)selenomorpholine (3d). Purification by flash column chromatography (PE/EA, 3:1) afforded **3d** (27 mg, 42% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 1H), 6.97 – 6.89 (m, 2H), 6.81 (ddd, J = 8.3, 2.5, 1.0 Hz, 1H), 3.99 (dd, J = 10.9, 2.0 Hz, 1H), 3.80 (s, 3H), 3.61 (dt, J = 12.5, 3.3 Hz, 1H), 3.26 (td, J = 12.3,

2.2 Hz, 1H), 3.04 – 2.93 (m, 2H), 2.49 – 2.39 (m, 2H), 1.78 (s, 1H). 13 C NMR (101 MHz, CDCl₃) δ 160.0, 146.8, 129.8, 118.9, 113.3, 111.9, 63.7, 55.4, 50.2, 24.9, 18.3. ESI-HRMS calcd for C₁₁H₁₆NOSe [M + H] 258.0392, found 258.0400.

3-(2-Fluoro-6-methoxyphenyl)selenomorpholine (3e). Purification by flash column chromatography (PE/EA, 3:1) afforded **3e** (14 mg, 20% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.11 (m, 1H), 6.69 – 6.63 (m, 2H), 4.65 (dd, J = 11.4, 2.5 Hz, 1H), 3.84 (s, 3H), 3.70 –

3.63 (m, 1H), 3.32 - 3.21 (m, 2H), 2.81 (td, J = 12.4, 3.2 Hz, 1H), 2.38 - 2.29 (m, 2H), 2.04 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.0 (d, J = 244.1 Hz), 158.0 (d, J = 8.5 Hz), 128.7 (d, J = 11.1 Hz), 119.9 (d, J = 17.1 Hz), 108.8 (d, J = 24.2 Hz), 106.9 (d, J = 2.7 Hz), 56.0, 53.8 (d, J = 2.9 Hz), 49.3, 20.3 (d, J = 1.7 Hz), 17.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.3. ESI-HRMS calcd for C₁₁H₁₄FNNaOSe [M + Na] 298.0117, found 298.0127.

3-(2-(Difluoromethoxy)phenyl)selenomorpholine (3f). Purification by flash column chromatography (PE/EA, 3:1) afforded **3f** (26 mg, 36% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, *J* = 7.6, 1.9 Hz, 1H), 7.29 – 7.24 (m, 1H), 7.21 (td, *J* = 7.5, 1.4 Hz, 1H), 7.10 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.57 (t, *J* = 73.7 Hz, 1H), 4.40 (dd, *J* = 10.9, 2.2 Hz, 1H),

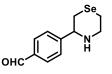
3.61 (dt, J = 12.8, 3.0 Hz, 1H), 3.29 (td, J = 12.5, 2.2 Hz, 1H), 3.02 - 2.89 (m, 2H),

2.51 – 2.39 (m, 2H), 1.69 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 136.4, 128.7, 127.6, 126.1, 119.1, 116.3 (t, *J* = 260.2 Hz), 56.4, 50.1, 23.3, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.3 (d, *J* = 6.8 Hz). ESI-HRMS calcd for C₁₁H₁₄F₂NOSe [M + H] 294.0203, found 294.0214.

 $\begin{array}{c} \textbf{3g.}\\ \textbf{3g.}\\ \textbf{3g.}\\ \textbf{4e.} (\textbf{Trifluoromethoxy)phenyl)selenomorpholine}\\ \textbf{3g.}\\ \textbf{3g.}\\ \textbf{4e.} (\textbf{3g.}, \textbf{5g.})\\ \textbf{3g.}\\ \textbf{3g.} (46 \text{ mg.} 59\% \text{ yield}) \text{ as colorless oil. }^{1}\text{H NMR (400 MHz, CDCl_3)}\\ \textbf{3g.}\\ \textbf{3g.} (46 \text{ mg.} 59\% \text{ yield}) \text{ as colorless oil. }^{1}\text{H NMR (400 MHz, CDCl_3)}\\ \textbf{57.41-7.36 (m., 2H), 7.21-7.14 (m., 2H), 4.02 (dd, J = 10.9, 1.9)}\\ \textbf{Hz, 1H}), \textbf{3.61 (dt, J = 12.7, 3.3 \text{ Hz, 1H}), 3.26 (td, J = 12.4, 2.1 \text{ Hz, 1H}), 3.03-2.89 (m., 2H), 2.50-2.37 (m. 2H), 1.75 (s. 1H). \\^{13}\text{C NMR (101 MHz, CDCl_3)} \textbf{5 148.6 (q, J = 1.8)}\\ \textbf{Hz}), 143.9, 127.9, 121.3, 120.6 (q, J = 257.0 \text{ Hz}), 62.9, 50.1, 24.8, 18.3. \\^{19}\text{F NMR (376 MHz, CDCl_3)} \textbf{57.9}. \\ \textbf{Spectral data matches with the literature data.}^{2} \end{array}$

Set 3-(2-(Trifluoromethoxy)phenyl)selenomorpholine (3h). Purification by flash column chromatography (PE/EA, 3:1) afforded 3h (30 mg, 39% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 1H), 7.31 – 7.27 (m, 2H), 7.25 – 7.20 (m, 1H), 4.39 (dd, J = 10.9, 2.1 Hz, 1H), 3.64 – 3.57 (m, 1H), 3.29 (td, J = 12.4, 2.2 Hz, 1H), 3.04 – 2.89 (m, 2H), 2.48 – 2.38 (m, 2H), 1.71 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.1 (q, J = 1.6 Hz), 137.2, 128.8, 127.9, 127.5, 120.8 (q, J = 1.6 Hz), 120.6 (q, J = 257.6 Hz), 56.1, 50.2, 23.5, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -57.1. ESI-HRMS calcd for C₁₁H₁₃F₃NOSe [M + H] 312.0109, found 312.0112.

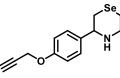
F Se


3-(4-Fluorophenyl)selenomorpholine (3i). Purification by flash column chromatography (PE/EA, 2:1) afforded **3i** (34 mg, 55% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 7.04 – 6.97 (m, 2H), 3.99 (dd, *J* = 10.9, 2.0 Hz, 1H), 3.61 (dt, *J* = 12.0, 3.2

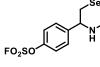
Hz, 1H), 3.26 (td, J = 12.3, 2.2 Hz, 1H), 3.02 - 2.89 (m, 2H), 2.48 - 2.35 (m, 2H), 1.75 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, J = 245.8 Hz), 141.0 (d, J = 3.0 Hz), 128.1 (d, J = 8.0 Hz), 115.5 (d, J = 21.1 Hz), 62.9, 50.2, 25.0, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.7. Spectral data matches with the literature data.²

3-(2-Chlorophenyl)selenomorpholine (3j). Purification by flash column chromatography (PE/EA, 3:1) afforded **3j** (26 mg, 40% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.35 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.26 (td, *J* = 7.5, 1.4 Hz, 1H), 7.20 (td, *J* = 7.6, 1.8

Hz, 1H), 4.47 (dd, J = 10.7, 2.2 Hz, 1H), 3.64 (dt, J = 12.6, 3.2 Hz, 1H), 3.32 (td, J = 12.3, 2.2 Hz, 1H), 3.00 (td, J = 12.1, 3.1 Hz, 1H), 2.91 – 2.81 (m, 1H), 2.57 (d, J = 11.9 Hz, 1H), 2.48 – 2.42 (m, 1H), 1.73 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 132.7, 129.8, 128.6, 127.5, 127.2, 59.3, 50.3, 23.2, 18.4. ESI-HRMS calcd for C₁₀H₁₃ClNSe [M + H] 261.9894, found 261.9873.


4-(Selenomorpholin-3-yl)benzaldehyde (3k). Purification by flash column chromatography (PE/EA, 3:1) afforded **3k** (32 mg, 50% yield) as light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.85 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 4.11 (dd, *J* =

10.9, 2.0 Hz, 1H), 3.64 (dt, J = 12.9, 3.1 Hz, 1H), 3.28 (td, J = 12.3, 2.2 Hz, 1H), 3.06 – 2.90 (m, 2H), 2.50 – 2.41 (m, 2H), 1.76 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 151.7, 136.0, 130.4, 127.3, 63.4, 49.9, 24.6, 18.3. ESI-HRMS calcd for C₁₁H₁₄NOSe [M + H] 256.0235, found 256.0240.


3-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)seleno morpholine (3l). Purification by flash column chromatography (PE/EA, 4:1) afforded 3l (35 mg, 40% yield) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz,

2H), 4.02 (dd, J = 10.9, 1.9 Hz, 1H), 3.61 (dt, J = 12.6, 3.0 Hz, 1H), 3.26 (td, J = 12.3, 2.2 Hz, 1H), 3.04 – 2.91 (m, 2H), 2.47 – 2.37 (m, 2H), 1.88 (s, 1H), 1.33 (s, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 135.3, 125.9, 83.9, 63.7, 50.1, 25.0, 25.0, 24.8, 18.2. ESI-HRMS calcd for C₁₆H₂₅BNO₂Se [M + H] 354.1142, found 354.1156.

3-(4-(Prop-2-yn-1-yloxy)phenyl)selenomorpholine (3m). Purification by flash column chromatography (PE/EA, 3:1) afforded **3m** (25 mg, 35% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.7 Hz, 2H),

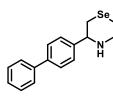
4.68 (d, J = 2.4 Hz, 2H), 3.96 (dd, J = 11.0, 2.1 Hz, 1H), 3.61 (dt, J = 12.6, 3.2 Hz, 1H), 3.26 (td, J = 12.3, 2.2 Hz, 1H), 3.04 – 2.91 (m, 2H), 2.51 (t, J = 2.4 Hz, 1H), 2.45 – 2.38 (m, 2H), 1.85 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.1, 138.5, 127.7, 115.1, 78.7, 75.7, 63.0, 56.0, 50.3, 25.0, 18.3. ESI-HRMS calcd for C₁₃H₁₆NOSe [M + H] 282.0392, found 282.0403.

4-(Selenomorpholin-3-yl)phenyl sulfurofluoridate (3n). Purification by flash column chromatography (PE/EA, 3:1) afforded **3n** (46 mg, 56% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 2H), 7.33 – 7.28 (m, 2H), 4.06 (dd, *J* = 11.0,

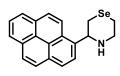
2.1 Hz, 1H), 3.62 (dt, J = 12.4, 3.3 Hz, 1H), 3.27 (td, J = 12.3, 2.2 Hz, 1H), 2.99 (td, J = 12.1, 3.1 Hz, 1H), 2.91 (dd, J = 12.1, 10.9 Hz, 1H), 2.50 – 2.37 (m, 2H), 1.71 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.3, 146.0, 128.6, 121.2, 62.8, 50.0, 24.8, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ 37.6. ESI-HRMS calcd for C₁₀H₁₃FNO₃SSe [M + H] 325.9760, found 325.9745.

FO₂SO OCH₃

2-Methoxy-4-(selenomorpholin-3-yl)phenyl sulfurofluoridate (**30).** Purification by flash column chromatography (PE/EA, 3:1) afforded **30** (36 mg, 40% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.24 (m, 1H), 7.09 (d, *J* = 1.8 Hz, 1H), 6.96 (dd, *J* = 8.4, 2.0 Hz, 1H), 4.03 (dd, *J* = 10.9, 2.1 Hz, 1H), 3.92 (s,


3H), 3.62 (dt, *J* = 12.6, 3.3 Hz, 1H), 3.26 (td, *J* = 12.3, 2.2 Hz, 1H), 2.99 (td, *J* = 12.2,

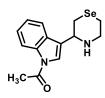
3.1 Hz, 1H), 2.91 (dd, J = 12.2, 10.9 Hz, 1H), 2.49 – 2.38 (m, 2H), 1.77 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.4, 147.2, 138.2, 122.5, 118.9, 111.5, 63.3, 56.4, 50.0, 24.9, 18.2. ¹⁹F NMR (376 MHz, CDCl₃) δ 39.7. ESI-HRMS calcd for C₁₁H₁₅FNO₄SSe [M + H] 355.9865, found 355.9874.


3-(Selenomorpholin-3-yl)phenyl sulfurofluoridate (3p). Purification by flash column chromatography (PE/EA, 3:1) afforded **3p** (41 mg, 50% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 3H), 7.26 – 7.23 (m, 1H), 4.08 (dd, *J* = 10.9, 2.0 Hz, 1H), 3.63 (dt, *J* = 12.6, 3.1 Hz, 1H), 3.27 (td, *J* = 12.4, 2.2 Hz, 1H), 2.99 (td, *J* = 12.1, 3.1

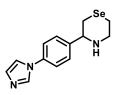
Hz, 1H), 2.94 - 2.87 (m, 1H), 2.51 - 2.38 (m, 2H), 1.74 (s, 1H), 13 C NMR (101 MHz, CDCl₃) δ 150.4, 148.4, 130.7, 126.9, 120.1, 119.0, 62.8, 49.9, 24.7, 18.3. ¹⁹F NMR (376 MHz, CDCl₃) δ 37.9. ESI-HRMS calcd for C₁₀H₁₃FNO₃SSe [M + H] 325.9760, found 325.9745.

3-([1,1'-Biphenyl]-4-yl)selenomorpholine (3q). Purification by flash column chromatography (PE/EA, 3:1) afforded **3q** (46 mg, 61% yield) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 4H), 7.47 – 7.40 (m, 4H), 7.39 – 7.31 (m, 1H), 4.06 (dd, *J* = 11.0, 2.2 Hz, 1H), 3.64 (dt, *J* = 12.6, 3.2 Hz, 1H), 3.30 (td, *J* = 12.3, 2.3

Hz, 1H), 3.02 (td, J = 12.2, 11.7, 2.5 Hz, 2H), 2.55 – 2.39 (m, 2H), 1.84 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 140.8, 140.7, 128.9, 127.5, 127.4, 127.2, 127.0, 63.3, 50.2, 24.9, 18.3. ESI-HRMS calcd for C₁₆H₁₈NSe [M + H] 304.0599, found 304.0606.


3-(Pyren-1-yl)selenomorpholine (**3r**). Purification by flash column chromatography (PE/EA, 3:1) afforded **3r** (32 mg, 36% yield) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 9.4 Hz, 1H), 8.25 – 8.12 (m, 5H), 8.08 – 7.98 (m, 3H), 5.11 (dd, *J* =

10.8, 2.2 Hz, 1H), 3.79 (dt, J = 12.5, 3.1 Hz, 1H), 3.51 (td, J = 12.3, 2.3 Hz, 1H), 3.26 (dd, J = 12.0, 10.9 Hz, 1H), 3.17 (td, J = 12.1, 3.2 Hz, 1H), 2.72 (d, J = 12.1 Hz, 1H), 2.57 (dt, J = 12.4, 3.3 Hz, 1H), 1.91 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.6, 131.5, 130.8, 128.0, 127.7, 127.6, 127.4, 126.1, 125.4, 125.4, 125.2, 125.1, 123.5, 122.5, 59.9, 50.8, 24.8, 18.7. Spectral data matches with the literature data.²


3-(Quinolin-4-yl)selenomorpholine (3s). Purification by flash column chromatography (DCM/EA/MeOH, 10:10:1) afforded **3s** (40 mg, 57% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, *J* = 4.5 Hz, 1H), 8.15 (t, *J* = 8.8 Hz, 2H), 7.73 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.59

(ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.55 (d, J = 4.5 Hz, 1H), 4.82 (dd, J = 10.7, 1.8 Hz, 1H), 3.73 (dt, J = 12.7, 3.1 Hz, 1H), 3.40 (td, J = 12.4, 2.3 Hz, 1H), 3.08 (td, J = 12.1, 3.2 Hz, 1H), 3.00 (dd, J = 12.2, 10.8 Hz, 1H), 2.65 (dt, J = 12.3, 1.8 Hz, 1H), 2.55 – 2.49 (m, 1H), 1.86 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 150.0, 148.7, 130.7, 129.4, 126.9, 125.7, 122.9, 117.4, 58.5, 50.3, 24.1, 18.7. ESI-LRMS: [M+H]⁺ 279.15.

1-(3-(Selenomorpholin-3-yl)-1*H***-indol-1-yl)ethan-1-one (3t).** Purification by flash column chromatography (PE/EA, 3:1) afforded **3t** (46 mg, 60% yield) as brown oil. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 7.5 Hz, 1H), 7.41 – 7.33 (m, 2H), 7.29 (td, *J* = 7.6, 1.1 Hz, 1H), 4.34 (dd, *J* = 10.8, 1.7 Hz, 1H), 3.65 (dt,

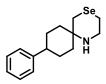
J = 12.6, 3.1 Hz, 1H), 3.32 (td, J = 12.4, 2.2 Hz, 1H), 3.07 - 2.94 (m, 2H), 2.67 (dt, J = 12.1, 1.7 Hz, 1H), 2.59 (s, 3H), 2.52 - 2.46 (m, 1H), 1.95 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 136.0, 128.6, 126.6, 125.7, 123.7, 121.1, 119.2, 117.0, 55.2, 50.1, 24.1, 18.6. ESI-HRMS calcd for C₁₄H₁₇N₂OSe [M + H] 309.0501, found 309.0487.

3-(4-(1*H***-imidazol-1-yl)phenyl)selenomorpholine (3u).** Purification by flash column chromatography (DCM/EA/MeOH, 5:5:1) afforded **3u** (45 mg, 62% yield) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (t, J = 1.1 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.39 – 7.32 (m, 2H), 7.27 – 7.25 (m, 1H), 7.20 (t, J = 1.2 Hz, 1H), 4.07 (dd,

J = 10.9, 2.2 Hz, 1H), 3.64 (dt, J = 12.8, 3.2 Hz, 1H), 3.29 (td, J = 12.3, 2.3 Hz, 1H), 3.04 – 2.92 (m, 2H), 2.51 – 2.41 (m, 2H), 1.83 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 136.8, 135.7, 130.6, 128.1, 121.8, 118.3, 62.9, 50.1, 24.8, 18.3. ESI-HRMS calcd for C₁₃H₁₆N₃Se [M + H] 294.0504, found 294.0517.

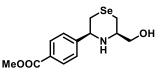
2-Methyl-5-(selenomorpholin-3-yl)thiazole (3v). Purification by flash column chromatography (DCM/EA/MeOH, 10:10:1) afforded **3v** (40 mg, 65% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 4.31 (dd, *J* = 10.6, 2.2 Hz, 1H), 3.59 (dt, *J* = 12.9, 3.2 Hz, 1H), 3.30

-3.20 (m, 1H), 2.92 (td, J = 12.0, 3.6 Hz, 2H), 2.66 (s, 3H), 2.61 -2.55 (m, 1H), 2.45 -2.38 (m, 1H), 1.79 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 165.5, 142.6, 138.2, 56.1, 49.6, 25.1, 19.5, 18.2. ESI-LRMS: [M+H]⁺249.15.

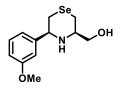

3-(5-Bromofuran-2-yl)selenomorpholine (**3w**). Purification by flash column chromatography (PE/EA, 3:1) afforded **3w** (39 mg, 53% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.23 (d, *J* = 3.3 Hz, 1H), 6.17 (dd, *J* = 3.3, 0.8 Hz, 1H), 4.12 (dd, *J* = 10.6, 2.1 Hz, 1H), 3.58 (dt, *J* = 13.0, 3.3 Hz, 1H), 3.28 – 3.18 (m, 1H), 2.98 – 2.83 (m, 2H), 2.68 – 2.61 (m, 1H), 2.45 – 2.39 (m, 1H), 1.74 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 120.9, 111.9, 107.7, 55.8, 48.9, 21.2, 18.3. ESI-HRMS calcd for C₈H₁₁BrNOSe [M + H] 295.9180, found 295.9181.

3-(Thiophen-3-yl)selenomorpholine (3x). Purification by flash column chromatography (PE/EA, 3:1) afforded **3x** (26 mg, 45% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.21 – 7.16 (m, 1H), 7.07 (dd, *J* = 5.0, 1.1 Hz, 1H), 4.15 (dd, *J* = 10.9, 2.2

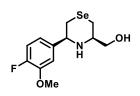
Hz, 1H), 3.61 (dt, J = 12.7, 3.2 Hz, 1H), 3.25 (td, J = 12.4, 2.3 Hz, 1H), 3.01 – 2.88 (m, 2H), 2.53 (d, J = 12.0 Hz, 1H), 2.42 (d, J = 12.1 Hz, 1H), 1.76 (s, 1H). ¹³C NMR (101


MHz, CDCl₃) δ 146.2, 126.1, 126.0, 120.5, 58.9, 50.0, 24.5, 18.3. Spectral data matches with the literature data.²

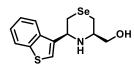
Set N **3-(5-Chlorothiophen-2-yl)selenomorpholine (3y).** Purification by flash column chromatography (PE/EA, 3:1) afforded **3y** (34 mg, 51% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.78 – 6.68 (m, 2H), 4.21 (dd, J = 10.6, 2.1 Hz, 1H), 3.59 (dt, J = 12.9, 3.2 Hz, 1H), 3.29 – 3.18 (m, 1H), 2.95 – 2.83 (m, 2H), 2.63 – 2.52 (m, 1H), 2.45 – 2.34 (m, 1H), 1.81 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 128.8, 125.6, 122.5, 58.5, 49.6, 25.0, 18.2. ESI-HRMS calcd for C₈H₁₁CINSSe 44 267.9457, found 267.9448.


9-Phenyl-4-selena-1-azaspiro[**5.5**]**undecane** (**3z**). Purification by flash column chromatography (PE/EA, 4:1) afforded **3z** (13 mg, 18% yield) as light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.24 (d, *J* = 7.0 Hz, 2H), 7.18 (t, *J* = 7.1 Hz, 1H), 3.22 – 3.16 (m, 2H), 2.53 (q, *J* = 7.5, 6.4 Hz, 5H), 2.33 – 2.24 (m, 2H), 1.76 – 1.63

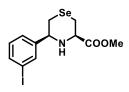
(m, 4H), 1.49 (s, 1H), 1.34 (td, J = 13.6, 5.7 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.0, 128.5, 127.0, 126.1, 48.4, 44.6, 41.6, 35.8, 31.5, 28.7, 19.0. ESI-HRMS calcd for C₁₅H₂₂NSe [M + H] 296.0912, found 296.0906.


Methyl 4-((3*S*,5*R*)-5-(hydroxymethyl)selenomorpholin-3-yl)benzoate (4a). Purification by flash column chromatography (PE/EA, 3:1) afforded 4a (47 mg, 60% yield, d.r. > 20:1) as colorless oil. ¹H NMR (400 MHz,

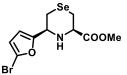
CDCl₃) δ 7.97 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 4.11 (dd, *J* = 11.0, 2.0 Hz, 1H), 3.89 (s, 3H), 3.65 (dd, *J* = 10.5, 3.9 Hz, 1H), 3.48 – 3.40 (m, 1H), 3.29 – 3.21 (m, 1H), 2.88 – 2.80 (m, 1H), 2.59 (t, *J* = 11.5 Hz, 1H), 2.45 (d, *J* = 12.1 Hz, 1H), 2.31 (d, *J* = 11.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.0, 149.7, 130.1, 129.6, 126.6, 66.9, 63.4, 60.7, 52.2, 24.7, 18.8. ESI-HRMS calcd for C₁₃H₁₈NO₃Se [M + H] 316.0446, found 316.0454.


((*3R*,5*S*)-5-(3-Methoxyphenyl)selenomorpholin-3-yl)methanol (4b). Purification by flash column chromatography (PE/EA, 3:1) afforded **4b** (40 mg, 55% yield, d.r. > 20:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 1H), 6.95 – 6.90 (m, 2H), 6.81 (ddd, *J* = 8.3, 2.5, 0.9 Hz, 1H), 4.05 (dd, *J* = 11.0, 2.2 Hz, 1H), 3.80

(s, 3H), 3.65 (dd, J = 10.6, 3.9 Hz, 1H), 3.49 – 3.42 (m, 1H), 3.30 – 3.21 (m, 1H), 2.93 – 2.84 (m, 1H), 2.62 (t, J = 11.5 Hz, 1H), 2.49 (dt, J = 12.0, 1.6 Hz, 1H), 2.32 (d, J = 11.9 Hz, 1H), 2.10 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 146.5, 129.8, 118.9, 113.2, 112.3, 67.1, 63.8, 60.9, 55.4, 24.9, 18.9. ESI-HRMS calcd for C₁₂H₁₈NO₂Se [M + H] 288.0497, found 288.0504.


((3*R*,5*S*)-5-(4-Fluoro-3-methoxyphenyl)selenomorpholin-3yl)methanol (4c). Purification by flash column chromatography (PE/EA, 3:1) afforded 4c (47 mg, 62% yield, d.r. > 20:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.05 – 6.96 (m, 2H), 6.87 (ddd, *J* = 8.3, 4.4, 2.1 Hz, 1H), 4.03 (dd, *J* = 11.0, 2.2 Hz, 1H),

3.89 (s, 3H), 3.68 (dd, J = 10.5, 3.9 Hz, 1H), 3.47 (dd, J = 10.5, 7.9 Hz, 1H), 3.31 – 3.22 (m, 1H), 2.85 (dd, J = 12.0, 11.0 Hz, 1H), 2.61 (dd, J = 11.9, 11.0 Hz, 1H), 2.45 (ddd, J = 12.0, 2.3, 1.3 Hz, 1H), 2.32 (dt, J = 11.9, 1.7 Hz, 1H), 1.92 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 151.9 (d, J = 245.7 Hz), 147.8 (d, J = 10.7 Hz), 141.4 (d, J = 3.8 Hz), 118.9 (d, J = 6.9 Hz), 116.1 (d, J = 18.3 Hz), 111.8 (d, J = 2.1 Hz), 67.1, 63.5, 61.0, 56.5, 25.1 (d, J = 1.4 Hz), 18.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.4. ESI-HRMS calcd for C₁₂H₁₇FNO₂Se [M + H] 306.0403, found 306.0412.


((3*R*,5*S*)-5-(Benzo[*b*]thiophen-3-yl)selenomorpholin-3yl)methanol (4d). Purification by flash column chromatography (PE/EA, 3:1) afforded 4d (27 mg, 35% yield, d.r. > 20:1) as colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.88 (dd, *J* = 15.9,

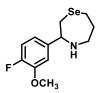
7.8 Hz, 2H), 7.42 – 7.33 (m, 3H), 4.56 – 4.52 (m, 1H), 3.69 (dd, J = 10.6, 3.9 Hz, 1H), 3.47 (dd, J = 10.5, 8.0 Hz, 1H), 3.36 (ddt, J = 11.8, 5.8, 3.0 Hz, 1H), 3.01 – 2.96 (m, 1H), 2.71 (d, J = 12.1 Hz, 1H), 2.66 (t, J = 11.5 Hz, 1H), 2.38 (d, J = 12.0 Hz, 1H), 2.06 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 140.8, 139.8, 137.4, 124.7, 124.3, 123.2, 122.0, 122.0, 67.1, 61.2, 57.9, 23.9, 19.2. ESI-HRMS calcd for C₁₃H₁₆NOSSe [M + H] 314.0112, found 314.0117.

Methyl (3*R*,5*S*)-5-(3-iodophenyl)selenomorpholine-3carboxylate (5a). Purification by flash column chromatography (PE/EA, 30:1) afforded 5a (45 mg, 44% yield, d.r. > 20:1) as colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.75 (t, *J* = 1.5 Hz, 1H), 7.62 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.33 (d, *J* = 7.7 Hz, 1H), 7.07

(t, J = 7.8 Hz, 1H), 4.01 (d, J = 10.9 Hz, 1H), 3.87 (dd, J = 10.3, 2.3 Hz, 1H), 3.75 (s, 3H), 2.89 – 2.81 (m, 3H), 2.47 – 2.40 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 171.6, 146.6, 137.2, 135.7, 130.6, 126.0, 94.8, 63.8, 61.7, 52.6, 24.6, 18.8. ESI-HRMS calcd for C₁₂H₁₅INO₂Se [M + H] 411.9307, found 411.9315.

Methyl (3*R*,5*S*)-5-(5-bromofuran-2-yl)selenomorpholine-3carboxylate (5b). Purification by flash column chromatography (PE/EA, 30:1) afforded 5b (36 mg, 41% yield, d.r. > 20:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.24 (d, *J* = 3.3 Hz,

1H), 6.21 (d, J = 3.3 Hz, 1H), 4.17 (d, J = 11.0 Hz, 1H), 3.92 – 3.85 (m, 1H), 3.76 (s, 3H), 2.93 – 2.86 (m, 1H), 2.86 – 2.75 (m, 2H), 2.59 (dd, J = 12.1, 1.9 Hz, 1H), 2.44 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 158.0, 121.2, 112.0, 108.1, 61.1, 56.8, 52.6, 21.2, 19.0. ESI-HRMS calcd for C₁₀H₁₃BrNO₃Se [M + H] 353.9239, found 353.9243.

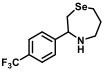


3-(1,4-Selenazepan-3-yl)benzonitrile (6a). Purification by flash column chromatography (PE/EA, 2:1) afforded **6a** (30 mg, 45% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (t, *J* = 1.7 Hz, 1H), 7.61 (dt, *J* = 7.8, 1.5 Hz, 1H), 7.53 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 1H), 4.08 (dd, *J* = 8.6, 4.1 Hz, 1H), 3.15 (dt, *J* = 14.4, 4.6 Hz, 1H),

3.08 - 2.96 (m, 2H), 2.95 - 2.78 (m, 3H), 2.20 - 2.09 (m, 1H), 2.07 - 1.97 (m, 1H), 1.78 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.7, 131.3, 131.0, 130.4, 129.4, 118.9, 112.7, 65.1, 47.3, 33.8, 33.8, 24.4. ESI-HRMS calcd for C₁₂H₁₅N₂Se [M + H] 267.0395, found 267.0392.

3-(2-(Difluoromethoxy)phenyl)-1,4-selenazepane (6b). Purification by flash column chromatography (PE/EA, 2:1) afforded **6b** (18 mg, 23% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.28 – 7.17 (m, 2H), 7.08 (dq, *J* = 7.9, 1.2 Hz, 1H), 6.56 (t, *J* = 73.9 Hz, 1H), 4.40 (dd, *J* = 8.8, 3.9 Hz, 1H), 3.24 (dt, *J* = 14.4, 4.4

Hz, 1H), 3.10 - 2.81 (m, 5H), 2.20 - 2.09 (m, 1H), 2.08 - 1.98 (m, 1H), 1.74 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.9, 136.8, 128.4, 127.7, 125.9, 118.9, 116.4 (t, *J* = 259.6 Hz), 59.4, 48.1, 33.7, 32.9, 24.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -80.0 (d, *J* = 27.6 Hz). ESI-HRMS calcd for C₁₂H₁₆F₂NOSe [M + H] 308.0360, found 308.0360.


3-(4-Fluoro-3-methoxyphenyl)-1,4-selenazepane (6c). Purification by flash column chromatography (PE/EA, 1:1) afforded **6c** (24 mg, 33% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.04 – 6.96 (m, 2H), 6.86 (ddd, *J* = 8.3, 4.4, 2.1 Hz, 1H), 3.98 (dd, *J* = 8.7, 4.1 Hz, 1H), 3.89 (s, 3H), 3.21 (ddd, *J* = 14.3, 4.9, 3.9 Hz, 1H), 3.09 – 2.80 (m, 5H),

2.20 – 2.08 (m, 1H), 2.03 – 1.93 (m, 1H), 1.75 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.7 (d, J = 245.1 Hz), 147.7 (d, J = 10.6 Hz), 141.9 (d, J = 3.8 Hz), 118.7 (d, J = 6.7 Hz), 116.0 (d, J = 18.1 Hz), 111.8 (d, J = 1.9 Hz), 66.7, 56.4, 48.0, 34.3, 33.4, 24.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.2. ESI-HRMS calcd for C₁₂H₁₆FNNaOSe [M + Na] 312.0274, found 312.0272.

3-(4-(Methylthio)phenyl)-1,4-selenazepane (6d). Purification by flash column chromatography (PE/EA, 1:1) afforded **6d** (30 mg, 41% yield) as light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 2H), 7.24 – 7.18 (m, 2H), 3.98 (dd, *J* = 8.6, 4.3 Hz, 1H),

 $3.23 - 3.16 \text{ (m, 1H)}, 3.10 - 2.81 \text{ (m, 5H)}, 2.46 \text{ (s, 3H)}, 2.18 - 2.08 \text{ (m, 1H)}, 2.02 - 1.91 \text{ (m, 1H)}, 1.80 \text{ (s, 1H)}. {}^{13}\text{C}$ NMR (101 MHz, CDCl₃) δ 142.4, 137.4, 127.1, 127.0, 66.7, 47.9, 34.2, 33.4, 24.2, 16.1. ESI-HRMS calcd for C₁₂H₁₇NNaSSe [M + Na] 310.0139, found 310.0133.

3-(4-(Trifluoromethyl)phenyl)-1,4-selenazepane (6e). Purification by flash column chromatography (PE/EA, 4:1) afforded 6e (32 mg, 41% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 4.10 (dd, J = 8.8, 4.0 Hz,

1H), 3.19 (dt, J = 14.4, 4.5 Hz, 1H), 3.06 (ddd, J = 14.3, 9.9, 3.9 Hz, 1H), 3.01 – 2.91 (m, 2H), 2.91 - 2.81 (m, 2H), 2.16 (ddq, J = 15.0, 10.0, 5.0 Hz, 1H), 2.01 (dtd, J = 13.9, J)9.5, 4.2 Hz, 1H), 1.71 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.2 (d, J = 1.0 Hz), 129.6 (q, J = 32.5 Hz), 127.0, 125.7 (q, J = 3.7 Hz), 124.3 (q, J = 272.0 Hz), 66.1, 47.7, 34.0, 33.7, 24.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5. ESI-HRMS calcd for $C_{12}H_{15}F_{3}NSe [M + H] 310.0316$, found 310.0314.

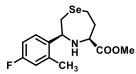
> 3-(4-Bromophenyl)-1,4-selenazepane (6f). Purification by flash column chromatography (PE/EA, 3:1) afforded 6f (28 mg, 35% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.26 - 7.22 (m, 2H), 3.99 (dd, J = 8.9, 4.0 Hz, 1H), 3.19 (dt, J = 14.4,

4.5 Hz, 1H), 3.08 - 3.00 (m, 1H), 2.98 - 2.80 (m, 4H), 2.18 - 2.08 (m, 1H), 2.03 - 1.92 (m, 1H), 1.78 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 131.8, 128.4, 121.1, 66.2, 47.8, 34.1, 33.5, 24.3. ESI-HRMS calcd for C₁₁H₁₅BrNSe [M + H] 319.9544, found 319.9555.

3-(2-Bromophenyl)-1,4-selenazepane (6g). Purification by flash column chromatography (PE/EA, 3:1) afforded 6g (16 mg, 20% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dt, J = 7.8, 1.1 Hz, 2H), 7.30 (td, J = 7.6, 1.3 Hz, 1H), 7.13 – 7.07 (m, 1H), 4.44 (dd, J = 8.7, 3.7 Hz, 1H), 3.27 (ddd, J = 14.4, 4.9, 3.8 Hz, 1H), 3.14 - 2.93 (m, 3H), 2.89 - 2.77 (m, 2H), 2.20 – 2.09 (m, 1H), 2.08 – 1.98 (m, 1H), 1.65 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 133.0, 128.7, 127.9, 127.8, 123.0, 65.0, 48.3, 33.6, 32.6, 24.0. ESI-HRMS calcd for C₁₁H₁₅BrNSe [M + H] 319.9544, found 319.9555.

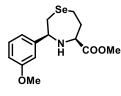
3-(2-Bromopyridin-4-yl)-1,4-selenazepane (6h). Purification by flash column chromatography (PE/EA, 2:1) afforded 6h (25 mg, 31% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 5.1 Hz, 1H), 7.53 (d, J = 1.4 Hz, 1H), 7.27 – 7.25 (m, 1H), 4.03 (dd, J = 8.7, 4.3Hz, 1H), 3.12 – 2.97 (m, 3H), 2.89 – 2.78 (m, 3H), 2.24 – 2.12 (m, 1H),

2.09 – 1.96 (m, 1H), 1.65 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 150.4, 142.8, 126.2, 121.1, 63.9, 46.9, 34.1, 33.2, 24.5. ESI-HRMS calcd for C₁₀H₁₄BrN₂Se [M + H] 320.9497, found 320.9482.

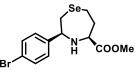


3-(5-Bromofuran-2-yl)-1,4-selenazepane (6i). Purification by flash column chromatography (PE/EA, 3:1) afforded 6i (19 mg, 25% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.22 (d, J = 3.3 Hz, 1H), 6.18 (dd, J = 3.2, 0.9 Hz, 1H), 4.12 (dd, J = 8.8, 4.7 Hz, 1H), 3.10 (dd, *J* = 13.6, 4.7 Hz, 1H), 3.06 – 2.91 (m, 3H), 2.79 (dd, *J* = 7.3, 5.2 Hz,

2H), 2.19 – 2.09 (m, 1H), 2.04 – 1.94 (m, 1H), 1.66 (s, 1H). ¹³C NMR (101 MHz, CDCl₃)

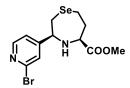

δ 159.1, 120.7, 111.9, 108.2, 58.1, 45.6, 34.0, 30.7, 24.6. ESI-HRMS calcd for C₉H₁₂BrNNaOSe [M + Na] 331.9156, found 331.9170.

3-(Thiophen-3-yl)-1,4-selenazepane (6j). Purification by flash column chromatography (PE/EA, 3:1) afforded 6j (18 mg, 29% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, J = 5.0, 3.0 Hz, 1H), 7.18 (dt, J = 2.9, 1.0 Hz, 1H), 7.09 (dd, J = 5.0, 1.3 Hz, 1H), 4.16 (dd, J = 8.8, 4.1 Hz, 1H), 3.14 (dt, J = 14.4, 4.7 Hz, 1H), 3.07 – 2.98 (m, 2H), 2.97 – 2.79 (m, 3H), 2.19 – 2.08 (m, 1H), 2.03 – 1.91 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.1, 126.5, 126.0, 120.4, 61.9, 47.1, 33.9, 33.6, 24.4. ESI-LRMS: [M+H]⁺ 248.15.

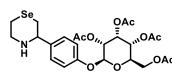

Methyl (3S,5S)-3-(4-fluoro-2-methylphenyl)-1,4selenazepane-5-carboxylate (7a). Purification by flash column chromatography (PE/EA, 30:1) afforded 7a (50 mg, 61% yield, d.r. > 20:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43

(dd, J = 8.6, 6.0 Hz, 1H), 6.91 - 6.80 (m, 2H), 4.16 (dd, J = 11.3, 4.9 Hz, 1H), 4.09 (dd, J = 10.2, 2.9 Hz, 1H), 3.72 (s, 3H), 3.07 (ddd, J = 13.2, 11.6, 5.9 Hz, 1H), 2.94 (ddd, J = 13.2, 6.3, 2.4 Hz, 1H), 2.82 (dd, J = 12.9, 10.2 Hz, 1H), 2.68 (dd, J = 13.0, 2.8 Hz, 1H), 2.43 (s, 1H), 2.37 - 2.26 (m, 4H), 2.11 - 2.00 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 161.7 (d, J = 245.4 Hz), 138.8 (d, J = 3.3 Hz), 136.8 (d, J = 7.6 Hz), 127.5 (d, J = 8.4 Hz), 117.1 (d, J = 21.0 Hz), 113.2 (d, J = 20.8 Hz), 63.6, 61.7, 52.5, 35.4, 34.0, 23.3, 19.5 (d, J = 1.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.9. ESI-HRMS calcd for C₁₄H₁₉FNO₂Se [M + H] 332.0560, found 332.0566.

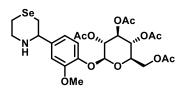
Methyl (3*S*,5*S*)-3-(3-methoxyphenyl)-1,4-selenazepane-5carboxylate (7b). Purification by flash column chromatography (PE/EA, 30:1) afforded 7b (52 mg, 63% yield, d.r. > 20:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 7.9 Hz, 1H), 6.96 – 6.89 (m, 2H), 6.81 (ddd, *J* = 8.2, 2.6, 1.0 Hz, 1H), 4.16


(dd, J = 11.3, 4.9 Hz, 1H), 3.92 (dd, J = 10.3, 3.0 Hz, 1H), 3.81 (s, 3H), 3.72 (s, 3H), 3.08 (ddd, J = 13.3, 11.6, 5.9 Hz, 1H), 2.94 (ddd, J = 13.3, 6.3, 2.3 Hz, 1H), 2.87 (dd, J = 12.9, 10.4 Hz, 1H), 2.75 (dd, J = 12.9, 2.8 Hz, 1H), 2.59 (s, 1H), 2.38 – 2.26 (m, 1H), 2.13 – 2.02 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 160.0, 146.4, 129.8, 118.9, 113.2, 112.1, 68.7, 61.5, 55.4, 52.5, 35.5, 35.4, 23.1. ESI-HRMS calcd for C₁₄H₁₉NO₃SeNa [M + Na] 352.0422, found 352.0423.

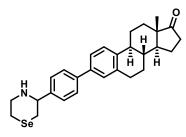
Methyl (3*S*,5*S*)-3-(4-bromophenyl)-1,4-selenazepane-5carboxylate (7c). Purification by flash column chromatography 7c (PE/EA, 30:1) afforded (38 mg, 40% yield, d.r. > 20:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48


- 7.42 (m, 2H), 7.26 - 7.21 (m, 2H), 4.14 (dd, *J* = 11.3, 4.8 Hz, 1H), 3.91 (dd, *J* = 10.1, 3.0 Hz, 1H), 3.72 (s, 3H), 3.05 (ddd, *J* = 13.3, 11.5, 5.8 Hz, 1H), 2.93 (ddd, *J* = 13.2, 6.3, 2.6 Hz, 1H), 2.81 (dd, *J* = 12.9, 10.1 Hz, 1H), 2.71 (dd, *J* = 13.0, 3.0 Hz, 1H), 2.54 (s, 1H), 2.33 (dddd, *J* = 13.6, 11.3, 6.4, 4.8 Hz, 1H), 2.05 (dddd, *J* = 13.8, 11.4, 5.9, 2.8

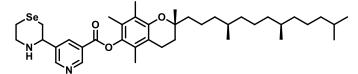
Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 143.8, 131.9, 128.3, 121.5, 67.7, 61.3, 52.5, 35.5, 35.2, 23.2. ESI-HRMS calcd for C₁₃H₁₇BrNO₂Se [M + H] 377.9602, found 377.9610.


Methyl (3*S*,5*S*)-3-(2-bromopyridin-4-yl)-1,4-selenazepane-5carboxylate (7d). Purification by flash column chromatography (PE/EA, 10:1) afforded 7d (43 mg, 46% yield, d.r. > 20:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (dd, *J* = 5.1, 0.7 Hz, 1H), 7.51 (dd, *J* = 1.4, 0.7 Hz, 1H), 7.25 (dd, *J* = 5.1, 1.4 Hz,

1H), 4.08 (dd, J = 11.2, 4.6 Hz, 1H), 3.93 (t, J = 6.5 Hz, 1H), 3.75 (s, 3H), 3.03 (ddd, J = 13.4, 10.9, 5.7 Hz, 1H), 2.97 – 2.90 (m, 1H), 2.76 (d, J = 6.8 Hz, 2H), 2.58 (s, 1H), 2.43 – 2.33 (m, 1H), 2.11 – 2.01 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 156.0, 150.7, 142.9, 126.1, 120.9, 66.0, 60.9, 52.7, 35.6, 34.6, 23.4. ESI-HRMS calcd for C₁₂H₁₆BrN₂O₂Se [M + H] 378.9555, found 378.9562.

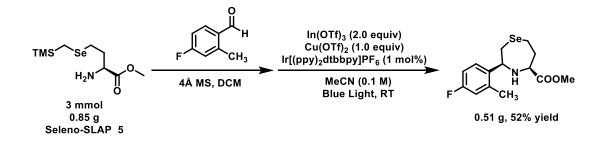

(2*R*,3*R*,4*R*,5*R*,6*S*)-2-(acetoxymethyl)-6-(4-(selenomor pholin-3-yl)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (8a). Purification by flash column chromatography (PE/EA, 4:1) afforded 8a (53 mg, 37%

yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.01 – 6.96 (m, 2H), 5.73 (t, *J* = 3.0 Hz, 1H), 5.34 (dd, *J* = 8.2, 1.3 Hz, 1H), 5.14 (dd, *J* = 8.2, 3.1 Hz, 1H), 5.09 – 5.01 (m, 1H), 4.24 (q, *J* = 2.7, 2.1 Hz, 3H), 3.97 (dd, *J* = 10.9, 2.1 Hz, 1H), 3.61 (dt, *J* = 12.6, 3.2 Hz, 1H), 3.26 (td, *J* = 12.3, 2.3 Hz, 1H), 3.03 – 2.90 (m, 2H), 2.45 – 2.38 (m, 2H), 2.15 (s, 3H), 2.08 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.69 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 169.9, 169.2, 156.6, 156.6, 140.2, 140.2, 127.7, 117.2, 97.4, 97.4, 70.6, 68.9, 68.6, 66.3, 63.0, 62.5, 50.3, 25.0, 20.9, 20.8, 20.7, 20.7, 18.2. ESI-HRMS calcd for C₂₄H₃₂NO₁₀Se [M + H] 574.1188, found 574.1205.


(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(2-methoxy-4-(selenomorpholin-3-yl)phenoxy)tetrahydro-2*H*-pyran-3,4,5-triyl triacetate (8b). Purification by flash column chromatography (PE/EA, 4:1) afforded 8b (45 mg, 30% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ

7.04 (dd, J = 8.2, 1.5 Hz, 1H), 6.91 (dd, J = 7.8, 2.0 Hz, 1H), 6.83 (td, J = 8.1, 2.0 Hz, 1H), 5.30 – 5.23 (m, 2H), 5.18 – 5.11 (m, 1H), 4.95 – 4.90 (m, 1H), 4.26 (dd, J = 12.2, 5.1 Hz, 1H), 4.15 (dd, J = 12.2, 2.5 Hz, 1H), 3.94 (dd, J = 10.9, 2.1 Hz, 1H), 3.81 (s, 3H), 3.78 – 3.72 (m, 1H), 3.60 (dt, J = 12.6, 3.3 Hz, 1H), 3.25 (td, J = 12.3, 2.1 Hz, 1H), 3.02 – 2.88 (m, 2H), 2.41 (d, J = 12.2 Hz, 2H), 2.07 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H), 2.02 (s, 3H), 1.78 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 170.4, 169.5, 169.5, 150.9, 150.8, 145.5, 145.5, 142.0, 142.0, 120.2, 120.1, 118.8, 118.7, 110.9, 110.8, 100.9, 100.9, 72.7, 72.1, 71.3, 68.6, 63.4, 62.1, 56.2, 50.2, 25.0, 20.9, 20.8, 20.8, 20.7, 18.2. ESI-HRMS calcd for C₂₅H₃₄NO₁₁Se [M + H] 604.1294, found 604.1289.

(8R,9S,13S,14S)-13-methyl-3-(4-(selenomorpholin-3-yl)phenyl)-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[*a*]phenanthren-17-one (8c). Purification by flash column chromatography (PE/EA, 3:1) afforded 8c (49 mg, 41% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.3 Hz, 2H), 7.40 (d, *J* = 8.2 Hz, 2H), 7.37 (s, 2H), 7.32 (s, 1H), 4.05 (dd, *J* = 11.0, 2.2


Hz, 1H), 3.64 (dt, J = 12.6, 3.2 Hz, 1H), 3.29 (td, J = 12.3, 2.2 Hz, 1H), 3.06 – 2.96 (m, 4H), 2.56 – 2.41 (m, 4H), 2.36 (td, J = 10.8, 4.1 Hz, 1H), 2.21 – 1.96 (m, 4H), 1.71 (s, 1H), 1.68 – 1.46 (m, 6H), 0.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.9, 144.0, 140.5, 139.1, 138.5, 137.0, 127.8, 127.3, 126.9, 126.0, 124.6, 63.4, 50.7, 50.2, 48.1, 44.5, 38.3, 36.0, 31.8, 29.7, 26.7, 25.9, 24.9, 21.8, 18.3, 14.0. ESI-HRMS calcd for C₂₈H₃₄NOSe [M + H] 480.1802, found 480.1808.

(*R*)-2,5,7,8-tetramethyl-2-((4*R*,8*R*)-4,8,12trimethyltridecyl)chroman-6yl 5-(selenomorpholin-3-

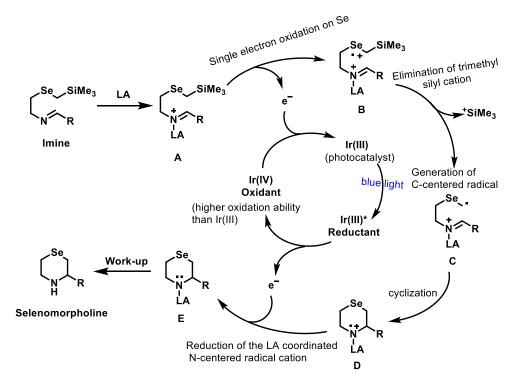
yl)nicotinate (8d). Purification by flash column chromatography (PE/EA, 10:1) afforded 8d (86 mg, 50% yield) as light yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 9.34 (d, *J* = 2.0 Hz, 1H), 8.86 (d, *J* = 2.2 Hz, 1H), 8.47 (t, *J* = 2.1 Hz, 1H), 4.19 (dd, *J* = 10.9, 2.2 Hz, 1H), 3.65 (dt, *J* = 12.7, 3.2 Hz, 1H), 3.29 (td, *J* = 12.3, 2.2 Hz, 1H), 3.06 – 2.95 (m, 2H), 2.62 (t, *J* = 6.8 Hz, 2H), 2.54 – 2.42 (m, 2H), 2.12 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H), 1.82 (dt, *J* = 14.8, 7.3 Hz, 3H), 1.56 – 1.11 (m, 24H), 0.86 (t, *J* = 6.5 Hz, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 152.7, 150.6, 149.8, 140.6, 140.4, 135.6, 126.8, 125.8, 125.0, 123.4, 117.7, 75.3, 60.6, 49.8, 39.5, 37.8 – 37.1 (m), 33.1 – 32.4 (m), 28.1, 24.9, 24.9, 24.6, 24.3, 22.8, 22.8, 21.2, 20.7, 20.1 – 19.3 (m), 18.2, 13.2, 12.4, 12.0. ESI-HRMS calcd for C₃₉H₆₁N₂O₃Se [M + H] 685.3845, found 685.3844.

6. Scale-up Reaction of 7a

The reaction was conducted as following procedures. To a 25 mL oven-dried flask were added the Seleno-SLAP reagent **5** (0.85 g, 3 mmol, 1.0 equiv), 4-fluoro-2-methylbenzaldehyde (0.41 g, 3 mmol, 1.0 equiv) and MS 4Å. The flask was sealed with rubber stopper, exchanged the gas using N_2 for 3 times and then dry DCM (10.0 mL)

was added. The reaction mixture was stirred at room temperature for 4 h and filtered through a short layer of Celite (DCM rinse). The filtrate was concentrated under reduced pressure to afford the imine and used directly for photo-cyclization. Then $Cu(OTf)_2$ (1.08 g, 3 mmol, 1.0 equiv), $In(OTf)_3$ (3.37 g, 6 mmol, 2.0 equiv), and $Ir[(ppy)_2dtbbpy]PF_6$ (27.6 mg, 1 mol%) were added to a solution of the corresponding imine (3 mmol, 1.0 equiv) in dry MeCN (30 mL, 0.1 M). The reaction was stirred for 48 h at room temperature under the exposure of blue LEDs (30 W) with a cooling fan to maintain the temperature. NH₄OH (25 mL) was added and the mixture was extracted with DCM (50 mL x 3). The combined organic layers were washed with brine (25 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash column chromatography to afford **7a** (0.51 g, 52% yield).

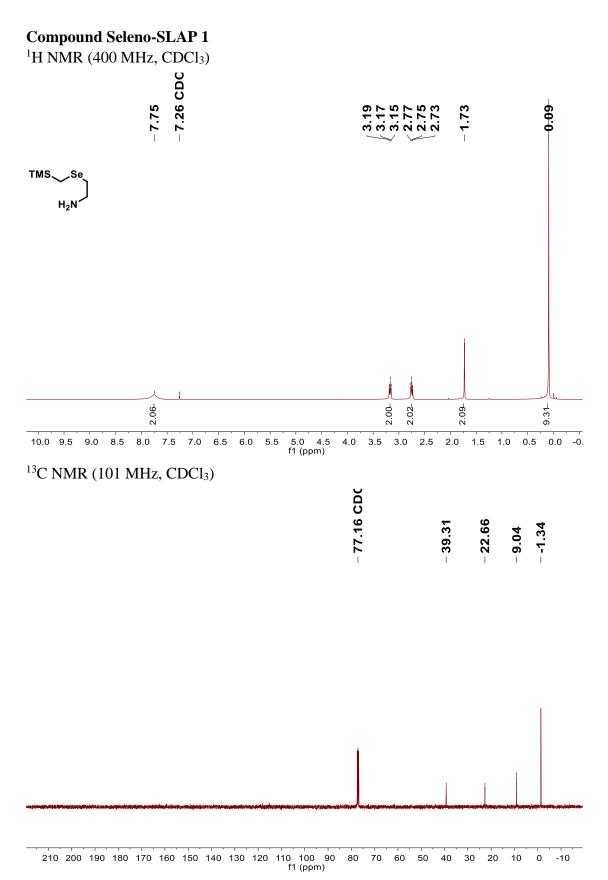
7. Antifungal screening/Determination of MIC


Determination of minimal inhibitory concentrations (MICs)

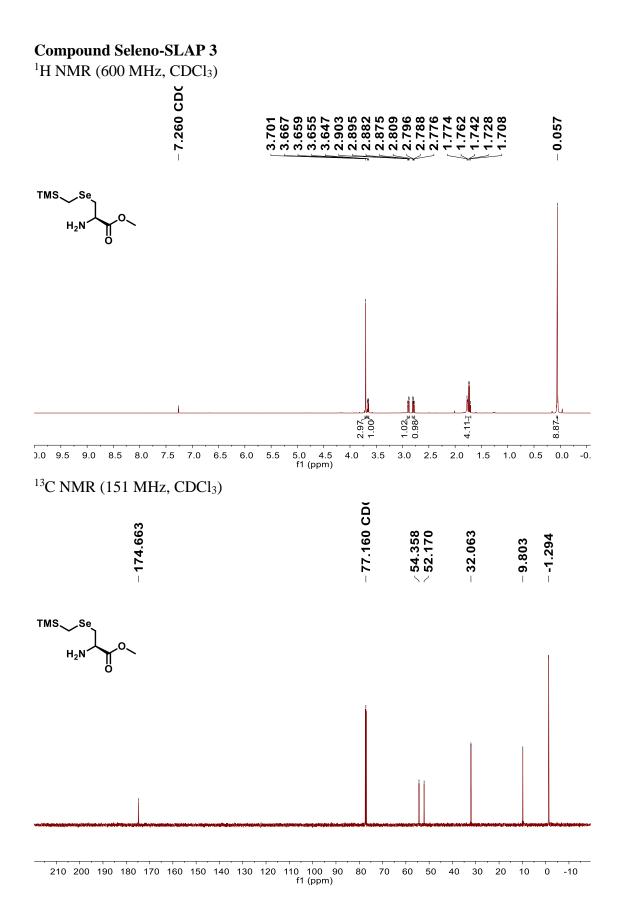
Yeast culture (Candida albicans ATCC 10231) was grown overnight on SDA plates and adjusted in Sabaroud's Dextrose broth (SDB) to a final inoculumn of $10^5 - 10^6$ CFU/ml. 100 µL of two-fold serial dilution of the compounds in SDB were added to an equal volume of broth containing the yeast culture in a 96-well plate. The final concentration of the compounds ranged from 3.125 - 400 µM. Positive and negative controls contained 200 µl of inoculum without any compounds and SDB broth alone respectively. The 96 well plates were then incubated at 37 °C for 24 h. All the experiments were performed in duplicates and the MIC was determined as the lowest concentration where no visible growth was observed.

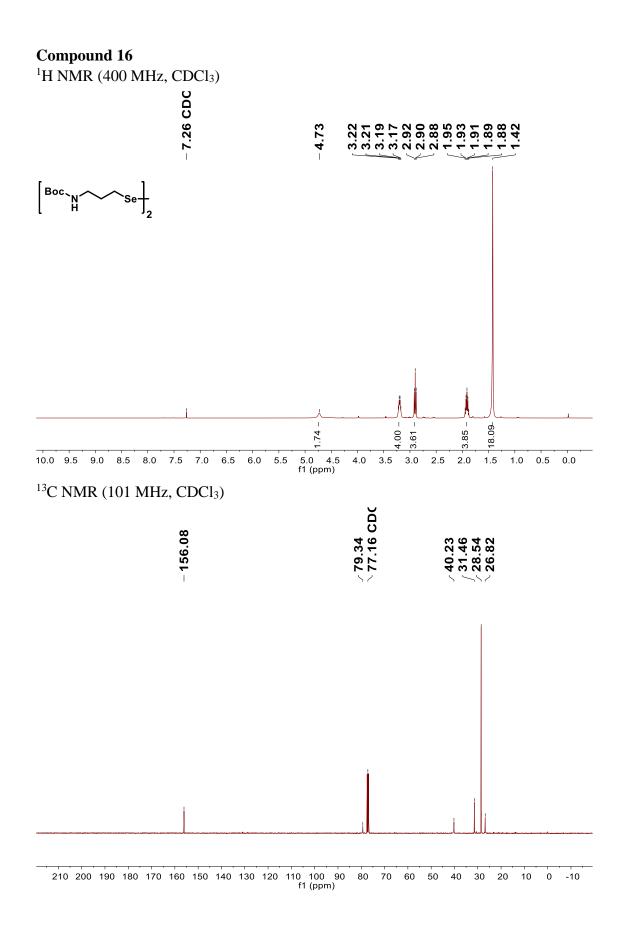
Table S3. Antifungal properties of selected Selenomorpholines and 1,4-selenazapanes
against C. albicans strains.

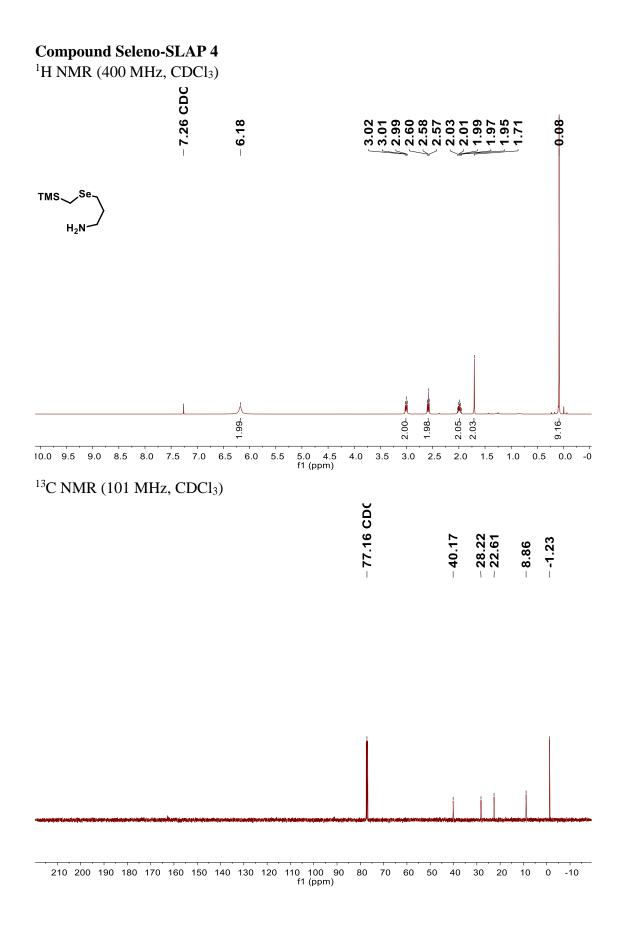
Compound ID	MIC against <i>C. albicans</i> ATCC 10231 (μM)
3b	>400
<u> </u>	400
3d	>400
<u>3e</u>	>400
3f	>400
3h	>400
3j	>400
<u> </u>	>400
3m	>400
<u>3n</u>	>400
30	>400
3р	>400
<u>3q</u>	>400
38	>400
3t	>400
<u>3u</u>	400
3v	>400
3w	>400
<u>3y</u>	>400
3z	>400
<u>6a</u>	>400
6b	400
6с	>400
6d	>400
<u>6</u> е	>400
<u>6f</u>	>400
<u>6</u> g	>400
<u>6h</u>	>400
<u>6i</u>	>400

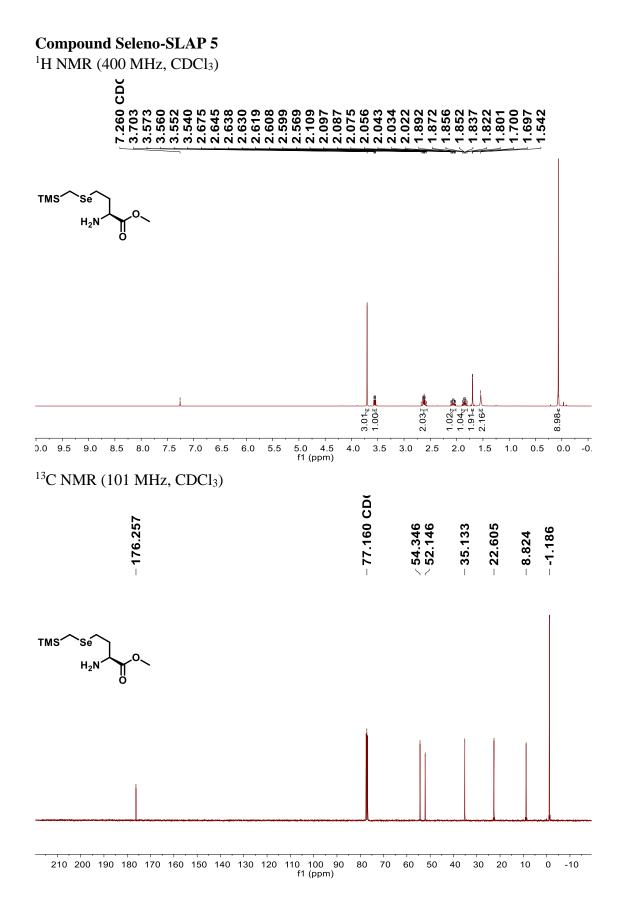

8. Proposed mechanism

Possibly, the photocatalytic cyclization is undergoing the Ir(III)*/Ir(IV) mechanistic pathway in the presence of Lewis acid (LA) as suggested by Bode et al. for the formation of thiomorpholines from the reaction between aldehydes and SLAP reagents pioneered by their group.¹⁰ The possible mechanism is depicted above, which is mechanistically same as the one described by Bode for the synthesis of thiomorpholines.

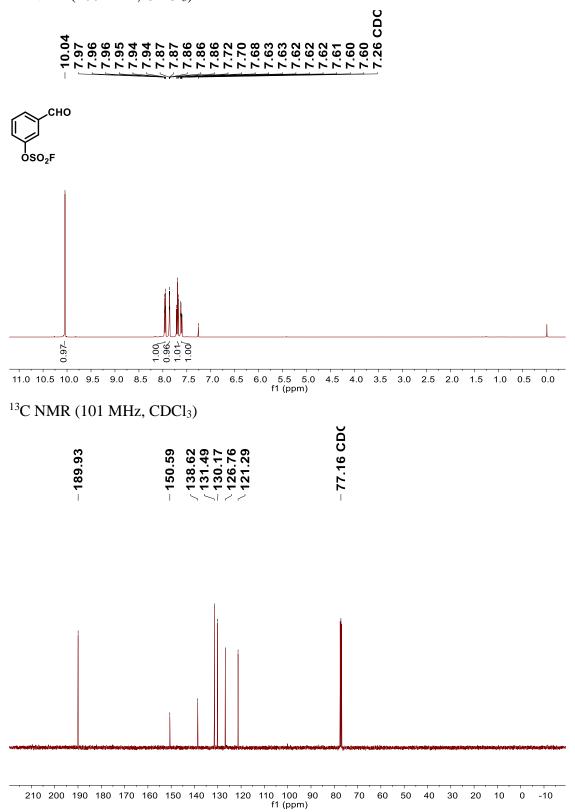

9. References

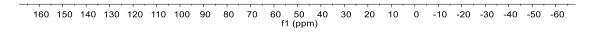

- R. J. Hondal, B. L. Nilsson and R. T. Raines, J. Am. Chem. Soc., 2001, 123, 5140-5141.
- G. Zhou, X. Deng, J. Tian, M. H. U. T. Fazil, R. Lakshminarayanan and R. Srinivasan, *Chem. Commun.*, 2020, 56, 1780-1783.
- 3. a) G. Wang, U. Mahesh, G. Y. J. Chen, and S. Q. Yao, *Org. Lett.*, 2003, 5, 737-740.
 b) A. Boeijen, J. V. Ameijde, and R. M. J. Liskamp, *J. Org. Chem.*, 2001, 66, 8454-8462.
- 4. S. J. Wu, S. Y. Tan, C. Y. Ang, K. T. Nguyen, M. H. Li and Y. L. Zhao, *Chem. Commun.*, 2015, 51, 11622-11625.
- 5. J. J. Dong, L. Krasnova, M. G. Finn and K. B. Sharpless, *Angew. Chem. Int. Ed.*, **2014**, 53, 9430-9448.
- 6. H. Wen, C. L. Lin, L. Que, H. Ge, L. Ma, R. H. Cao, Y. Q. Wan, W. L. Peng, Z. H. Wang and H. C. Song, *Eur. J. Med. Chem.*, **2008**, 43, 166-173.
- 7. S. Pearson, W. Scarano and M. H. Stenzel, Chem. Commun., 2012, 48, 4695-4697.
- 8. S. Q. Yan, S. M. Ren, N. Ding and Y. X. Li, Carbohyd. Res., 2018, 460, 41-46.
- Q. Q. Min, Z. S. Yin, Z. Feng, W. H. Guo and X. G. Zhang, J. Am. Chem. Soc., 2014, 136, 1230-1233.
- 10.S. Y. Hsieh and J. W. Bode, ACS Cent. Sci., 2017, 3, 66–72.

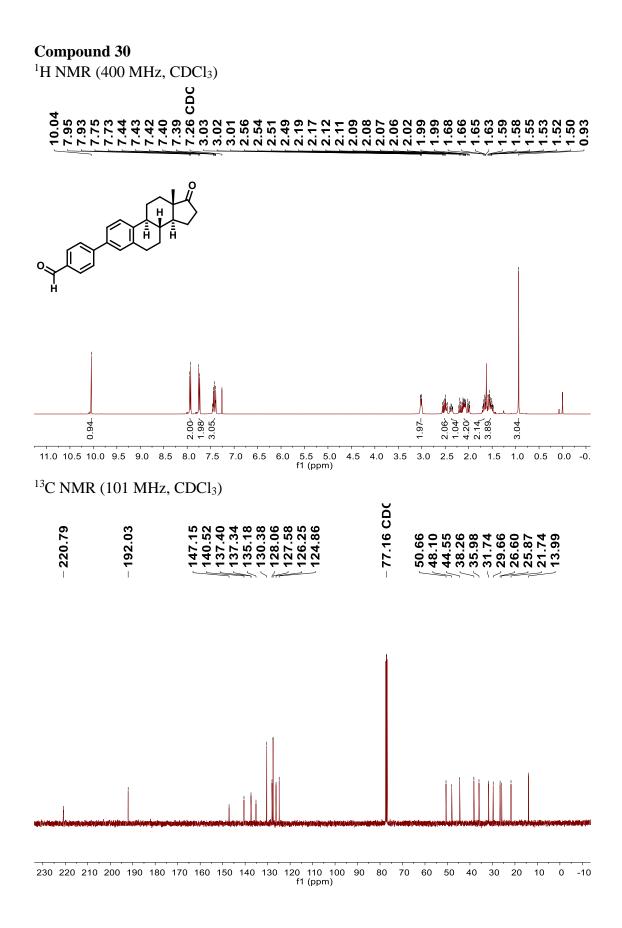


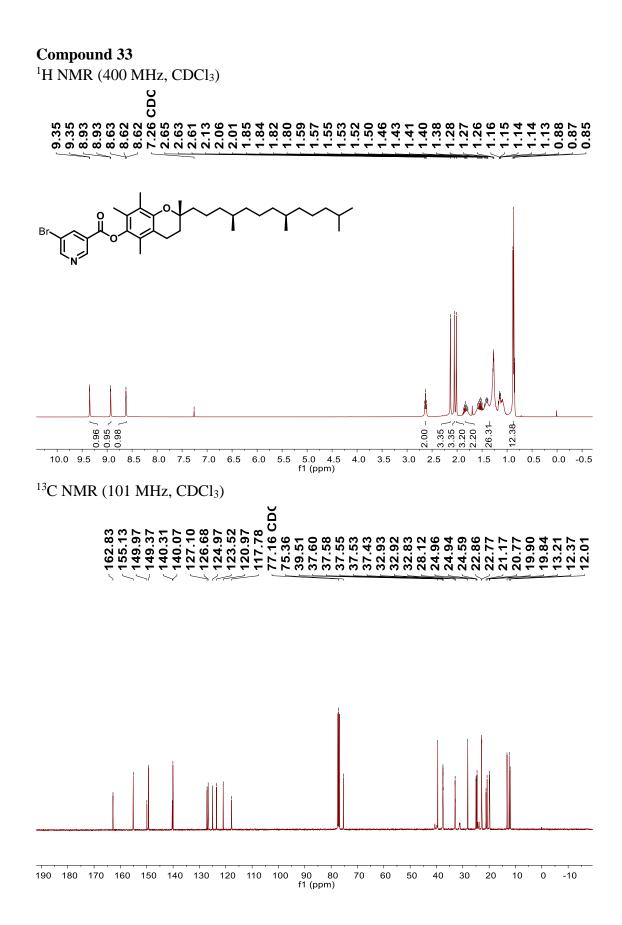

Compound Seleno-SLAP 2 ¹H NMR (400 MHz, CDCl₃) 1.646 1.615 1.109 -0.019 тмs _Se H_2N' 1 11.4 1.00^{H} 0.98^{H} 0.98^{H} 0.97₄ 0.95₄ 3.83 9.01H 9.00H 5.0 4.5 f1 (ppm) 7.5 6.5 6.0 3.5 3.0 2.5 1.5 0.5 0.0 9.5 9.0 8.5 8.0 7.0 5.5 4.0 2.0 1.0 -0 ¹³C NMR (101 MHz, CDCl₃) - 77.160 CD(- 72.803 - 66.093 32.548 27.570 50.928 - -1.305 - 9.252 TMS. _Se H₂N

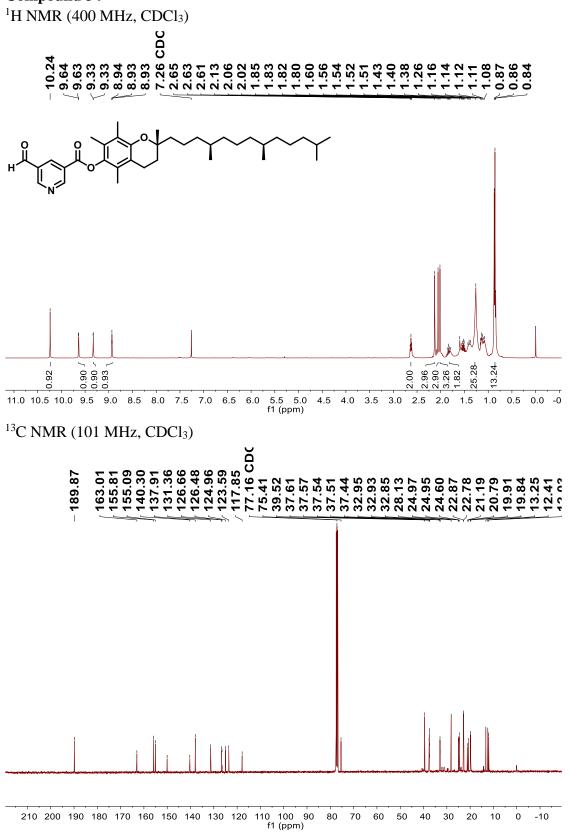
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

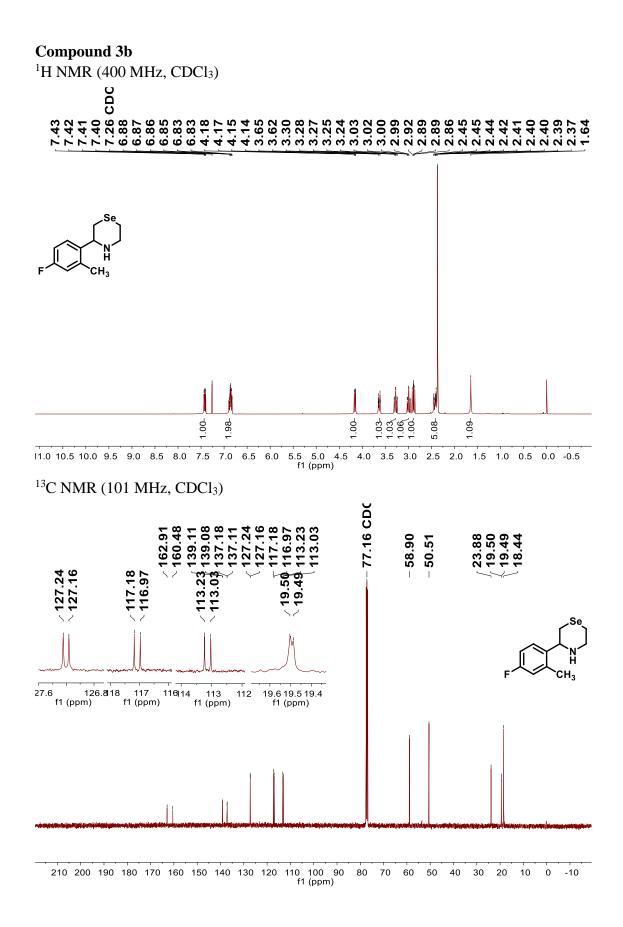


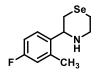


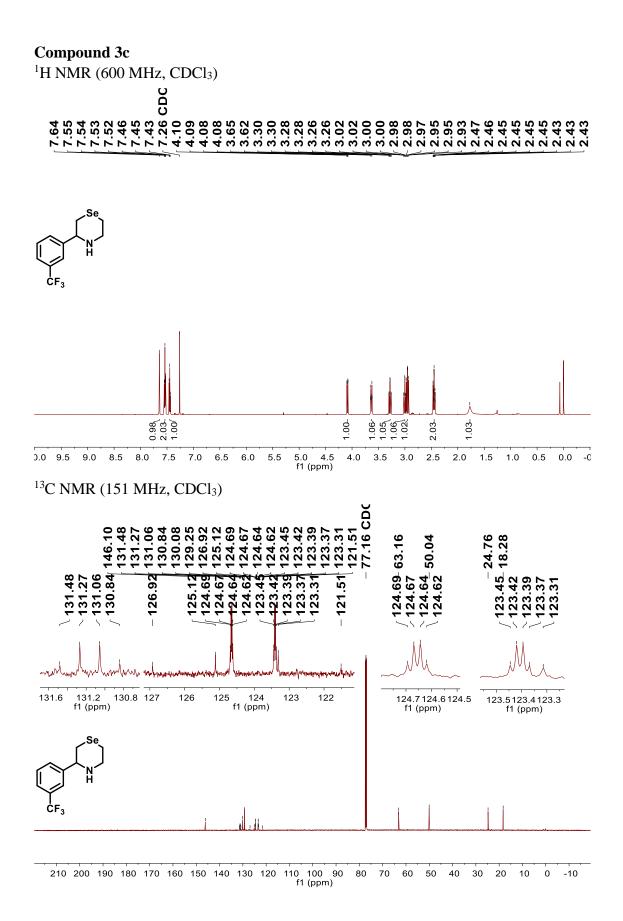


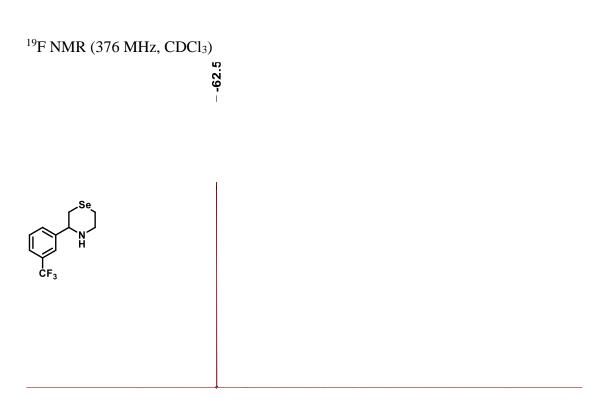

Compound 22b

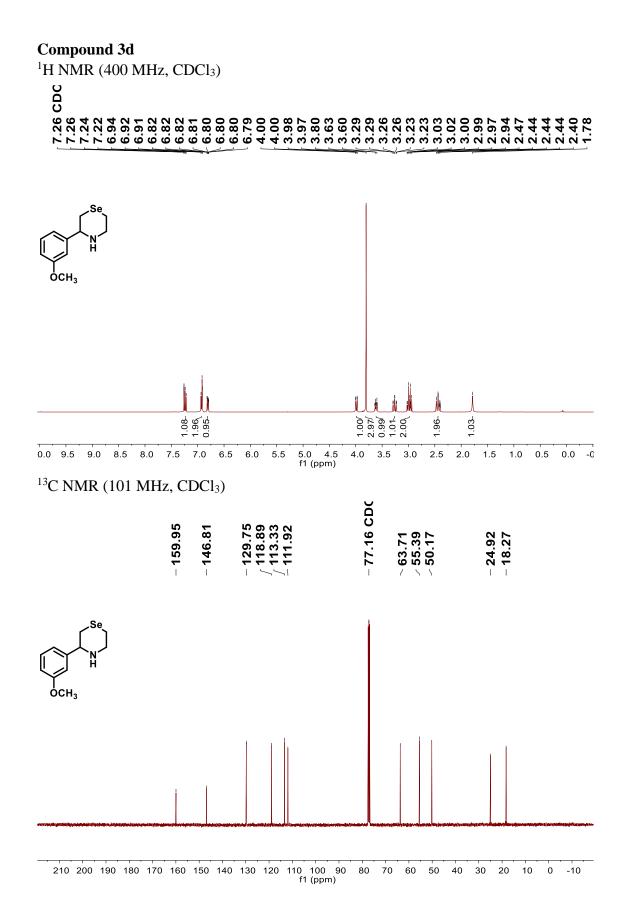

- 38.4



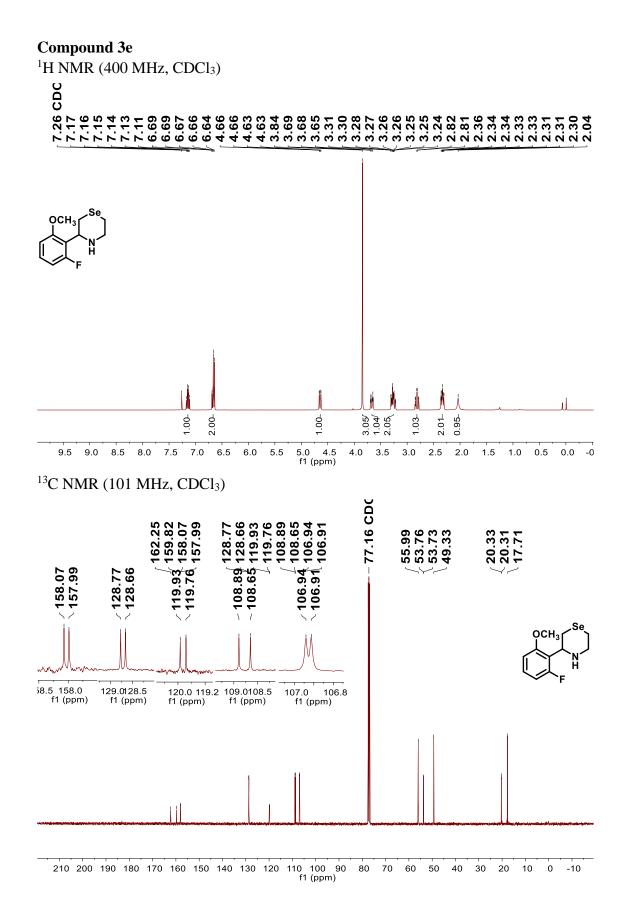


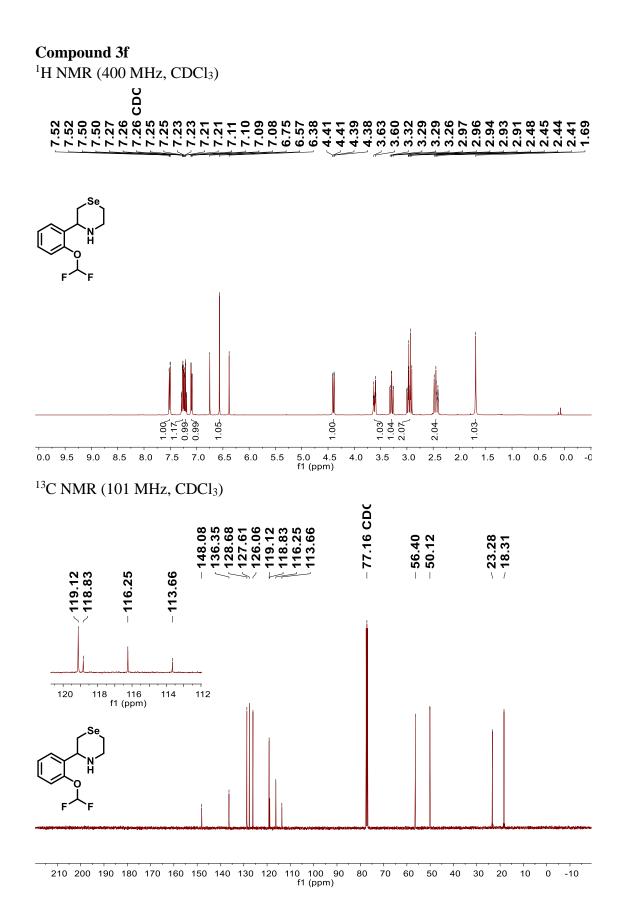


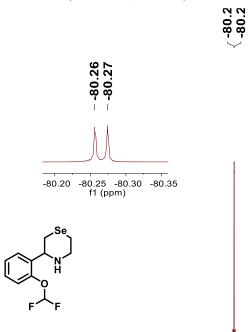

41 / 230

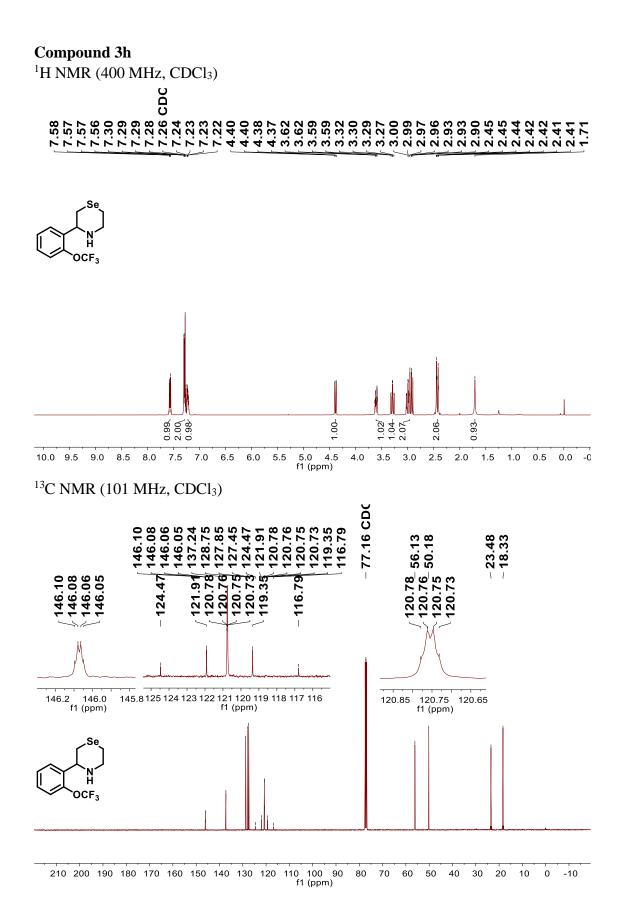


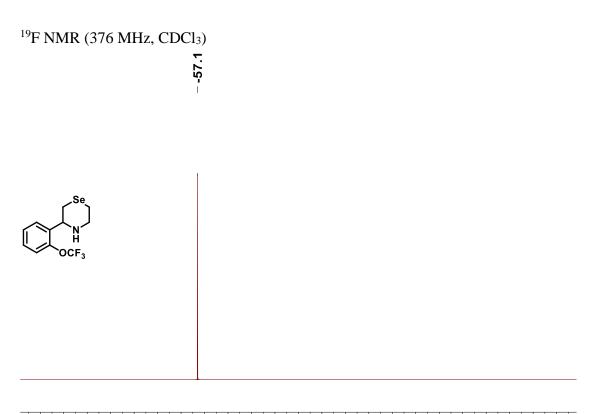
- -115.9

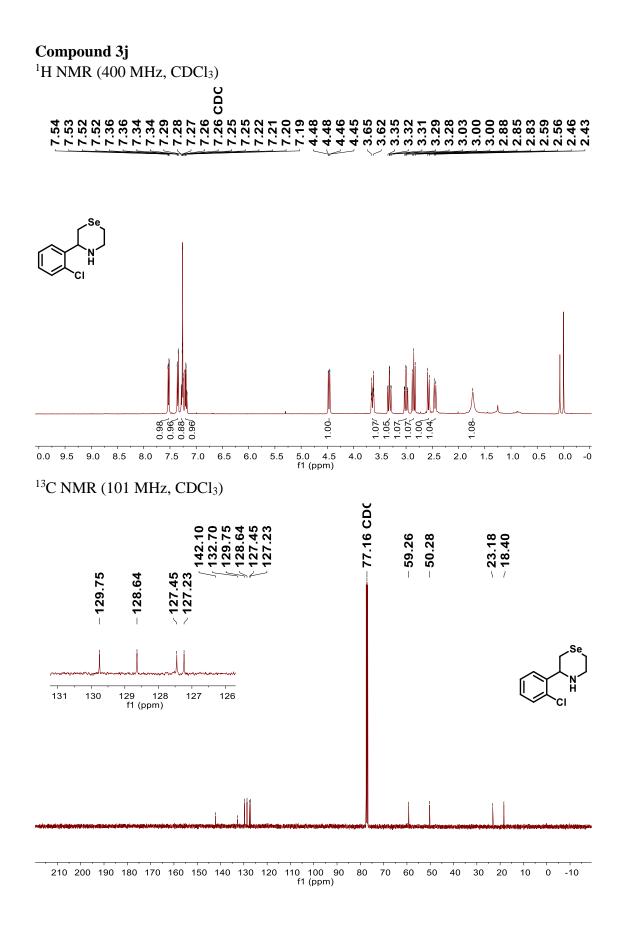


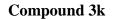


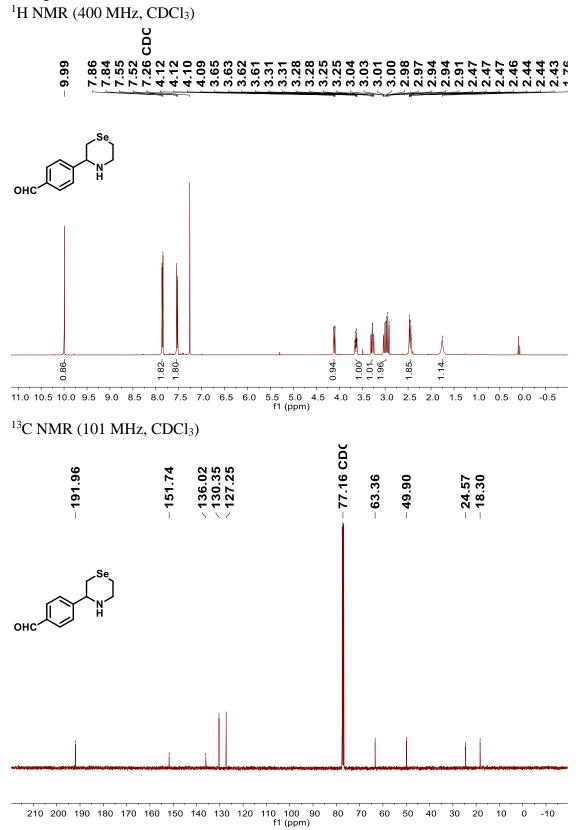

46 / 230

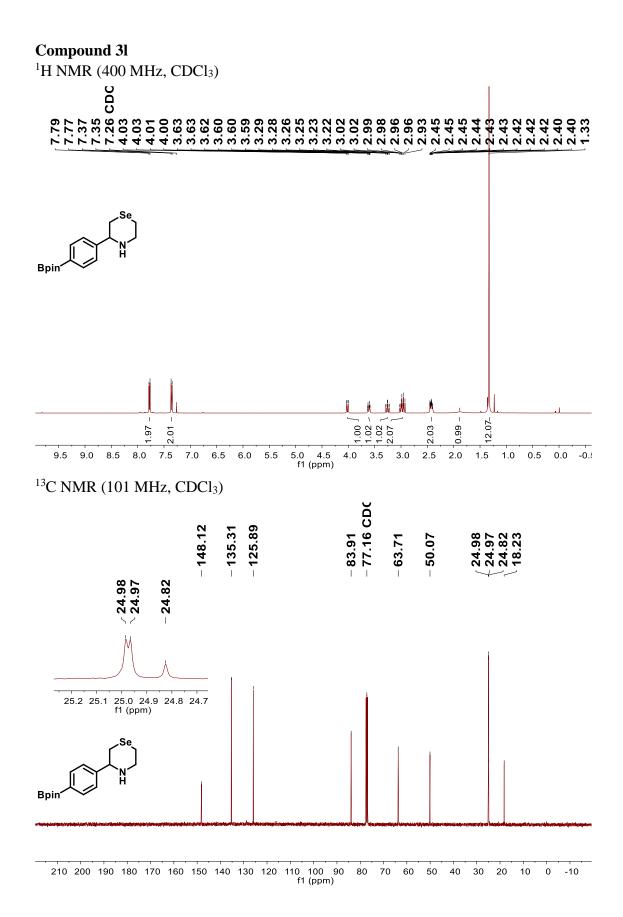


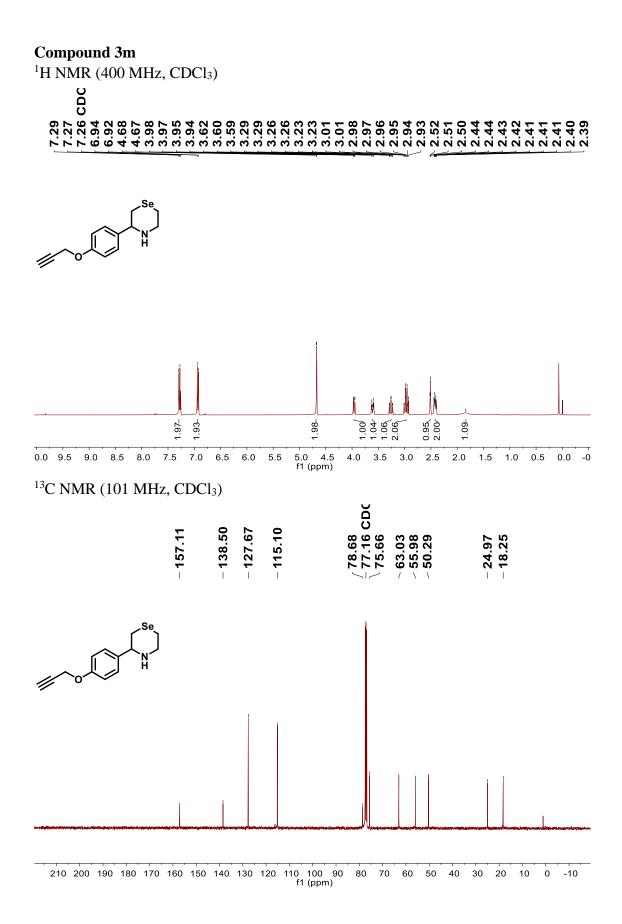

- -115.2

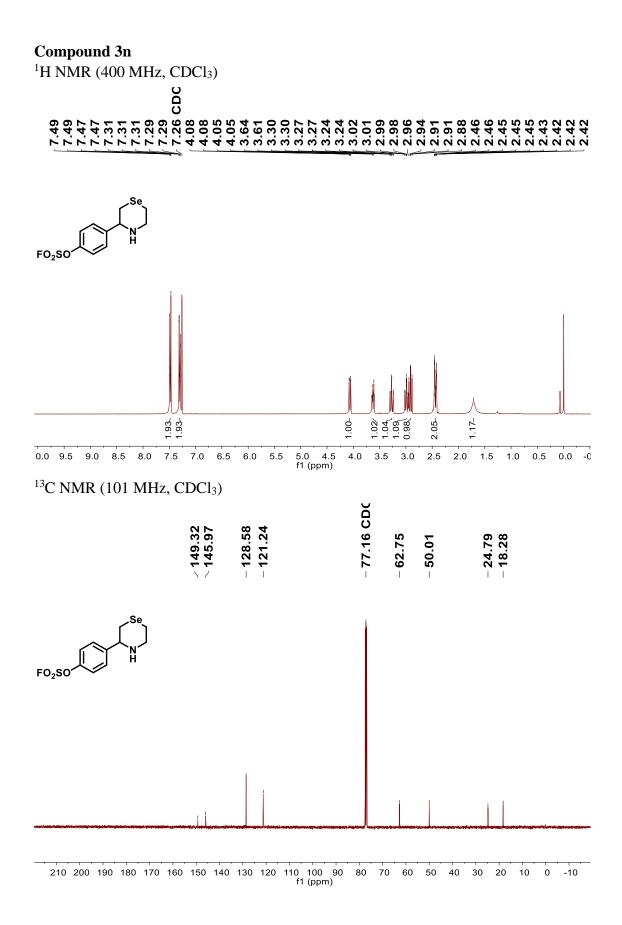


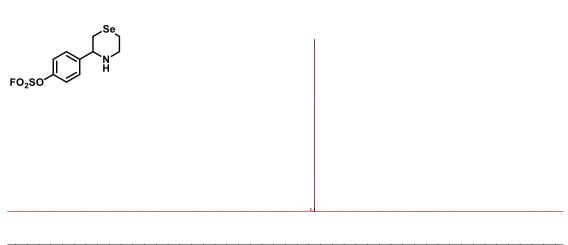


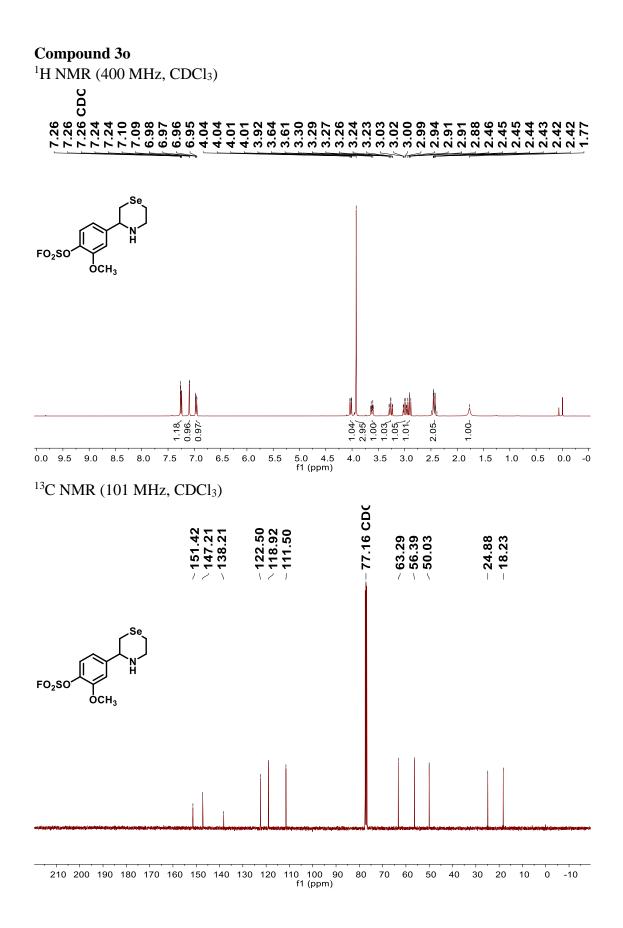


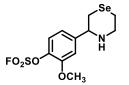


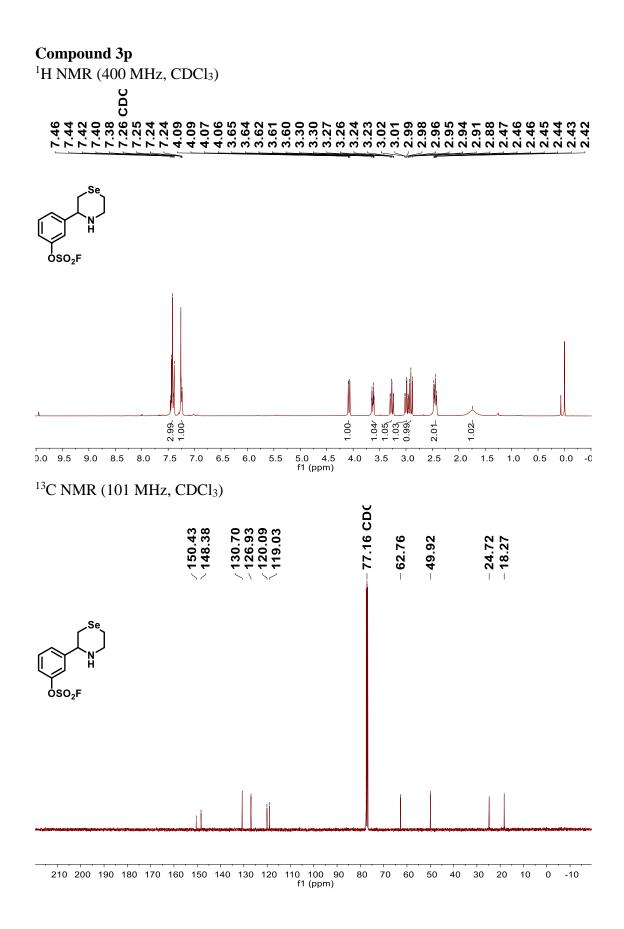




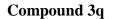


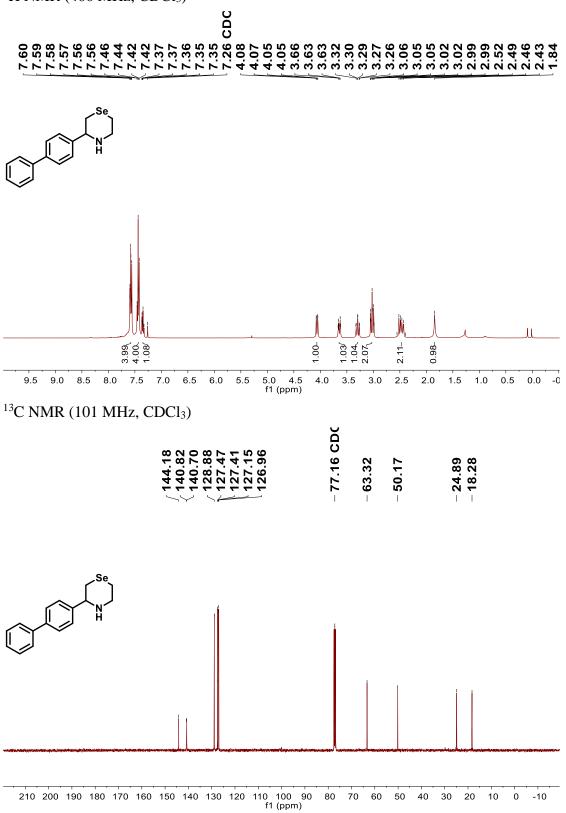



- 37.5

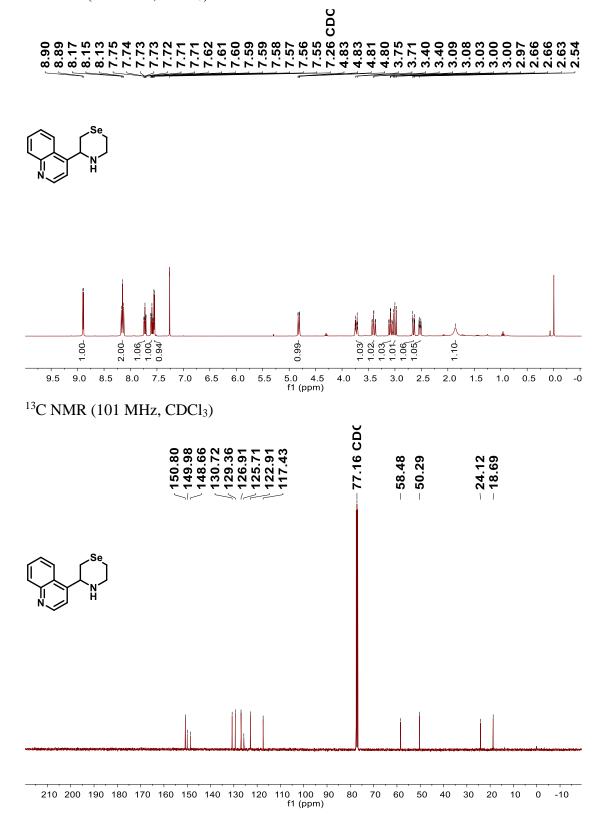

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 f1 (ppm)

- 39.6

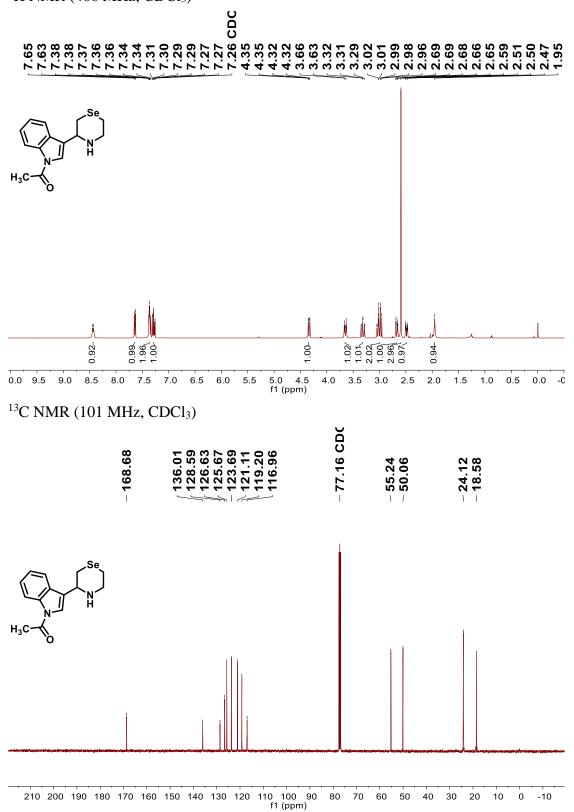

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 f1 (ppm)

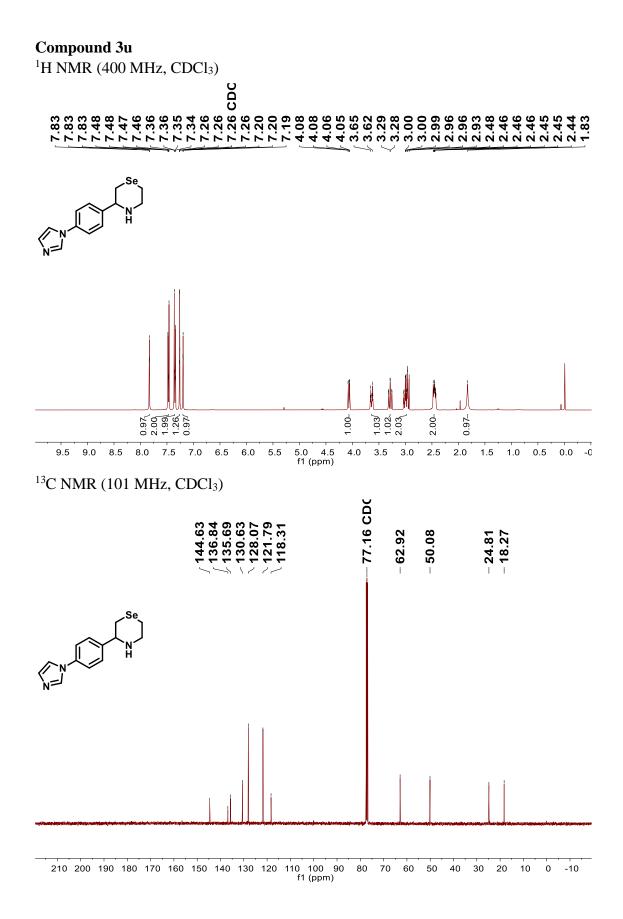


- 37.8

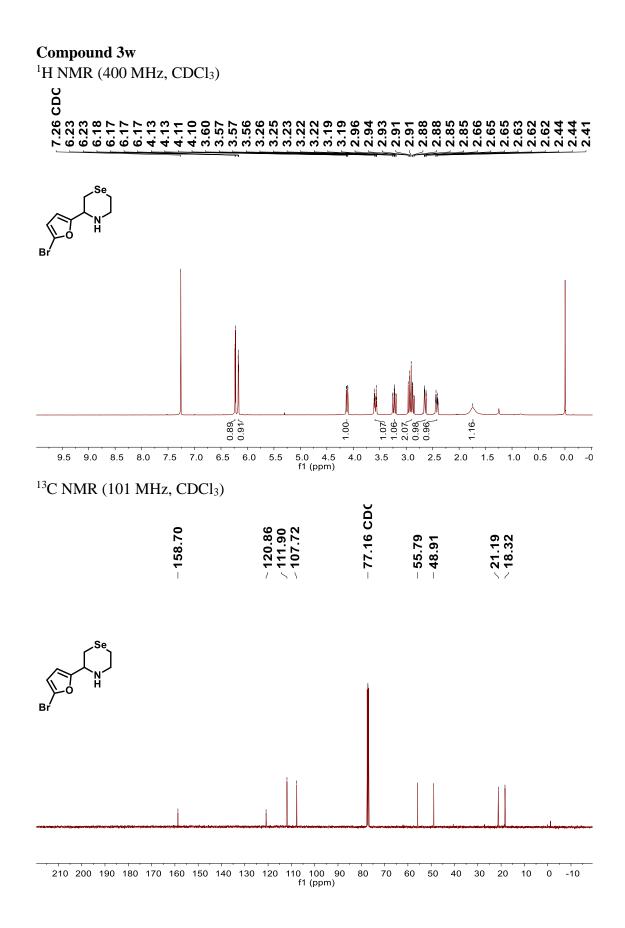


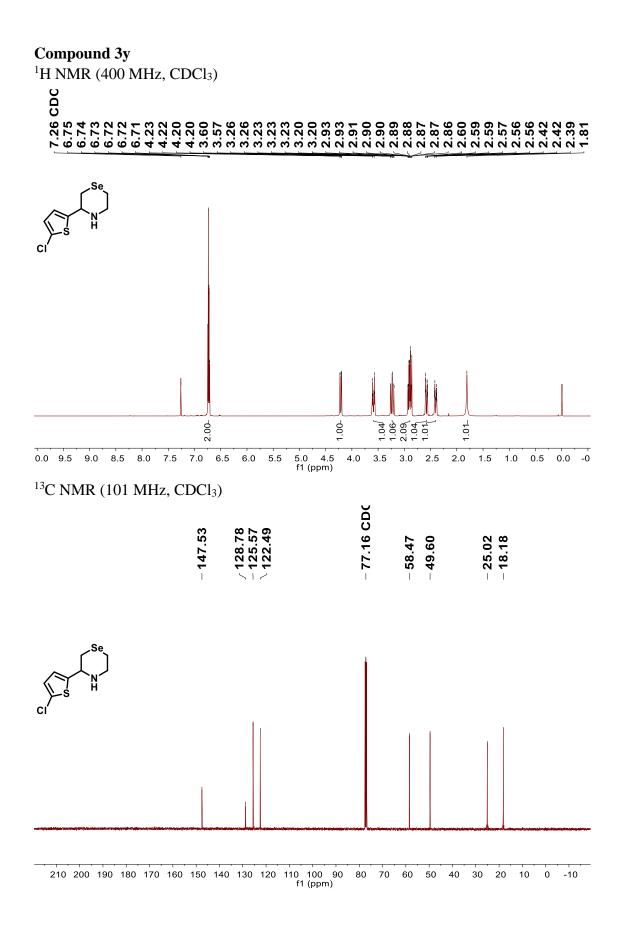
160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 f1 (ppm)

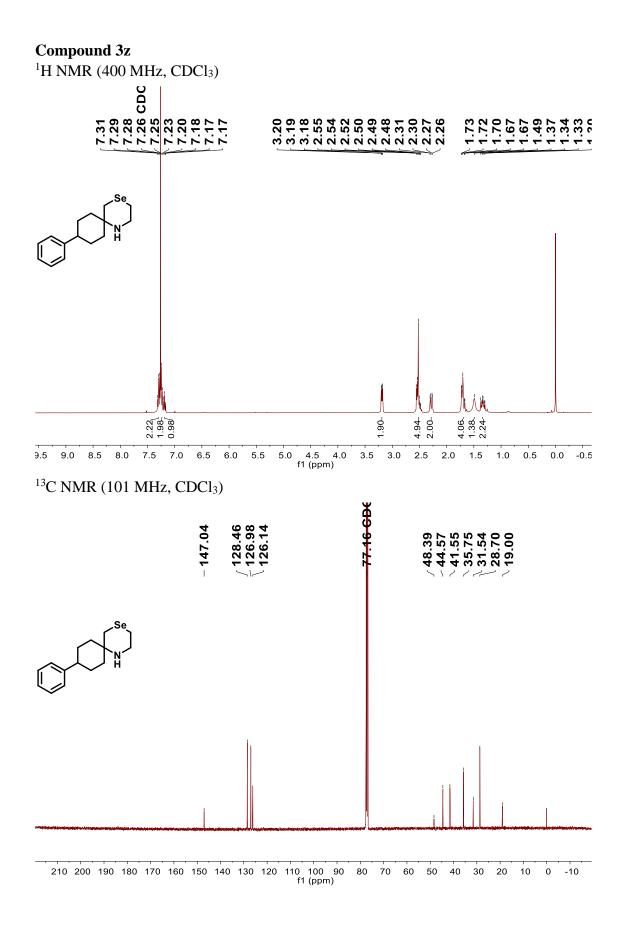


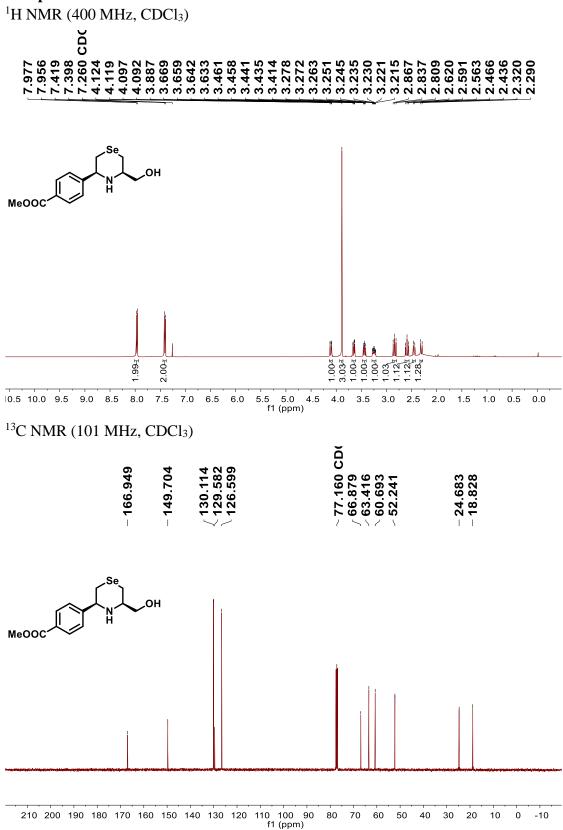


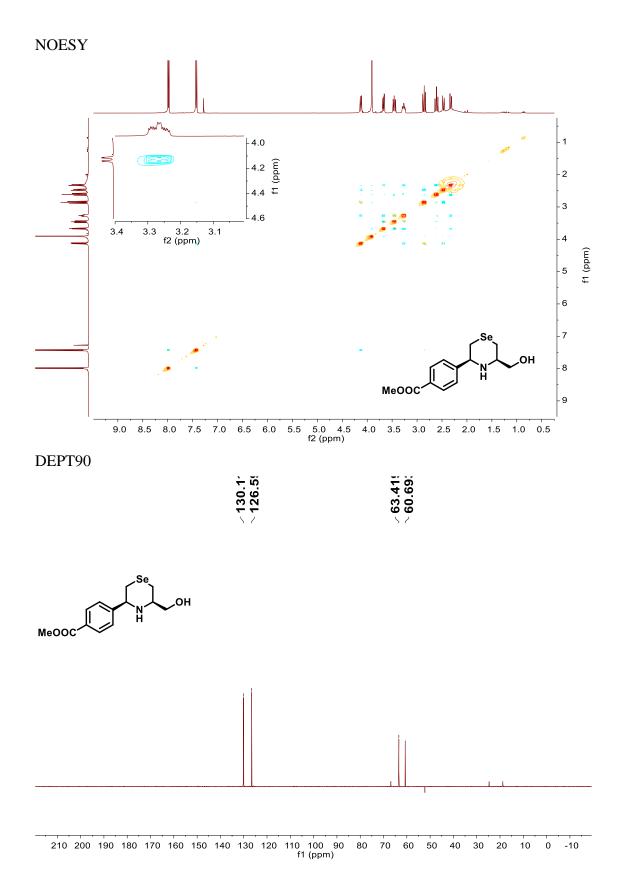

Compound 3s

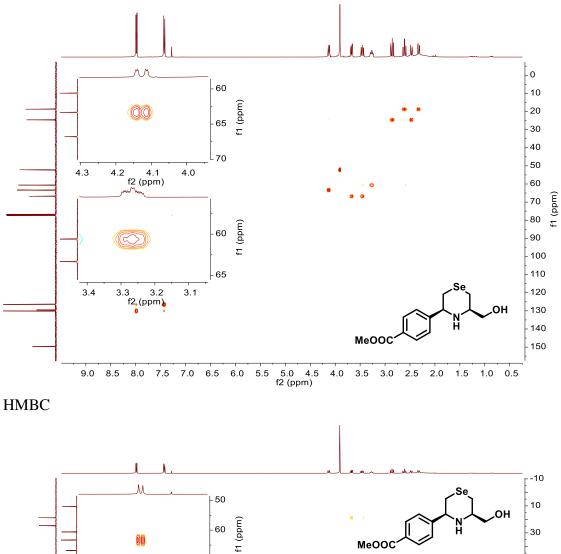


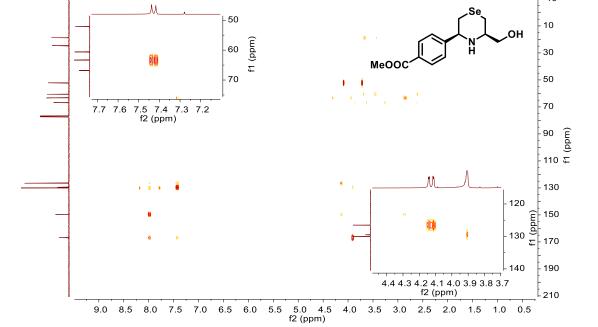

Compound 3t

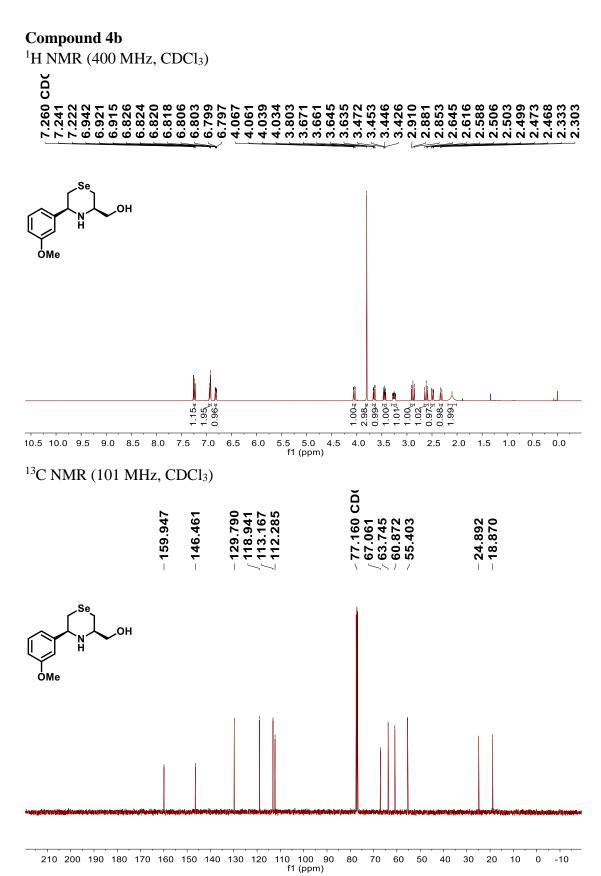


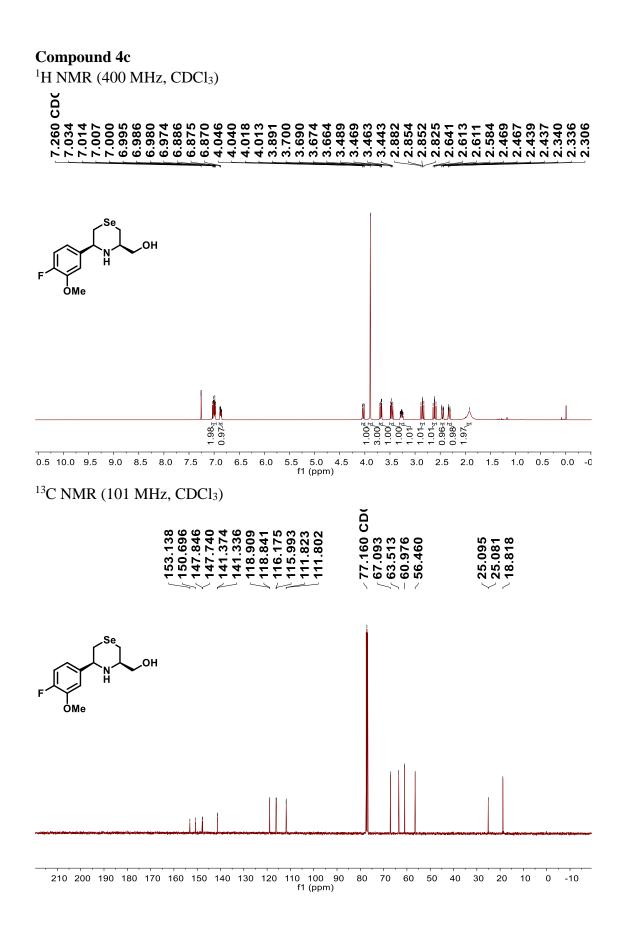


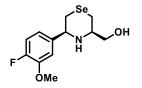


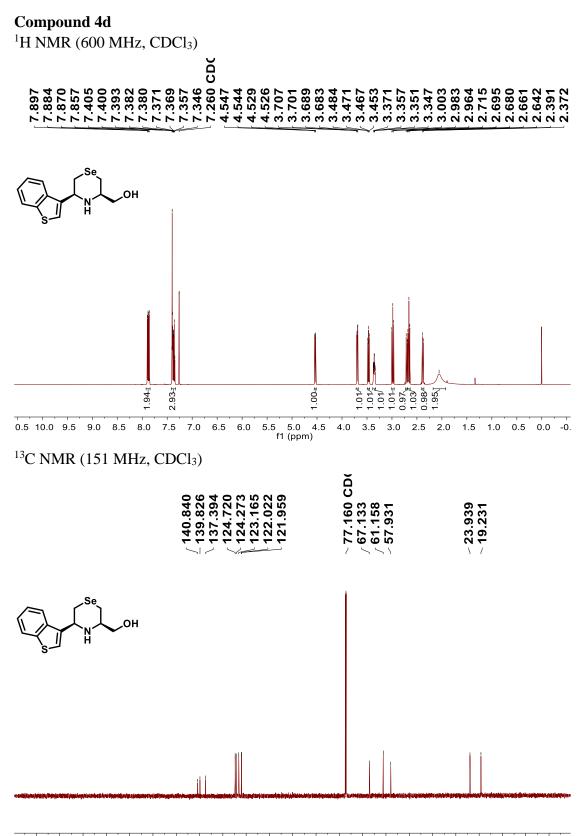



Compound 4a

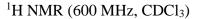


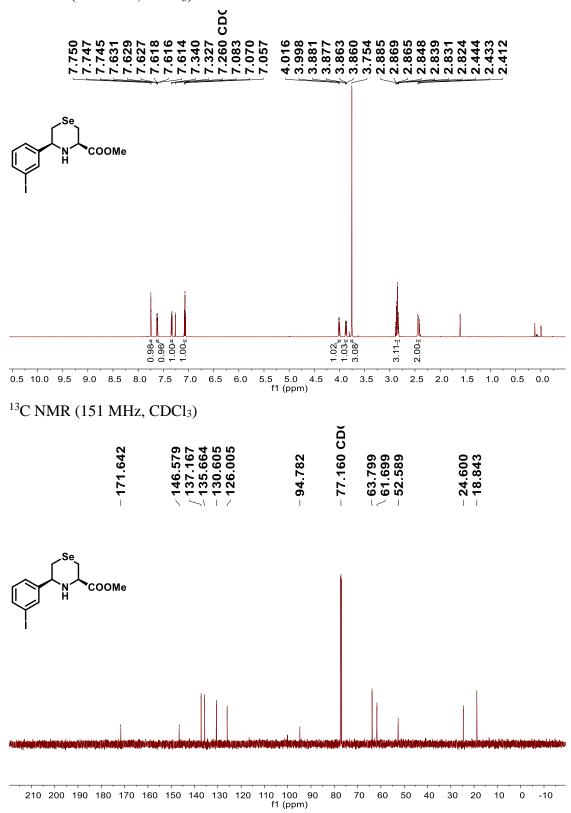


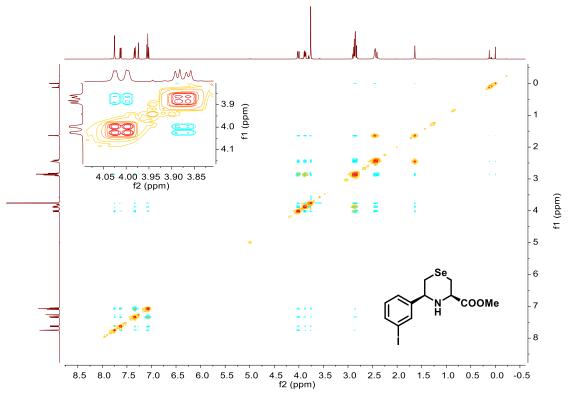


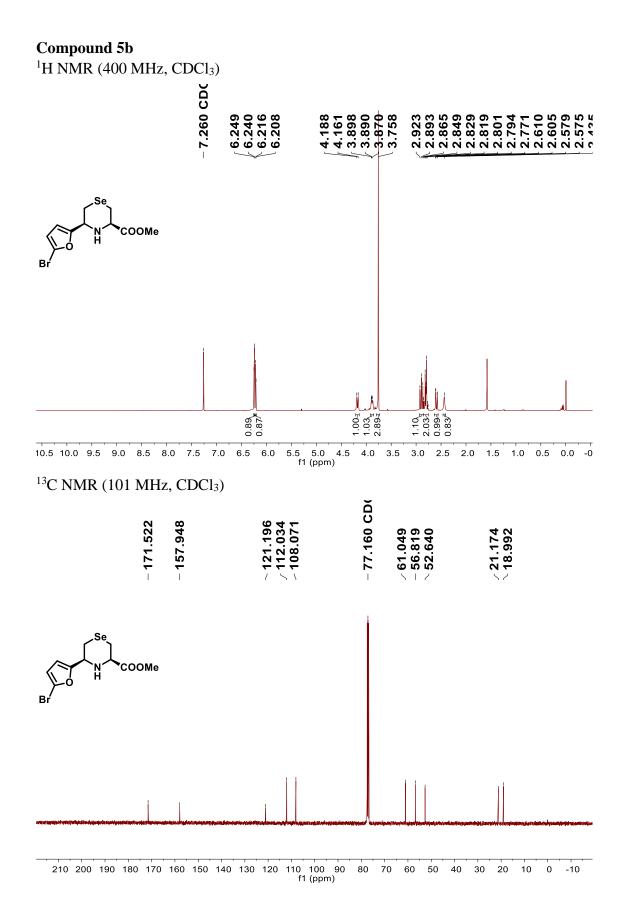


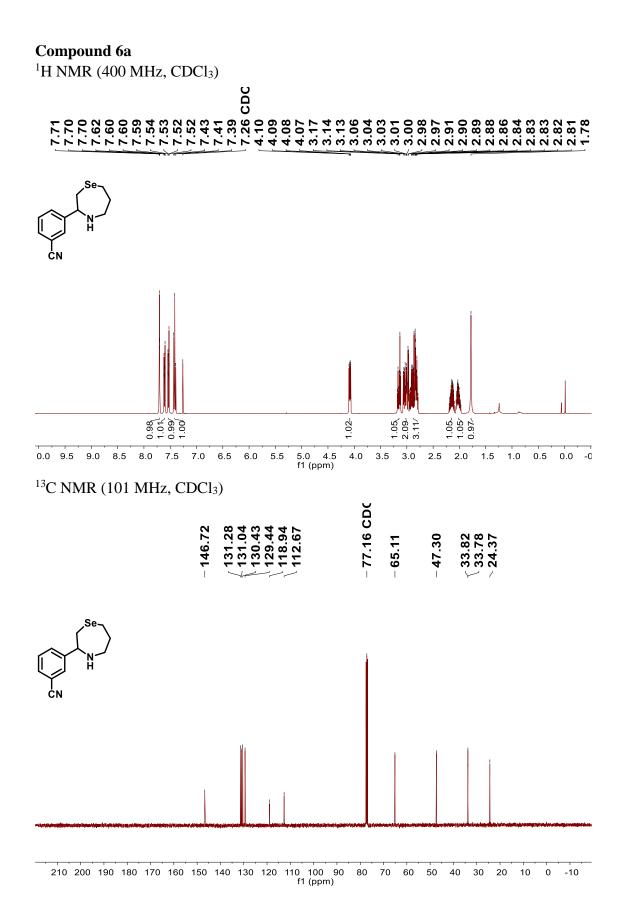
¹⁹F NMR (376 MHz, CDCl₃)

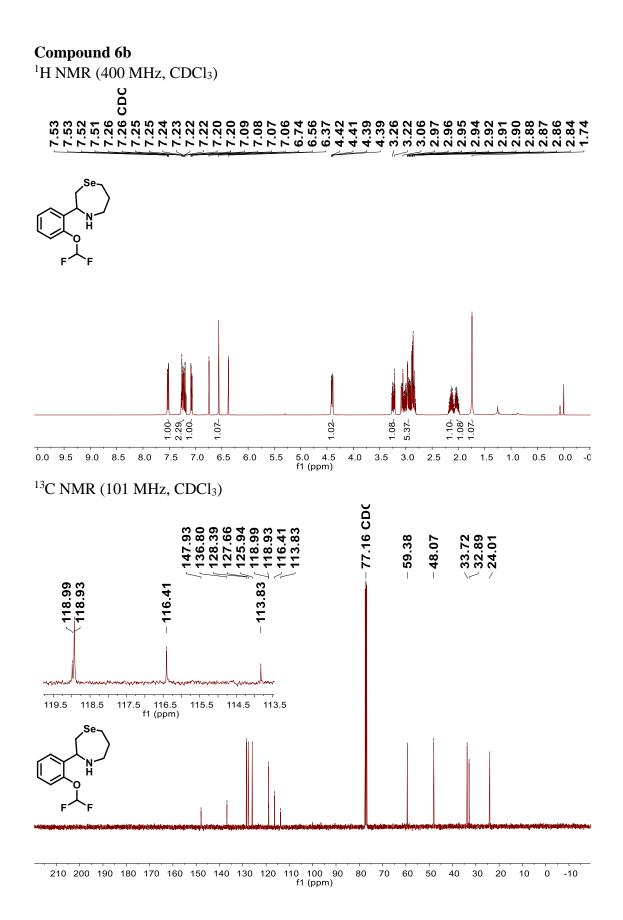

- -136.4

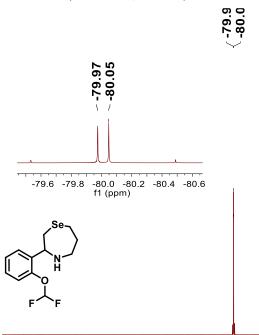


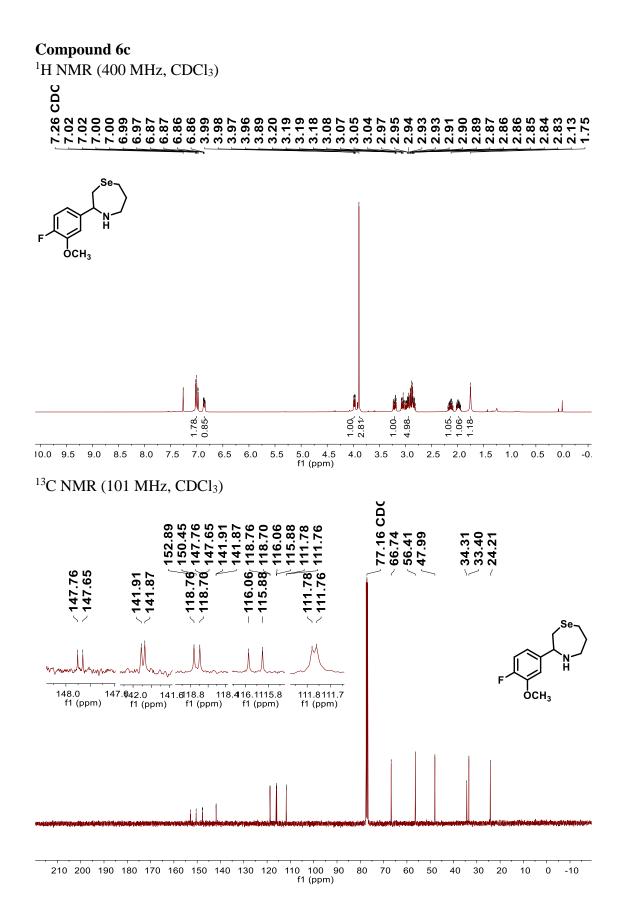

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

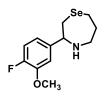


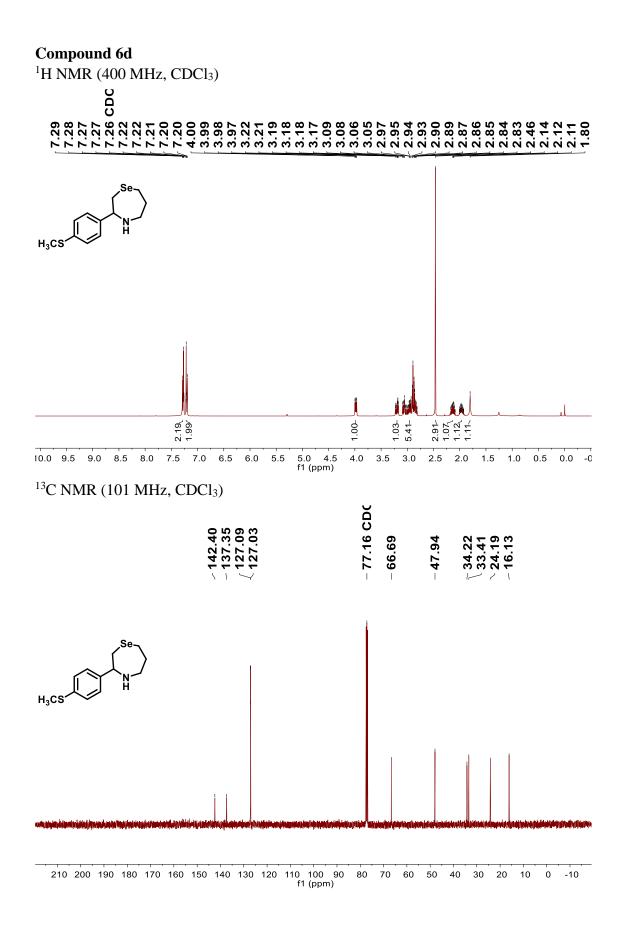


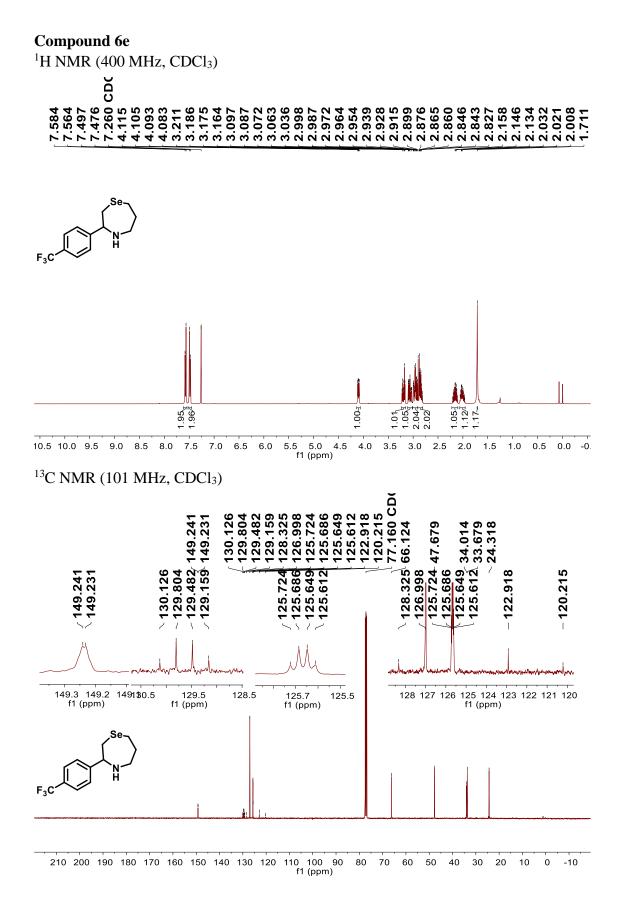


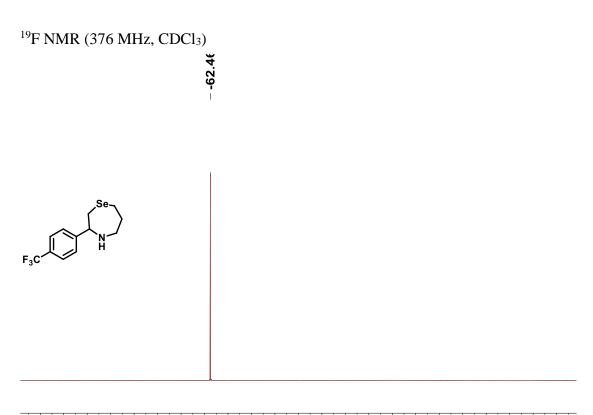


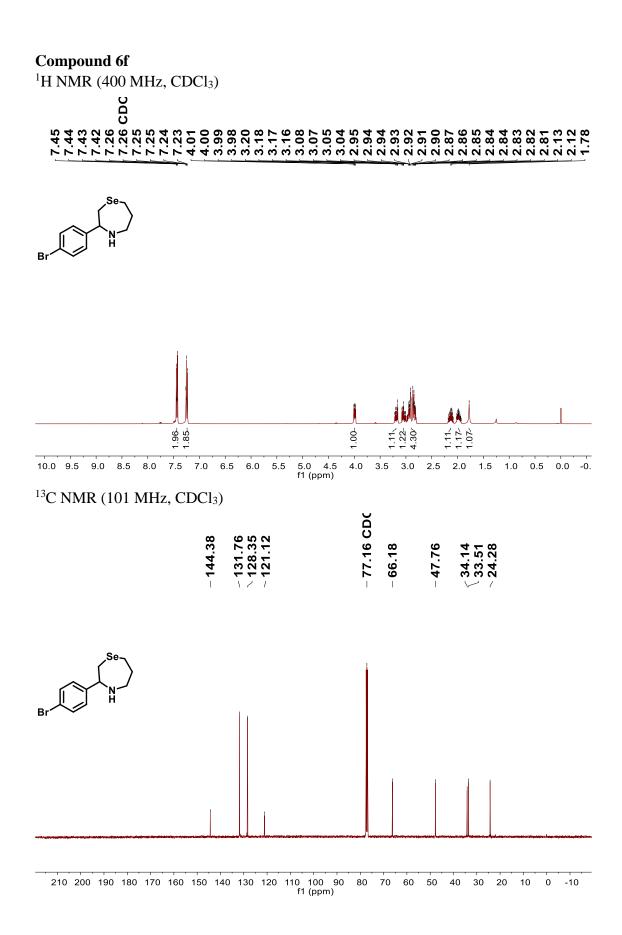

^{80 / 230}

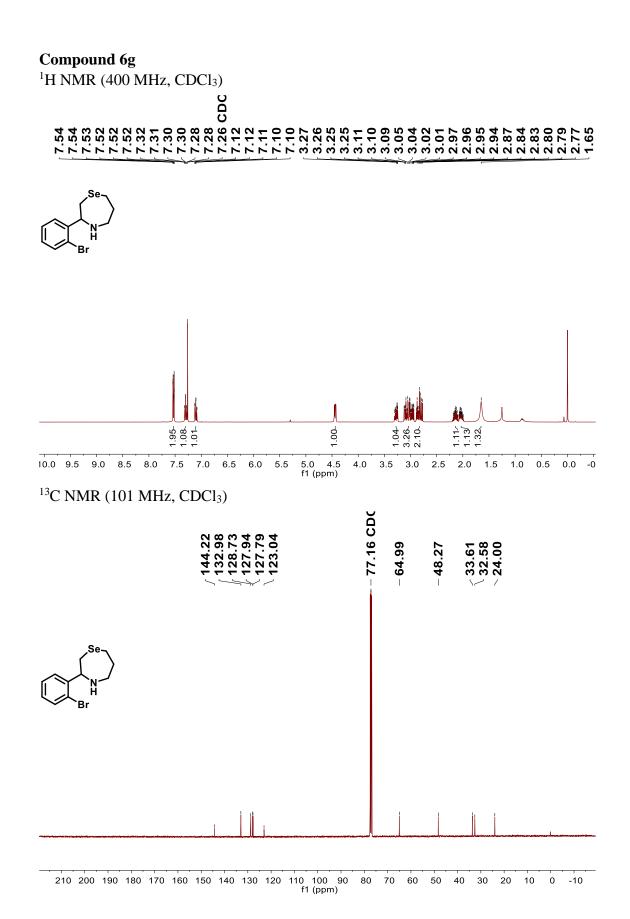


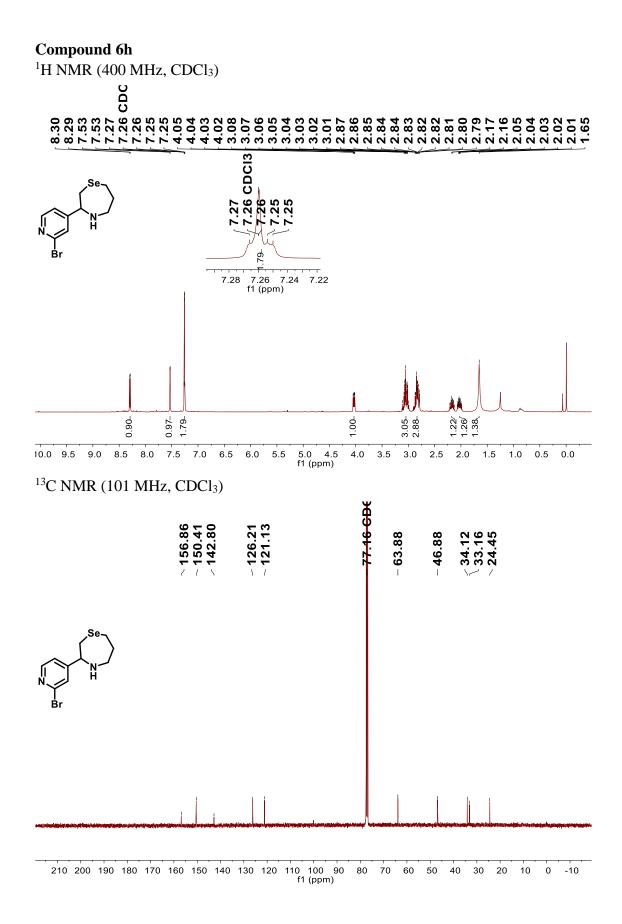


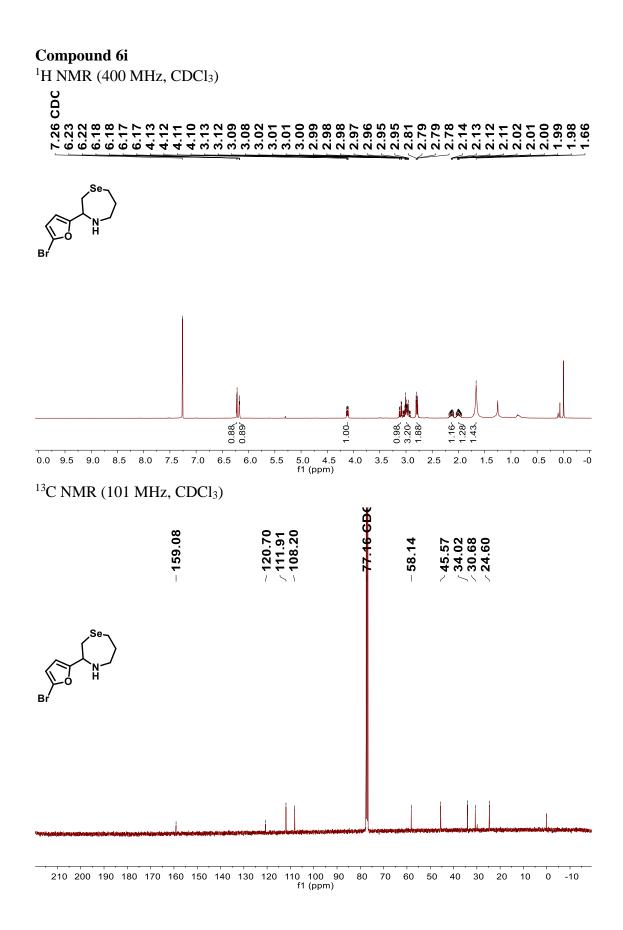


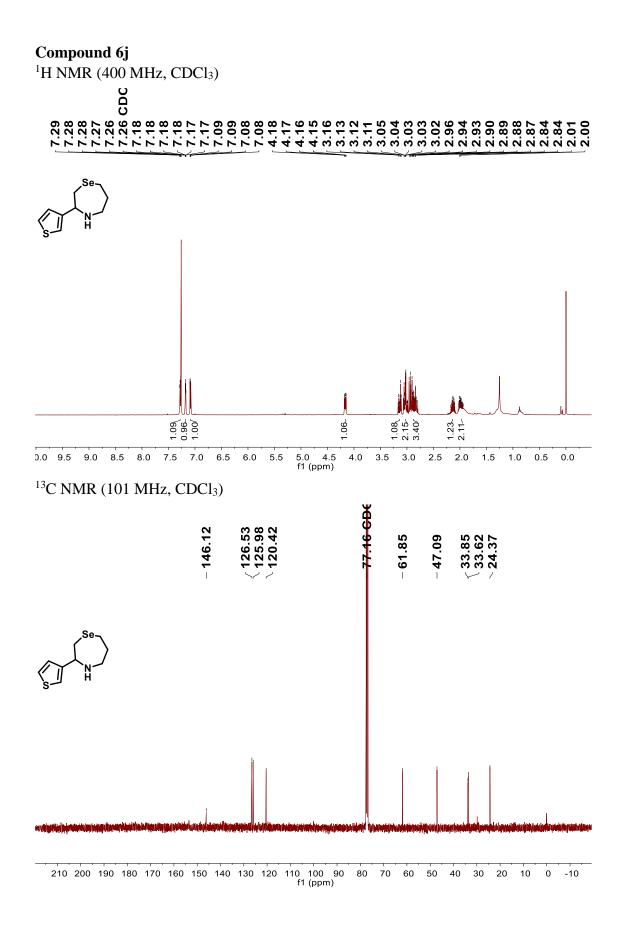


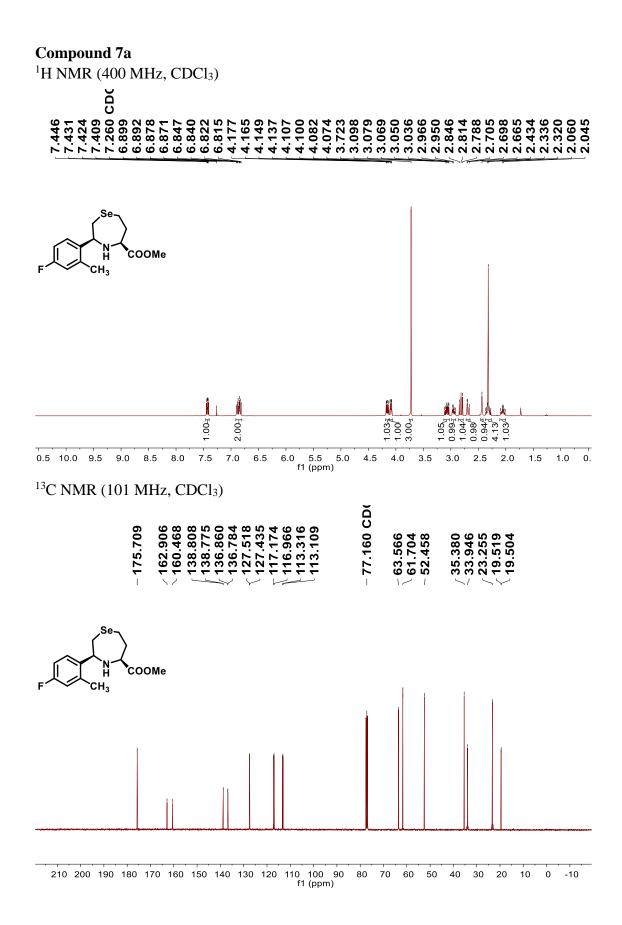

- -137.2

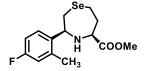


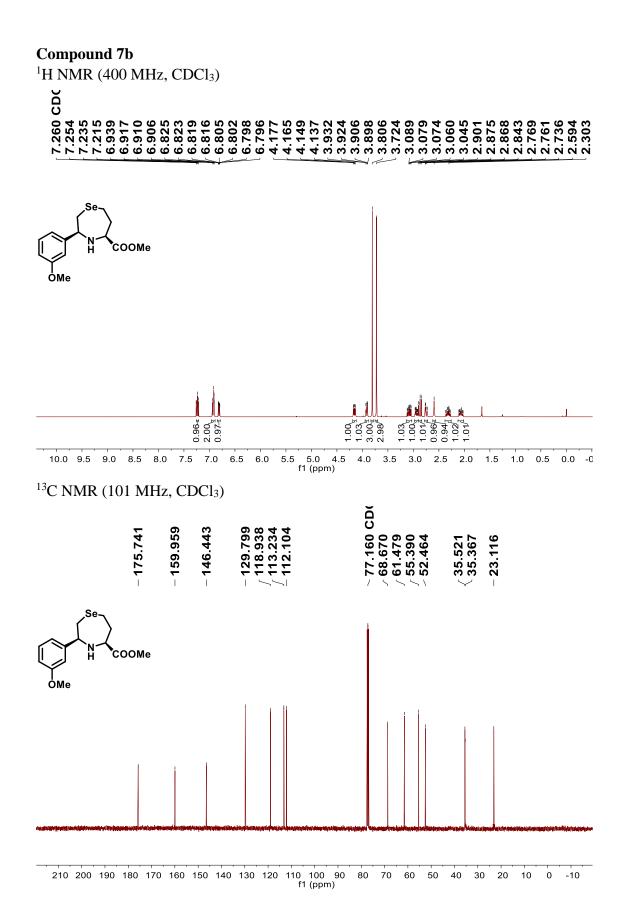


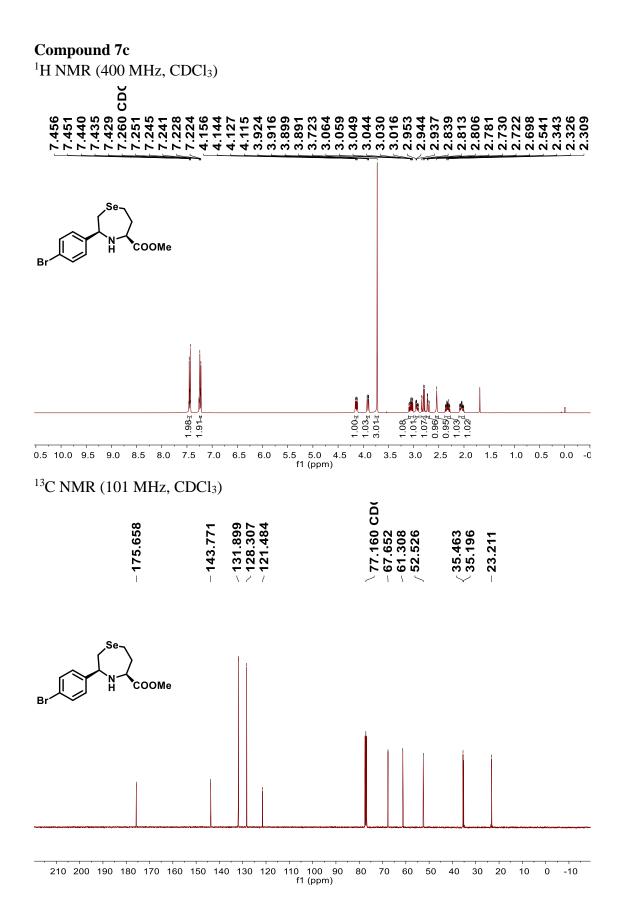


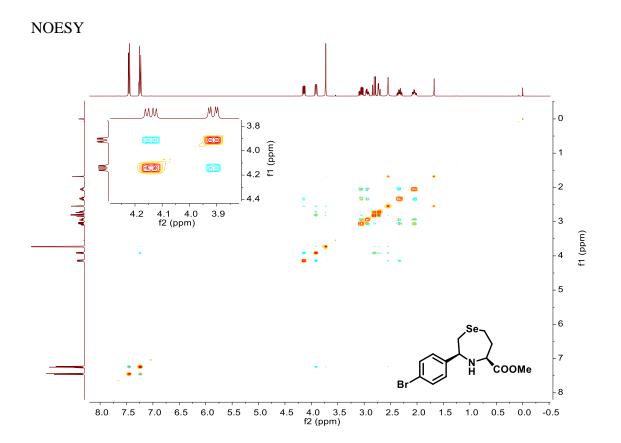




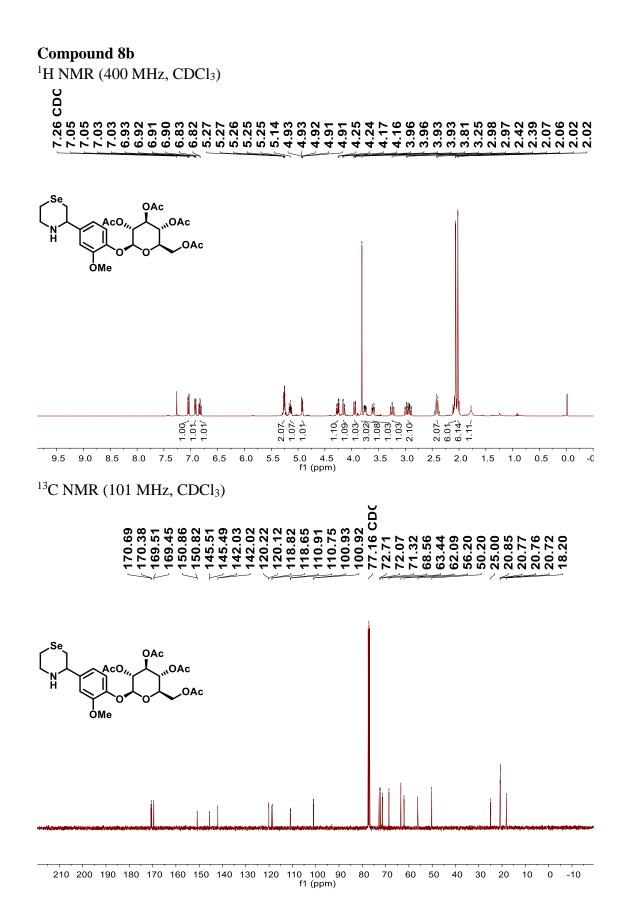


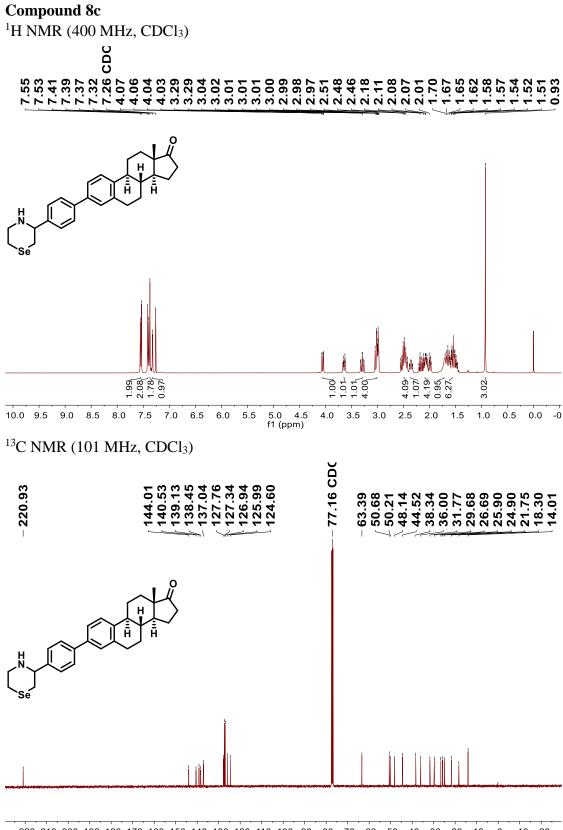


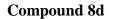


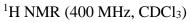

¹⁹F NMR (376 MHz, CDCl₃)

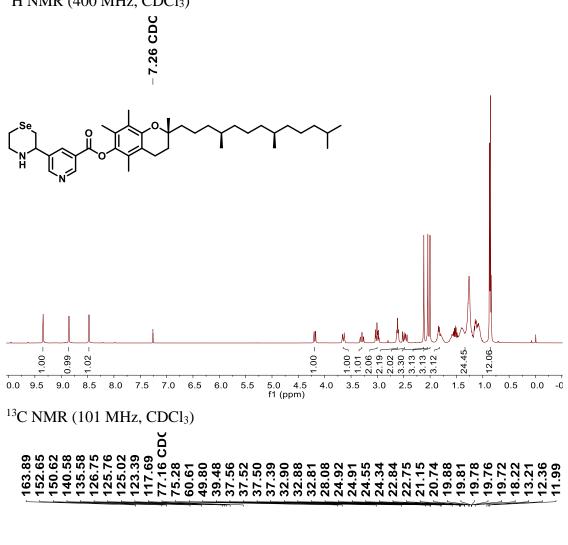
- -115.9

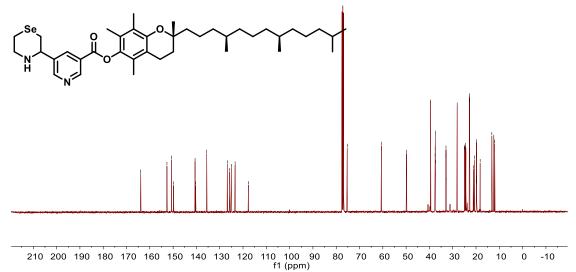




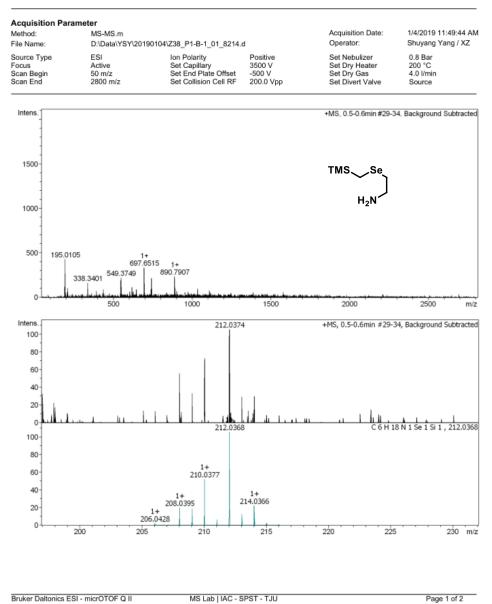



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)





220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

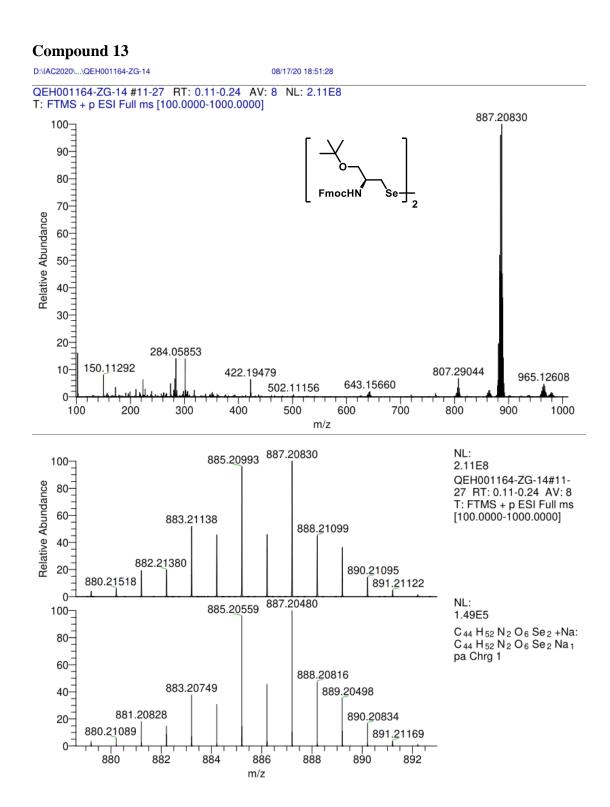


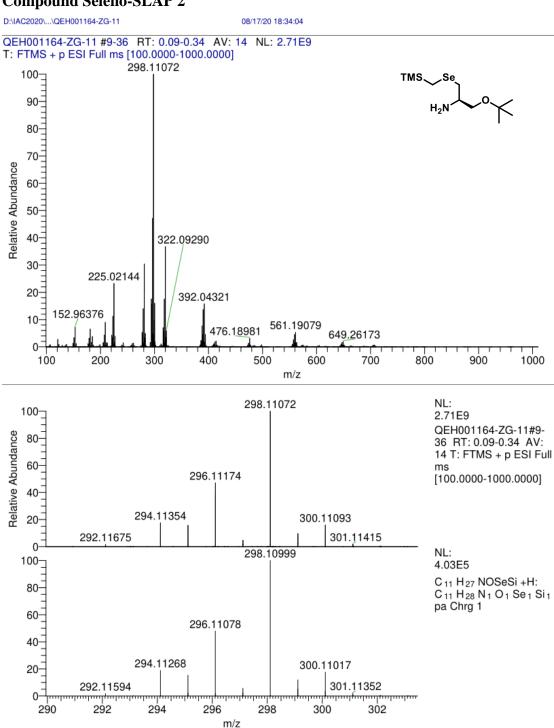
11. HRMS Data

Compound Seleno-SLAP 1

MS Lab | IAC - SPST - TJU Bruker Daltonics ESI - micrOTOF Q II

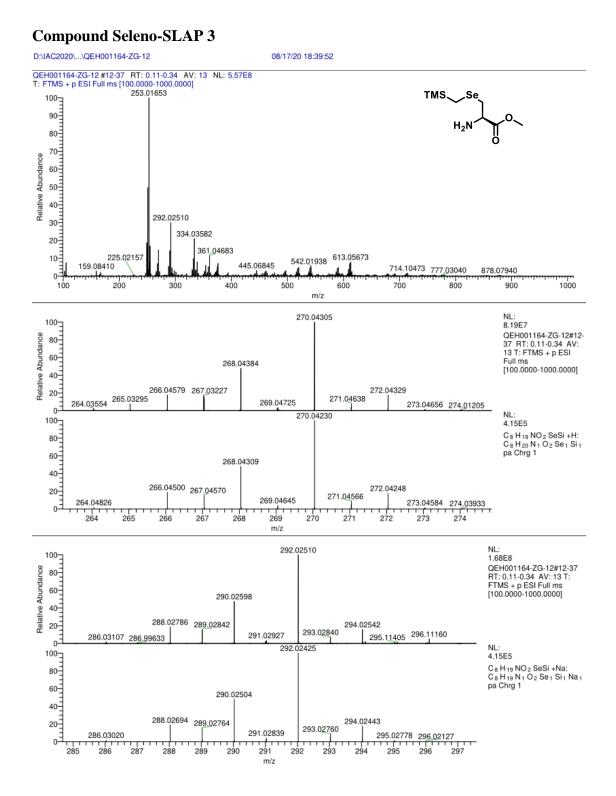
Evaluation Spectra / Validation Formula:


Meas. m/z	#	Ion Formula	m/z	Adduct	err [mDa]	err [ppm]	mSigma	N-Rule	rdb	e [—] Conf	Score
212.037419	1	C6H18NSeSi	212.036801	M+H	-0.6	-2.9	823.3	ok	-0.5	even	-1.#J


Calibration Info:	Mass List:							
Date: 1/8/2019 4:06: Polarity: Positive	33 PM	#	m/z	Res.	S/N	1%	FWHM	
Calibration spectrum: +MS, 0.1-0.2m	1	193.0116	11060	70774.7	28.0	0.0175		
	2	195.0105	14800	251477.8	100.0	0.0132		
Calibration mode: Quadratic	ing Mix ES-TOF_140 (ESI) (pos)		212.0374	10776	58501.7	24.4	0.0197	
Calibration mode. Quadratic		4	338.3401	10098	44566.7	37.8	0.0335	
Reference m/z Resulting m/z Inter	nsity Error (ppm)	5	547.3732	14709	15389.7	25.4	0.0372	
118.0863	nsity Error [ppm]	6	548.5034	22226	26627.7	44.1	0.0247	
322.0481		7	549.3749	10625	31024.1	51.5	0.0517	
622.0290		8	619.5263	17714	14661.1	26.2	0.0350	
922.0098 922.0112	417 1.491	9	697.6515	9533	38244.0	78.2	0.0732	
1221.9906	417 1.491	10	742.5075	13522	21119.7	50.5	0.0549	
	6142 -1.762	11	744.5119	29708	12882.5	31.2	0.0251	
1821.9523	0142 -1.762	12	890.7907	13064	9507.2	54.7	0.0682	
	1612 0.653	13	892.8006	23390	4011.9	23.3	0.0382	
	1612 0.653							
2421.9140		#	m/z	Res.	S/N		FWHM	
2721.8948	0.07 0.550	1	206.0428	10472		1.8	0.0197	
140.0682 140.0681	897 -0.558	2	207.0461	10523		0.2	0.0197	
Standard deviation: 2.673		3	208.0395	10573		18.6	0.0197	
		4	209.0403	10624		17.3	0.0197	
		5	210.0377	10675		49.6	0.0197	
		6	211.0390	10726		6.3	0.0197	
		7	212.0368	10776		00.0	0.0197	
		8	213.0384	10827		12.0	0.0197	
		9	214.0366	10878		21.1	0.0197	
		10	215.0385	10929		2.3	0.0197	
		11	216.0338	10980		0.7	0.0197	

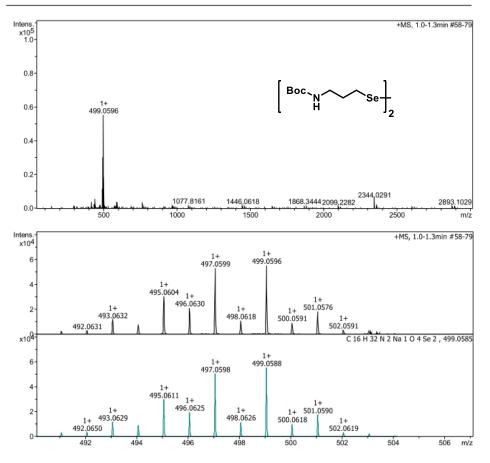
Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU


Page 2 of 2

Compound Seleno-SLAP 2

107 / 230



108 / 230

Compound 16

RAJAVEL/ZHOU GUAN

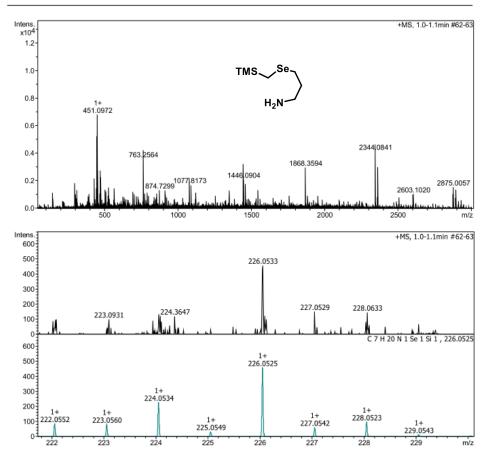
Method:	20190603-50_300	00-pos.m		Acquisition Date:	6/5/2019 7:22:47 PM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190 ESI Active 50 m/z 3000 m/z	605\ZHOUGUAN-2\33_P1-C- Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	6_01_9000.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Evaluation	Evaluation Spectra / Validation Formula:											
		lon Formula C16H32N2NaO4Se2	92.84	m/z 499.058807	err [mDa] 0.8	err [ppm] 1.6			e ⁻ Conf even	N-Rule ok	Adduct M+Na	

Calibration In	fo:			Mass	List:				
Date:		9 5:07:13 F	M	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	296,9531	23533	169.1	2.4	0.0126
Calibration spec		5-4.7min #2	70-278: Scan	2	417.1421	11870	155.1	3.2	0.0126
Reference mass	ist: ESI: Tur	ing Mix ES	TOF (ESI) (pos)	23	417.1421	13000	340.6	7.2	0.0351
Calibration mode	e: Enhance	ed Quadrati	3	4	438.9983	11523	228.5	7.2 5.1	0.0322
				4 5	439.9976	12125	149.8	3.3	0.0363
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	439.9976	12125	426.4	3.3 9.5	0.0363
118.0863				7	440.9963	12200	420.4	9.5	0.0359
322.0481	322.0483	313	0.464	8	442.9954				
622.0290	622.0283	17935	-1.094	9		11611	180.8	4.0	0.0383
922.0098	922.0095	43046	-0.353		475.0757	12890	161.8	3.9	0.0369
1221.9906	1221.9918	56228	0.990	10	477.0758	12715	167.3	4.0	0.0375
1521.9715	1521.9728	59291	0.872	11	491.0631	12268	149.2	3.7	0.0400
1821.9523	1821.9531	35983	0.406	12	492.0631	12198	205.3	5.1	0.0403
2121.9332	2121.9317	39186	-0.669	13	493.0632	13903	841.0	21.0	0.0355
2421.9140	2421.9085	9441	-2.249	14	494.0625	11988	554.5	13.8	0.0412
2721.8948	2721.8993	1902	1.633	15	495.0604	14222	2191.7	54.9	0.0348
Standard deviati	ion: 1.572			16	496.0630	14700	1524.5	38.2	0.0337
				17	497.0599	15079	3831.9	96.1	0.0330
				18	498.0618	12523	775.6	19.5	0.0398
				19	499.0596	14346	3973.7	100.0	0.0348
				20	500.0591	11729	657.6	16.6	0.0426
				21	501.0576	13132	1313.0	33.2	0.0382
				22	502.0591	12671	231.6	5.9	0.0396
				23	503.0620	10378	191.9	4.9	0.0485
				24	503.3702	30574	107.6	2.7	0.0165
				25	586.9930	13778	122.5	3.5	0.0426
				26	587.9944	13455	85.9	2.5	0.0437
				27	588.9912	13774	201.5	5.8	0.0428
				28	589.9928	12749	103.8	3.0	0.0463
				29	590.9908	13232	238.1	6.9	0.0447
				30	592.9883	12714	230.8	6.7	0.0466
				31	597.0524	13553	87.3	2.5	0.0441
				32	763.2246	36680	215.8	6.8	0.0208
				33	763.5774	13918	113.1	3.6	0.0549
				34	971.1247	12752	78.5	2.8	0.0762
				35	973.1255	14160	87.1	3.1	0.0687
				36	1077.8161	16758	83.5	3.2	0.0643
				37	1446.0618	43917	64.4	3.0	0.0329
				38	1868.3444	56285	63.8	3.0	0.0332
				39	2344.0291	25739	325.2	9.9	0.0911
				40	2344.6586	23517	175.0	5.3	0.0997
				#	m/z	Res.	S/N	۱%	FWHM
				1	489.0671	14059		0.6	0.0348
				2	490.0683	14088		0.6	0.0348
				3	491.0643	14116		4.5	0.0348
				4	492.0650	14145		5.7	0.0348

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU


						-
#	m/z	Res.	S/N	1%	FWHM	
5	493.0629	14174		21.0	0.0348	
6	494.0634	14203		16.1	0.0348	
7	495.0611	14231		53.7	0.0348	
8	496.0625	14260		35.3	0.0348	
9	497.0598	14289		91.1	0.0348	
10	498.0626	14318		21.0	0.0348	
11	499.0588	14346		100.0	0.0348	
12	500.0618	14375		18.3	0.0348	
13	501.0590	14404		31.6	0.0348	
14	502.0619	14433		5.6	0.0348	
15	503.0600	14461		3.3	0.0348	
16	504.0622	14490		0.5	0.0348	

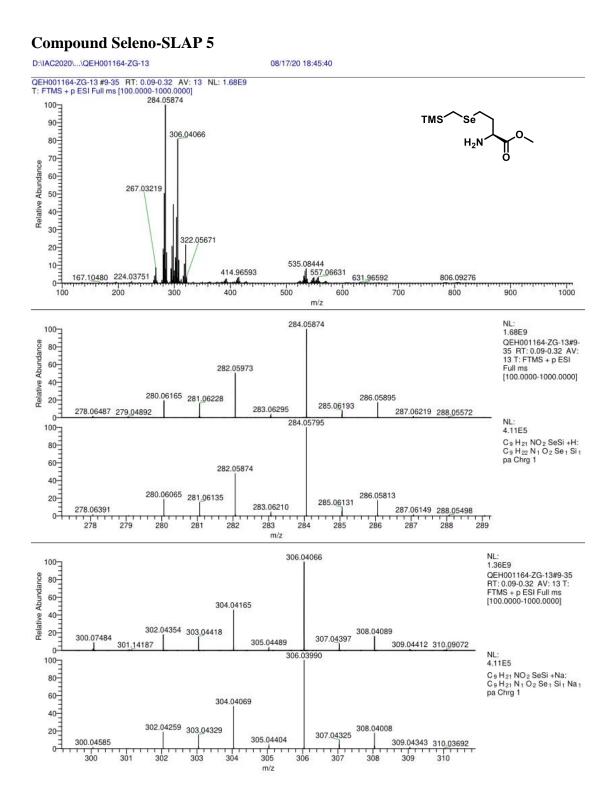
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound Seleno-SLAP 4

RAJAVEL/ZHOU GUAN

Mathad	20100602 50, 2000			Acquisition Date:	6/6/2019 12:07:03 PM
Method:	20190603-50_3000-pc	s.m		Acquisition Date:	6/6/2019 12:07:03 PM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190605\ ESI Active 50 m/z 3000 m/z	ZHOUGUAN-2\34_P1-C- Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	8_01_9026.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 I/min Source

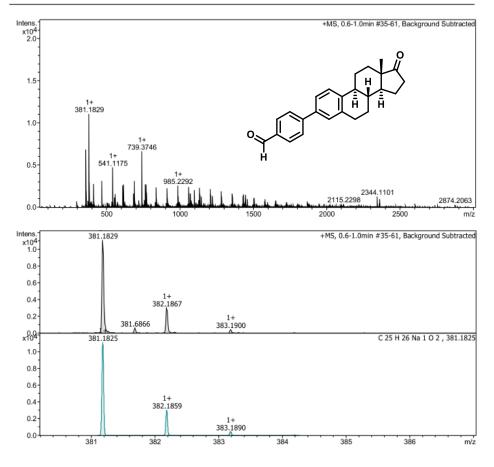
Bruker Daltonics ESI - micrOTOF Q II


MS Lab | IAC - SPST - TJU

Evaluation \$	Evaluation Spectra / Validation Formula:											
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	N-Rule	Adduct	
226.053317	1	C7H20NSeSi	100.00	226.052455	-0.9	-3.8	200.6	-0.5	even	ok	M+H	

m/z 296.9610 297.1752 312.1093 430.9152 445.1093 448.0998 449.0987 450.0975 451.0972 452.0969 453.0964 471.0811 473.0790 503.3709 503.3709 503.3709 503.3709 503.3709 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	Res. 21694 8725 11144 12782 13876 10465 12198 11774 15080 12355 10437 12998 16223 14950 25477 11653 12678 10962 14408 39974 21823 25755	S/N 21.3 23.7 21.4 33.3 21.9 42.5 37.8 79.4 103.0 25.2 41.4 41.5 34.1 20.1 18.8 21.7 21.4 41.5 34.1 18.8 21.7 21.4 41.5 34.1 18.8 21.7 21.4 19.4 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	 1% 19.0 21.2 32.0 21.2 36.6 77.0 24.1.2 40.6 33.4 40.2 40.6 33.4 19.8 18.5 21.3 17.6 52.7 34.0 19.4 	FWHM 0.0137 0.0341 0.0220 0.0337 0.0321 0.0427 0.0367 0.0365 0.0433 0.0365 0.0433 0.0349 0.0290 0.0316 0.0197 0.0432 0.0443 0.0197 0.0443 0.0197 0.0443 0.0290 0.0443 0.0297 0.0350 0.0297
296.9610 297.1752 312.1093 430.9152 445.1021 447.0993 448.0998 449.0987 450.0975 451.0972 452.0969 453.0964 471.0811 473.0790 503.3709 503.3709 503.3709 503.3709 503.3709 503.3709 527.1107 529.1039 566.8902 663.4722 763.2564	21694 8725 11144 12782 13876 10465 12198 11774 15080 12355 10437 12998 16223 14950 25477 11653 12678 10962 14052	21.3 23.7 21.4 33.3 21.9 42.5 37.8 79.4 30.8 1030.8 1030.8 1030.8 25.2 41.4 41.5 34.1 20.1 18.8 21.5 22.7 4 1.5 22.7 33.2	19.0 21.2 19.5 32.0 21.2 41.2 36.6 77.0 29.9 100.0 24.4 40.6 33.4 19.8 18.5 21.3 22.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0137 0.0341 0.0280 0.0337 0.0327 0.0367 0.0367 0.0365 0.0365 0.0349 0.0290 0.0349 0.0349 0.0349 0.0349 0.0349 0.0416 0.0413 0.0413 0.0413 0.0413 0.0413 0.0413 0.0415 0.0413 0.0415 0.0417 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0367 0.0427 0.0369 0.0349 0.0349 0.0349 0.0349 0.0349 0.0349 0.0359 0.0349 0.0349 0.0359 0.0349 0.0359 0.0349 0.0359 0.0349 0.0359 0.0359 0.0359 0.0349 0.0359 0.0359 0.0359 0.0349 0.0359 0.0359 0.0359 0.0359 0.0359 0.0359 0.0359 0.0359 0.0359 0.0359 0.0439 0.0359 0.0439 0.0359 0.0439 0.0350 0.0430 0.0350 0.0430 0.0350 0.0430 0.0350000000000
297.1752 312.1093 430.9152 445.1021 447.0993 448.0998 449.0987 450.0975 452.0969 453.0964 471.0811 473.0790 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564	8725 11144 12782 13876 10465 12198 11774 15080 12355 10437 12998 16223 14950 25477 11653 12678 10962 14408 39974 21823 25745	23.7 21.4 33.3 21.9 42.5 37.8 79.4 30.8 103.0 25.2 41.4 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5	21.2 19.5 32.0 21.2 41.2 36.6 77.0 29.9 100.0 24.4 40.2 40.6 33.4 19.8 21.3 22.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0341 0.0280 0.0327 0.0321 0.0427 0.0367 0.0381 0.0385 0.0433 0.0349 0.0296 0.0346 0.0346 0.0346 0.0346 0.0346 0.0433 0.0341 0.0448 0.0448 0.0448 0.0350 0.0297
312.1093 430.9152 445.1021 447.0993 448.0998 449.0987 450.0975 451.0972 452.0969 453.0964 471.0811 473.0790 503.3709 503.3709 503.3709 503.3709 503.3709 503.41107 566.8902 693.4722 763.2564	11144 12782 13876 10465 12188 11774 15080 12355 10437 12998 16223 14950 25477 11653 12678 10962 14408 39974 21823 25745	21.4 33.3 21.9 42.5 37.8 79.4 103.0 25.2 41.4 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	19.5 32.0 21.2 36.6 77.0 29.9 100.0 24.4 40.6 33.4 19.8 18.5 21.3 22.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0280 0.0337 0.0321 0.0427 0.0367 0.0367 0.0386 0.0298 0.0349 0.0298 0.0349 0.0290 0.0316 0.0433 0.0349 0.0293 0.0416 0.0483 0.0493 0.0417 0.0423 0.0173 0.0350
430.9152 445.1021 447.0993 448.0998 449.0987 450.0975 451.0972 452.0969 453.0964 471.0811 473.0790 503.3709 503.3709 503.3709 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	12782 13876 10465 12198 11774 15080 12355 10437 12985 16223 14950 25477 11653 12678 10962 14408 39974 21823 25745	33.3 21.9 42.5 37.8 79.4 30.0 25.2 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5	32.0 21.2 41.2 36.6 77.0 29.9 100.0 24.4 40.2 40.6 33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0337 0.0321 0.0427 0.0367 0.0365 0.0433 0.0346 0.0290 0.0316 0.0197 0.0432 0.0416 0.0432 0.04416 0.0433 0.0343 0.0350
445.1021 447.0993 448.0998 449.0987 450.0975 452.0969 453.0964 471.0811 473.0790 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	13876 10465 12198 11774 15080 12355 10437 12355 10437 12988 16223 14950 25477 11653 12678 10962 14008 39974 21823 25745 46052	21.9 42.5 37.8 79.4 30.8 103.0 25.2 41.4 41.5 34.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	21.2 41.2 36.6 77.0 29.9 1000 24.4 40.2 40.6 33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0321 0.0427 0.0367 0.0381 0.0298 0.0345 0.0345 0.0345 0.0345 0.0345 0.0432 0.0432 0.0442 0.0442 0.0443 0.0393 0.0173 0.0350 0.0297
447.0993 448.0998 449.0987 450.0975 451.0972 452.0969 453.0964 471.0811 473.0790 503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	10465 12198 11774 15080 12355 10437 12998 16223 14950 25477 11653 12678 10962 14406 39974 21823 25745 46052	42.5 37.8 79.4 103.0 25.2 41.4 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	41.2 36.6 77.0 29.9 100.0 24.4 40.2 40.6 33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0427 0.0367 0.0381 0.0298 0.0365 0.0433 0.0349 0.0290 0.0316 0.0197 0.0432 0.0416 0.0493 0.0483 0.0393 0.0173 0.0350 0.0297
448.0998 449.0987 450.0975 451.0972 452.0969 453.0964 471.0811 473.0790 503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	12198 11774 15080 12355 10437 12998 16223 14950 25477 11653 12678 10962 14408 39974 21823 25745 25745	37.8 79.4 30.8 103.0 25.2 41.4 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	36.6 77.0 29.9 100.0 24.4 40.2 40.6 33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0367 0.0381 0.0298 0.0365 0.0433 0.0349 0.0290 0.0316 0.0497 0.0432 0.0416 0.0483 0.0393 0.0350 0.0350
449.0987 450.0975 451.0972 452.0969 453.0964 471.0811 473.0790 503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	11774 15080 12355 10437 12998 16223 14950 25477 11653 12678 10962 14408 39974 21823 25745 46052	79.4 30.8 103.0 25.2 41.4 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	77.0 29.9 100.0 24.4 40.6 33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0381 0.0298 0.0365 0.0433 0.0349 0.0290 0.0316 0.0497 0.0432 0.0416 0.0483 0.0393 0.0173 0.0350 0.0297
450.0975 451.0972 452.0969 453.0964 471.0811 473.0790 503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	15080 12355 10437 12998 16223 14950 25477 11653 12678 10962 14408 39974 21823 25745 46052	30.8 103.0 25.2 41.4 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	29.9 100.0 24.4 40.6 33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0298 0.0365 0.0433 0.0349 0.0290 0.0316 0.0432 0.0432 0.0433 0.0393 0.0350 0.0297
451.0972 452.0969 453.0964 471.0811 473.0790 503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	12355 10437 12998 16223 14950 25477 11653 12678 10962 14408 39974 21823 25745 46052	103.0 25.2 41.4 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	100.0 24.4 40.2 33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0365 0.0433 0.0349 0.0290 0.0316 0.0197 0.0432 0.0416 0.0483 0.0473 0.0350 0.0297
452.0969 453.0964 471.0811 473.0790 503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	10437 12998 16223 14950 25477 11653 12678 10962 14408 39974 21823 25745 46052	25.2 41.4 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	24.4 40.2 40.6 33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0433 0.0349 0.0290 0.0316 0.0432 0.0432 0.0443 0.0443 0.0443 0.0393 0.0173 0.0350 0.0297
453.0964 471.0811 473.0790 503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	12998 16223 14950 25477 11653 12678 10962 14408 39974 21823 25745 46052	41.4 41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	40.2 40.6 33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0349 0.0290 0.0316 0.0492 0.0416 0.0483 0.0393 0.0173 0.0350 0.0297
471.0811 473.0790 503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	16223 14950 25477 11653 12678 10962 14408 39974 21823 25745 46052	41.5 34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	40.6 33.4 19.8 21.3 22.5 21.3 17.6 52.7 34.0	0.0290 0.0316 0.0197 0.0432 0.0416 0.0483 0.0393 0.0173 0.0173 0.0350 0.0297
473.0790 503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	14950 25477 11653 12678 10962 14408 39974 21823 25745 46052	34.1 20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	33.4 19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0316 0.0197 0.0432 0.0416 0.0483 0.0393 0.0173 0.0350 0.0297
503.1136 503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	25477 11653 12678 10962 14408 39974 21823 25745 46052	20.1 18.8 21.5 22.7 21.4 17.3 51.5 33.2	19.8 18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0197 0.0432 0.0416 0.0483 0.0393 0.0173 0.0350 0.0297
503.3709 527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	11653 12678 10962 14408 39974 21823 25745 46052	18.8 21.5 22.7 21.4 17.3 51.5 33.2	18.5 21.3 22.5 21.3 17.6 52.7 34.0	0.0432 0.0416 0.0483 0.0393 0.0173 0.0350 0.0297
527.1107 529.1039 566.8902 693.4722 763.2564 763.5811	12678 10962 14408 39974 21823 25745 46052	21.5 22.7 21.4 17.3 51.5 33.2	21.3 22.5 21.3 17.6 52.7 34.0	0.0416 0.0483 0.0393 0.0173 0.0350 0.0297
529.1039 566.8902 693.4722 763.2564 763.5811	10962 14408 39974 21823 25745 46052	22.7 21.4 17.3 51.5 33.2	22.5 21.3 17.6 52.7 34.0	0.0483 0.0393 0.0173 0.0350 0.0297
566.8902 693.4722 763.2564 763.5811	14408 39974 21823 25745 46052	21.4 17.3 51.5 33.2	21.3 17.6 52.7 34.0	0.0393 0.0173 0.0350 0.0297
693.4722 763.2564 763.5811	39974 21823 25745 46052	17.3 51.5 33.2	17.6 52.7 34.0	0.0173 0.0350 0.0297
763.2564 763.5811	21823 25745 46052	51.5 33.2	52.7 34.0	0.0350 0.0297
763.2564 763.5811	21823 25745 46052	51.5 33.2	34.0	0.0350 0.0297
763.5811	25745 46052	33.2	34.0	0.0297
	46052			
874.7299				
874.8512	46505	17.4	17.6	0.0188
1077.4107	25049	23.5	23.7	0.0430
1077.8173	16669	25.0	25.2	0.0647
1348.4838	53379	19.5	19.2	0.0253
1348.6442	54858	19.0	18.7	0.0235
1445.6403	24356	18.8	18.4	0.0594
1446.0904	18309	31.5	30.9	0.0394
1458.9558	41798	26.8	26.2	0.0349
1458.9558	58384	20.8	26.2	0.0349
	52945			
1868.3594		47.4	43.7	0.0353
2344.0841	54052	76.6	60.6	0.0434
2344.6925	58539	53.2	42.1	0.0401
2360.3829	73417	28.1	21.9	0.0322
2360.8619	67780	36.4	28.4	0.0348
				0.0370
				0.0364
2893.1429	65544	32.8	20.1	0.0441
m/z	Res.	S/N	۱%	FWHM
220.0584	8789		1.8	0.0250
	8829		0.2	0.0250
221.0618	8869		18.6	0.0250
221.0618 222.0552	8909		17.5	0.0250
	220.0584 221.0618	2875.0057 78953 2893.1429 65544 m/z Res. 220.0584 8789 221.0618 8829 222.0552 8869	2875.0057 78953 37.0 2893.1429 65544 32.8 m/z Res. S/N 220.0584 8789 221.0618 222.0552 8869 56544	2875.0057 78953 37.0 22.7 2893.1429 65544 32.8 20.1 m/z Res. S/N I % 220.0584 8789 1.8 221.0618 8829 0.2 222.0552 8869 18.6 18.6 18.6

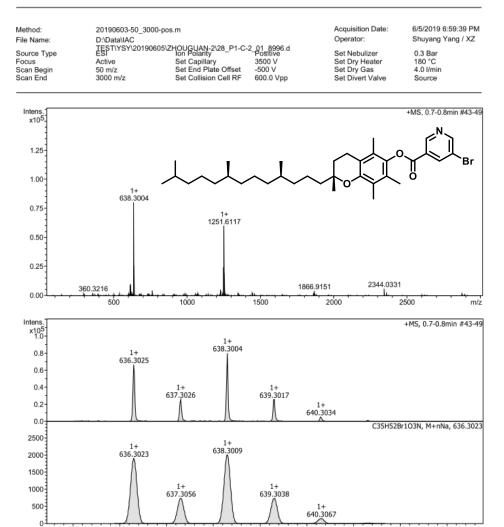
#	m/z	Res.	S/N	1%	FWHM	
#	m/z		5/N		F VV FIN	
5	224.0534	8948		49.7	0.0250	
6	225.0549	8988		6.9	0.0250	
7	226.0525	9028		100.0	0.0250	
8	227.0542	9068		13.1	0.0250	
9	228.0523	9108		21.2	0.0250	
10	229.0543	9148		2.6	0.0250	
11	230.0495	9188		0.7	0.0250	


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 30

RAJAVEL/ZHOU GUAN

Method:	20190603-50_3000-pc	s.m		Acquisition Date:	6/5/2019 7:11:11 PM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190605\ ESI Active 50 m/z 3000 m/z	ZHOUGUAN-2\30_P1-C- Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	4 01 8998.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU Page 1 of 2

Evaluation \$	Evaluation Spectra / Validation Formula:											
Meas. m/z 381.182911	# 1	lon Formula C25H26NaO2	Score 100.00	m/z 381.182501	err [mDa] 0.4	err [ppm] 1.1		rdb 12.5	e Conf even	N-Rule ok	Adduct M+Na	

	fo:			was	s List:				
Date:	6/13/201	19 4:55:51 F	M	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			# 1					
Calibration spec	trum: +MS, 4.5	5-4.6min #2	70-276: Scan		360.3237	11786	571.8	61.7	0.0306
Reference mass	s list: ESI: Tur	ning Mix ES	TOF (ESI) (pos)	2	361.3255	12824	165.2	17.9	0.0282
Calibration mod	e: Enhance	ed Quadrati	C	3	381.1829	12468	824.0	100.0	0.0306
				4	382.1867	12268	222.2	27.0	0.0312
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	413.2104	12922	185.2	25.2	0.0320
118.0863				6	467.1020	13392	171.0	28.6	0.0349
322.0481	322.0482	445	0.383	7	541.1175	13628	193.0	42.7	0.0397
622.0290	622.0285	15330	-0.770	8	542.1204	12914	91.5	20.3	0.0420
922.0098	922.0092	37940	-0.690	9	543.1167	12866	76.6	17.1	0.0422
1221.9906	1221.9920	47690	1.084	10	610.1839	14070	87.4	23.1	0.0434
1521.9715	1521.9724	51499	0.621	11	615.1376	13106	91.7	24.5	0.0469
1821.9523	1821.9536	32714	0.693	12	616.1379	13458	59.0	15.8	0.0458
2121.9332	2121.9321	40487	-0.485	13	689.1571	14666	88.9	28.4	0.0470
2421.9140	2421.9078	10648	-2.545	14	690.1574	12242	47.8	15.3	0.0564
2721.8948	2721.8995	2327	1.709	15	739.3746	12494	169.2	59.8	0.0592
Standard deviat		2021	1.100	16	740.3770	13879	107.4	38.0	0.0533
				17	763.1776	14197	66.6	24.6	0.0538
				18	764.1739	14294	48.2	17.9	0.0535
				19	771.4008	13928	66.2	24.9	0.0554
				20	772.4009	19812	42.6	16.0	0.0390
				21	837.1917	12991	51.8	21.6	0.0644
				22	838.1954	13951	43.3	18.2	0.0601
				23	911.2121	12958	43.9	20.5	0.0703
				24	912.2121	11870	35.5	16.6	0.0769
				25	913.2119	12115	34.6	16.2	0.0754
				26	985.2292	14164	45.6	23.1	0.0696
				27	986.2302	13596	39.5	20.1	0.0725
				28	987.2276	13277	36.5	18.6	0.0744
				29	1059.2463	13437	39.6	21.5	0.0788
				30	1060.2493	13925	40.7	22.1	0.0761
				31	1061.2439	13046	37.9	20.6	0.0813
				32	1097.5659	12834	33.1	18.6	0.0855
				33	1098.5662	15091	31.8	17.9	0.0728
				34	1133.2681	13170	32.6	18.8	0.0861
				35	1134.2663	12868	36.1	20.8	0.0881
				36	1135.2648	13162	36.4	21.0	0.0863
				37	1207.2844	13136	27.2	16.2	0.0919
				38	1208.2866	13613	29.0	17.4	0.0888
				39	1209.2808	13760	32.5	19.4	0.0879
				40	1283.3059	14297	27.8	17.2	0.0898
				#	m/z	Res.	S/N	۱%	FWHM
				1	381.1825	12468		100.0	0.0306
				2	382.1859	12501		27.3	0.0306
				3	383,1890	12533		4.0	0.0306
				4	384.1919	12566		0.4	0.0306

Compound 33

```
RAJAVEL/ZHOU GUAN
```


Bruker Daltonics ESI - micrOTOF Q II

636

637

635

MS Lab | IAC - SPST - TJU

638

639

640

641

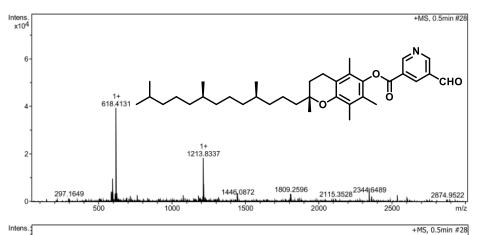
642

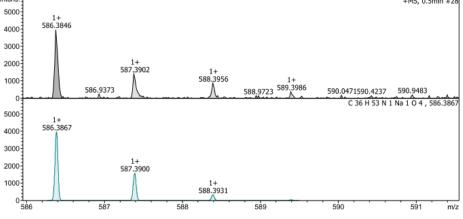
Page 1 of 3

643

m/z

Evaluation	Evaluation Spectra / Validation Formula:										
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	N-Rule	Adduct
638.300395	1	C35H54BrNNaO3	100.00	638.317927	-17.5	-27.5	410.5	8.5	even	ok	M+Na


alibration In	fo:			Mass	s List:				
Date:		9 4:35:02 P	M	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			# 1	360.3216	11808	171.5	3.0	
Calibration spec			71-277: Scan	2	614.3190	11333	353.9	11.4	
Reference mass	list: ESI: Tur	ing Mix ES-	TOF (ESI) (pos)	2	615.3221	12537	353.9 148.6	4.8	
Calibration mode	e: Enhance	ed Quadratio	;	4		12537	394.9		
				4	616.3166			12.8	
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	617.3183	12587	154.4	5.0	
118.0863					624.1103	12362	74.3	2.4	
322.0481	322.0482	420	0.318	7	626.1085	12372	129.2	4.2	
622.0290	622.0286	19637	-0.595	8	636.3025	15534	2490.7	83.2	
922.0098	922.0091	48307	-0.723	9	637.3026	13414	967.1	32.4	
1221,9906	1221,9918	61009	0.935	10	638.3004	17175	2983.0	100.0	
1521.9715	1521.9728	67855	0.871	11	639.3017	14171	956.5	32.1	
1821.9523	1821.9525	42705	0.115	12	640.3034	12367	193.7	6.5	
2121.9332	2121.9327	49312	-0.192	13	734.2972	15159	68.1	2.6	
2421.9140	2421.9087	12135	-2.166	14	736.2958	12264	65.2	2.5	
2721.8948	2721.8987	2778	1.436	15	763.2116	9569	121.6	4.9	0.0798
Standard deviati		2110	1.400	16	763.5763	13953	80.7	3.2	0.0547
otanuaru ueviati	01. 1.410			17	1227.6274	11904	53.0	2.7	0.1031
				18	1228.6302	13444	44.8	2.2	0.0914
				19	1229.6286	13947	132.4	6.6	0.0882
				20	1230.6262	13078	93.1	4.7	0.0941
				21	1231.6235	12526	81.6	4.1	0.0983
				22	1232.6256	10782	45.5	2.3	0.1143
				23	1249.6124	14687	606.5	30.3	0.0851
				24	1250.6143	14246	475.5	23.8	
				25	1251.6117	18315	1497.3	74.8	
				26	1252.6126	15451	940.8	47.0	
				27	1253.6119	16150	962.2	48.1	
				28	1254.6147	12977	490.8	24.5	
				29	1255.6140	14697	221.2	11.0	
				30	1256.6108	12572	65.7	3.3	
				31	1349.6072	14211	43.0	2.1	
				32	1445.5878	39574	41.9	2.0	
				33	1446.0716	18254	55.8	2.0	
				34	1864.9164	12954	85.5	2.0	
				34	1865.9247	12954	92.5	3.0	
				35	1866.9151	16516	92.5	3.2 5.1	
				36			145.9		
					1867.9161	13680		4.5	
				38 39	1868.9174	18026	94.9	3.3	
				39	2344.0331 2344.6580	65247 23355	319.0 162.0	7.4 3.7	
				#	m/z	Res.	S/N		FWHM
				1	636.3023	4126	5/14	95.0	0.1542
				2	637.3056	4120		37.0	0.1542
				3	638.3009	4133		100.0	0.1542
				4	639.3038	4139		37.1	0.1542
				*	039.3030	4140		37.1	0.1042


#	m/z	Res.	S/N	۱%	FWHM	
5	640.3067	4152		7.4	0.1542	
6	641.3098	4159		1.1	0.1542	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 34

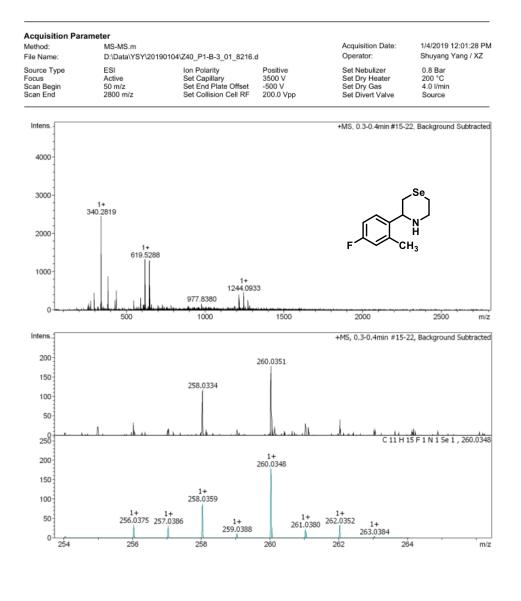
Method:	20190603-50_3000-po	s.m		Acquisition Date:	6/5/2019 7:05:25 PM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TESTIYSY\20190605\Z ESI Active 50 m/z 3000 m/z	HOUGUAN-2\29_P1-C- lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	3 01 8997.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU Page 1 of 3

Evaluation Spectra / Validation Formula:

Meas. m/z	#	Ion Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
586.384628	1	C36H53NNaO4	40.82	586.386680	2.1	3.5	83.2	10.5	even	ok	M+Na
618.413137	1	C38H53N5NaO	88.06	618.414232	-1.1	-1.8	31.7	14.5	even	ok	M+Na
	2	C37H57NNaO5	100.00	618.412895	-0.2	-0.4	43.4	9.5	even	ok	M+Na
1213.833697	1	C74H114N2NaO10	14.41	1213.836569	-2.9	-2.4	49.4	18.5	even	ok	2M+Na
	2	C76H106N10NaO2	0.34	1213.839243	5.5	4.6	63.4	28.5	even	ok	2M+Na

Calibration Info	b :			Mass	List:				
Date:		9 4:44:41 F	M	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	586.3846	13741	30.6	10.1	0.0427
Calibration spectru			70-277: Scan	2	592.4693	14208	34.6	11.4	0.0417
Reference mass li			-TOF (ESI) (pos)	3	593.4755	17046	16.1	5.3	0.0348
Calibration mode:	Enhance	ed Quadrati	C	4	596.4298	14210	75.2	24.8	0.0420
				5	597.4340	12976	31.6	10.4	0.0460
	Resulting m/z	Intensity	Error [ppm]	6	614.4472	14862	26.8	8.9	0.0413
118.0863	000 0404		0 700	7	618.4131	14034	300.7	100.0	0.0441
322.0481	322.0484	322	0.733	8	619.4120	14836	150.0	49.9	0.0418
622.0290	622.0278	17115	-1.809	9	620.4190	12620	28.6	9.5	0.0492
922.0098	922.0095	44213	-0.348	10	626.3704	17147	28.8	9.6	0.0365
1221.9906	1221.9926	52267	1.626	11	627.3846	17664	14.1	4.7	0.0355
1521.9715	1521.9730	56948	0.974	12	693.1212	38041	13.0	4.3	0.0182
1821.9523	1821.9532	37080	0.478	13	693.2452	39126	12.7	4.2	0.0177
2121.9332	2121.9326	41144	-0.249	14	716.4125	19190	18.2	6.0	0.0373
2421.9140 2721.8948	2421.9041	10167	-4.072	15	763,2607	16947	21.5	7.1	0.0450
	2721.9021	2163	2.668	16	763.5747	13716	15.3	5.0	0.0557
Standard deviation	n: 2.590			17	1077.8141	16764	18.7	6.4	0.0643
				18	1089.0068	32881	11.9	4.0	0.033
				19	1181.8088	15296	19.5	6.7	0.0773
				20	1182.8069	13947	18.3	6.3	0.0848
				21	1191.8536	10887	13.1	4.5	0.1095
				22	1209.8775	13003	16.9	5.8	0.0930
				23	1210.8842	11559	13.3	4.6	0.1048
				24	1213.8337	13355	136.5	46.8	0.090
				25	1214.8357	11416	98.7	33.9	0.106
				26	1215.8419	13897	56.1	19.3	0.087
				27	1216.8395	12541	19.2	6.6	0.097
				28	1225.5626	36057	13.2	4.5	0.034
				29	1317.4657	54430	14.6	4.9	0.0242
				30	1445.5902	35393	13.2	4.4	0.040
				31	1446.0872	22925	17.2	5.8	0.063
				32	1809.2596	19111	27.0	8.6	0.094
				33	1810.2576	14322	25.8	8.3	0.126
				34	1811.2548	13887	18.5	5.9	0.130
				35	1868.3371	54911	12.9	4.1	0.034
				36	2344.0383	13469	24.0	7.0	0.174
				37	2344.6489	22572	28.2	8.2	0.103
				38	2360.9938	67131	20.3	5.8	0.035
				39	2536.5586	78881	26.7	7.2	0.0322
				40	2602.4794	75234	19.4	5.1	0.0346


Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

#	m/z	Res.	S/N	1%	FWHM	
1	586.3867	13741		100.0	0.0427	
2	587.3900	13765		40.1	0.0427	
3	588.3931	13788		8.6	0.0427	
4	589.3961	13812		1.3	0.0427	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3b

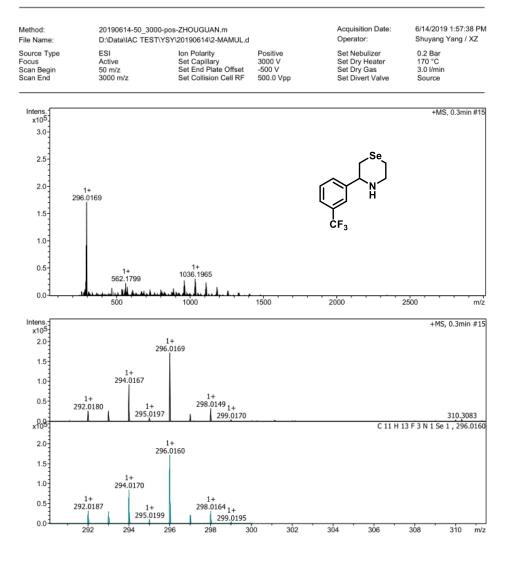
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Evaluation Spectra / Validation Formula:

Meas. m/z	#	Ion Formula	m/z	Adduct	err [mDa]	err [ppm]	mSigma	N-Rule	rdb	e [—] Conf	Score
260.035065	1	C11H15FNSe	260.034850	M+H	-0.2	-0.8	631.5	ok	4.5	even	-1.#J

alibration Info:	mass	List:				
ate: 1/8/2019 5:00:28 PM	#	m/z	Res.	S/N	1%	FWHM
olarity: Positive	1	258.0334	18136	81.4	4.8	0.014
alibration spectrum: +MS, 0.2min #9: Scan	2	260.0351	12325	123.7	7.3	0.021
teference mass list: ESI: Tuning Mix ES-TOF_140 (ESI) (pos)	3	274.2753	15590	160.1	9.8	0.017
alibration mode: Quadratic	4	296.2561	11857	283.4	18.6	0.025
	5	297.2627	9356	68.7	4.5	0.031
Reference m/z Resulting m/z Intensity Error [ppm]	6	338.3403	9346	91.1	6.8	0.036
118.0863	7	340.2819	12405	1318.9	100.0	0.030
322.0481	8	341.2895	10524	234.3	17.9	0.032
622.0290	9	381.3015	13794	72.2	6.4	0.032
922.0098 922.0095 344 -0.349	10	384.3089	11661	401.0	36.4	0.033
1221.9906	11	385.3128	11747	91.9	8.4	0.032
1521.9715 1521.9721 5692 0.412	12	428.3349	14286	100.0	10.3	0.032
1821.9523	13	437.1958	14200	197.3	20.8	0.029
2121.9332 2121.9328 1526 -0.153	14	548.4983	24704	76.9	10.4	0.029
2421.9140	14	591.4954	13703	87.5	12.9	0.022
2721.8948	16	592.4972	24360	41.9	6.2	0.043
140.0682 140.0682 1274 0.131	17	607.5679	19568	35.7	5.5	0.024
tandard deviation: 0.625	18	614.5746	15044	36.8	5.8	0.031
	19	619.5288	11933	341.9	54.1	0.040
	20	620.5283	1933	182.3	28.9	0.031
	20	621.5313	13842	42.8	20.9	0.031
	22	647.5599	12080	312.8	53.0	0.044
	22	648.5608	13081	143.2	24.3	0.033
	23	649.5630	8721	28.0	4.8	0.049
	24		14813	35.2	6.1	0.074
	25	659.2859 701.5291	14013	28.3	5.4	0.044
	20	729.5630	14707	28.2	5.6	0.047
	28	783.5304	17838	25.0	5.4	0.049
	28	896.3296	14156	25.0	4.6	0.043
	30	976.5767	11577	23.1	6.4	0.083
	30	977.8380	18053	26.1	7.3	0.084
	32	1189.0416	13831	13.9	4.6	0.086
	33	1216.0575	15839	49.5	4.6	0.086
	34	1217.0690	15339	34.2	11.5	0.078
	35 36	1244.0933 1245.0938	13519 12571	55.6 48.5	18.9 16.5	0.092
	30	1246.0938	12571	48.5	6.7	0.099
	37	1272.1202	12554	30.8	10.6	0.099
	38	1273.1202	12407	21.1	7.2	0.081
	40	1283.8572	28786	15.1	5.2	0.102
	#			S/N	1%	FWHM
		m/z	Res.	3/N		
	1	254.0408	12041		1.8	0.0211
	2	255.0441	12089		0.2	0.0211
	3	256.0375	12136		18.8	0.0211
	4	257.0386	12183		17.7	0.0211

Bruker Daltonics ESI - micrOTOF Q II


MS Lab | IAC - SPST - TJU

1	#	m/z	Res.	S/N	1%	FWHM	
	5	258.0359	12231		49.8	0.0211	
	6	259.0388	12278		6.0	0.0211	
	7	260.0348	12325		100.0	0.0211	
	8	261.0380	12373		12.4	0.0211	
	9	262.0352	12420		18.2	0.0211	
1	0	263.0384	12468		2.2	0.0211	
1	1	264.0417	12515		0.1	0.0211	

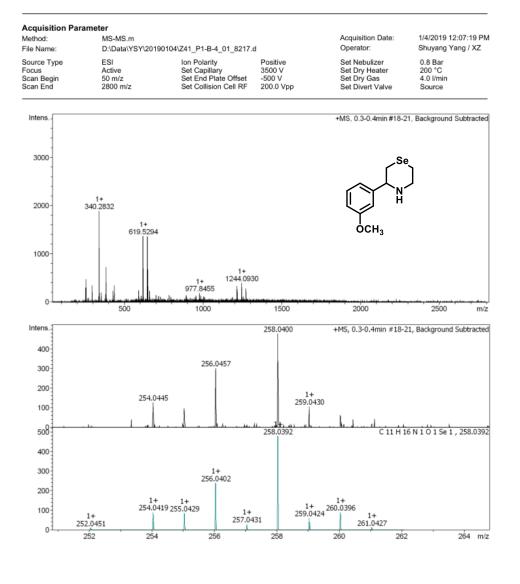
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3c

RAJAVEL/ZHOU GUAN

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU Page 1 of 3

Evaluation \$	Spec	tra / Validation F	ormula:								
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
296.016940	1	C11H13F3NSe	100.00	296.016006	0.9	3.2	20.1	4.5	even	ok	M+H


Calibration Info	D :			Mass	List:				
Date:		9 2:30:42 F	PM	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	284.2941	11726	53.3	7.0	0.0242
Calibration spectr			70-279: Scan	2	292.0180	11720	118.0	15.5	0.024
Reference mass I			-TOF (ESI) (pos)	3	293.0187	11571	117.7	15.4	0.024
Calibration mode:	Enhance	ed Quadrati	C	4	293.0167	15764	410.9	53.8	0.025
				4 5	296.0169	13272	763.7	100.0	0.018
	Resulting m/z	Intensity	Error [ppm]	6	296.0169	13272	84.5	11.1	0.022
118.0863				7	297.0188	13343	145.4	19.0	0.021
322.0481				8		13343	64.2	8.7	0.022
622.0290	622.0289	15971	-0.087	8	467.1026			7.3	
922.0098	922.0102	40359	0.406	10	536.1658	14677	52.2		0.036
1221.9906	1221.9898	49790	-0.693		541.1186	12961	47.2	6.6	0.041
1521.9715	1521.9724	55249	0.596	11	557.0962	12896	40.7	5.7	0.043
1821.9523	1821.9516	38469	-0.399	12	560.1792	12697	53.9	7.6	0.044
2121.9332	2121.9337	40176	0.272	13	562.1799	11738	96.2	13.6	0.047
2421.9140	2421.9138	9105	-0.095	14	574.1655	13869	67.0	9.5	0.041
2721.8948				15	610.1847	13934	41.6	6.0	0.043
Standard deviatio	n: 0.673			16	730.1636	12262	42.6	6.4	0.059
				17	804.1831	11756	43.8	6.6	0.068
				18	888.1600	17634	55.1	8.1	0.050
				19	958.4553	13210	39.8	5.7	0.072
				20	960.1807	15872	68.4	9.8	0.060
				21	961.1811	12864	43.7	6.3	0.074
				22	962.1814	14639	113.0	16.2	0.065
				23	963.1835	13707	75.1	10.7	0.070
				24	964.1808	13581	77.9	11.1	0.071
				25	965.1805	13192	46.4	6.6	0.073
				26	1034.1985	14725	66.9	9.2	0.070
				27	1035.1965	14407	59.1	8.1	0.071
				28	1036.1965	16039	132.8	18.3	0.064
				29	1037.1977	14725	96.3	13.2	0.070
				30	1038.1918	16258	104.3	14.3	0.063
				31	1039.1960	14649	51.4	7.1	0.070
				32	1108.2116	14042	55.1	7.3	0.078
				33	1110.2142	16965	107.1	14.1	0.065
				34	1111.2114	13747	78.6	10.3	0.080
				35	1112.2139	14187	72.3	9.5	0.078
				36	1113.2098	16380	55.8	7.3	0.068
				37	1184.2301	16426	74.4	9.4	0.072
				38	1185.2292	12710	50.4	6.4	0.093
				39	1186.2301	14307	51.0	6.4	0.082
				40	1259.2504	14575	45.7	5.5	0.086
				#	m/z	Res.	S/N	۱%	FWHM
				1	290.0219	13003		1.8	0.0223
				2	291.0253	13048		0.2	0.0223
				3	292.0187	13093		18.8	0.0223
				4	293.0197	13137		17.7	0.0223

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

#	m/z	Res.	S/N	1%	FWHM
5	294.0170	13182		49.8	0.0223
6	295.0199	13227		6.0	0.0223
7	296.0160	13272		100.0	0.0223
8	297.0192	13317		12.4	0.0223
9	298.0164	13361		18.2	0.0223
10	299.0195	13406		2.2	0.0223
11	300.0229	13451		0.1	0.0223

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3d

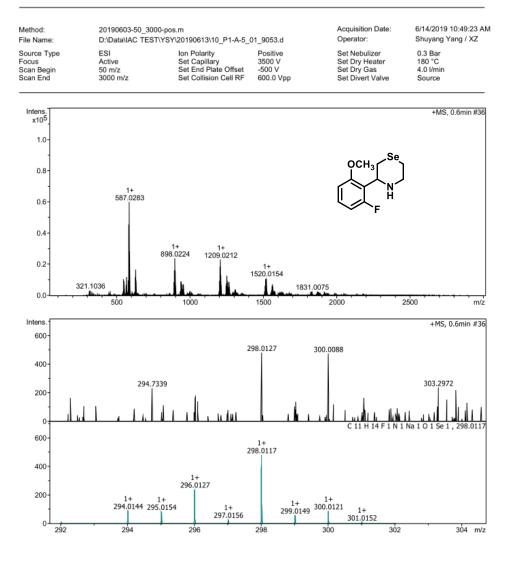
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Evaluation Spectra / Validation Formula:

Meas. m/z	#	Ion Formula	m/z	Adduct	err [mDa]	err [ppm]	mSigma	N-Rule	rdb	e [—] Conf	Score
258.040030	1	C11H16NOSe	258.039192	M+H	-0.8	-3.2	330.0	ok	4.5	even	100.00

alibration Info:	Mass	List:				
ate: 1/8/2019 5:14:19 PM	#	m/z	Res.	S/N	1%	FWHM
olarity: Positive	1	254.0445	11261	1146.1	6.7	0.0226
alibration spectrum: +MS, 0.2min #10: Scan	2	256.0457	17168	2701.4	15.9	0.0149
teference mass list: ESI: Tuning Mix ES-TOF_140 (ESI) (pos)	3	258.0400	13255	4236.7	25.3	0.019
alibration mode: Quadratic	4	296.2571	11289	2652.1	18.4	0.026
	5	338.3448	12437	627.5	6.3	0.027
teference m/z Resulting m/z Intensity Error [ppm]	6	340.2832	11933	9830.0	100.0	0.028
118.0863	7	341.2876	8684	1775.8	18.2	0.039
322.0481	8	353.2650	13417	892.0	10.4	0.026
622.0290	9	381.3041	16779	573.3	8.8	0.022
922.0098 922.0091 771 -0.723	10	384,3094	10486	2455.7	38.7	0.0221
1221.9906	11	385.3103	19650	782.1	12.4	0.0196
1521.9715 1521.9728 8464 0.855	12	428.3385	16047	575.1	12.4	0.0267
1821.9523						
2121.9332 2121.9325 1996 -0.317	13 14	437.2016 591.5017	10927 12706	769.7 195.8	18.3 12.9	0.0400
2421.9140	14			90.4		
2721.8948		607.5672	19437		6.6	0.0313
140.0682 140.0682 1864 0.271	16 17	619.5294	13138 13658	909.7	72.3	0.047
tandard deviation: 1.297		620.5324		387.7	31.0	0.0454
	18	621.5399	10527	74.0	6.0	0.059
	19	647.5610	12720	755.6	72.1	0.050
	20	648.5664	16561	375.0	36.0	0.039
	21	649.5660	24704	83.5	8.0	0.0263
	22	659.2995	21270	120.2	12.3	0.031
	23	701.5322	21454	60.0	7.8	0.032
	24	718.6297	27232	46.8	6.5	0.0264
	25	729.5669	19078	41.4	6.0	0.038
	26	783.5410	25904	43.6	7.8	0.030
	27	894.3324	17221	30.8	7.8	0.051
	28	956.8612	10567	24.4	7.2	0.0906
	29	977.8455	10464	32.0	10.0	0.0934
	30	978.8402	16557	26.5	8.3	0.059
	31	985.9018	23646	22.7	7.2	0.0417
	32	1005.8670	16259	19.3	6.4	0.0619
	33	1216.0602	15870	40.6	17.9	0.0766
	34	1217.0628	14520	31.4	13.9	0.083
	35	1244.0930	11037	46.6	21.1	0.112
	36	1245.0950	13934	43.8	19.9	0.0894
	37	1246.1001	11066	15.9	7.2	0.112
	38	1255.8276	27665	13.7	6.3	0.045
	39	1272.1279	10968	22.3	10.3	0.116
	40	1273.1241	24623	31.6	14.6	0.0517
	#	m/z	Res.	S/N	۱%	FWHM
	1	252.0451	12947		1.8	0.0195
	2	253.0485	12998		0.2	0.0195
	3	254.0419	13049		18.8	0.0195
		255.0429				

Bruker Daltonics ESI - micrOTOF Q II


MS Lab | IAC - SPST - TJU

#	m/z	Res.	S/N	1%	FWHM
5	256.0402	13152		49.8	0.0195
6	257.0431	13203		6.1	0.0195
7	258.0392	13255		100.0	0.0195
8	259.0424	13306		12.4	0.0195
9	260.0396	13357		18.4	0.0195
10	261.0427	13409		2.2	0.0195
11	262.0460	13460		0.2	0.0195

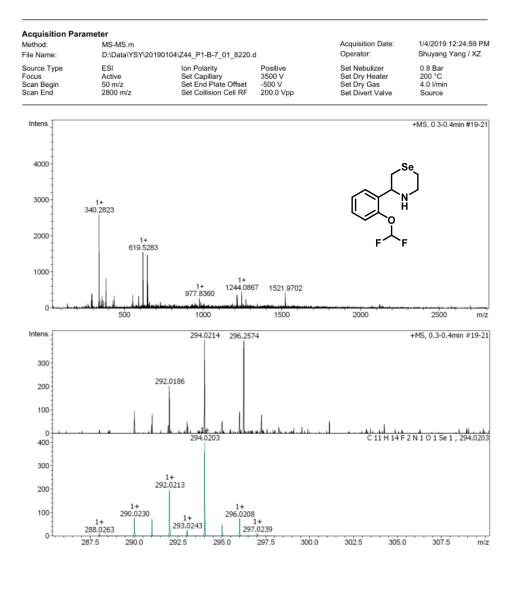
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3e

RAJAVEL/ZHOU GUAN

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU


Evaluation	Spec	ctra / Validation Fo	rmula:							
Meas. m/z 298.012695		lon Formula C11H14FNNaOSe	Score 100.00	m/z 298.011715	err [mDa] -1.0	err [ppm] -3.3	mSigma 453.5	rdb 4.5	N-Rule ok	Adduct M+Na

Calibration In	fo:			Mass	List:				
Date:	6/14/201	9 11:44:15	AM	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			# 1		Res. 13243	56.5		
Calibration spec	trum: +MS, 4.5	5-4.6min #2	70-273: Scan		549.0479			17.8	0.0415
Reference mass	list: ESI: Tur	ning Mix ES-	TOF (ESI) (pos)	2	551.0506	12206	49.9	15.7	0.0451
Calibration mode	e: Enhance	ed Quadratio	3	3	569.2979	13451	63.4	20.0	0.0423
				4	581.0300	13233	51.1	16.1	0.0439
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	582.0316	15554	46.3	14.6	0.0374
118.0863				6	583.0287	14073	134.0	42.4	0.0414
322.0481	322.0484	484	0.883	7	584.0296	13533	95.0	30.1	0.0432
622.0290	622.0274	12762	-2.526	8	585.0286	14488	240.5	76.0	0.0404
922.0098	922.0104	31252	0.694	9	586.0282	13511	85.2	27.0	0.0434
1221.9906	1221.9918	45846	0.991	10	587.0283	16418	316.1	100.0	0.0358
1521.9715	1521.9739	42324	1.606	11	588.0291	13597	76.1	24.1	0.0432
1821.9523	1821.9522	33985	-0.040	12	589.0270	14860	149.9	47.4	0.0396
2121.9332	2121.9313	39177	-0.891	13	628.9757	13222	61.7	19.5	0.0476
2421.9140	2421.9067	9863	-3.026	14	630.9749	14223	88.8	28.1	0.0444
2721.8948	2721.9011	2545	2.308	15	632.9738	15153	52.2	16.5	0.0418
Standard deviati		2010	2.000	16	893.0278	16240	47.5	14.9	0.0550
				17	894.0288	14268	86.2	27.1	0.0627
				18	895.0294	12640	60.0	18.9	0.0708
				19	896.0270	13852	117.0	36.8	0.0647
				20	897.0256	14445	63.0	19.8	0.0621
				21	898.0224	15346	127.0	39.9	0.0585
				22	900.0222	15586	85.4	26.9	0.0577
				23	939.9740	14126	48.2	15.3	0.0665
				24	941.9739	12366	47.7	15.1	0.0762
				25	1203.0262	12964	48.6	15.9	0.0928
				26	1204.0270	15450	59.6	19.5	0.0779
				27	1205.0251	15567	95.4	31.2	0.0774
				28	1206.0246	16904	81.8	26.8	0.0713
				29	1207.0239	14846	104.8	34.3	0.0813
				30	1208.0242	14861	72.3	23.7	0.0813
				31	1209.0212	16607	117.6	38.5	0.0728
				32	1210.0213	16648	65.5	21.5	0.0727
				33	1211.0191	13840	66.0	21.6	0.0875
				34	1250.9751	16133	64.5	21.5	0.0775
				35	1252.9695	16469	58.4	19.4	0.0761
				36	1254.9714	15610	48.1	16.0	0.0804
				37	1266.9767	15565	44.6	14.9	0.0814
				38	1516.0223	16225	55.1	17.7	0.0934
				39	1518.0231	14553	53.3	17.1	0.1043
				40	1520.0154	16617	58.3	18.7	0.0915
				#	m/z	Res.	S/N	1%	FWHM
				1	292.0176	20918		1.8	0.0140
				2	293.0210	20990		0.2	0.0140
				3	294.0144	21061		18.8	0.0140
				4	295.0154	21133		17.6	0.0140
				4	295.0154	21133		17.6	0.0140

#	m/z	Res.	S/N	1%	FWHM	
5	296.0127	21204		49.8	0.0140	
6	297.0156	21276		6.1	0.0140	
7	298.0117	21347		100.0	0.0140	
8	299.0149	21419		12.4	0.0140	
9	300.0121	21491		18.4	0.0140	
10	301.0152	21562		2.2	0.0140	
11	302.0186	21634		0.2	0.0140	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3f

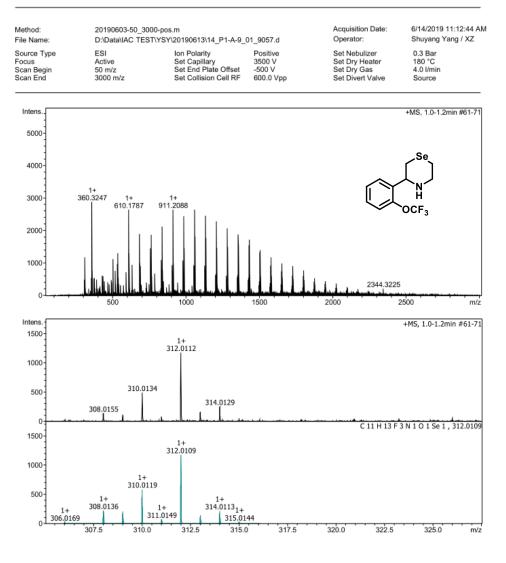
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Evaluation Spectra / Validation Formula:

Meas. m/z	#	Ion Formula	m/z	Adduct	err [mDa]	err [ppm]	mSigma	N-Rule	rdb	e Conf	Score
294.021367	1	C11H14F2NOSe	294.020349	M+H	-1.0	-3.5	471.2	ok	4.5	even	-1.#J

m/z 140.0664 292.0186	Res.	S/N		
140.0664 292.0186			1%	FWHM
292.0186	9107	476.8	5.0	0.015
	10886	325.7	7.8	0.026
294.0214	10372	631.4	15.4	0.028
296.2574	8885	621.8	15.3	0.028
338.3417	14993	230.7	6.7	0.033
340.2823	14993	3401.5	100.0	0.022
341.2869	16525	929.9	27.5	0.024
353.2669	11369	236.4	7.4	0.020
360.3223	10859	403.2	13.2	0.031
369.1030	14600	247.6	8.5	0.033
381.2983	8208	180.2	6.7	0.046
384.3080	10249	844.2	32.0	0.037
385.3151	12335	263.9	10.1	0.031
428.3364	10966	184.1	8.3	0.039
437.1958	11613	285.2	13.3	0.037
553.4607	12377	210.3	13.9	0.044
554.4616	11614	96.6	6.4	0.047
591.4971	14122	172.2	12.9	0.041
619.5283	12551	725.4	59.9	0.049
620.5293	11284	253.9	21.1	0.055
621.5327	11337	63.7	5.3	0.054
647.5584	14811	621.8	56.7	0.043
648.5639	10915	265.6	24.3	0.059
659.2862	10645	70.8	6.8	0.061
729.5564	15526	53.0	6.4	0.047
949.8017	18294	28.5	5.8	0.051
977.8360	16289	50.4	10.8	0.060
978.8409	17253	34.4	7.4	0.056
984.8824	24111	29.3	6.4	0.040
1188.0237	10580	17.9	5.1	0.112
1216.0580	15713	48.8	14.3	0.077
1217.0678	14239	45.9	13.4	0.085
1218.0715	13770	17.0	5.0	0.088
1244.0867	10708	58.8	17.6	0.116
1245.0953	9916	52.6	15.7	0.125
1246.0938	9625	20.5	6.1	0.129
1272.1183	15704	31.8	9.7	0.081
1273.1400	11219	24.6	7.5	0.113
1521.9702	11670	51.3	16.9	0.130
1522.9661	10626	19.8	6.5	0.143
m/z	Res.	S/N	۱%	FWHM
288.0263	10161		1.8	0.0283
				0.0283
				0.0283
291.0240	10266		17.6	0.0283
	288.0263 289.0296 290.0230	288.0263 10161 289.0296 10196 290.0230 10231	288.0263 10161 289.0296 10196 290.0230 10231	288.0263 10161 1.8 289.0296 10196 0.2 290.0230 10231 18.8

Bruker Daltonics ESI - micrOTOF Q II


MS Lab | IAC - SPST - TJU

#	m/z	Res.	S/N	1%	FWHM	
5	292.0213	10302		49.8	0.0283	
6	293.0243	10337		6.1	0.0283	
7	294.0203	10372		100.0	0.0283	
8	295.0235	10408		12.4	0.0283	
9	296.0208	10443		18.4	0.0283	
10	297.0239	10478		2.2	0.0283	
11	298.0272	10513		0.2	0.0283	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

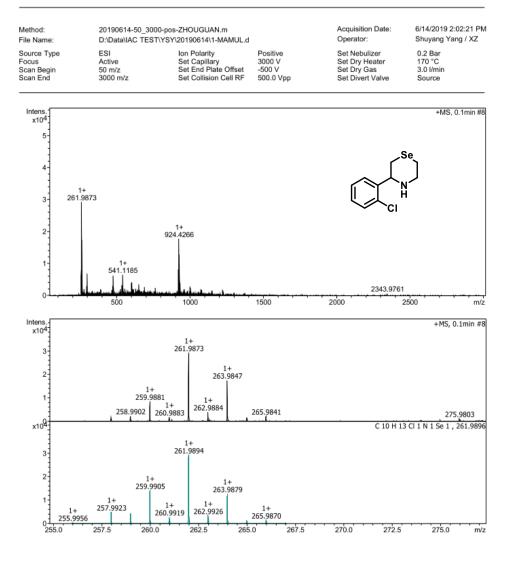
Compound 3h

RAJAVEL/ZHOU GUAN

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Evaluation	Spec	tra / Validation Fo	ormula:							
Meas. m/z 312.011228		Ion Formula C11H13F3NOSe	Score 100.00	m/z 312.010927	err [mDa] 0.3	err [ppm] 1.0	mSigma 316.7	rdb 4.5	N-Rule ok	Adduct M+H

Calibration In	fo:			Mass	List:				
Date:		9 12:02:45	PM	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	360.3247	12288	261.7	100.0	0.0293
Calibration spec			70-273: Scan	2	610.1787	13067	167.0	91.6	0.0253
Reference mass			TOF (ESI) (pos)	3	611.1793	13041	102.2	56.1	0.0469
Calibration mode	e: Enhance	ed Quadrati		4	684.1977	12861	102.2	65.7	0.0489
				5		13953	76.5	50.5	
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	758.2191 763.1709	13953	97.8	50.5 64.9	0.0543
118.0863				7	837.1897	12112	102.5	74.0	0.0552
322.0481	322.0482	507	0.326	8			91.4		
622.0290	622.0285	12348	-0.677		838.1883	13671		66.0	0.0613
922.0098	922.0095	30672	-0.330	9	839.1898	12402	73.3	53.0	0.0677
1221.9906	1221.9907	43714	0.083	10	911.2088	14739	118.6	92.1	0.0618
1521.9715	1521.9739	44825	1.600	11	912.2087	13311	95.9	74.6	0.0685
1821.9523	1821.9526	32872	0.136	12	913.2070	14260	87.4	68.0	0.0640
2121.9332	2121.9321	39852	-0.484	13	985.2265	12580	94.0	78.0	0.0783
2421.9140	2421.9088	10198	-2.143	14	986.2273	13402	102.4	85.0	0.0736
2721.8948	2721.8989	2609	1.489	15	987.2243	14337	98.4	81.7	0.0689
Standard deviati	ion: 1.481			16	988.2234	15081	61.1	50.8	0.0655
				17	1059.2473	12329	92.9	81.5	0.0859
				18	1060.2449	13595	104.5	91.7	0.0780
				19	1061.2467	12884	92.6	81.3	0.0824
				20	1062.2425	14619	72.0	63.3	0.0727
				21	1133.2641	13370	89.8	82.1	0.0848
				22	1134.2642	13266	93.6	85.5	0.0855
				23	1135.2658	14163	89.7	82.0	0.0802
				24	1136.2610	14399	67.4	61.7	0.0789
				25	1207.2860	13916	71.8	67.9	0.0868
				26	1208.2824	14539	83.9	79.3	0.0831
				27	1209.2795	12811	77.0	72.8	0.0944
				28	1210.2783	11904	54.1	51.1	0.1017
				29	1281.3030	14244	57.3	55.6	0.0900
				30	1282.3040	14253	73.5	71.3	0.0900
				31	1283.3007	15147	74.0	71.8	0.0847
				32	1284.2959	13758	53.8	52.2	0.0934
				33	1355.3227	14052	46.8	46.6	0.0965
				34	1356.3231	14156	58.3	57.9	0.0958
				35	1357.3167	15011	65.7	65.3	0.0904
				36	1358.3153	15049	55.1	54.7	0.0903
				37	1430.3356	14537	53.7	54.0	0.0984
				38	1431.3375	14323	59.7	60.0	0.0999
				39	1432.3376	15401	48.7	49.0	0.0930
				40	1505.3553	13018	48.3	48.6	0.1156
				#	m/z	Res.	S/N	1%	FWHM
				1	306.0169	10979		1.8	0.0279
				2	307.0202	11015		0.2	0.0279
				3	308.0136	11051		18.8	0.0279
				4	309.0146	11087		17.6	0.0279


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

#	m/z	Res.	S/N	1%	FWHM	
5	310.0119	11122		49.8	0.0279	
6	311.0149	11158		6.1	0.0279	
7	312.0109	11194		100.0	0.0279	
8	313.0141	11230		12.4	0.0279	
9	314.0113	11266		18.4	0.0279	
10	315.0144	11302		2.2	0.0279	
11	316.0178	11338		0.2	0.0279	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

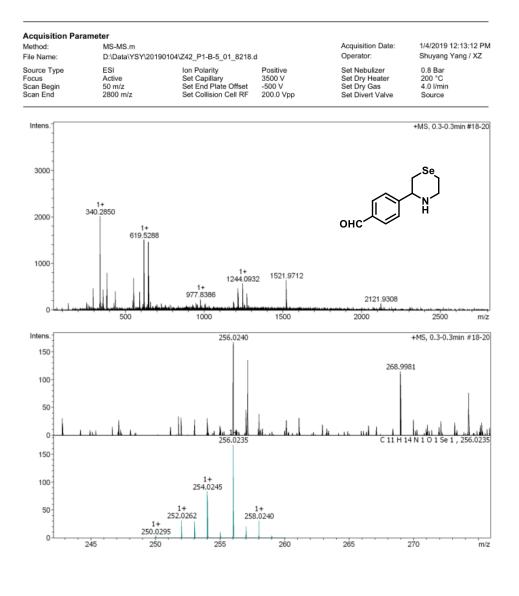
Compound 3j

RAJAVEL/ZHOU GUAN

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

Evaluation \$	Spec	tra / Validation I	Formula:								
Meas. m/z	#	Ion Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
261.987310	1	C10H13CINSe	38.79	261.989376	2.1	7.9	86.1	4.5	even	ok	M+H


Calibration Info:			Mass List:						
Date:	6/14/201	19 2:29:05 F	M	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	258.9902	12640	11.6	8.0	0.0205
Calibration spec			70-279: Scan	2	259.9881	12640	42.2	29.2	0.0205
Reference mass list: ESI: Tuning Mix ES-TOF (ESI) (pos)				23	261.9873	12128	42.2	29.2	0.0235
Calibration mode: Enhanced Quadratic			3	262.9884	12128	144.5	13.5	0.0216	
				4					
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	263.9847 265.9841	11812 9988	86.1 10.8	59.7 7.5	0.0223
118.0863				7					
322.0481					295.9487	11330	15.0	10.5	0.0261
622.0290	622.0289	15971	-0.087	8	301.1380	11859	33.6	23.6	0.0254
922.0098	922.0102	40359	0.406	9	475.1073	14022	13.4	10.2	0.0339
1221.9906	1221.9898	49790	-0.693	10	477.1060	12076	27.6	21.2	0.0395
1521.9715	1521.9724	55249	0.596	11	479.1031	10680	11.5	8.8	0.0449
1821.9523	1821.9516	38469	-0.399	12	536.1639	13312	14.1	11.1	0.0403
2121.9332	2121.9337	40176	0.272	13	541.1185	11810	28.5	22.5	0.0458
2421.9140	2421.9138	9105	-0.095	14	542.1220	12672	16.6	13.1	0.0428
2721.8948				15	543.1160	11427	12.2	9.7	0.0475
Standard deviati	ion: 0.673			16	557.0900	14195	9.7	7.7	0.0392
				17	600.9010	13358	11.4	9.2	0.0450
				18	602.8938	12129	16.5	13.4	0.0497
				19	604.8910	14882	17.8	14.5	0.0406
				20	652.2629	11527	14.5	11.9	0.0566
				21	689.1649	10955	11.4	9.4	0.0629
				22	763.1781	8958	10.3	8.3	0.0852
				23	920.4310	12769	12.6	9.5	0.0721
				24	921.4299	13653	16.7	12.6	0.0675
				25	922.4262	12658	37.1	28.0	0.0729
				26	923.4349	15214	28.3	21.3	0.0607
				27	924.4266	13497	80.6	60.7	0.0685
				28	925.4281	14001	45.8	34.5	0.0661
				29	926.1748	11033	12.3	9.2	0.0839
				30	926.4286	18828	58.7	44.1	0.0492
				31	927.1703	14663	12.7	9.6	0.0632
				32	927.4277	15368	25.3	19.0	0.0603
				33	928.1662	21362	30.4	22.9	0.0434
				34	928.4319	12031	11.5	8.7	0.0772
				35	929.1722	13207	17.6	13.2	0.0704
				36	930.1687	12725	23.0	17.3	0.0731
				37	931.1695	13512	15.0	11.3	0.0689
				38	932.1687	13364	18.4	13.8	0.0698
				39	1002.1657	11975	13.5	9.7	0.0837
				40	1004.1726	13523	11.5	8.3	0.0743
				#	m/z	Res.	S/N	۱%	FWHM
				1	255.9956	11850		1.5	0.0216
				2	256.9989	11897		0.2	0.0216
				3	257.9923	11943		16.8	0.0216
				4	258,9933	11989		15.1	0.0216

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

#	m/z	Res.	S/N	1%	FWHM
5	259.9905	12035		48.0	0.0216
6	260.9919	12082		9.6	0.0216
7	261.9894	12128		100.0	0.0216
8	262.9926	12174		11.3	0.0216
9	263.9879	12220		43.3	0.0216
10	264.9910	12267		4.8	0.0216
11	265.9870	12313		5.1	0.0216
12	266.9902	12359		0.6	0.0216

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3k

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU Page 1 of 3

Evaluation Spectra / Validation Formula:

Meas. m/z	#	Ion Formula	m/z	Adduct	err [mDa]	err [ppm]	mSigma	N-Rule	rdb	e [—] Conf	Score
256.023989	1	C11H14NOSe	256.023542	M+H	0.4	1.7	622.3	ok	5.5	even	100.00

Calibration Info:	Mass	List:				
ate: 1/8/2019 5:16:37 PM	#	m/z	Res.	S/N	1%	FWH
olarity: Positive	1	140.0681	12050	178.6	7.7	0.011
Calibration spectrum: +MS, 0.2min #9: Scan	2	256.0240	13801	110.8	8.3	0.018
Reference mass list: ESI: Tuning Mix ES-TOF_140 (ESI) (pos)	3	296.2595	13286	273.5	23.3	0.022
Calibration mode: Quadratic	4	338.3439	13445	72.5	7.1	0.022
	5	340.2850	11995	1011.8	100.0	0.028
Reference m/z Resulting m/z Intensity Error [ppm]	6	341.2869	20225	308.7	30.6	0.026
118.0863	7	353.2695	11827	70.8	7.4	0.029
322.0481	8	360.3256	14387	200.3	21.7	0.025
622.0290	9	381.3002	15132	129.2	15.3	0.025
922.0098 922.0097 216 -0.112	10		13711	330.6	39.9	0.023
1221.9906	11	384.3078	17875	85.5	10.4	0.028
1521.9715 1521.9717 5748 0.133		385.3166				
1821.9523	12	437.2000	18829	143.5	20.0	0.023
2121.9332 2121.9330 1351 -0.049	13	438.2071	14155	59.2	8.3	0.031
2421.9140	14	548.5048	14274	57.6	10.1	0.038
2721.8948	15	553.4591	15135	193.0	34.5	0.036
140.0682 140.0682 1128 0.042	16	554.4699	15609	86.6	15.5	0.035
tandard deviation: 0.201	17	591.4983	13169	100.0	19.5	0.044
	18	619.5288	11422	361.7	75.0	0.054
	19	620.5316	13131	160.4	33.4	0.047
	20	621.5382	12922	39.8	8.3	0.048
	21	647.5614	11495	329.1	72.8	0.056
	22	648.5642	12867	164.8	36.5	0.050
	23	649.5655	16844	53.7	11.9	0.038
	24	659.2929	17657	39.7	9.0	0.037
	25	949.8056	32463	20.3	7.5	0.029
	26	977.8386	12104	30.9	11.8	0.080
	27	978.8365	14812	22.8	8.8	0.066
	28	1188.0356	14488	20.8	9.6	0.082
	29	1189.0372	21573	17.6	8.1	0.055
	30	1216.0659	15411	49.8	23.3	0.078
	31	1217.0650	11609	34.9	16.3	0.104
	32	1218.0707	16747	19.0	8.9	0.072
	33	1244.0932	13755	60.4	28.7	0.090
	34	1245.0994	16204	54.9	26.0	0.076
	35	1246.0967	21905	25.2	12.0	0.056
	36	1272.1315	14849	30.6	14.7	0.085
	37	1273.1268	16204	36.9	17.7	0.078
	38	1521.9712	12244	64.3	32.2	0.124
	39	1522.9756	11691	22.3	11.2	0.124
	40	2121.9308	13438	19.6	7.1	0.150
	#	m/z	Res.	S/N	1%	FWHM
	1	250.0295	13478		1.8	0.0186
	2	251.0328	13532		0.2	0.0186
	2	252.0262	13586		18.8	0.0186
	4	253.0272	13640		17.6	0.0186
	4	200.0212	10040		17.0	0.0100

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

#	m/z	Res.	S/N	1%	FWHM	
5	254.0245	13694		49.8	0.0186	
6	255.0275	13748		6.1	0.0186	
7	256.0235	13801		100.0	0.0186	
8	257.0267	13856		12.4	0.0186	
9	258.0240	13909		18.4	0.0186	
10	259.0270	13963		2.2	0.0186	
11	260.0304	14017		0.2	0.0186	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

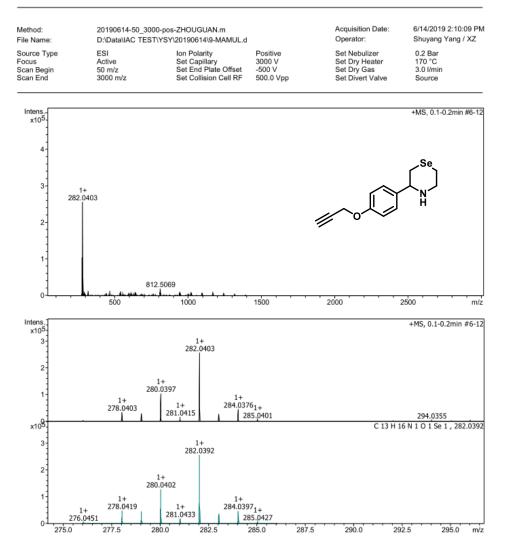
Compound 31

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Evaluation Spectra / Validation Formula:

										_	
		Ion Formula			err [mDa]						
354.115636	1	C16H25BNO2Se	354.114167	M+H	-1.5	-4.1	40.9	ok	5.5	even	100.00

Calibration Info:	:			Mass	List:				
Date:		5:36:17 PN	1	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	296.2557	15147	286.2	21.8	0.019
Calibration spectrue		2-0.2min #9-		2	297.2570	13204	67.1	5.1	0.022
Reference mass lis			TOF_140 (ESI) (pos)	3	338.3427	9095	67.2	5.6	0.022
Calibration mode:	Quadrati	с		4					
				5	340.2834 341.2864	11996 11700	1186.8 235.8	100.0 19.9	0.028
Reference m/z R	lesulting m/z	Intensity	Error [ppm]	6		14867			
118.0863				7	350.1188	9599	97.7 80.1	8.5 7.0	0.023
322.0481				8	351.1181				
622.0290				8	352.1182	12672	191.3	16.7	0.027
922.0098	922.0101	555	0.338		353.1162	11062	128.8	11.3	0.031
1221.9906				10	354.1156	13155	338.6	29.9	0.026
1521.9715	1521.9709	7664	-0.399	11	355.1173	16882	77.6	6.9	0.021
1821.9523				12	356.1162	15669	73.5	6.5	0.022
2121.9332	2121.9335	1793	0.148	13	381.2984	14261	87.8	8.5	0.026
2421.9140				14	384.3104	12052	494.6	48.2	0.031
2721.8948				15	385.3182	19753	132.9	13.0	0.019
140.0682	140.0682	1507	-0.126	16	428.3363	12369	105.7	11.5	0.034
standard deviation:			01120	17	437.1966	11122	111.0	12.4	0.039
	. 0.000			18	591.5094	16024	75.1	11.5	0.036
				19	619.5291	11642	315.3	51.5	0.053
				20	620.5322	16387	138.9	22.8	0.037
				21	647.5596	14807	309.3	54.3	0.043
				22	648.5642	15379	132.2	23.3	0.042
				23	649.5750	22623	36.8	6.5	0.028
				24	659.2905	10713	47.0	8.5	0.061
				25	783.5361	15835	21.2	5.0	0.049
				26	976.5813	19863	17.4	5.6	0.049
				27	977.8418	12102	19.2	6.1	0.080
				28	987.4170	14059	28.1	9.1	0.070
				29	988.4164	12923	38.0	12.3	0.076
				30	989.4119	18618	33.9	11.0	0.053
				31	990.4147	11733	51.1	16.6	0.084
				32	991.4196	11769	22.7	7.4	0.084
				33	992.4120	12420	21.5	7.0	0.079
				34	1216.0652	14217	31.8	12.6	0.085
				34	1217.0674	16495	31.4	12.5	0.003
				35	1217.0674	10495	46.6	12.5	0.073
				30	1245.1049	13768	46.6	15.5	0.105
				38 39	1246.1023	12179	17.6	7.1	0.102
					1272.1271	25680	32.4	13.3	0.049
				40	1273.1310	13327	28.0	11.5	0.095
				#	m/z	Res.	S/N	۱%	FWHM
				1	347.1234	12895		0.4	0.0269
				2	348.1198	12932		1.8	0.0269
				3	349.1203	12969		4.8	0.0269
				4	350.1174	13006		22.4	0.0269


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

#	m/z	Res.	S/N	1%	FWHM
5	351.1180	13043		29.8	0.0269
6	352.1152	13080		50.5	0.0269
7	353.1176	13117		32.2	0.0269
8	354.1142	13154		100.0	0.0269
9	355.1173	13192		21.7	0.0269
10	356.1148	13229		19.3	0.0269
11	357.1173	13266		3.2	0.0269
12	358.1207	13303		0.3	0.0269

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3m

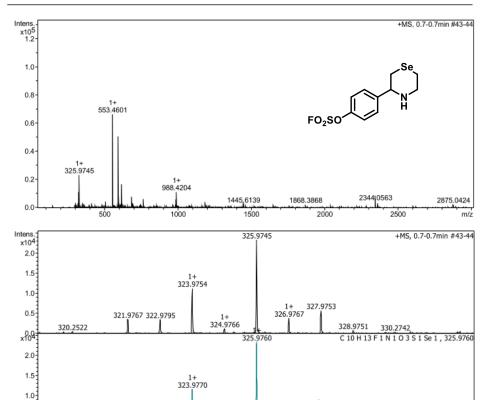
RAJAVEL/ZHOU GUAN

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

Evaluation \$	Spec	tra / Validation I	Formula:								
Meas. m/z		Ion Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	N-Rule	Adduct
282.040263		C13H16NOSe	100.00	282.039203	1.1	3.8	43.7	6.5	even	ok	M+H

Calibration In	fo:			Mass	List:				
Date:	6/14/20	19 2:32:06 F	M				0.01		
Polarity:	Positive			#	m/z	Res.	S/N	1%	FWHM
Calibration spec	trum: +MS, 4.	5-4.7min #2	70-279: Scan	1	278.0403	13436	1006.5	13.3	0.0207
Reference mass	list: ESI: Tu	ning Mix ES-	TOF (ESI) (pos)	2	279.0414	11314	888.1	11.8	0.0247
Calibration mode	e: Enhanc	ed Quadratio	3	3	280.0397	13321	3069.0	40.8	0.0210
				4	281.0415	13311	483.0	6.4	0.0211
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	282.0403	17230	7512.5	100.0	0.0164
118.0863				6	283.0407	10994	823.7	11.0	0.0257
322.0481				7	284.0376	13254	1328.0	17.7	0.0214
622.0290	622.0289	15971	-0.087	8	285.0401	11123	181.7	2.4	0.0256
922.0098	922.0102	40359	0.406	9	320.0703	11354	154.4	2.3	0.0282
1221.9906	1221.9898	49790	-0.693	10	322.0692	13309	362.5	5.3	0.0242
1521.9715	1521.9724	55249	0.596	11	445.1198	12075	140.5	2.8	0.0369
1821.9523	1821.9516	38469	-0.399	12	467.1020	13454	244.9	5.0	0.0347
2121.9332	2121.9337	40176	0.272	13	468.1023	12596	101.2	2.1	0.0372
2421.9332	2421.9138	9105	-0.095	14	536.1648	12907	115.9	2.8	0.0415
2721.8948	2421.9130	9105	-0.095	15	541.1197	12450	195.5	4.7	0.0435
Standard deviati	0.672			16	542.1206	12804	103.8	2.5	0.0423
standard deviati	011: 0.073			17	543.1172	13196	83.1	2.0	0.0412
				18	597.0664	11694	82.7	2.3	0.0511
				19	599.0645	12763	98.1	2.7	0.0469
				20	615.1166	5603	70.7	2.0	0.1098
				21	640,9978	13196	106.8	3.2	0.0486
				22	642.9965	11784	122.6	3.7	0.0546
				23	644.9928	12743	96.2	2.9	0.0506
				24	810.5048	13299	106.2	3.6	0.0609
				25	812.5069	14696	221.4	7.5	0.0553
				26	813.5075	13167	105.4	3.6	0.0618
				27	814.5051	13476	70.1	2.4	0.0604
				28	942.4794	14123	74.5	2.4	0.0667
				29	944,4767	14130	133.5	4.3	0.0668
				30	945.4810	15953	91.2	3.0	0.0593
				31	948,1977	13915	71.2	2.3	0.0681
				32	1020.2156	13638	68.8	2.1	0.0748
				33	1022.2158	14072	125.0	3.8	0.0726
				34	1023.2160	14124	103.8	3.2	0.0720
				35	1024.2167	13794	94.9	2.9	0.0724
				36	1096.2337	13920	114.5	3.2	0.0745
				37	1097.2334	14020	95.4	2.7	0.0783
				38	1098.2342	13519	87.6	2.5	0.0783
				39	1170.2519	13678	79.2	2.5	0.0812
				40	1171.2488	15236	77.2	2.1	0.0850
				#	m/z	Res.	S/N	1%	FWHM
				1	276.0451	16864		1.8	0.0164
				2	277.0485	16925		0.3	0.0164
				3	278.0419	16986		18.8	0.0164
				4	279.0429	17047		18.0	0.0164
				-4	213.0423	11041		10.0	0.0104


#	m/z	Res.	S/N	1%	FWHM	
5	280.0402	17108		50.1	0.0164	
6	281.0433	17169		7.1	0.0164	
7	282.0392	17230		100.0	0.0164	
8	283.0424	17291		14.5	0.0164	
9	284.0397	17352		18.7	0.0164	
10	285.0427	17414		2.6	0.0164	
11	286.0460	17475		0.2	0.0164	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3n

RAJAVEL/ZHOU GUAN

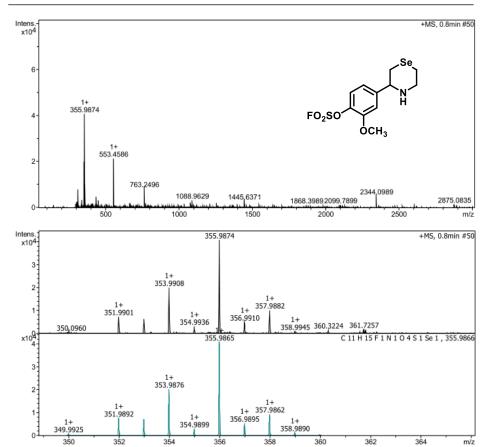
Method:	20190603-50_3000-pc	os.m		Acquisition Date:	6/6/2019 11:03:37 AM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190605\ ESI Active 50 m/z 3000 m/z	ZHOUGUAN-2\6_P1-B-6 Ion Polanty Set Capillary Set End Plate Offset Set Collision Cell RF	01 9015.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 I/min Source

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

Evaluation	Spec	ctra / Validation For	rmula:							
Meas. m/z 325.974461		Ion Formula C10H13FNO3SSe		Adduct M+H	err [mDa] 1.5	err [ppm] 4.6	mSigma 21.1	rdb 4.5	e ⁻ Conf even	Score 100.00

#1234567890012345667890012234256	m/z 304.2604 312.3236 321.9767 322.9795 323.9754 326.9767 327.9753 350.9711 360.3207 413.2649 507.2729 553.4601 554.4627 555.4621 552.968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4381 686.4384 694.2024	Res. 10412 10553 11324 11642 11944 11634 14226 10821 11554 13415 12366 14921 13576 14921 13576 14921 13578 13572 14708 12377 12143 30026 13122 13131 33788	S/N 61.7 40.6 59.1 58.3 191.8 396.3 64.3 96.6 55.1 42.0 49.3 62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.6 103.7 213.2 64.6 44.1 33.4 93.5	I% 5.2 3.5 5.1 16.9 35.0 5.1 35.0 5.1 3.9 6.8 100.0 33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	FWHM 0.0292 0.0296 0.0284 0.0277 0.0277 0.0271 0.0200 0.0303 0.0304 0.0303 0.0304 0.0369 0.0371 0.0416 0.0413 0.0450 0.0413 0.0450 0.0413 0.0450 0.0413 0.0450 0.0413 0.0422 0.0450 0.0413 0.0422 0.0450 0.0422 0.0413 0.0422 0.0422 0.0422 0.0423 0.0413 0.0422 0.0505 0.0422 0.0422 0.0505 0.0422 0.0505 0.0422 0.0505 0.0422 0.0505 0.0422 0.0505 0.0422 0.0505 0.0422 0.0550 0.0422 0.0550 0.0422 0.0550 0.0422 0.0550 0.0422 0.0550 0.0422 0.05500000000
1 2 3 4 5 6 7 8 9 00 11 2 3 4 4 5 6 6 7 8 9 00 11 2 3 4 4 5 6 6 7 8 9 20 1 2 2 3 4 4 5 6 6 7 8 9 20 1 2 2 3 2 4 2 5	304.2604 312.3236 321.9767 322.9795 323.9754 325.9745 326.9767 327.9753 350.9711 360.3207 413.2649 507.2729 553.4601 554.4627 555.4621 554.4627 555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4381 686.4384 694.2024	10412 10553 11324 11642 11944 11634 14226 10821 11554 13415 12360 14921 13475 13352 14708 14376 13352 14708 143778 12976 12527 12143 30026 13122 13131	61.7 40.6 59.1 58.3 191.8 396.3 64.3 96.6 55.1 42.0 49.3 62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 648.9 176.0 103.7 213.2 648.4 103.4 93.5	5.2 3.5 5.2 5.1 16.9 35.0 5.7 8.6 5.1 3.9 6.8 100.0 3.9 8.2 76.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0292 0.0296 0.0284 0.0277 0.0277 0.0277 0.0270 0.0303 0.0303 0.0304 0.0399 0.0334 0.0369 0.0334 0.0416 0.0403 0.0411 0.0416 0.0403 0.0505 0.0474 0.0508 0.0508 0.0508 0.0508
2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 4 5 6 7 8 9 0 1 1 2 2 3 4 4 5 6 7 8 9 0 1 1 2 2 3 4 4 5 6 7 8 9 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	312.3236 321.9767 322.9795 323.9754 325.9745 326.9767 327.9753 350.9711 360.3207 413.2649 507.2729 553.4601 554.4627 555.4621 554.4627 555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4381 686.4384 694.2024	10553 11324 11642 11944 11634 14226 10821 11554 13345 13352 14921 13478 13352 14708 14921 13478 13378 14921 13478 14976 12527 12143 30026 13122 13131	40,6 59,1 58,3 191,8 396,3 64,3 96,6 55,1 42,0 49,3 62,5 873,2 295,3 71,8 648,9 176,0 71,8 648,9 176,0 71,3 243,2 644,1 33,4 93,5	3.5 5.2 5.1 16.9 35.0 5.7 8.6 5.1 3.9 4.9 6.8 100.0 33.9 8.2 76.3 20.7 12.2 25.4 5.3 4.5	0.0296 0.0284 0.0277 0.0271 0.0280 0.0230 0.0303 0.0304 0.0369 0.0371 0.0411 0.0411 0.0413 0.0403 0.0413 0.0413 0.0413 0.0413 0.0413 0.0413 0.0414 0.0403 0.0474 0.04140000000000
3 4 5 6 7 8 9 0 0 1 1 2 3 4 4 5 6 7 8 9 0 0 1 1 2 3 4 4 5 6 7 8 9 0 0 1 1 2 2 3 4 4 5 6 7 8 9 0 0 1 1 2 2 3 4 4 5 6 7 7 8 9 0 0 1 1 2 2 3 4 4 5 6 7 7 8 9 0 0 1 1 2 2 3 4 4 5 6 7 7 8 9 0 0 1 1 2 2 3 4 4 5 7 8 9 0 0 1 1 2 2 3 4 4 5 7 8 9 0 0 1 1 2 2 3 1 2 2 1 2 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 3 1 2 3 1 2 2 3 1 2 2 2 3 1 2 2 3 1 2 2 3 1 2 2 2 3 1 2 2 3 1 2 2 2 3 1 2 2 2 3 1 2 2 2 3 2 2 2 3 2 2 3 2 3	$\begin{array}{c} 321.9767\\ 322.9795\\ 323.9754\\ 325.9745\\ 326.9767\\ 327.9753\\ 350.9711\\ 360.3207\\ 413.2649\\ 507.2729\\ 553.4601\\ 554.4627\\ 555.4621\\ 592.9968\\ 593.9969\\ 594.9936\\ 614.9778\\ 615.9804\\ 616.9736\\ 626.4362\\ 685.4381\\ 686.4384\\ 694.2024 \end{array}$	11324 11642 11944 11634 14226 10821 11554 13415 12386 13750 14921 13478 13572 14708 14374 11778 12976 12527 12143 30026 13122 13131	$\begin{array}{c} 59.1\\ 58.3\\ 191.8\\ 396.3\\ 64.3\\ 96.6\\ 55.1\\ 42.0\\ 49.3\\ 62.5\\ 295.3\\ 71.8\\ 648.9\\ 176.0\\ 103.7\\ 213.2\\ 644.1\\ 33.4\\ 93.5\\ \end{array}$	5.2 5.1 16.9 35.0 5.7 8.6 5.1 3.9 4.9 6.8 100.0 33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0284 0.0277 0.0271 0.0280 0.0303 0.0304 0.0369 0.0371 0.0416 0.0403 0.0416 0.0403 0.0416 0.0403 0.0474 0.0505 0.0474 0.0505 0.0508 0.0508
4 5 6 7 8 9 0 0 1 1 2 3 3 4 4 5 6 7 8 9 0 0 1 1 2 3 4 4 5 6 7 8 9 0 0 1 2 3 4 4 5 6 7 8 9 0 0 1 1 2 3 4 4 5 6 7 8 9 0 0 1 1 2 3 4 4 5 6 7 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 0 1 1 2 3 3 4 4 5 5 8 9 0 1 1 2 3 3 4 4 5 5 8 9 0 1 1 2 3 3 4 4 5 5 8 9 0 1 1 2 3 3 4 4 5 5 8 9 10 1 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 1 2	322,9795 323,9754 325,9745 326,9767 327,9753 350,9711 360,3207 413,2649 507,2729 553,4601 554,4627 555,4621 554,4627 555,4621 552,9068 593,9969 594,9936 614,9778 615,9804 616,9736 626,4362 685,4384 694,2024	11642 11944 11634 14226 10821 11554 13415 12360 14921 13476 13352 14708 14378 14378 14708 14778 12976 12527 12143 30026 13122 13131	58.3 191.8 396.3 64.3 96.6 55.1 42.0 49.3 62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.8 93.5	5.1 16.9 35.0 5.7 8.6 5.1 3.9 4.9 6.8 100.0 33.9 8.2 76.3 20.7 12.2 4 7.7 5.3 4.0 11.5	0.0277 0.0271 0.0280 0.0230 0.0303 0.0304 0.0289 0.0371 0.0416 0.0403 0.0416 0.0403 0.0413 0.0505 0.0474 0.0508 0.0508 0.0508
5 6 7 8 9 0 0 1 1 2 3 3 4 4 5 6 6 7 8 9 0 0 1 2 3 4 4 5 6 6 7 8 9 0 0 1 2 3 4 4 5 6 6 7 8 9 0 0 1 2 3 4 4 5 6 6 7 8 9 0 0 1 2 3 4 4 5 6 7 8 9 0 0 1 1 2 3 4 4 5 6 7 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 0 1 1 2 3 3 4 4 5 8 9 0 1 1 2 3 4 4 5 8 9 0 1 1 2 3 3 4 4 5 8 9 9 0 1 1 2 3 3 4 4 5 8 9 9 0 1 1 2 3 3 4 4 5 8 9 9 0 1 1 2 3 3 4 4 5 8 9 9 0 1 1 2 3 3 4 4 5 8 9 9 1 1 2 3 3 4 4 5 8 9 9 1 1 1 2 3 3 4 4 5 1 2 3 1 1 1 2 3 3 1 1 1 2 3 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 1	323.9754 325.9745 326.9767 327.9753 350.9711 360.3207 413.2649 507.2729 553.4601 554.4627 555.4621 554.4627 555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4381 686.4384 694.2024	11944 11634 14226 10821 11554 13456 13750 14921 13478 13352 14708 14374 11778 12376 14774 11778 12927 12143 30026 13122 13131	191.8 396.3 64.3 96.6 55.1 42.0 62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.1 33.4 93.5	16.9 35.0 5.7 8.6 5.1 3.9 4.9 6.8 100.0 33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0271 0.0280 0.0230 0.0303 0.0304 0.0269 0.0374 0.0369 0.0374 0.0411 0.0411 0.0416 0.0403 0.0413 0.0505 0.0474 0.0508 0.0508 0.0508
6 7 8 9 10 11 2 3 3 4 4 5 6 6 7 8 9 10 11 2 3 4 4 5 6 6 7 8 9 9 10 11 2 3 4 4 5 5 6 6 7 7 8 9 9 10 11 12 2 3 4 4 5 5 6 6 7 7 8 9 9 10 11 12 2 3 4 4 5 5 7 7 8 9 9 10 11 12 2 3 14 14 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	325,9745 326,9767 327,9753 350,9711 360,3207 413,2649 553,4601 554,4627 554,4627 554,4627 554,4627 554,4627 554,4627 659,9968 593,9969 594,9936 614,9778 615,9804 616,9736 626,4362 685,4381 686,4384 694,2024	11634 14226 10821 11554 13455 13750 14921 13478 13352 14708 13352 14708 13372 14708 13474 11778 12976 12527 12143 30026 13122 13131	396.3 64.3 96.6 55.1 42.0 49.3 62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.6 103.7 213.2 64.6 44.1 33.4 93.5	35.0 5.7 8.6 5.1 3.9 4.9 6.8 100.0 33.9 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0280 0.0230 0.0304 0.0269 0.0371 0.0411 0.0413 0.0403 0.0403 0.0403 0.0413 0.0505 0.0474 0.0492 0.0508 0.0209 0.0502
7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25	326,9767 327,9753 350,9711 360,3207 413,2649 507,2729 553,4601 554,4627 555,4621 593,9969 594,9936 614,9778 615,9804 616,9736 614,9778 615,9804 616,9736 626,4362 685,4381 686,4384 694,2024	14226 10821 11554 13415 12386 13750 14921 13478 13352 14708 14374 11778 12376 12527 12143 30026 13122 13131	64.3 96.6 55.1 42.0 49.3 62.5 295.3 71.8 648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5	5.7 8.6 5.1 3.9 6.8 100.0 33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0230 0.0303 0.0304 0.0269 0.0334 0.0369 0.0371 0.0411 0.0413 0.0403 0.0413 0.0403 0.0474 0.0492 0.0508 0.0209 0.0522
8 9 11 12 13 14 15 16 17 18 19 20 12 22 23 24 25	327.9753 350.9711 360.3207 413.2649 553.4601 554.4627 555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4381 686.4384 694.2024	10821 11554 13415 12386 13750 14921 13478 13352 14708 14374 11778 12527 12143 30026 13122 13131	96.6 55.1 42.0 62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	8.6 5.1 3.9 4.9 6.8 100.0 33.9 8.2 76.3 70.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0303 0.0304 0.0269 0.0334 0.0369 0.0371 0.0411 0.0416 0.0403 0.0413 0.0505 0.0474 0.0492 0.0508 0.0209 0.0522
9 10 11 12 13 14 15 16 17 18 19 20 12 23 24 25	360.9711 360.3207 413.2649 507.2729 553.4601 554.4627 555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4381 686.4384 694.2024	11554 13415 12386 13750 14921 13478 1352 14708 14374 11778 12976 12527 12143 30026 13122 13131	55.1 42.0 49.3 62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	5.1 3.9 4.9 6.8 100.0 33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0304 0.0269 0.0334 0.0369 0.0371 0.0411 0.0413 0.0403 0.0403 0.0505 0.0474 0.0492 0.0508 0.0479 0.0508
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	360.3207 413.2649 507.2729 553.4601 554.4627 555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4381 686.4384 694.2024	13415 12386 13750 14921 13478 13352 14708 14374 11778 12976 12527 12143 30026 13122 13131	42.0 49.3 62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	3.9 4.9 6.8 100.0 33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0269 0.0334 0.0369 0.0371 0.0411 0.0413 0.0413 0.0413 0.0413 0.0505 0.0474 0.0505 0.0474 0.0508 0.0209 0.0522
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	413.2649 507.2729 553.4601 554.4627 555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4381 686.4384 694.2024	12386 13750 14921 13478 13352 14708 14374 11778 12976 12527 12143 30026 13122 13131	49.3 62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	4.9 6.8 100.0 33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0334 0.0369 0.0371 0.0411 0.0416 0.0403 0.0413 0.0505 0.0474 0.0492 0.0505 0.0209 0.0522
12 13 14 15 16 17 18 19 20 21 22 23 24 25	507.2729 553.4601 554.4627 555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4331 686.4384 694.2024	13750 14921 13478 13352 14708 14374 11778 12976 12527 12143 30026 13122 13131	62.5 873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	6.8 100.0 33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0369 0.0371 0.0411 0.0416 0.0403 0.0413 0.0505 0.0474 0.0492 0.0508 0.0209 0.0522
13 14 15 16 17 18 19 20 21 22 23 24 25	553.4601 554.4627 552.968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4331 686.4384 694.2024	14921 13478 13352 14708 14374 11778 12976 12527 12143 30026 13122 13131	873.2 295.3 71.8 648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	100.0 33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0371 0.0411 0.0416 0.0403 0.0413 0.0505 0.0474 0.0492 0.0508 0.0209 0.0522
14 15 16 17 18 19 20 21 22 23 24 25	554.4627 555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4331 686.4384 694.2024	13478 13352 14708 14374 11778 12976 12527 12143 30026 13122 13131	295.3 71.8 648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	33.9 8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0411 0.0416 0.0403 0.0505 0.0474 0.0492 0.0508 0.0209 0.0522
15 16 17 18 19 20 21 22 23 24 25	555.4621 592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4331 686.4384 694.2024	13352 14708 14374 11778 12976 12527 12143 30026 13122 13131	71.8 648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	8.2 76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0416 0.0403 0.0413 0.0505 0.0474 0.0492 0.0508 0.0209 0.0522
16 17 18 20 21 22 23 24 25	592.9968 593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4331 686.4384 694.2024	14708 14374 11778 12976 12527 12143 30026 13122 13131	648.9 176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	76.3 20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0403 0.0413 0.0505 0.0474 0.0492 0.0508 0.0209 0.0522
17 18 19 20 21 22 23 24 25	593.9969 594.9936 614.9778 615.9804 616.9736 626.4362 685.4331 686.4384 694.2024	14374 11778 12976 12527 12143 30026 13122 13131	176.0 103.7 213.2 64.6 44.1 33.4 93.5 40.8	20.7 12.2 25.4 7.7 5.3 4.0 11.5	0.0413 0.0505 0.0474 0.0492 0.0508 0.0209 0.0522
18 19 20 21 22 23 24 25	594.9936 614.9778 615.9804 616.9736 626.4362 685.4331 686.4384 694.2024	11778 12976 12527 12143 30026 13122 13131	103.7 213.2 64.6 44.1 33.4 93.5 40.8	12.2 25.4 7.7 5.3 4.0 11.5	0.0505 0.0474 0.0492 0.0508 0.0209 0.0222
19 20 21 22 23 24 25	614.9778 615.9804 616.9736 626.4362 685.4331 686.4384 694.2024	12976 12527 12143 30026 13122 13131	213.2 64.6 44.1 33.4 93.5 40.8	25.4 7.7 5.3 4.0 11.5	0.0474 0.0492 0.0508 0.0209 0.0522
20 21 22 23 24 25	615.9804 616.9736 626.4362 685.4331 686.4384 694.2024	12527 12143 30026 13122 13131	64.6 44.1 33.4 93.5 40.8	7.7 5.3 4.0 11.5	0.0492 0.0508 0.0209 0.0522
21 22 23 24 25	616.9736 626.4362 685.4331 686.4384 694.2024	12143 30026 13122 13131	44.1 33.4 93.5 40.8	5.3 4.0 11.5	0.0508 0.0209 0.0522
22 23 24 25	626.4362 685.4331 686.4384 694.2024	30026 13122 13131	33.4 93.5 40.8	4.0 11.5	0.0209
23 24 25	685.4331 686.4384 694.2024	13122 13131	93.5 40.8	11.5	0.0522
24 25	686.4384 694.2024	13131	40.8		
25	694.2024			5.0	0.0523
		33788			
26			36.2	4.5	0.0205
	745.9750	13603	27.7	3.5	0.0548
27	747.9749	13419	29.2	3.7	0.0557
28	763.2391	21552	47.7	6.0	0.0354
29	763.5899	36189	30.4	3.9	0.0211
30	966.6986	14903	30.6	4.0	0.0649
31	985.4246	11476	28.6	3.7	0.0859
32					0.0745
33					0.0654
34	988,4204	13659	129.4	16.9	0.0724
35	989.4210	13080	67.2	8.8	0.0756
36					0.0772
37					0.0778
38					0.0438
39					0.1777
40	2875.0424	76270	56.4	3.4	0.0377
#	m/z	Res.	S/N	1%	FWHM
1	319.9819	11421		1.7	0.0280
2	320.9853	11456		0.2	0.0280
3	321,9787	11492		18.5	0.0280
4					0.0280
	233435 367890 #123	12 986.4214 13 987.4177 14 988.4204 15 989.4210 16 990.4187 17 1144.9764 18 1445.6139 199 2344.0563 10 2875.0424 # m/z 1 319.8819 2 320.9853 3 321.9787	12 986.4214 13232 13 987.4177 15093 14 988.4204 13659 15 989.4210 13080 16 990.4187 12831 17 1184.9764 15232 18 1445.6139 32977 19 2344.0563 13191 10 2875.0424 76270 # m/z Res. 1 319.8619 11421 2 320.9853 11456 3 321.9787 11492	12 986.4214 13232 66.5 13 987.4177 15093 46.1 14 988.4204 13659 128.4 15 989.4210 13080 67.2 16 990.4187 12831 44.5 17 1184.9764 15232 47.8 18 1445.6139 32977 30.9 19 2344.0563 13191 76.7 10 2875.0424 76270 56.4 # m/z Res. S/N 1 319.9819 11421 2 320.9853 11456 3 321.9787 11492	12 986.4214 13232 66.5 8.7 13 987.4177 15093 46.1 6.0 14 988.4204 13659 129.4 16.9 15 989.4210 13080 67.2 8.8 16 990.4187 12831 44.5 5.8 17 1184.9764 15232 47.8 6.1 18 1445.6139 32977 30.9 3.7 19 2344.0563 13191 76.7 6.4 10 2875.0424 76270 56.4 3.4 # m/z Res. S/N 1% 1 319.9819 11421 1.7 2 3 321.9787 11492 18.5 145.5


		_				
#	m/z	Res.	S/N	1%	FWHM	
5	323.9770	11563		49.5	0.0280	
6	324,9792	11599		6.7	0.0280	
7	325.9760	11634		100.0	0.0280	
8	326.9789	11670		12.2	0.0280	
9	327.9756	11706		22.7	0.0280	
10	328.9785	11742		2.7	0.0280	
11	329.9730	11777		1.0	0.0280	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3o

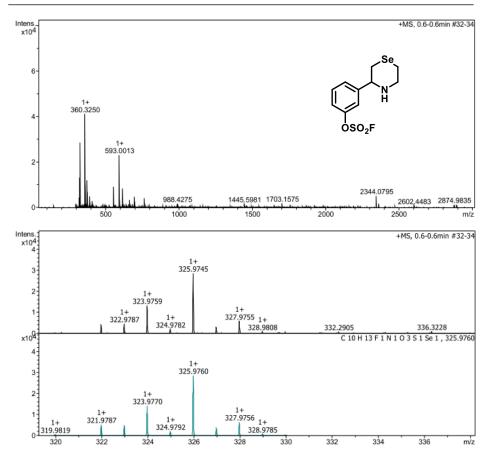
RAJAVEL/ZHOU GUAN

Method:	20190603-50_3000-pc	s.m		Acquisition Date:	6/6/2019 9:49:31 AM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190605\ ESI Active 50 m/z 3000 m/z	ZHOUGUAN-2\8_P1-B-2 Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	01 9007.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

Evaluation	Spec	tra / Validation For	rmula:							
Meas. m/z 355.987415		Ion Formula C11H15FNO4SSe	m/z 355.986534	Adduct M+H	err [mDa] 0.9	err [ppm] 2.5	mSigma 10.1	rdb 4.5	e Conf even	Score 90.60


tate: 6/10/2019 3:59:27 PM tolarity: Positive		Mass List:							
		#	m/z	Res.	S/N	1%	FWHM		
		# 1	m/z 296,9607	25659	5/N 13.0				
alibration spectrum: +MS, 4.5-4.6min #269-273	3: Scan					4.1	0.0116		
eference mass list: ESI: Tuning Mix ES-TOF (ESI) (pos)	2	297.1782	25757	12.8	4.0	0.0115		
alibration mode: Enhanced Quadratic		3	303.0044	8478	19.7	6.2	0.0357		
		4	308.9353	11794	21.2	6.7	0.0262		
Reference m/z Resulting m/z Intensity Error	[mag]	5	310.9321	16522	62.0	19.6	0.0188		
118.0863		6	312.9311	13204	16.5	5.2	0.0237		
322.0481		7	336.9600	12735	14.4	4.6	0.0265		
622.0290 622.0290 13455	0.004	8	338.9615	9969	25.8	8.3	0.0340		
	-0.178	9	351.9901	11865	55.5	17.9	0.0297		
1221.9906 1221.9911 34620	0.351	10	352.9935	11487	48.5	15.7	0.0307		
1521.9715 1521.9721 34084	0.398	11	353.9908	12411	151.8	49.1	0.0285		
	-1.140	12	354.9936	14987	22.9	7.4	0.0237		
2121.9332 2121.9333 27929	0.090	13	355.9874	12951	308.8	100.0	0.0275		
2421.9140 2421.9163 6421	0.937	14	356.9910	10931	37.1	12.0	0.0327		
	-0.461	15	357.9882	12671	76.8	24.9	0.0283		
tandard deviation: 0.853	-0.401	16	361.7257	29278	13.0	4.2	0.0124		
tanuaru ueviation: 0.000		17	381.2971	11224	12.7	4.1	0.0340		
		18	405.9605	18119	13.7	4.4	0.0224		
		19	413.2643	16589	15.1	4.8	0.0249		
		20	437.1939	14935	37.0	11.8	0.0293		
		21	450.0139	12124	24.6	7.9	0.0371		
		22	553.4586	12608	162.8	52.4	0.0439		
		23	554,4596	15535	76.9	24.8	0.0357		
		24	555,4611	12254	15.4	5.0	0.0453		
		25	666.9752	20797	16.9	5.4	0.0321		
		26	763.2496	41052	64.3	20.2	0.0186		
		27	763.2853	33968	42.5	13.3	0.0225		
		28	763.6000	37274	17.0	5.3	0.0205		
		29	772.9503	20344	15.0	4.7	0.0200		
		29	1035.3360	48241	14.1	4.1	0.0380		
		31	1077.4405	34226	14.1	4.1	0.0215		
		31		34226 46108	18.7	5.4 5.3			
		32	1077.8313 1088.9629	46108	18.4	5.3	0.0234 0.0247		
		34	1210.5751	53545	15.8	4.4	0.0226		
		35	1254.8255	53955	16.2	4.4	0.0233		
		36	1398.1644	57616	15.2	4.0	0.0243		
		37	1445.6371	44956	26.9	7.0	0.0322		
		38	1446.1093	55020	15.3	4.0	0.0263		
		39	2344.0989	63984	54.3	12.2	0.0366		
		40	2344.7355	56606	38.8	8.7	0.0414		
		#	m/z	Res.	S/N	1%	FWHM		
		1	349.9925	12733		1.7	0.0275		
		2	350.9959	12770		0.2	0.0275		
		3	351.9892	12806		18.4	0.0275		
		4	352.9903	12842		17.4	0.0275		

m/z	Res.	S/N	1%	FWHM
353.9876	12878		49.6	0.0275
354.9899	12915		7.3	0.0275
355.9865	12951		100.0	0.0275
356.9895	12988		13.3	0.0275
357.9862	13024		23.1	0.0275
358.9890	13060		2.9	0.0275
359.9849	13097		1.1	0.0275
	353.9876 354.9899 355.9865 356.9895 357.9862 358.9890	353,9876 12878 354,9899 12915 355,9865 12951 356,9895 12988 357,9862 13024 358,9890 13060	353.9876 12878 354.9899 12915 355.9865 12951 356.9895 12988 357.9862 13024 358.9890 13060	353,9876 12878 49,6 334,9899 12915 7.3 355,9865 12951 100,0 366,9895 12988 13,3 357,9862 13024 23,1 358,9890 13060 2,9

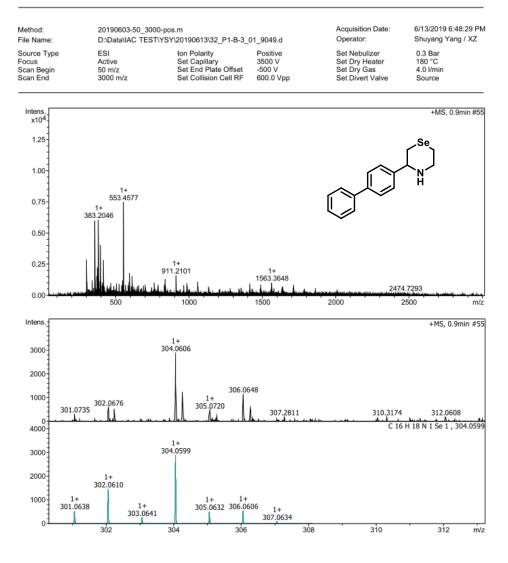
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3p

Method:	20190603-50_300	0-pos.m		Acquisition Date:	6/5/2019 12:11:45 PM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\201906 ESI Active 50 m/z 3000 m/z	605/ZHOUGUAN/7_P1-B-7_0 Ion Polarity — Set Capillary Set End Plate Offset Set Collision Cell RF	12,8955.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 I/min Source

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU Page 1 of 3

Evaluation	Spec	ctra / Validation For	rmula:							
Meas. m/z 325.974451		lon Formula C10H13FNO3SSe		Adduct M+H	err [mDa] 1.5	err [ppm] 4.6	mSigma 18.1	rdb 4.5	e Conf even	Score 79.95


Calibration Info:		Mass					
Date: 6/10/2019 3:53:	42 PM	#	m/z	Res.	S/N	1%	FWHM
Polarity: Positive		1	321.9783	12171	83.1	10.8	0.0265
Calibration spectrum: +MS, 4.6-4.6mi	n #271-273: Scan	2					
Reference mass list: ESI: Tuning Mix	ES-TOF (ESI) (pos)		322.9787	13314	85.4	11.1	0.0243
Calibration mode: Enhanced Quad	fratic	3	323.9759	12149	246.9	32.1	0.0267
		4	324.9782	12960	36.9	4.8	0.0251
Reference m/z Resulting m/z Intens	sity Error [ppm]	5	325.9745	11120	533.1	69.6	0.0293
118.0863		6	326.9766	10735	55.5	7.3	0.0305
322.0481 322.0482 4	72 0.127	7	327.9755	10276	107.2	14.0	0.0319
622.0290 622.0286 143	41 -0.528	8	352.3203	11215	29.1	3.9	0.0314
922.0098 922.0102 309	26 0.388	9	360.3250	13563	738.2	100.0	0.0266
1221.9906 1221.9911 450		10	361.3259	12476	183.1	24.8	0.0290
1521.9715 1521.9719 523		11	362.3282	9940	28.4	3.9	0.0365
1821.9523 1821.9500 413		12	374.3039	11891	215.4	29.4	0.0315
2121.9332 2121.9332 640		13	375.3083	10584	49.8	6.8	0.0355
2421.9140 2421.9166 193		14	376.3199	11491	121.6	16.6	0.0327
	59 -0.485	15	377.3186	11826	36.4	5.0	0.0319
Standard deviation: 0.894	-0.465	16	390.2980	12028	60.3	8.3	0.0324
standard deviation, 0.054		17	392.3135	11915	89.4	12.3	0.0329
		18	393.3080	10561	40.4	5.5	0.0372
		19	408.3094	12596	50.7	7.0	0.0324
		20	413.2661	14997	30.1	4.2	0.0276
		21	553,4619	12870	149.9	22.4	0.0430
		22	554.4676	11783	53.9	8.1	0.0471
		23	593.0013	13672	366.6	56.3	0.0434
		24	594.0030	13007	92.9	14.3	0.0457
		25	594.9993	11811	62.4	9.6	0.0504
		26	614,9838	13228	133.4	20.6	0.0465
		27	615.9822	11652	32.4	5.0	0.0529
		28	663.3143	13437	54.7	8.6	0.0494
		29	664.3183	14487	24.6	3.9	0.0459
		30	685.4367	12774	24.2	3.9	0.0537
		31	697.6616	12242	74.5	11.9	0.0570
		32	698.6629	12853	39.9	6.4	0.0544
		32	763.2295	15421	39.0	6.3	0.0495
		33	763.5898	14353	39.0	6.1	0.0495
		34	988.4275	14353	24.9	4.2	0.0532
						4.2	
		36 37	1445.5981 1703.1575	41607 60769	24.1 29.2	4.0	0.0347
							0.0280
		38	2344.0795	29523	106.2	12.6	0.0794
		39 40	2344.6598	24395	54.1	6.4	0.0961
			2360.8089	66637	35.3	4.2	0.0354
		#	m/z	Res.	S/N	۱%	FWHM
		1	319.9819	10915		1.7	0.0293
		2	320.9853	10949		0.2	0.0293
		3	321.9787	10983		18.5	0.0293
		4	322.9797	11017		17.2	0.0293

#	m/z	Res.	S/N	1%	FWHM
5	323.9770	11051		49.5	0.0293
6	324.9792	11086		6.7	0.0293
7	325.9760	11120		100.0	0.0293
8	326.9789	11154		12.2	0.0293
9	327.9756	11188		22.7	0.0293
10	328.9785	11222		2.7	0.0293
11	329.9730	11256		1.0	0.0293

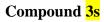
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

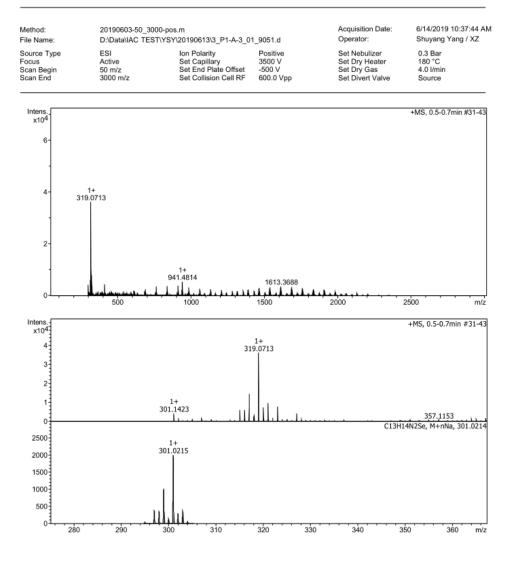
Compound 3q

RAJAVEL/ZHOU GUAN

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU


Evaluation \$	Spec	tra / Validation I	Formula:								
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
304.060565	1	C16H18NSe	100.00	304.059951	0.6	2.0	153.7	8.5	even	ok	M+H

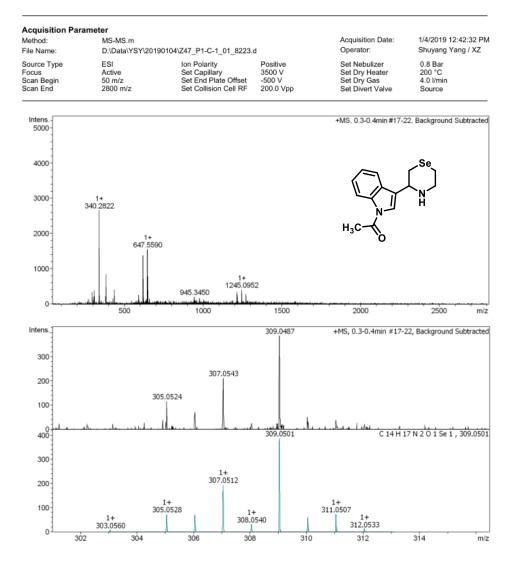

Calibration In	fo:			Mass	List:				
Date:		9 10:15:33	AM	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	304.0606	15179	15.8	38.5	0.0200
Calibration spec			70-273: Scan	2	304.0608	11016	6.8	36.5 16.7	0.0200
Reference mass			TOF (ESI) (pos)	2	306.0648	19379	6.3	15.4	0.0276
Calibration mode	e: Enhance	ed Quadratio		4	341.2619	15699	6.6	16.1	0.0158
				5	360.3256	11943	33.1	80.2	0.0217
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	361.3278	14405	7.5	18.3	0.0302
118.0863				7	374.1029	11771	7.5 5.9	14.4	0.0251
322.0481	322.0483	385	0.532	8	375.2521	23646	8.7	21.0	
622.0290	622.0282	13101	-1.289	8			8.7 12.4		0.0159
922.0098	922.0098	32963	-0.031		376.1000	16080		30.1	0.0234
1221.9906	1221.9908	43253	0.134	10	383.2046	13729	33.7	81.2	0.0279
1521.9715	1521.9743	43620	1.823	11	384.2100	12623	7.2	17.4	0.0304
1821.9523	1821.9532	29563	0.482	12	393.2975	12942	6.2	14.9	0.0304
2121.9332	2121.9318	38084	-0.621	13	395.0823	16679	6.5	15.6	0.0237
2421.9140	2421.9062	9565	-3.213	14	396.0839	9808	11.5	27.6	0.0404
2721.8948	2721.9008	2545	2.183	15	398.0801	13909	22.6	54.4	0.0286
Standard deviati	ion: 2.114			16	399.0847	23078	6.6	15.9	0.0173
				17	400.0825	13652	5.8	14.0	0.0293
				18	413.2623	18353	5.8	14.0	0.0225
				19	418.2934	13823	15.8	37.9	0.0303
				20	467.2843	9694	5.7	13.4	0.0482
				21	507.2757	11628	5.7	13.3	0.0436
				22	525.2940	14638	5.3	12.4	0.0359
				23	548.1585	12984	7.0	16.2	0.0422
				24	553.4577	12978	42.9	100.0	0.0426
				25	554.4601	12458	15.6	36.4	0.0445
				26	594.2535	12883	10.6	24.3	0.0461
				27	614.3124	16742	9.1	20.8	0.0367
				28	763.1720	9215	6.0	13.0	0.0828
				29	765.1729	25721	6.4	14.0	0.0297
				30	837.1907	15315	8.4	17.6	0.0547
				31	839.1892	10052	6.6	13.9	0.0835
				32	911.2101	9163	10.7	21.9	0.0994
				33	912.2103	12150	6.3	12.9	0.0751
				34	913.2057	17843	7.7	15.9	0.0512
				35	985.2166	16560	6.7	13.4	0.0595
				36	987.2251	13138	6.8	13.5	0.0751
				37	1060.2468	14134	6.2	12.1	0.0750
				38	1061.2527	10641	7.7	14.9	0.0997
				39	1416.3391	31590	7.2	13.0	0.0448
				40	1563.3648	18369	7.9	14.1	0.0851
				#	m/z	Res.	S/N	۱%	FWHM
				1	298.0659	14879		1.8	0.0200
				2	299.0692	14930		0.3	0.0200
				3	300.0626	14979		18.8	0.0200
				4	301.0638	15029		18.6	0.0200

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

m/z	Res.	S/N	1%	FWHM
302.0610	15079		50.6	0.0200
303.0641	15129		8.7	0.0200
304.0599	15179		100.0	0.0200
305.0632	15229		17.8	0.0200
306.0606	15279		19.0	0.0200
307.0634	15329		3.1	0.0200
308.0668	15379		0.3	0.0200
	302.0610 303.0641 304.0599 305.0632 306.0606 307.0634	302.0610 15079 303.0641 15129 304.0599 15179 305.0632 15229 306.0606 15279 307.0634 15329	302.0610 15079 303.0641 15129 304.0599 15179 305.0632 15229 306.0606 15279 307.0634 15329	302.0610 15079 50.6 303.0641 15129 8.7 304.0599 15179 100.0 305.0632 15229 17.8 306.0606 15279 19.0 307.0634 15329 3.1

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU Page 1 of 3


Evaluation \$	Evaluation Spectra / Validation Formula:											
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	N-Rule	Adduct	
319.071251	1	C16H19N2Se	100.00	319.070851	0.4	1.3	46.4	8.5	even	ok	M+H	

Calibration Info	o:			Mass	List:				
Date:	6/14/201	9 11:37:43	AM	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1		12193			
Calibration spectr	um: +MS, 4.	5-4.6min #2	70-274: Scan		301.1423		237.5	11.7	0.0247
Reference mass li	ist: ESI: Tur	ning Mix ES-	TOF (ESI) (pos)	2	315.0739	12546	313.1	16.4	
Calibration mode:		ed Quadratio		3	316.0729	12437	316.2	16.6	0.0254
				4	317.0727	10836	762.5	40.1	0.0293
Reference m/z	Resulting m/z	Intensity	Error (ppm)	5	318.0726	11835	159.9	8.4	
118.0863	<u> </u>			6	319.0713	13034	1897.7	100.0	
322.0481				7	320.0733	11865	391.1	20.6	0.0270
622.0290	622.0289	20800	-0.107	8	321.0697	11565	509.6	26.9	0.0278
922.0098	922.0102	45262	0.483	9	323.0662	13352	408.9	21.7	
1221.9906	1221.9897	67591	-0.779	10	327.1242	11711	210.1	11.3	0.0279
1521.9715	1521.9724	65549	0.640	11	413.2668	12686	182.9	12.0	0.0326
1821.9523	1821.9514	54911	-0.477	12	763.1692	13491	86.9	10.0	0.0566
2121.9332	2121.9340	52996	0.380	13	765.1677	13749	68.1	7.9	0.0557
2421.9140	2421.9137	11656	-0.140	14	837.1905	12424	85.8	10.5	0.0674
2721.8948	2421.0101	11000	0.140	15	838.1906	14427	78.4	9.6	0.0581
Standard deviatio	n: 0 774			16	839.1886	14096	71.3	8.7	0.0595
Standard deviation	1. 0.774			17	911.2093	15510	83.6	10.8	0.0587
				18	912.2093	14430	71.0	9.1	0.0632
				19	913.2095	14764	65.4	8.4	0.0619
				20	941.4814	15772	115.5	15.0	0.0597
				21	942.4852	14451	62.5	8.1	0.0652
				22	985.2268	12647	55.8	7.4	0.0779
				23	986.2263	14732	65.5	8.7	0.0669
				24	987.2260	13535	58.1	7.8	0.0729
				25	1464.3319	14299	58.4	8.2	0.1024
				26	1465.3320	14303	56.2	7.9	0.1024
				27	1537.3531	13764	55.1	7.6	0.1117
				28	1538.3511	13561	57.5	7.9	0.1134
				29	1539,3490	14610	65.6	9.0	
				30	1540.3475	14623	54.8	7.6	0.1053
				31	1611.3696	14297	58.8	7.8	0.1127
				32	1612.3681	15078	65.5	8.7	0.1069
				33	1613.3688	14704	74.3	9.9	0.1097
				34	1685.3906	14395	59.3	7.5	
				35	1686.3840	14658	64.2	8.1	0.1150
				36	1687.3886	14050	74.8	9.4	
				30	1688,3860	14/55	74.8 59.9	9.4	
				38	1759.4028	15447	64.4	7.6	0.1139
				39	1760.4062	13942	63.9	7.6	0.1159
				40	1761.4022	13942	67.9	7.5	
				#	m/z	Res.	S/N	1%	FWHM
				1	295.0274	2314	3/11	1.8	0.1275
				2	296.0308	2322		0.3	0.1275
				3	297.0241	2330		18.8	0.1275
				4	298.0252	2330		18.1	0.1275
				-	200.0202	2001		19.1	0.1210

		Dee	0.01	1.0/	-	
#	m/z	Res.	S/N	1%	FWHM	
5	299.0225	2345		50.2	0.1275	
6	300.0254	2353		7.3	0.1275	
7	301.0215	2361		100.0	0.1275	
8	302.0245	2369		14.9	0.1275	
9	303.0219	2377		18.5	0.1275	
10	304.0247	2385		2.6	0.1275	
11	305.0283	2392		0.2	0.1275	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3t

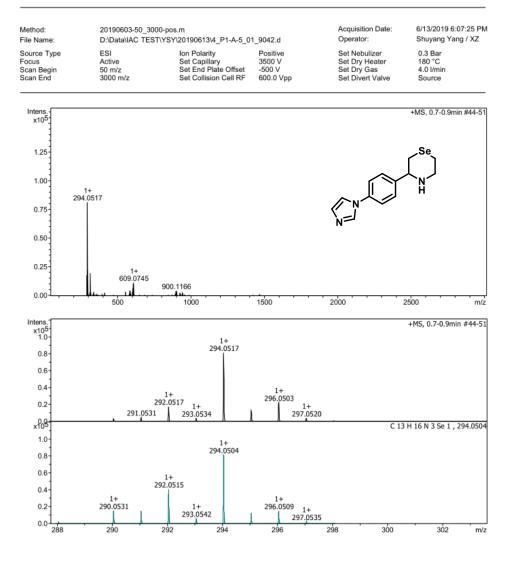
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Evaluation Spectra / Validation Formula:

										_	
Meas. m/z	#	lon Formula	m/z	Adduct	err [mDa]	err [ppm]	N-Rule	mSigma	rdb	e [–] Conf	Score
309.048732	1	C14H17N2OSe	309.050108	M+H	1.4	4.5	ok	621.5	7.5	even	-1.#J

Calibration Inf	o:			Mass	List:				
Date:		5:34:27 PN	1	#	m/z	Res.	S/N	1%	FWH
Polarity:	Positive			1	274.2744	10057	530.6	5.6	0.027
Calibration spect		-0.2min #9-		2	296.2589	10057	1059.6	12.5	0.027
Reference mass			TOF_140 (ESI) (pos)	2	305.0524	21484	345.8	4.4	0.027
Calibration mode	: Quadrati	с		4	305.0524	17766	545.8 623.2	4.4	0.014
				4 5					
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	309.0487	12809 14437	1112.8 6108.1	14.5 100.0	0.024
118.0863				7	340.2822	14437	1006.0	100.0	0.023
322.0481				8	341.2862				0.028
622.0290				9	381.3004	10304	349.6	8.3	0.037
922.0098	922.0109	359	1.177		384.3091	9901	1305.9	32.1	0.038
1221.9906				10	385.3131	12907	274.6	6.8	0.029
1521.9715	1521.9694	6925	-1.391	11	428.3395	10937	179.1	6.0	0.039
1821.9523				12	437.1985	11601	434.4	15.4	0.037
2121.9332	2121.9342	1502	0.515	13	591.4967	11320	120.7	8.9	0.052
2421.9140				14	619.5280	13164	620.0	52.1	0.047
2721.8948				15	620.5277	14719	302.3	25.6	0.042
140.0682	140.0681	1345	-0.441	16	621.5365	19774	89.9	7.7	0.031
Standard deviation				17	642.6014	34467	56.4	5.3	0.018
				18	647.5590	13616	611.5	58.4	0.047
				19	648.5634	16205	311.9	29.9	0.040
				20	649.5655	12462	42.3	4.1	0.052
				21	659.2859	8762	53.5	5.4	0.075
				22	660.2859	13205	40.8	4.1	0.050
				23	943.3510	19226	28.9	6.5	0.049
				24	945.3450	17566	35.1	8.0	0.053
				25	946.3459	12267	17.7	4.0	0.077
				26	956.8554	15626	19.8	4.6	0.061
				27	976.5818	23267	24.9	6.0	0.042
				28	977.8251	12411	25.9	6.2	0.078
				29	978.8375	9147	26.6	6.4	0.107
				30	1005.8585	8778	19.5	4.9	0.114
				31	1188.0316	12226	13.7	4.3	0.097
				32	1216.0560	15503	40.7	13.3	0.078
				33	1217.0611	14769	29.5	9.6	0.082
				34	1218.0696	15650	16.4	5.4	0.077
				35	1244.0875	13007	46.0	15.3	0.095
				36	1245.0952	16375	46.2	15.4	0.076
				37	1246.1104	12512	17.7	5.9	0.099
				38	1272.1204	16808	30.9	10.5	0.075
				39	1273.1292	11425	26.7	9.1	0.111
				40	1274.1270	11577	12.1	4.1	0.110
				#	m/z	Res.	S/N	1%	FWHM
				1	303.0560	12560	5/14	1.8	0.0241
				2	304.0594	12602		0.3	0.0241
				2	305.0528	12602		18.8	0.0241
				4	306.0538	12643		18.3	0.0241

Bruker Daltonics ESI - micrOTOF Q II


MS Lab | IAC - SPST - TJU

#	m/z	Res.	S/N	1%	FWHM	
5	307.0512	12726		50.3	0.0241	
6	308.0540	12768		7.9	0.0241	
7	309.0501	12809		100.0	0.0241	
8	310.0532	12850		16.0	0.0241	
9	311.0507	12892		18.9	0.0241	
10	312.0533	12933		2.9	0.0241	
11	313.0569	12975		0.2	0.0241	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3u

RAJAVEL/ZHOU GUAN

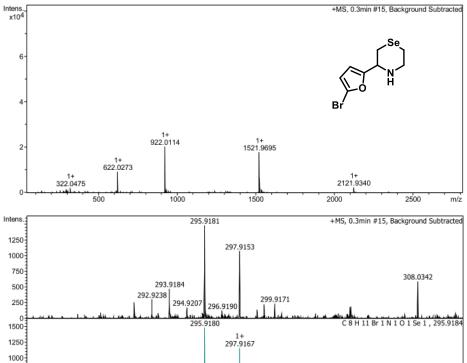
Bruker Daltonics ESI - micrOTOF Q II

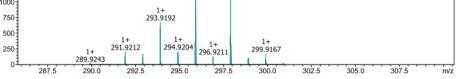
MS Lab | IAC - SPST - TJU

Evaluation \$	Evaluation Spectra / Validation Formula:											
Meas. m/z		lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct	
294.051746		C13H16N3Se	100.00	294.050431	-1.3	-4.5	119.4	7.5	even	ok	M+H	

Calibration In	fo:			Mass	List:				
Date:	6/14/201	9 9:33:54 A	M	#		Res.	S/N	1%	FWHM
Polarity:	Positive				m/z				
Calibration spec	trum: +MS, 4.6	6-4.7min #2	71-280: Scan	1	290.0521	11681	134.3	3.7	0.0248
Reference mass	s list: ESI: Tur	ning Mix ES-	TOF (ESI) (pos)	2	291.0531	12631	219.1	6.0	0.0230
Calibration mode	e: Enhance	ed Quadratio	3	3	292.0517	11869	792.0	21.7	0.0246
				4	293.0534	11244	164.8	4.5	0.0261
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	294.0517	14067	3646.6	100.0	0.0209
118.0863				6	295.0528	11058	617.2	16.9	0.0267
322.0481				7	296.0503	11672	996.7	27.3	0.0254
622.0290	622.0290	17290	-0.004	8	297.0520	10018	168.6	4.6	0.0297
922.0098	922.0099	39160	0.079	9	312.0335	10767	84.3	2.3	0.0290
1221.9906	1221.9902	55282	-0.325	10	313.0352	12122	115.9	3.2	0.0258
1521.9715	1521.9723	53747	0.537	11	314.0321	10812	296.7	8.2	0.0290
1821.9523	1821.9516	41836	-0.396	12	316.0320	13530	881.9	24.4	0.0234
2121.9332	2121.9334	42291	0.107	13	317.0334	11445	125.8	3.5	0.0277
2421.9140	2421.9140	9533	0.001	14	318.0318	11764	159.6	4.4	0.0270
2721.8948				15	336.0774	11811	94.5	2.6	0.0285
Standard deviati	ion: 0.454			16	338.0752	11688	152.9	4.2	0.0289
				17	413.2656	13389	113.7	3.2	0.0309
				18	553.4580	12692	148.7	4.5	0.0436
				19	583.0938	12989	93.7	2.9	0.0449
				20	585.0923	13579	170.6	5.3	0.0431
				21	587.0927	13314	176.9	5.5	0.0441
				22	589.0956	14612	81.0	2.5	0.0403
				23	603.0782	13594	100.2	3.1	0.0444
				24	604.0780	12745	74.3	2.3	0.0474
				25	605.0764	14367	249.4	7.8	0.0421
				26	606.0775	13129	179.1	5.6	0.0462
				27	607.0753	13379	402.7	12.6	0.0454
				28	608.0768	12030	127.2	4.0	0.0505
				29	609.0745	14069	444.4	13.9	0.0433
				30	610.0762	11866	116.2	3.6	0.0514
				31	611.0733	12583	142.3	4.5	0.0486
				32	896.1186	13386	69.3	2.5	0.0669
				33	897.1178	14884	68.9	2.5	0.0603
				34	898.1174	14121	133.0	4.8	0.0636
				35	899.1185	12939	84.0	3.0	0.0695
				36	900.1166	12746	149.5	5.4	0.0706
				37	901.1174	12210	72.9	2.6	0.0738
				38	902.1146	13769	138.2	5.0	0.0655
				39	926.3218	14107	82.9	3.0	0.0657
				40	944.3801	13139	86.3	3.1	0.0719
				#	m/z	Res.	S/N	1%	FWHM
				1	288.0564	13780		1.8	0.0209
				2	289.0597	13828		0.3	0.0209
				3	290.0531	13875		18.8	0.0209
				4	291.0541	13923		18.2	0.0209

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU


#	m/z	Res.	S/N	1%	FWHM
5	292.0515	13971		50.2	0.0209
6	293.0542	14019		7.5	0.0209
7	294.0504	14067		100.0	0.0209
8	295.0533	14115		15.3	0.0209
9	296.0509	14162		18.6	0.0209
10	297.0535	14210		2.7	0.0209
11	298.0573	14258		0.2	0.0209


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3w

DILUTE IN 50 TIMES

Acquisition Param Method:	eter 20181224-tune-wide-p	os.m		Acquisition Date:	1/11/2019 2:26:24 PM
File Name:	D:\Data\IAC TEST\YS	Y\20190111\45_P1-A-3_(01_8268.d	Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 2800 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 3500 V -500 V 200.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.4 Bar 200 °C 2.0 l/min Source

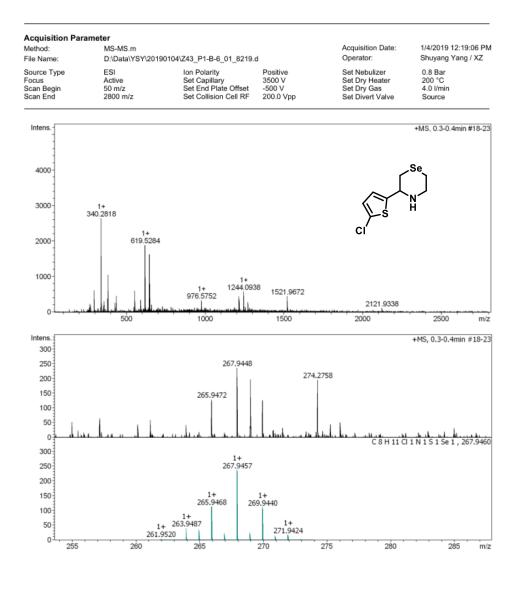
Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

DILUTE IN 50 TIMES

Evaluation §	Evaluation Spectra / Validation Formula:											
Meas. m/z 295.918131		Ion Formula C8H11BrNOSe		Adduct M+H	err [mDa] 0.1	err [ppm] 0.3	mSigma 55.5	N-Rule ok	rdb 3.5	e ⁻ Conf even	Score 100.00	

Calibration Info:			Mass List:							
Date: 1/11/2019 2:36:05 PM				#	m/z	Res.	S/N	1%	FWHM	
Polarity: Positive					140.0680	9505	22.0	2.0	0.014	
Calibration spectrum: +MS, 0.3min #15: Scan					257.1478	15494	47.6	5.1	0.016	
Reference mass list: ESI: Tuning Mix ES-TOF_140 (ESI) (pos)				2	282.2762	15457	22.7	2.5	0.018	
Calibration mode: Enhanced Quadratic				4	293.9184	13239	21.1	2.3	0.022	
				5	295.9181	15239	65.9	7.3	0.019	
	Resulting m/z	Intensity	Error [ppm]	6	297.9153	11493	47.6	5.3	0.025	
118.0863	118.0864	372	1.012	7	308.0342	20990	26.2	2.9	0.014	
322.0481	322.0482	6461	0.194	8	322.0475	11478	92.7	10.3	0.028	
622.0290	622.0283	19402	-1.010	9	376.3414	10969	20.5	2.4	0.034	
922.0098	922.0113	41206	1.666	10	415.2116	10914	19.7	2.4	0.034	
1221.9906				11	614.5693	17619	41.2	5.1	0.034	
1521.9715	1521.9699	33286	-1.066	12	622.0273	13366	366.4	45.5	0.034	
1821.9523				12	623.0299	9716	51.6	45.5	0.046	
2121.9332	2121.9338	4772	0.325	13	642.6040	11315	18.3	2.3	0.056	
2421.9140				14	763.4701	41302	17.1	2.3	0.038	
2721.8948				16	922.0114	14509	763.1	100.0	0.063	
140.0682	140.0680	628	-1.121	17	923.0108	14110	193.1	25.3	0.065	
Standard deviatio	n: 1.632			18	924.0097	12730	24.9	3.3	0.003	
				19	931.6677	34656	24.9	6.8	0.072	
				20	931.7858	8051	23.1	3.0	0.020	
				20	943.6765	15811	20.0	2.6	0.059	
				21	943.8210	40079	17.9	2.0	0.059	
				22	944.2389	47405	17.5	2.3	0.023	
				23	958.3682	16122	16.4		0.019	
				24	1239.6254	54590	21.0	2.2 2.7	0.059	
				25		9628	17.4	2.7	0.022	
				20	1307.9609 1521.9695	17060	712.8	87.6	0.135	
				28 29	1522.9714	17036	261.1 59.1	32.1	0.089	
				29 30	1523.9650	13968		7.3 3.5	0.109	
				30	1534.5985	61742	28.8		0.024	
				31	1535.1207	49715	18.2	2.2	0.030	
				32	1535.6482	20819 58045	26.8 23.3	3.3 2.9	0.073	
					1535.8728 1536.1583	15478			0.026	
				34 35			31.2	3.8	0.099	
					1536.5882	54403	23.3	2.9	0.028	
				36 37	1536.8441	36117	28.3 43.2	3.5 5.3	0.042	
					1537.0675	51269			0.030	
				38	1537.2739	56178	56.5	6.9	0.027	
				39	2121.9340	12123	134.3 85.0	11.8 7.5	0.175	
				40	2122.9320	21397	85.0	7.5	0.099	
				#	m/z	Res.	S/N	1%	FWHM	
				1	289.9243	15036		1.2	0.0193	
				2	290.9277	15088		0.1	0.0193	
				3	291,9212	15139		13.9	0.0193	
				4	292.9221	15191		11.6	0.0193	
				-						


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

DILUTE IN 50 TIMES

#	m/z	Res.	S/N	1%	FWHM	
5	293.9192	15243		45.7	0.0193	
6	294.9204	15295		14.2	0.0193	
7	295.9180	15347		100.0	0.0193	
8	296.9211	15399		9.1	0.0193	
9	297.9167	15450		78.0	0.0193	
10	298.9198	15502		7.1	0.0193	
11	299.9167	15554		12.0	0.0193	
12	300.9199	15606		1.1	0.0193	

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3y

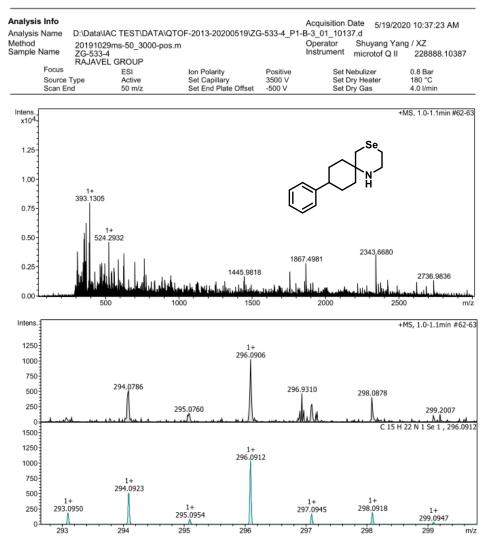
Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Evaluation Spectra / Validation Formula:

										_	
		Ion Formula			err [mDa]						
265.947191	1	C8H11CINSSe	267.945722	M+H	0.3	1.3	235.3	ok	3.5	even	100.00

Calibration Info:				Mass List:						
Date:	1/4/2019	4:41:48 PN	1	#	m/z	Res.	S/N	1%	FWHM	
Polarity:	Positive			# 1						
Calibration spectrum: +MS, 0.2-0.2min #11-14: Scan					267.9448	12884	170.4	8.9	0.0208	
Reference mass list:	ESI: Tun	ing Mix ES-	TOF 140 (ESI) (pos)	2	268.9979	14672	141.8	7.5	0.0183	
Calibration mode:	Quadrati	c		3	274.2758	10312	138.6	7.4	0.0266	
				4	296.2567	11342	409.7	23.2	0.0261	
Reference m/z Re	sulting m/z	Intensity	Error [ppm]	5	340.2818	11299	1518.4	100.0	0.0301	
118.0863				6	341.2857	15642	370.1	24.5	0.0218	
322.0481				7	353.2660	17168	99.1	6.9	0.0206	
622.0290				8	360.3239	12310	163.2	11.7	0.0293	
922.0098	922.0104	407	0.659	9	381.2997	15813	182.2	14.4	0.0241	
1221.9906				10	384.3083	11254	499.4	40.1	0.0342	
1521.9715	1521.9703	7066	-0.778	11	385.3123	10591	117.3	9.5	0.0364	
1821.9523				12	428.3334	11957	107.9	10.0	0.0358	
	2121.9338	1447	0.288	13	437.1922	16808	178.7	17.1	0.0260	
2421.9140				14	548.5018	14427	46.4	5.7	0.0380	
2721.8948				15	553.4573	13001	184.6	23.0	0.0426	
140.0682	140.0682	1421	-0.247	16	554.4633	14442	80.4	10.0	0.0384	
Standard deviation:				17	591.4967	12515	96.2	13.2	0.0473	
				18	619.5284	13459	491.4	71.5	0.0460	
				19	620.5299	12758	203.2	29.7	0.0486	
				20	621.5319	14468	38.6	5.7	0.043	
				21	647.5608	11825	396.9	61.5	0.0548	
				22	648.5610	13803	190.5	29.6	0.0470	
				23	649.5602	10156	42.5	6.6	0.0640	
				24	659.2851	8039	49.2	7.8	0.0820	
				25	729.5614	17465	33.5	6.1	0.0418	
				26	783.5303	12560	28.3	5.6	0.0624	
				27	976.5752	19150	47.7	12.6	0.0510	
				28	977.8374	11092	29.6	7.8	0.0882	
				29	978.8431	23272	28.7	7.6	0.0421	
				30	1216.0627	13227	52.2	17.0	0.0919	
				31	1217.0573	13370	41.4	13.5	0.0910	
				32	1218.0692	13019	16.8	5.5	0.0936	
				33	1244.0938	14763	66.8	22.1	0.0843	
				34	1245.0957	15111	58.9	19.5	0.0824	
				35	1246.0989	12492	19.5	6.5	0.099	
				36	1255.8210	13105	17.7	5.9	0.0958	
				37	1272.1193	13867	32.4	10.9	0.0917	
				38	1273.1249	12912	28.8	9.7	0.0986	
				39	1521.9672	12393	49.2	17.1	0.1228	
				40	1522.9744	11803	15.8	5.5	0.1290	
				#	m/z	Res.	S/N	1%	FWHM	
				1	261.9520	12596	3/14	1.5	0.0208	
				2	262.9554	12596		0.2	0.0208	
				2						
					263.9487	12692		16.5	0.0208	
				4	264.9497	12740		14.6	0.0208	

Bruker Daltonics ESI - micrOTOF Q II


MS Lab | IAC - SPST - TJU

m/z	Res.	S/N	1%	FWHM	
265.9468	12788		47.6	0.0208	
266.9479	12836		9.4	0.0208	
267.9457	12884		100.0	0.0208	
268.9485	12932		10.1	0.0208	
269.9440	12980		46.6	0.0208	
270.9469	13028		4.6	0.0208	
271.9424	13076		6.8	0.0208	
272.9457	13124		0.6	0.0208	
273.9391	13172		0.2	0.0208	
	265.9468 266.9479 267.9457 268.9485 269.9440 270.9469 271.9424 272.9457	265.9468 12788 266.9479 12836 267.9457 12884 268.9485 12932 269.9440 12980 270.9469 13028 271.9424 13076 272.9457 13124	265.9468 12788 266.9479 12836 267.9457 1284 268.9485 12932 269.9440 12980 271.9454 13028 271.9454 13076 272.9457 13124	265.9468 12788 47.6 266.9479 12836 9.4 267.9457 12884 100.0 268.9485 12932 10.1 269.9440 12980 46.6 270.9457 13028 4.6 271.9424 13076 6.8 272.9457 13124 0.6	265.9468 12788 47.6 0.0208 266.9479 12836 9.4 0.0208 267.9457 12884 100.0 0.0208 268.9485 12932 10.1 0.0208 269.9440 12980 46.6 0.0208 270.9459 13028 4.6 0.0208 271.9424 13076 6.8 0.0208 272.9457 13124 0.6 0.0208

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 3z

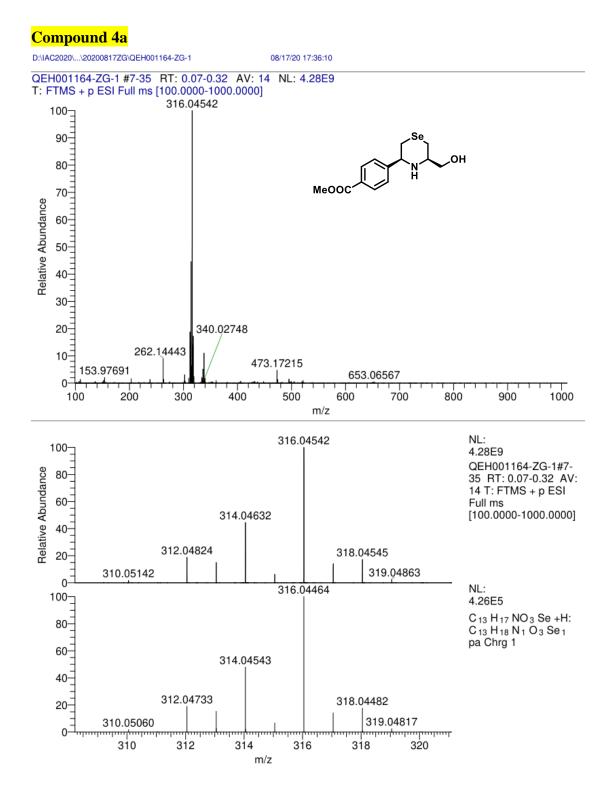
RAJAVEL GROUP

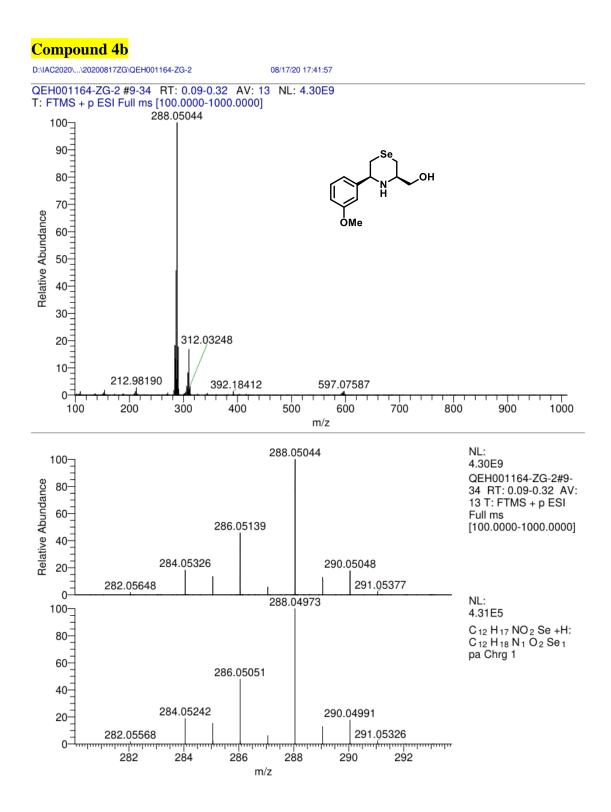
Bruker Daltonics ESI - micrOTOF Q II

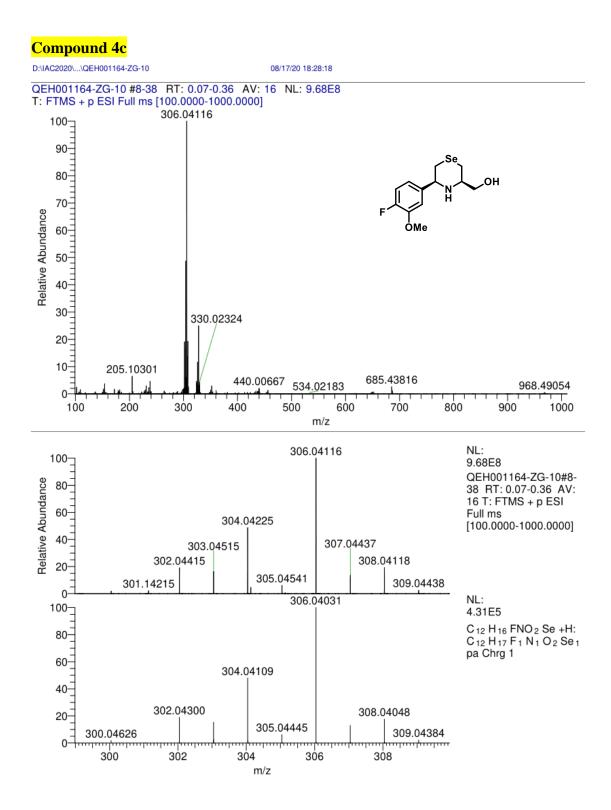
MS Lab | IAC - SPST - TJU

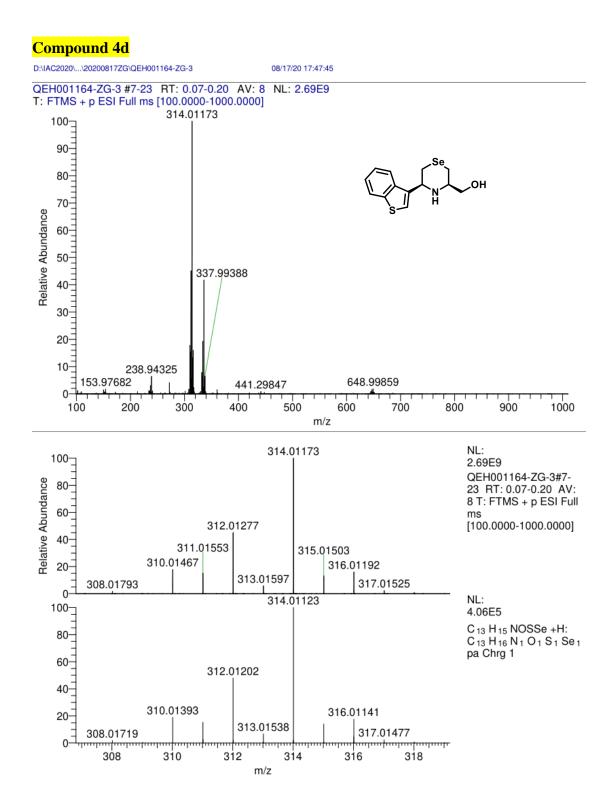
RAJAVEL GROUP

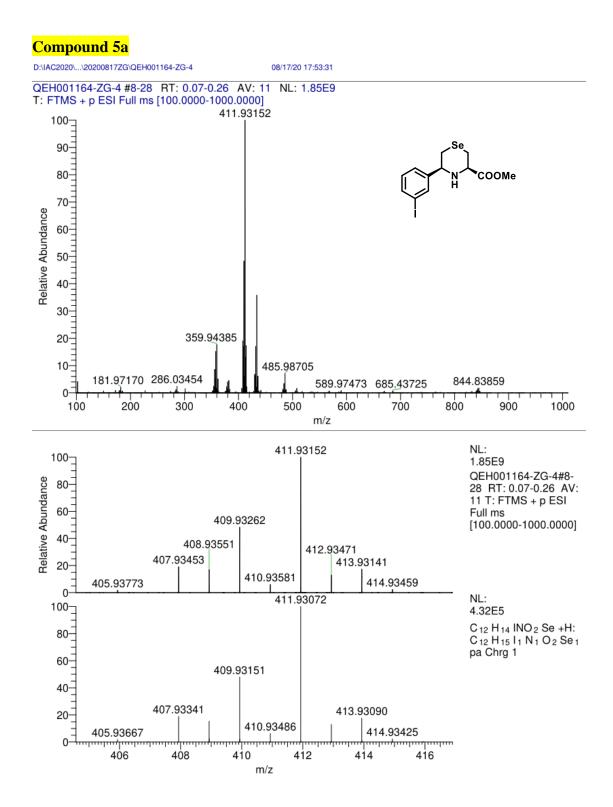
Evaluation \$	Spec	tra / Validation I	Formula:								
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	N-Rule	Adduct
296.090618	1	C15H22NSe	100.00	296.091245	-0.6	-2.1	122.4	5.5	even	ok	M+H

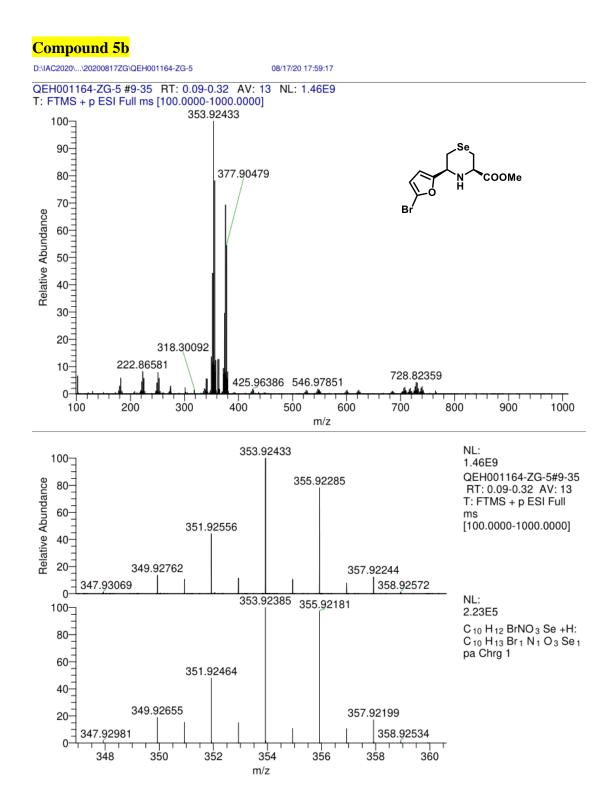

Calibration In	fo:			Mass	List:				
Date:		0 11:27:56	AM	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	310.0896	7033	24.3	27.9	0.0441
Calibration spec	trum: +MS, 4.6	3-4.7min #2	71-278: Scan	2	312.0839	9600	24.3 41.5	47.9	0.0441
Reference mass		ing Mix ES	TOF (ESI) (pos)	23	319.0692	9900	20.1	23.5	0.0325
Calibration mode	e: Enhance	ed Quadrati	2	3	340.2631	10013	20.1	23.5 26.5	0.032
				5	349.0987	8288	21.9	26.5	0.0340
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6			21.6		
118.0863				7	351.0998 352.1112	7425 7004		36.3 23.2	0.0473
322.0481	322.0481	7432	-0.127	8	354.9944	10123	19.0 24.5	30.0	0.035
622.0290	622.0293	38606	0.618	9	356.9948	11411	24.5 49.7	61.2	0.035
922.0098	922.0090	47791	-0.816	10	358,9906	11034	49.7	67.8	0.0325
1221.9906	1221.9905	44169	-0.087	10	365.0950	9075	30.2	37.4	0.032
1521.9715	1521.9728	39388	0.855						
1821.9523	1821.9514	22773	-0.512	12	368.1469	9797	30.1	37.3	0.0376
2121.9332	2121.9333	13635	0.069	13	370.1458	10736 12284	63.1 23.1	78.3	0.0345
2421.9140				14	390.1279			29.1	
2721.8948				15	391.1244	11226	45.8	57.5	0.0348
Standard deviati	ion: 0.866			16	393.1305	9618	79.5	100.0	0.040
				17	394.1281	10493	33.9	42.6	0.0376
				18	395.1254	11500	25.5	32.1	0.034
				19	430.9128	13131	20.7	26.3	0.032
				20	465.1797	12682	25.7	34.2	0.036
				21	475.3232	12629	24.0	32.3	0.037
				22	477.1749	11441	26.6	35.9	0.041
				23	491.1875	12922	17.2	23.6	0.038
				24	497.0431	11360	21.0	29.0	0.043
				25	497.1004	24162	25.4	35.2	0.020
				26	524.2932	12191	40.4	57.9	0.0430
				27	525.2904	5363	16.1	23.1	0.0980
				28	543.0971	10971	17.1	25.0	0.0495
				29	545.0969	10659	18.3	26.7	0.051
				30	561.2135	10756	20.6	30.6	0.0522
				31	563.2265	10660	17.9	26.6	0.0528
				32	588.4055	10905	26.2	39.6	0.0540
				33	626.6175	31364	29.5	46.1	0.0200
				34	626.6590	37385	18.4	28.8	0.016
				35	701.4978	9265	22.7	36.9	0.0757
				36	765.9481	14873	14.2	23.3	0.0515
				37	766.0846	33596	24.7	40.5	0.0228
				38	1756.8905	60034	22.8	26.3	0.0293
				39	1867.4981	52221	32.4	35.3	0.0358
				40	2343.6680	59014	49.7	42.7	0.039
				#	m/z	Res.	S/N	1%	FWHM
				1	290.0972	11470		1.8	0.0253
				2	291.1005	11510		0.3	0.0253
				3	292.0939	11549		18.8	0.0253
				4	293.0950	11589		18.4	0.0253

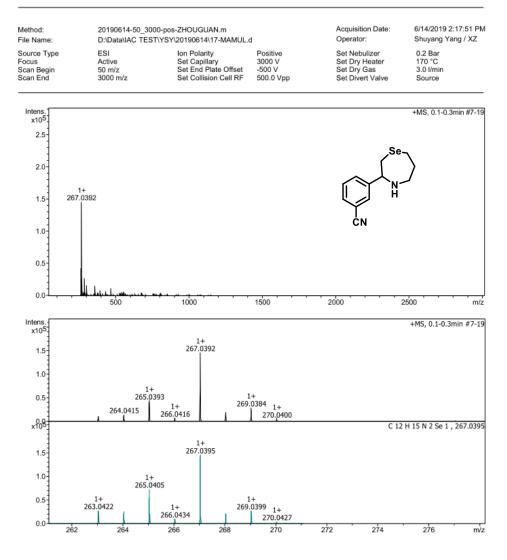

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU


RAJAVEL GROUP


#	m/z	Res.	S/N	1%	FWHM	
5	294.0923	11628		50.4	0.0253	
6	295.0954	11668		8.2	0.0253	
7	296.0912	11707		100.0	0.0253	
8	297.0945	11747		16.7	0.0253	
9	298.0918	11786		18.8	0.0253	
10	299.0947	11826		3.0	0.0253	
11	300.0981	11866		0.2	0.0253	


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU





Compound 6a

RAJAVEL/ZHOU GUAN

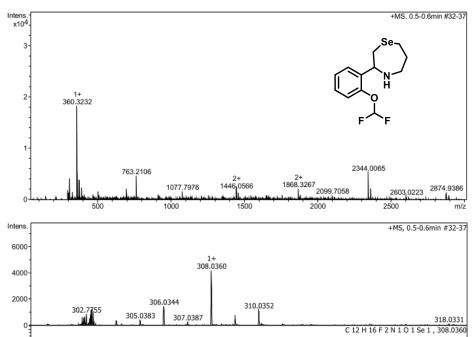
Bruker Daltonics ESI - micrOTOF Q II

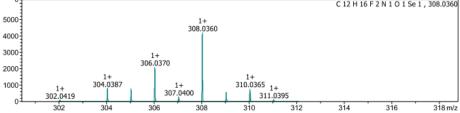
MS Lab | IAC - SPST - TJU

Evaluation \$	Spec	tra / Validation I	Formula:							
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	N-Rule	Adduct
267.039219	1	C12H15N2Se	100.00	267.039526	-0.3	-1.2	83.0	6.5	ok	M+H

Calibration In	fo:			Mass List:								
Date:	6/14/201	9 2:33:12 F	M	#		Res.	S/N	1%	FWHM			
Polarity:	Positive				m/z							
Calibration spec	trum: +MS, 4.5	5-4.7min #2	70-279: Scan	1	263.0398	10504	442.1	7.6	0.0250			
Reference mass	list: ESI: Tur	ning Mix ES-	TOF (ESI) (pos)	2	264.0415	12014	572.6	9.9	0.0220			
Calibration mode	e: Enhance	ed Quadratio	3	3	265.0393	11121	1702.3	29.5	0.0238			
				4	266.0416	10520	261.1	4.5	0.0253			
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	267.0392	15531	5775.0	100.0	0.0172			
118.0863				6 7	268.0404	11735	783.5	13.6	0.0228			
322.0481					269.0384	11820	1138.1	19.8	0.0228			
622.0290	622.0289	15971	-0.087	8	270.0400	11276	175.9	3.1	0.0239			
922.0098	922.0102	40359	0.406	9	283.0322	10839	153.2	2.8	0.0261			
1221.9906	1221.9898	49790	-0.693	10	285.0237	11294	198.4	3.6	0.0252			
1521.9715	1521.9724	55249	0.596	11	286.0249	11624	161.4	2.9	0.0246			
1821.9523	1821.9516	38469	-0.399	12	287.0206	10660	424.7	7.8	0.0269			
2121.9332	2121.9337	40176	0.272	13	289.0207	12033	999.0	18.4	0.0240			
2421.9140	2421.9138	9105	-0.095	14	290.0224	11474	153.5	2.8	0.0253			
2721.8948				15	291.0196	13096	222.0	4.1	0.0222			
Standard deviati	ion: 0.673			16	300.1922	13426	120.2	2.3	0.0224			
				17	304.2603	12049	578.1	11.3	0.0253			
				18	305.2625	11894	119.1	2.3	0.0257			
				19	353.2658	11817	101.7	2.3	0.0299			
				20	360.3233	13031	434.6	10.1	0.0277			
				21	361.3217	12505	117.2	2.7	0.0289			
				22	380.0652	12528	130.5	3.3	0.0303			
				23	381.2967	12322	96.8	2.5	0.0309			
				24	393.2977	11908	208.7	5.4	0.0330			
				25	413.2658	11951	90.5	2.4	0.0346			
				26	432.0758	11466	84.3	2.3	0.0377			
				27	434.0750	13291	176.3	4.9	0.0327			
				28	467.1023	13314	257.8	7.9	0.0351			
				29	468.1028	13030	115.9	3.5	0.0359			
				30	469.0994	11498	72.2	2.2	0.0408			
				31	531.0705	11917	71.1	2.5	0.0446			
				32	533.0704	13269	81.2	2.8	0.0402			
				33	541.1215	13206	106.7	3.8	0.0410			
				34	551.0526	13161	63.1	2.3	0.0419			
				35	553.0533	13922	105.9	3.8	0.0397			
				36	555.0510	12908	112.1	4.1	0.0430			
				37	557.0823	8654	78.5	2.9	0.0644			
				38	676.1215	12190	76.8	3.2	0.0555			
				39	678.1222	13039	84.0	3.5	0.0520			
				40	758.2098	12765	53.8	2.3	0.0594			
				#	m/z	Res.	S/N	۱%	FWHM			
				1	261.0455	15182		1.8	0.0172			
				2	262.0488	15241		0.2	0.0172			
				3	263.0422	15298		18.8	0.0172			
				4	264.0432	15357		17.9	0.0172			

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU


#	m/z	Res.	S/N	1%	FWHM
5	265.0405	15415		50.0	0.0172
6	266.0434	15473		6.8	0.0172
7	267.0395	15531		100.0	0.0172
8	268.0426	15589		13.8	0.0172
9	269.0399	15647		18.4	0.0172
10	270.0427	15705		2.4	0.0172
11	271.0464	15764		0.2	0.0172


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 6b

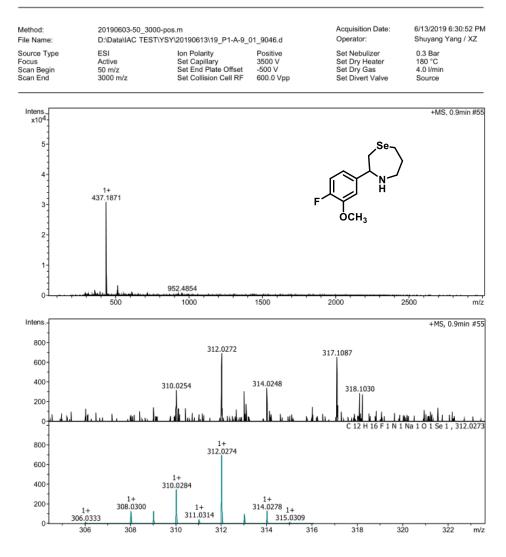
RAJAVEL/ZHOU GUAN

Method: File Name:	20190603-50_3000 D:\Data\IAC)-pos.m		Acquisition Date: Operator:	6/5/2019 6:19:12 PM Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\201906 ESI Active 50 m/z 3000 m/z	05\ZHOUGUAN-2\18_P1-B- Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	4_01_8989.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 I/min Source

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

Evaluation \$	Spec	tra / Validation Fo	ormula:								
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e Conf	N-Rule	Adduct
308.035994	1	C12H16F2NOSe	100.00	308.036004	0.0	0.0	75.1	4.5	even	ok	M+H


Calibration In				Mass	List:				
Date:	0.101201	9 5:08:25 P	M	#	m/z	Res.	S/N	1%	FWHN
Polarity:	Positive			1	296,9504	24619	73.3	8.4	0.012
Calibration spec			70-272: Scan	2	297.1620	25856	82.2	9.5	0.012
Reference mass			TOF (ESI) (pos)	3	302.7755	26341	40.6	4.7	0.011
Calibration mode	e: Enhance	ed Quadration		4	306.0344	9754	67.8	8.0	0.031
				5	308.0360	12621	194.5	23.0	0.024
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	310.0352	11875	54.3	6.4	0.026
118.0863				7	328.0176	10350	38.3	4.8	0.031
322.0481	322.0483	247	0.574	8	330.0168	9784	67.6	8.4	0.033
622.0290	622.0281	12716	-1.378	9	360.3232	11520	748.1	100.0	0.031
922.0098	922.0096	32067	-0.191	10	361.3248	12949	220.3	29.5	0.0279
1221.9906	1221.9916	39589	0.751	11	374.0425	11501	38.5	5.3	0.0325
1521.9715	1521.9731	36812	1.090	12	374.3010	12338	157.5	21.6	0.0303
1821.9523	1821.9535	23869	0.677	13	375.3028	9381	33.5	4.6	0.040
2121.9332	2121.9335	25397	0.173	14	376.3180	13567	152.5	21.0	0.027
2421.9140	2421.9036	6865	-4.285	15	377.3195	12335	36.3	5.0	0.030
2721.8948	2721.9019	1336	2.590	16	390.2971	12219	45.7	6.4	0.031
Standard deviati	ion: 2.509			17	392.3125	13292	90.7	12.8	0.029
				18	408.3071	10908	39.7	5.7	0.0374
				19	467.1022	12178	34.2	5.6	0.0384
				20	503.0659	7360	34.4	5.9	0.068
				21	503.3574	11329	46.5	8.0	0.044
				22	697.6581	12373	52.3	11.6	0.056
				23	698.6544	12886	27.2	6.0	0.054
				24	763.2106	37257	109.3	25.4	0.020
				25	763.5698	13888	68.3	15.9	0.055
				26	913.9277	36707	18.6	4.7	0.0249
				20	1077,7976	36796	33.2	8.8	0.029
				28	1445.5678	36475	28.9	8.3	0.029
				29	1446.0566	13934	35.5	10.1	0.1038
				30	1458.4012	54837	19.5	5.6	0.026
				31	1546.5501	54488	16.6	4.7	0.028
				32	1664.1909	48351	16.3	4.6	0.023
				33	1757.1776	51909	18.4	5.0	0.034
				34	1867.7858	13527	23.5	6.1	0.138
				35	1868.3267	44183	44.1	11.5	0.0423
				36	2099.7058	56079	20.4	4.6	0.0374
				37	2344.0065	63719	152.5	29.0	0.036
				38	2344.6403	50488	82.0	15.6	0.036
				39	2360.3315	66223	24.8	4.7	0.045
				40	2874.9386	69007	59.6	7.9	0.041
				#	m/z	Res.	S/N	۱%	FWHM
				1	302.0419	12376		1.8	0.0244
				2	303.0453	12417		0.2	0.0244
				3	304.0387	12458		18.8	0.0244
				4	305.0397	12499		17.8	0.0244

#	m/z	Res.	S/N	1%	FWHM
5	306.0370	12539		49.9	0.0244
6	307.0400	12581		6.6	0.0244
7	308.0360	12621		100.0	0.0244
8	309.0392	12662		13.5	0.0244
9	310.0365	12703		18.6	0.0244
10	311.0395	12744		2.4	0.0244
11	312.0429	12786		0.2	0.0244

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 6c

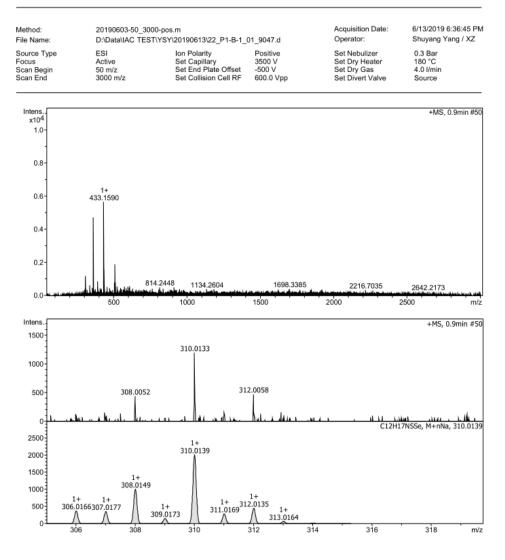
RAJAVEL/ZHOU GUAN

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

Evaluation	Spec	ctra / Validation Fo	rmula:							
Meas. m/z 312.027193		Ion Formula C12H16FNNaOSe	Score 100.00	m/z 312.027370	err [mDa] -0.2	err [ppm] -0.6	mSigma 353.9	e Conf even	N-Rule ok	Adduct M+Na

Calibration In	fo:			Mass List:							
Date:	6/14/201	9 9:44:14 A	M	#		Res.	S/N	1%	FWHM		
Polarity:	Positive				m/z						
Calibration spec	trum: +MS, 4.5	5-4.7min #2	70-278: Scan	1	294.0466	14332	2.5	1.4	0.0205		
Reference mass	list: ESI: Tur	ning Mix ES-	TOF (ESI) (pos)	2	298.1734	18050	3.1	1.7	0.0165		
Calibration mode	e: Enhance	ed Quadratio	3	3	300.1820	14950	4.6	2.6	0.0201		
				4	312.0272	11883	4.0	2.2	0.0263		
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	317.1087	9992	3.8	2.1	0.0317		
118.0863				6	341.2649	20565	3.3	1.8	0.0166		
322.0481				7	360.3205	13192	11.0	6.0	0.0273		
622.0290	622.0289	17315	-0.072	8	361.2841	12820	7.6	4.1	0.0282		
922.0098	922.0101	43304	0.336	9	374.2986	23499	3.7	2.0	0.0159		
1221.9906	1221.9899	53130	-0.565	10	375.2568	23178	4.7	2.5	0.0162		
1521.9715	1521.9722	58986	0.464	11	376.3126	20027	5.4	2.9	0.0188		
1821.9523	1821.9518	41837	-0.290	12	393.2961	9613	9.3	5.0	0.0409		
2121.9332	2121.9336	44405	0.199	13	394.3125	6620	3.6	1.9	0.0596		
2421.9140	2421.9138	10002	-0.073	14	413.2627	15612	6.0	3.2	0.0265		
2721.8948				15	437.1871	13509	188.1	100.0	0.0324		
Standard deviati	ion: 0.532			16	438.1898	10450	42.1	22.4	0.0419		
				17	439.1857	10952	6.7	3.6	0.0401		
				18	511.1288	16101	5.2	2.7	0.0317		
				19	512.1267	14009	5.5	2.9	0.0366		
				20	513.1235	13622	11.9	6.2	0.0377		
				21	514.1283	13778	3.4	1.8	0.0373		
				22	515.1227	13011	21.8	11.3	0.0396		
				23	516.1256	8690	4.5	2.3	0.0594		
				24	517.1212	10949	6.7	3.5	0.0472		
				25	524.1611	11237	5.7	3.0	0.0466		
				26	525.1657	19481	3.2	1.7	0.0270		
				27	541.1176	28935	2.8	1.5	0.0187		
				28	553.4543	25517	4.2	2.2	0.0217		
				29	565.0943	23417	3.2	1.6	0.0241		
				30	611.0739	15266	3.8	2.0	0.0400		
				31	613.0712	13227	3.7	1.9	0.0463		
				32	615.0762	12570	3.6	1.9	0.0489		
				33	656.5482	26427	2.9	1.5	0.0248		
				34	716.9768	31847	3.3	1.6	0.0225		
				35	718.9830	11639	3.6	1.8	0.0618		
				36	927.6580	14525	4.8	2.2	0.0639		
				37	928.6550	18472	4.5	2.1	0.0503		
				38	949.4802	37211	3.5	1.6	0.0255		
				39	950.4891	11129	3.8	1.7	0.0854		
				40	952.4854	16042	7.1	3.2	0.0594		
				#	m/z	Res.	S/N	۱%	FWHM		
				1	306.0333	11655		1.8	0.0263		
				2	307.0366	11693		0.2	0.0263		
				3	308.0300	11731		18.8	0.0263		
				4	309.0311	11769		17.8	0.0263		


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

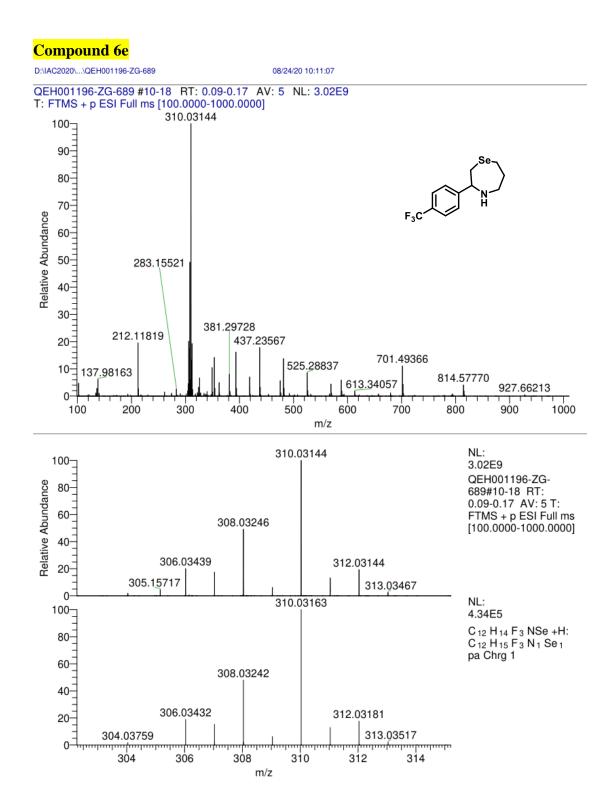
m/z	Res.	S/N	1%	FWHM	
310.0284	11807		49.9	0.0263	
311.0314	11845		6.6	0.0263	
312.0274	11883		100.0	0.0263	
313.0306	11921		13.5	0.0263	
314.0278	11959		18.6	0.0263	
315.0309	11997		2.4	0.0263	
316.0342	12035		0.2	0.0263	
	310.0284 311.0314 312.0274 313.0306 314.0278 315.0309	310.0284 11807 311.0314 11845 312.0274 11883 313.0306 11921 314.0278 11959 315.0309 11997	310.0284 11807 311.0314 11845 312.0274 11883 313.0306 11921 314.0278 11959 315.0309 11997	310.0284 11807 49.9 311.0314 11845 6.6 312.0274 11883 100.0 313.0306 11921 13.5 314.0278 11959 18.6 315.0309 11997 2.4	310.0284 11807 49.9 0.0263 311.0314 11845 6.6 0.0263 312.0274 11883 100.0 0.0263 313.0306 11921 13.5 0.0263 314.0278 11959 18.6 0.0263 315.0309 11997 2.4 0.0263

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 6d

RAJAVEL/ZHOU GUAN

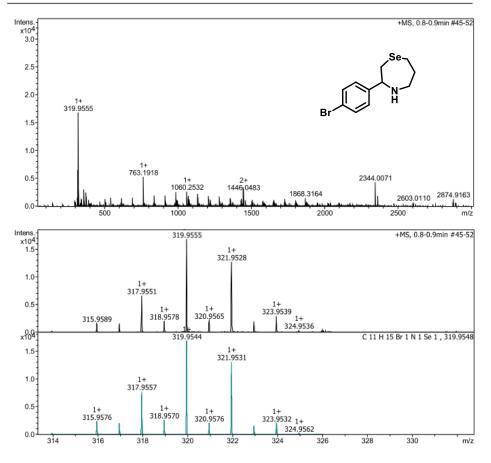
Bruker Daltonics ESI - micrOTOF Q II


MS Lab | IAC - SPST - TJU

Evaluation Spectra / Validation Formula:

Calibration Info				Mass	List:				
Date:		9 9:47:56 A	M	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1					
Calibration spectru			0-279: Scan	2	308.0052 310.0133	13714 19707	2.6 7.1	7.7	0.0225
Reference mass lis			TOF (ESI) (pos)	2	312.0058	19936	2.8	8.4	0.0157
Calibration mode:	Enhance	ed Quadratic		4	339.2961	13360	2.0	11.3	0.015/
				5	355.2799	20257	2.8	8.2	0.0254
	Resulting m/z	Intensity	Error [ppm]	6	361.2806	11670	28.6	83.3	0.0310
118.0863				7	362.2870	14483	6.4	18.7	0.0250
322.0481				8	376.3146	15593	2.4	7.0	0.0230
622.0290	622.0289	15971	-0.087	9	391.2762	14284	5.4	15.4	0.024
922.0098	922.0102	40359	0.406	10	392.3105	8188	2.6	7.4	0.0279
1221.9906	1221.9898	49790	-0.693	11	408.0109	7593	2.0	7.4	0.0478
1521.9715	1521.9724	55249	0.596	12	419.2690	27754	2.6	7.4	0.0151
1821.9523	1821.9516	38469	-0.399	13	433.1590	15421	35.4	100.0	0.0281
2121.9332	2121.9337	40176	0.272	13	434,1605	14894	9.4	26.5	0.028
2421.9140	2421.9138	9105	-0.095	14	435.1564	18508	7.3	20.5	0.0235
2721.8948				16	437.1875	12821	10.3	29.0	0.034
Standard deviation	1: 0.673			17	438,1945	13569	2.6	7.4	0.0323
				18	455.9754	29897	3.4	9.4	0.0153
				19	475.3312	14647	2.8	7.8	0.0325
				20	507.0995	23765	5.1	14.0	0.0213
				21	509.0965	14936	7.5	20.6	0.034
				22	511.0973	11851	12.2	33.7	0.043
				23	513.0965	7818	5.2	14.3	0.0656
				24	525.2788	14060	3.6	9.9	0.0374
				25	547.2535	26210	3.2	8.6	0.0209
				26	575.0557	14534	3.7	10.1	0.0396
				27	587.0570	17822	3.0	8.2	0.0329
				28	599.0796	26298	3.6	9.6	0.0228
				29	607.0512	11126	3.1	8.3	0.0546
				30	609.0449	12730	3.5	9.4	0.0478
				31	611.0462	8227	3.8	10.1	0.0743
				32	763.1696	14955	3.0	7.5	0.0510
				33	814.2448	36530	3.6	9.1	0.0223
				34	837.1942	17957	3.0	7.6	0.0466
				35	911.2052	24608	3.5	8.7	0.0370
				36	950.4788	10222	2.9	7.0	0.0930
				37	1134.2604	46107	3.0	7.0	0.0246
				38	1184.9427	50402	3.0	7.0	0.0235
				39	1695.3979	38883	3.2	7.1	0.0436
				40	1698.3385	50890	3.2	7.2	0.0334
				#	m/z	Res.	S/N	۱%	FWHM
				1	304.0199	2384		1.7	0.1275
				2	305.0232	2392		0.3	0.1275
				3	306.0166	2400		18.5	0.1275
				4	307.0177	2408		17.6	0.1275
				5	308.0149	2416		49.8	0.1275
				6	309.0173	2424		7.6	0.1275
	SI - micrOTO			AC - SPST -					Page 2 d

#	m/z	Res.	S/N	1%	FWHM	
			3/14			
7	310.0139	2431		100.0	0.1275	
8	311.0169	2439		14.2	0.1275	
9	312.0135	2447		22.4	0.1275	
10	313.0164	2455		3.1	0.1275	
11	314.0115	2463		1.0	0.1275	
12	315.0132	2471		0.1	0.1275	


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

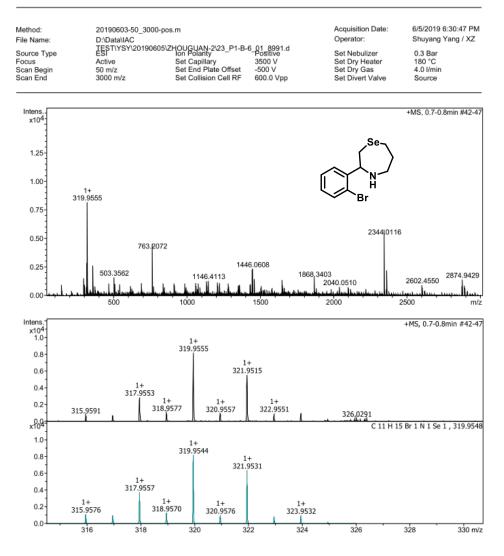
Compound 6f

RAJAVEL/ZHOU GUAN

Method:	20190603-50_30	00-pos.m		Acquisition Date:	6/5/2019 6:13:24 PM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190 ESI Active 50 m/z 3000 m/z	0605\ZHOUGUAN-2\15_P1-B- Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	3_01_8988.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU Page 1 of 3

Evaluation \$	Evaluation Spectra / Validation Formula:											
Meas. m/z	#	lon Formula	m/z	Adduct	err [mDa]	err [ppm]	mSigma		rdb	e ⁻ Conf	Score	
319.955514	1	C11H15BrNSe	319.954445	M+H	1.1	3.3	33.8		4.5	even	100.00	


Calibration Info	b :			Mass	List:				
Date:	6/10/201	9 4:58:17 PN	1				0.01		
Polarity:	Positive			#	m/z	Res.	S/N	1%	FWHM
Calibration spectr	um: +MS, 4.5	5-4.6min #270)-272: Scan	1	315.9589	11790	117.1	9.5	0.0268
Reference mass I	ist: ESI: Tur	ing Mix ES-T	OF (ESI) (pos)	2	316.9580	11975	116.2	9.4	0.0265
Calibration mode:	Enhance	d Quadratic	(),,	3	317.9551	11513	482.8	39.2	0.0276
				4	318.9578	9986	145.4	11.8	0.0319
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	319.9555	12079	1227.8	100.0	0.0265
118.0863	rioouning mine	intenenty	and pping	6	320.9565	11939	156.1	12.7	0.0269
322.0481	322.0484	388	0.792	7	321.9528	9777	926.2	75.5	0.0329
622.0290	622.0278	12428	-1.905	8	322.9566	12510	144.3	11.8	0.0258
922.0098	922.0094	27395	-0.476	9	323.9539	13708	213.5	17.5	0.0236
1221.9906	1221.9926	37577	1.622	10	360.3243	10251	207.8	18.1	0.0352
1521.9715	1521.9526	36811	1.364	11	374.3033	14672	167.5	14.9	0.0255
1821.9713	1821.9736	23214	0.596	12	376.3197	13579	114.3	10.2	0.0277
				13	541.1190	11282	80.4	9.2	0.0480
2121.9332	2121.9319	27239	-0.570	14	689.1588	13227	68.4	9.5	0.0521
2421.9140	2421.9034	7437	-4.363	15	763.1918	28087	207.4	31.3	0.0272
2721.8948	2721.9028	1769	2.939	16	763.5628	35491	80.6	12.2	0.0215
Standard deviatio	n: 2.819			17	837.1943	13685	70.5	11.5	0.0612
				18	838,1977	14729	64.9	10.6	0.0569
				19	911.2155	12638	67.7	11.8	0.0721
				20	913.2162	12435	53.5	9.4	0.0724
				20	985,2304	15620	83.6	9.4	0.0631
				22	986.2341	12756	69.2	12.8	0.063
				23	987.2310	14663	68.2	12.6	0.0673
				24	1059.2513	11853	62.4	12.2	0.0894
				25	1060.2532	16065	81.3	15.9	0.0660
				26	1061.2494	12662	68.7	13.4	0.0838
				27	1062.2517	14055	47.0	9.2	0.0756
				28	1072.0477	41163	56.5	11.1	0.0260
				29	1133.2704	14990	66.8	13.5	0.0756
				30	1134.2701	13427	65.0	13.2	0.0845
				31	1135.2686	13624	64.9	13.1	0.0833
				32	1136.2719	13727	48.5	9.8	0.0828
				33	1207.2857	13563	47.0	9.8	0.0890
				34	1208.2898	14026	53.3	11.2	0.0861
				35	1209.2855	12199	50.9	10.7	0.0991
				36	1283.3102	15152	50.8	11.0	0.0847
				37	1445.5634	34795	47.7	10.9	0.0415
				38	1446.0483	16329	67.7	15.5	0.0886
				39	2344.0071	59972	148.1	25.6	0.0391
				40	2344.6212	23692	101.9	17.6	0.0990
				#	m/z	Res.	S/N	۱%	FWHM
				1	313.9607	11853		1.2	0.0265
				2	314.9641	11890		0.1	0.0265
				3	315,9576	11928		13.9	0.0265
				4	316.9585	11966		12.0	0.0265
					21010000	11000			0.0200

#	m/z	Res.	S/N	1%	FWHM
5	317.9557	12003		45.9	0.0265
6	318.9570	12041		15.7	0.0265
7	319.9544	12079		100.0	0.0265
8	320.9576	12117		12.3	0.0265
9	321.9531	12154		77.8	0.0265
10	322.9563	12192		9.6	0.0265
11	323.9532	12230		12.0	0.0265
12	324.9562	12268		1.4	0.0265
13	325.9596	12306		0.1	0.0265

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 6g

RAJAVEL/ZHOU GUAN

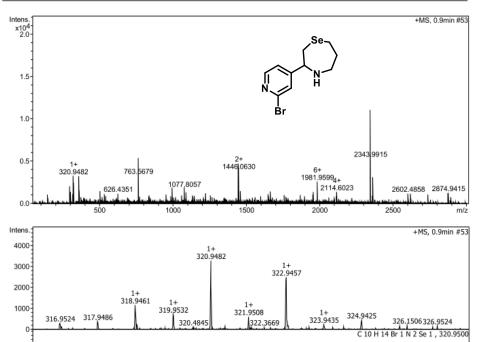
Bruker Daltonics ESI - micrOTOF Q II

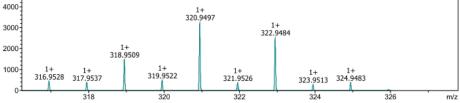
MS Lab | IAC - SPST - TJU

Evaluation \$	Evaluation Spectra / Validation Formula:											
Meas. m/z	#	lon Formula	Score 100.00	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct	
319.955469	1	C11H15BrNSe		319.954445	1.0	3.2	48.9	4.5	even	ok	M+H	

Calibration In	fo:			Mass	List:				
Date:		9 9:57:14 A	M	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	296,9497	27163	98.2	14.9	0.0109
Calibration spec			70-273: Scan	2	297.1658	25148	110.1	16.7	0.0103
Reference mass			-TOF (ESI) (pos)	3	317.9553	11680	221.7	35.1	0.0272
Calibration mode	e: Enhance	ed Quadrati	C	4	318.9577	12601	81.1	12.9	0.0272
				5	319.9555	13308	628.4	100.0	0.0253
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	319.9555	10954	426.3	68.0	0.0240
118.0863				7	360.3236	10954	426.3	32.2	
322.0481	322.0483	309	0.449	8		15303	63.6		0.0329
622.0290	622.0284	11605	-0.962		467.1014			13.2	0.0305
922.0098	922.0093	32097	-0.577	9	503.0809	27498	66.9	14.7	0.0183
1221.9906	1221.9918	39656	0.972	10	503.3562	31036	89.7	19.8	0.0162
1521.9715	1521.9729	41962	0.955	11	510.9277	9240	55.8	12.4	0.0553
1821.9523	1821.9532	29734	0.465	12	541.1167	11897	53.0	12.4	0.0455
2121.9332	2121.9329	36981	-0.134	13	689.1572	14086	46.5	13.4	0.0489
2421.9140	2421.9062	10898	-3.196	14	763.2072	9748	153.3	48.6	0.0783
2721.8948	2721.9004	2374	2.030	15	763.5726	13908	74.6	23.7	0.0549
Standard deviati	ion: 1.951			16	837.1921	14486	38.4	13.2	0.0578
				17	985.2280	15186	32.6	13.1	0.0649
				18	987.2312	13365	29.9	12.0	0.0739
				19	1059.2472	13343	29.4	12.4	0.0794
				20	1060.2488	13641	31.9	13.5	0.0777
				21	1061.2463	11284	29.3	12.4	0.0940
				22	1077.7991	35614	30.8	13.1	0.0303
				23	1133.2658	12657	29.2	12.9	0.0895
				24	1134.2666	12785	31.9	14.1	0.0887
				25	1135.2682	14698	34.8	15.4	0.0772
				26	1146.4113	28826	36.1	16.1	0.0398
				27	1146.5433	20681	27.0	12.0	0.0554
				28	1208.2868	13100	26.9	12.4	0.0922
				29	1209.2782	13749	30.2	13.9	0.0880
				30	1221.9863	38531	29.4	13.6	0.0317
				31	1283.3065	12676	27.6	13.1	0.1012
				32	1431.3429	14029	24.4	12.1	0.1020
				33	1445.5535	11041	28.5	14.2	0.1309
				34	1446.0608	14807	57.8	28.8	0.0977
				35	1458.9245	48879	35.1	17.5	0.0298
				36	1868.3403	21631	38.8	18.4	0.0864
				37	2344.0116	60747	183.5	63.6	0.0386
				38	2344.6421	23618	101.5	35.2	0.0993
				39	2360.3387	69356	36.6	12.5	0.0340
				40	2874.9429	72965	73.1	17.2	0.0394
				#	m/z	Res.	S/N	1%	FWHM
				1	313.9607	13058		1.2	0.0240
				2	314.9641	13100		0.1	0.0240
				3	315.9576	13141		13.9	0.0240
				4	316.9585	13183		12.0	0.0240

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU


#	m/z	Res.	S/N	1%	FWHM
5	317.9557	13225		45.9	0.0240
6	318.9570	13266		15.7	0.0240
7	319.9544	13308		100.0	0.0240
8	320.9576	13349		12.3	0.0240
9	321.9531	13391		77.8	0.0240
10	322.9563	13433		9.6	0.0240
11	323.9532	13474		12.0	0.0240
12	324.9562	13516		1.4	0.0240
13	325.9596	13557		0.1	0.0240


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 6h

RAJAVEL/ZHOU GUAN

Method: File Name:	20190603-50_3000-po D:\Data\IAC	s.m		Acquisition Date: Operator:	6/5/2019 6:24:59 PM Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End		2HOUGUAN-2\21_P1-B- lon Polanty Set Capillary Set End Plate Offset Set Collision Cell RF	5_01_8990.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source

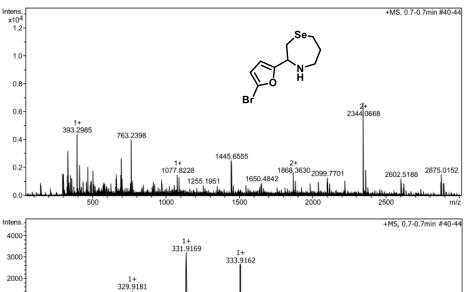
Bruker Daltonics ESI - micrOTOF Q II

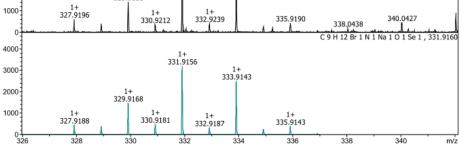
MS Lab | IAC - SPST - TJU

Evaluation \$	Evaluation Spectra / Validation Formula:											
Meas. m/z 320.948240		Ion Formula C10H14BrN2Se	Score 100.00	m/z 320.949684	err [mDa] -1.4	err [ppm] -4.5		rdb 4.5	e Conf even	N-Rule ok	Adduct M+H	

Calibration Inf	o:			Mass	List:				
Date: 6/13/2019 9:48:30 AM				#	m/z	Res.	S/N	1%	FWHM
Polarity: Positive				# 1	144,9782	17920	16.5	20.3	0.0081
Calibration spect		2	296.9681	23413	21.8	38.7	0.0081		
Reference mass			TOF (ESI) (pos)	23	296.9681	26220	21.0	34.9	0.0127
Calibration mode	: Enhance	ed Quadrati	3	3					
					302.9842	11674	14.5	26.1	0.0260
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	318.9461	11363	11.9	21.8	0.0281
118.0863				6 7	320.9482	11052	33.6	61.5	0.0290
322.0481					322.9457	12309	25.3	46.6	0.0262
622.0290	622.0290	15605	-0.015	8	360.3233	9113	31.7	60.8	0.0395
922.0098	922.0099	40088	0.060	9	361.3228	16861	14.9	28.7	0.0214
1221.9906	1221.9906	49863	-0.056	10	503.0776	19228	10.0	20.8	0.0262
1521.9715	1521.9714	50184	-0.042	11	534.9576	16933	10.0	21.0	0.0316
1821.9523	1821.9525	34940	0.087	12	626.4351	36527	10.6	22.5	0.0172
2121.9332	2121.9331	36912	-0.034	13	763.2047	8987	25.4	54.9	0.0849
2421.9140				14	763.5679	40662	28.5	61.8	0.0188
2721.8948				15	837.0887	40381	8.6	18.8	0.0207
standard deviation	on: 0.098			16	953.2543	47667	9.2	20.2	0.0200
				17	994.1803	16013	13.9	30.7	0.0621
				18	1077.3841	37295	9.6	21.3	0.0289
				19	1077.8057	16500	15.1	33.4	0.0653
				20	1221.9372	45526	9.0	20.1	0.0268
				21	1446.0630	17950	32.4	72.9	0.0806
				22	1458.9170	40904	12.6	28.4	0.0357
				23	1649.9399	54624	9.7	21.8	0.0302
				24	1664.1931	55315	12.1	27.2	0.0301
				25	1867.7427	47631	8.9	19.8	0.0392
				26	1954.7347	68771	9.2	20.2	0.0284
				27	1954.9265	66616	11.7	25.8	0.0293
				28	1981.7905	67177	19.8	43.2	0.0295
				29	1981.9599	64380	22.4	48.9	0.0308
				30	2114.6023	67135	12.0	25.7	0.0315
				31	2343.9915	20429	48.5	100.0	0.1147
				32	2344,6448	58946	24.5	50.4	0.0398
				33	2360.1206	73498	10.7	21.8	0.0321
				34	2360.3316	74028	18.2	37.3	0.0319
				35	2360.8082	63150	15.9	32.4	0.0374
				36	2361.0185	60225	28.1	57.3	0.0392
				37	2602.4858	79874	12.4	22.7	0.0326
				38	2620.2848	64258	12.4	22.2	0.0408
				39	2736.6694	73736	11.7	20.7	0.0408
				40	2874.9415	80495	13.7	24.1	0.0377
				#	m/z	Res.	S/N	1%	FWHM
				1	314,9560	10846	O	1.2	0.0290
				2	315.9593	10840		0.1	0.0290
				2	316.9528	10880		13.9	0.0290
				3		10914		13.9	0.0290
				4	317.9537	10949		12.0	0.0290

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU


#	m/z	Res.	S/N	1%	FWHM
5	318.9509	10983		45.9	0.0290
6	319.9522	11018		15.3	0.0290
7	320.9497	11052		100.0	0.0290
8	321.9526	11086		11.6	0.0290
9	322.9484	11121		77.8	0.0290
10	323.9513	11155		9.0	0.0290
11	324.9483	11190		12.0	0.0290
12	325.9511	11224		1.4	0.0290


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

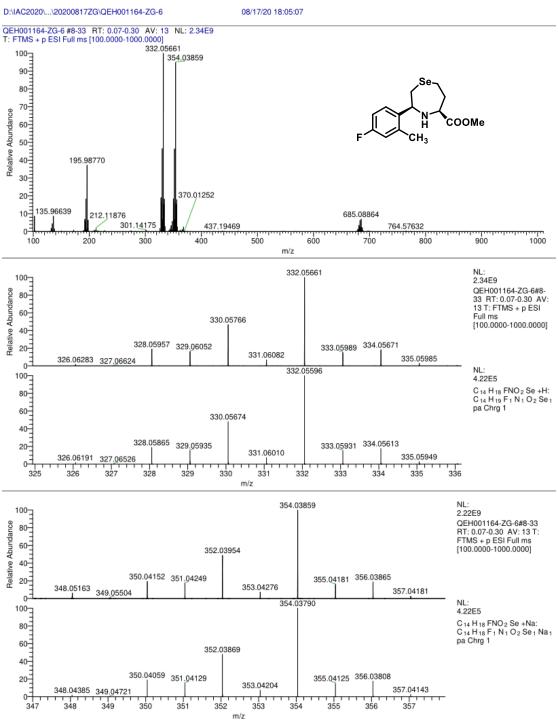
Compound 6i

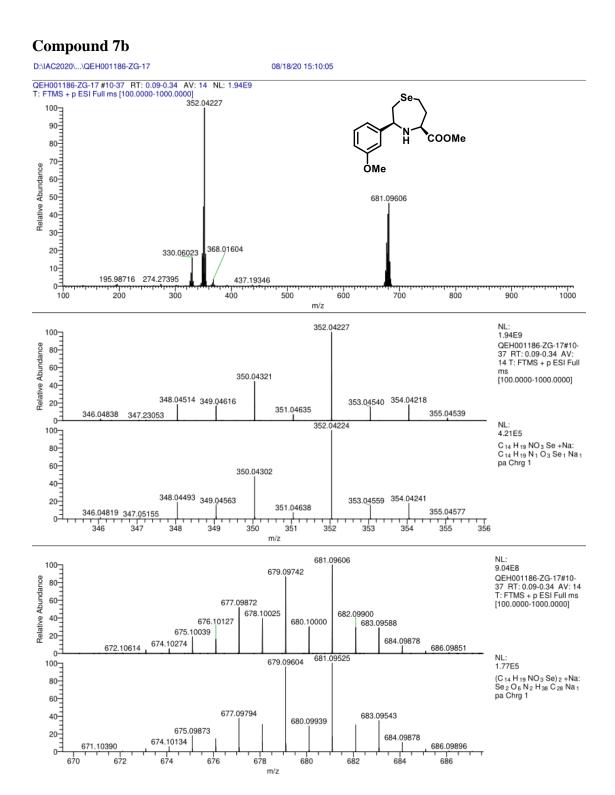
```
RAJAVEL/ZHOU GUAN
```

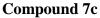
Method:	20190603-50 3000-pc	os.m		Acquisition Date:	6/6/2019 11:49:44 AM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190605\ ESI Active 50 m/z 3000 m/z	ZHOUGUAN-2\20_P1-C- lon Polanty Set Capillary Set End Plate Offset Set Collision Cell RF	5_01_9023.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source

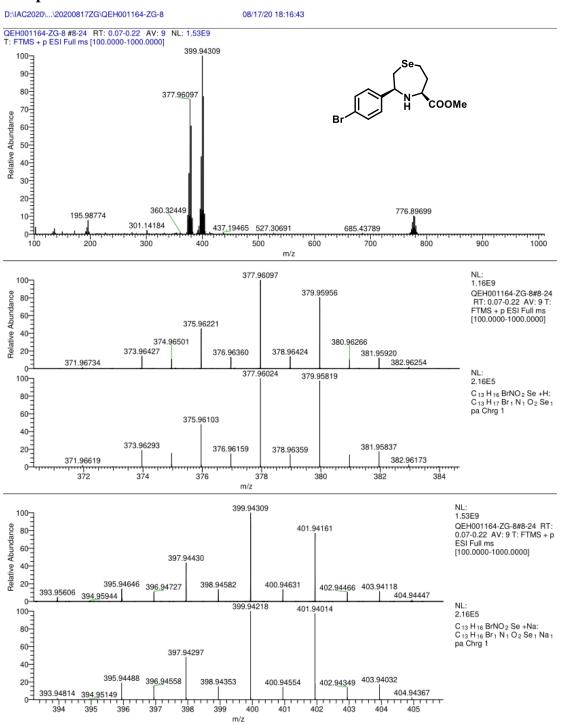
Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

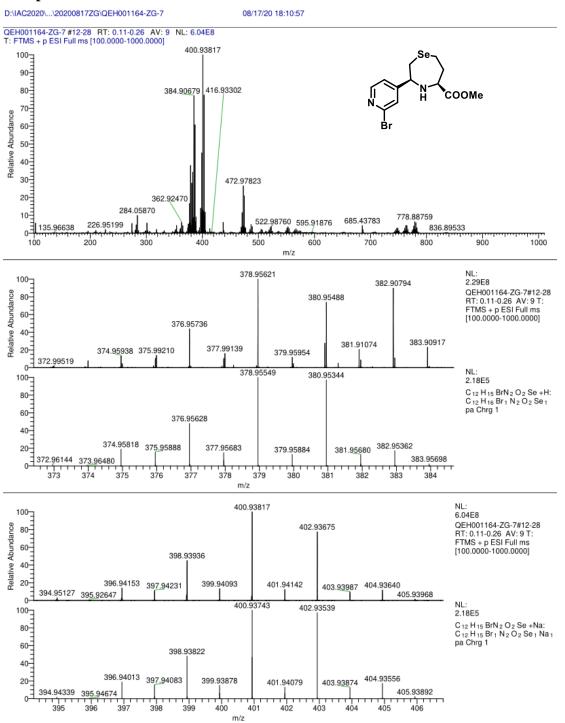

Evaluation Spectra / Validation Formula:											
Meas. m/z 331.916950		lon Formula C9H12BrNNaOSe		Adduct M+Na	err [mDa] 1.3	err [ppm] 3.9	mSigma 27.3			e Conf even	Score 100.00

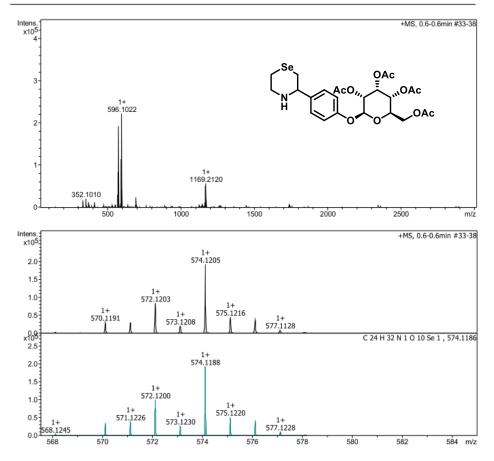

Calibration Info:					Mass List:						
Date:	6/10/201	9 5:13:42 PM					0.01				
Polarity:	Positive			#	m/z	Res.	S/N	1%	FWHM		
Calibration spectre	um: +MS, 4.6	6-4.6min #271	-272: Scan	1	296.9586	27163	57.6	22.2	0.0109		
Reference mass li		ning Mix ES-T	OF (ESI) (pos)	2	297.1739	25563	69.4	26.8	0.0116		
Calibration mode:		ed Quadratic		3	329.9181	11213	60.2	25.6	0.0294		
ounoration mouo.	Linditos			4	331.9169	11464	134.1	57.5	0.0290		
Reference m/z Resulting m/z Intensity Error [ppm]				5	333.9162	11870	110.7	47.7	0.0281		
118.0863	toouning miz	intensity i	and [ppin]	6	349.2367	13371	59.1	26.5	0.0261		
322.0481				7	360.3236	11640	48.5	22.3	0.0310		
622.0290	622.0290	16850	0.120	8	393.2985	11227	158.8	78.8	0.0350		
922.0098	922.0094	44814	-0.473	9	394.3039	11609	41.5	20.7	0.0340		
1221.9906	1221.9910	49752	0.287	10	413.2658	11588	75.5	39.0	0.0357		
				11	468.4231	11136	62.8	36.7	0.0421		
1521.9715	1521.9728	50592	0.882	12	490.9180	11183	31.3	19.2	0.0439		
1821.9523	1821.9502	32056	-1.135	13	503.3692	32740	50.3	31.9	0.0154		
2121.9332	2121.9328	42406	-0.172	14	660.9582	12460	27.6	21.9	0.0530		
2421.9140	2421.9159	10598	0.785	15	662.9624	13239	33.8	26.9	0.0501		
2721.8948	2721.8940	2680	-0.294	16	664.9634	11915	25.2	20.1	0.0558		
Standard deviation	n: 0.915			17	692.8550	12572	32.1	26.6	0.0551		
				18	694.8537	13365	54.5	45.1	0.0520		
				19	696.8503	14458	57.6	47.8	0.0482		
				20	698.8352	5670	22.2	18.5	0.1233		
				20	702,7949	31985	22.2	18.8	0.1233		
				22	763.2398	33451	81.7	71.9	0.0228		
				23	763.5887	13315	46.3	40.7	0.0573		
				24	972.3713	13680	20.7	20.6	0.0711		
				25	1077.8228	15871	26.4	27.2	0.0679		
				26	1088.9322	35884	22.9	23.6	0.0303		
				27	1445.6555	47335	43.6	45.3	0.0305		
				28	1446.0834	48381	36.8	38.2	0.0299		
				29	1867.8326	31746	29.3	26.6	0.0588		
				30	1868.3630	44153	30.0	27.3	0.0423		
				31	1883.0024	52836	20.9	18.8	0.0356		
				32	2040.1057	66206	22.2	18.2	0.0308		
				33	2099.7701	52335	29.5	23.2	0.0401		
				34	2219.9549	58480	26.1	18.8	0.0380		
				35	2344.0668	59719	151.9	100.0	0.0393		
				36	2344.6920	23839	100.4	66.1	0.0984		
				37	2360.4062	68823	29.8	19.4	0.0343		
				38	2361.0554	46325	50.7	33.0	0.0510		
				39	2602.5188	65747	40.4	21.6	0.0396		
				40	2875.0152	73775	59.6	27.4	0.0390		
				#	m/z	Res.	S/N	1%	FWHM		
				1	325.9219	11257		1.2	0.0290		
				2	326.9253	11292		0.1	0.0290		
				3	327,9188	11326		13.9	0.0290		
				4	328,9197	11361		11.8	0.0290		
					25010101				3.0200		


#	m/z	Res.	S/N	1%	FWHM
5	329.9168	11395		45.8	0.0290
6	330.9181	11430		14.7	0.0290
7	331.9156	11464		100.0	0.0290
8	332.9187	11499		10.2	0.0290
9	333.9143	11533		78.0	0.0290
10	334.9174	11568		7.9	0.0290
11	335.9143	11602		12.0	0.0290
12	336.9175	11637		1.2	0.0290


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 7a




Compound 7d

Compound 8a

RAJAVEL/ZHOU GUAN

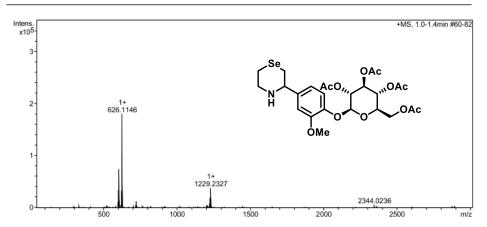
Method:	20190603-50 300	00-pos.m		Acquisition Date:	6/5/2019 6:42:22 PM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190 ESI Active 50 m/z 3000 m/z	605\ZHOUGUAN-2\25_P1-B- Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	8_01_8993.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source

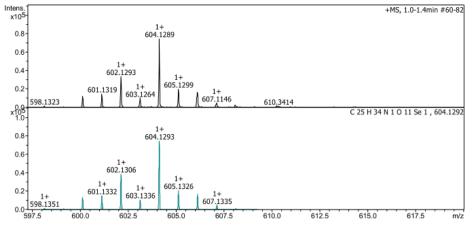
Page 1 of 3

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Evaluation	Spec	tra / Validation Fo	ormula:							
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	rdb	e Conf	N-Rule	Adduct
574.120457	1	C24H32NO10Se	52.95	574.118782	1.7	2.9	9.5	even	ok	M+H

Calibration Info				Mass	List:				
Date:		9 10:00:14 A	N	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	331,1026	13675	559.1	7.4	0.0242
Calibration spectru	im: +MS, 4.6	3-4.7min #271	-277: Scan						
Reference mass list	st: ESI: Tun	ing Mix ES-T	OF (ESI) (pos)	2	352.1010	13363	651.5	9.3	0.0263
Calibration mode:	Enhance	ed Quadratic		3	370.1107	12350	379.5	5.7	0.0300
				4	412.1210	13132	350.7	5.8	0.0314
Reference m/z F	Resulting m/z	Intensity B	Error [ppm]	5	554.0866	14024	141.3	3.1	0.0395
118.0863	v		<u> </u>	6	570.1191	14794	607.0	13.7	0.0385
322.0481	322.0483	465	0.442	7	571.1213	14217	588.4	13.3	0.0402
622.0290	622.0285	19355	-0.786	8	572.1203	16262	1674.2	37.9	0.0352
922.0098	922.0090	49678	-0.916	9	573.1208	12869	402.5	9.1	0.0445
1221.9906	1221.9916	60459	0.811	10	574.1205	21669	3822.1	86.6	0.0265
1521.9715	1521.9733	68105	1.211	11	575.1216	15305	895.6	20.3	0.0376
1821.9523	1821.9542	48137	1.027	12	576.1145	13958	751.3	17.1	0.0413
2121.9332	2121.9329	51997	-0.140	13	577.1128	11705	174.4	4.0	0.0493
2421.9140	2421.9037	12710	-4.243	14	592.1025	15276	821.8	19.1	0.0388
2721.8948	2721,9019	2839	2.593	15	593.1030	14387	812.2	18.9	0.0412
Standard deviation				16	594.1027	16291	2208.3	51.5	0.0365
				17	595.1033	13987	587.8	13.7	0.0425
				18	596.1022	17246	4282.3	100.0	0.0346
				19	597.1027	14994	1151.7	26.9	0.0398
				20	598.1003	13946	872.1	20.4	0.0429
				21	599.1013	11964	215.2	5.0	0.0501
				22	691.1022	12983	96.6	2.6	0.0532
				23	692.0980	13199	227.0	6.1	0.0524
				24	694.0979	12512	402.7	10.9	0.0555
				25	695.0980	14369	146.4	4.0	0.0484
				26	696.0973	13771	122.3	3.3	0.0505
				27	1145.2275	14221	111.2	3.9	0.0805
				28	1147.2254	13353	107.7	3.7	0.0859
				29	1163.2097	14279	146.7	5.1	0.0815
				30	1164.2131	13170	137.0	4.8	0.0884
				31	1165.2132	15596	359.4	12.5	0.0747
				32	1166.2104	15494	339.0	11.8	0.0753
				33	1167.2124	16729	648.3	22.6	0.0698
				34	1168.2131	15713	361.0	12.6	0.0743
				35	1169.2120	18178	732.5	25.5	0.0643
				36	1170.2128	15165	331.4	11.6	0.0772
				37	1171.2103	13272	262.1	9.1	0.0882
				38	1172.2076	14288	133.0	4.6	0.0820
				39	1265.2086	13567	71.7	2.5	0.0933
				40	1267.1989	12575	74.9	2.6	0.1008
				#	m/z	Res.	S/N	۱%	FWHM
				1	568.1245	21442		1.7	0.0265
				2	569.1279	21480		0.5	0.0265
				3	570.1213	21518		18.5	0.0265
				4	571.1226	21555		19.9	0.0265


#	m/z	Res.	S/N	1%	FWHM	
5	572.1200	21593		51.7	0.0265	
6	573.1230	21631		13.6	0.0265	
7	574.1188	21669		100.0	0.0265	
8	575.1220	21706		26.7	0.0265	
9	576.1201	21744		22.6	0.0265	
10	577.1228	21782		5.5	0.0265	
11	578.1245	21820		1.0	0.0265	


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 8b

```
RAJAVEL/ZHOU GUAN
```

Method:	20190603-50_3000-po	s.m		Acquisition Date:	6/5/2019 6:53:52 PM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190605\2 ESI Active 50 m/z 3000 m/z	2HOUGUAN-2\27_P1-C- lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	1_01_8995.d Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

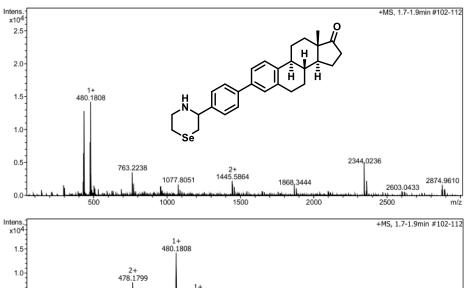
Page 1 of 3

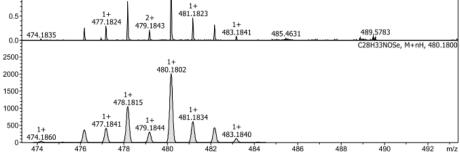
Evaluation \$	Spec	tra / Validation Fo	ormula:								
Meas. m/z	#	lon Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb	e ⁻ Conf	N-Rule	Adduct
604.128863	1	C25H34NO11Se	100.00	604.129364	0.5	0.8	22.8	9.5	even	ok	M+H

Calibration In	fo:			Mass	List:				
Date:		9 10:14:59	AM	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	331,1030	13543	355.8	1.9	0.0244
Calibration spec			69-276: Scan	2	524.0776	12269	174.1	1.6	0.0244
Reference mass			TOF (ESI) (pos)	3	600.1303	12714	614.2	7.0	0.0427
Calibration mode	e: Enhance	ed Quadrati	0	4	601.1319	13954	710.3	8.1	0.0472
				5	602.1293	13371	1626.9	18.6	0.0450
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	603.1264	11489	468.2	5.4	0.0430
118.0863				7	604.1289	15059	3611.9	41.3	0.0323
322.0481	322.0482	331	0.295	8	605,1299	12917	959.5	11.0	0.0468
622.0290	622.0288	13502	-0.332	9	606.11299	7474	769.4	8.9	0.0400
922.0098	922.0086	34780	-1.261	10	607.1146	7336	218.0	2.5	0.0828
1221.9906	1221.9919	43655	1.038	11	620.1148	12236	127.9	1.5	0.0507
1521.9715	1521.9730	46704	1.009	12	622.1138	12236	1347.9	1.5	0.0507
1821.9523	1821.9533	31016	0.540	12	623.1157	14626	1519.6	18.4	0.0425
2121.9332	2121.9330	36228	-0.079	13	624.1157	17548	4067.0	49.3	0.0420
2421.9140	2421.9063	9215	-3.158	14	625.1167	17546	4067.0	49.3	0.0356
2721.8948	2721.9001	2219	1.948	15	626.1167	20201	967.2 8214.6	100.0	0.0462
Standard deviati	ion: 1.954			17	627.1146	13899	1890.4	23.1	0.0310
				18	628.1111	14255	1660.9	20.3	0.0451
				19	629.1132	13442	426.7	20.3	0.0444
				20	722.1086	12311	218.5	3.2	0.0468
				21 22	724.1068	14400 13486	461.4 135.2	6.8 2.0	0.0503
				22	725.1126	13466	120.4	2.0	0.0538
				23	726.1075 763.2304	34755	120.4	2.3	0.0496
				24	1205.2529	13233	149.8	2.3	0.0220
				25	1205.2529	13233	130.6	2.3	0.0911
				20	1222.2383	12713	70.3	2.0	0.0865
				28	1223.2365	14237	213.3	4.3	0.0859
				29	1224.2335	14516	236.2	4.8	0.0843
				30	1225.2340	14181	506.1	10.3	0.0864
				31	1226.2365	14592	496.1	10.1	0.0840
				32	1227.2350	16792	998.7	20.4	0.0731
				33	1228.2357	14874	543.2	11.1	0.0826
				34	1229.2327	15987	1034.4	21.1	0.0769
				35	1230.2339	15262	549.9	11.2	0.0806
				36	1231.2363	13224	401.8	8.2	0.0931
				37	1232.2348	15938	237.4	4.8	0.0773
				38	1233.2348	14092	99.0	2.0	0.0875
				39	2344.0236	26281	264.3	2.9	0.0892
				40	2344.6524	23156	128.2	1.4	0.1013
				#	m/z	Res.	S/N	1%	FWHM
				1	598.1351	14910		1.7	0.0401
				2	599.1385	14935		0.5	0.0401
				3	600.1319	14959		18.4	0.0401
				4	601.1332	14984		20.1	0.0401

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Page 2 of 3


#	m/z	Res.	S/N	1%	FWHM
5	602.1306	15009		51.8	0.0401
6	603.1336	15034		14.2	0.0401
7	604.1293	15059		100.0	0.0401
8	605.1326	15084		27.8	0.0401
9	606.1308	15109		23.0	0.0401
10	607.1335	15134		5.8	0.0401
11	608.1351	15159		1.1	0.0401
12	609.1369	15184		0.2	0.0401


Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 8c

RAJAVEL/ZHOU GUAN

Method:	20190603-50 3000-po	s.m		Acquisition Date:	6/5/2019 6:48:06 PM
File Name:	D:\Data\IAC			Operator:	Shuyang Yang / XZ
Source Type Focus Scan Begin Scan End	TEST\YSY\20190605\ ESI Active 50 m/z 3000 m/z	ZHOUGUAN-2\26_P1-B- lon Polanty Set Capillary Set End Plate Offset Set Collision Cell RF	9_01_8994.d -Positive 3500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

Page 1 of 3

Evaluation	Evaluation Spectra / Validation Formula:										
Meas. m/z	#	Ion Formula	Score	m/z	err [mDa]	err [ppm]	mSigma		e ⁻ Conf	N-Rule	Adduct
480.180752	1	C28H34NOSe	100.00	480.180191	0.6	1.2	15.9	12.5	even	ok	M+H
	2	C16H38N3O8Se	26.72	480.181967	1.2	2.5	53.2	-0.5	even	ok	M+H
	3	C13H30N13O2Se	44.83	480.180564	-0.2	-0.4	53.7	5.5	even	ok	M+H
	4	C12H34N9O6Se	16.93	480.179244	1.5	3.1	61.4	0.5	even	ok	M+H

Calibration Inf	fo:			Mass	List:				
Date:		19 10:07:56	AM	#	m/z	Res.	S/N	1%	FWHM
Polarity:	Positive			1	296.9538	23616	169.0	9.2	0.0126
Calibration spect	rum: +MS, 4.5	5-4.7min #2	70-277: Scan	2	296.9538	25968	203.0	9.2	0.0126
Reference mass	list: ESI: Tur	ning Mix ES	-TOF (ESI) (pos)	23		25968 26982	203.0	8.5	
Calibration mode	: Enhance	ed Quadrati	c		302.9920				0.0112
				4	431.1252	12528	200.0	15.0	0.0344
Reference m/z	Resulting m/z	Intensity	Error [ppm]	5	432.1261	12459	228.5	17.1	0.0347
118.0863				6	433.1215	13049	607.3	45.6	0.0332
322.0481	322.0483	461	0.438	7	434.1269	12936	178.2	13.4	0.0336
622.0290	622.0285	17640	-0.756	8	435.1218	12835	1200.9	90.3	0.0339
922.0098	922.0087	45900	-1.139	9	436.1255	13773	360.5	27.1	0.0317
1221.9906	1221.9922	55370	1.250	10	437.1244	10840	235.7	17.8	0.0403
1521.9715	1521.9735	64426	1.343	11	476.1831	12840	230.2	18.7	0.0371
1821.9523	1821.9527	41895	0.238	12	477.1824	12058	257.0	20.9	0.0396
2121.9332	2121.9329	44155	-0.132	13	478.1799	12998	698.4	56.9	0.0368
2421.9140	2421.9056	10446	-3.451	14	479.1843	12892	191.2	15.6	0.0372
2721.8948	2721.9008	2121	2.208	15	480.1808	12825	1225.6	100.0	0.0374
Standard deviation		2121	2.200	16	481.1823	13123	403.3	32.9	0.0367
otanuaru uoviati	511. 2. 170			17	482.1809	12539	282.7	23.1	0.0385
				18	503.0843	24744	85.5	7.2	0.0203
				19	503.3587	31461	129.1	10.9	0.0160
				20	534.9590	13255	80.5	7.1	0.0404
				21	690.9581	15413	66.5	7.0	0.0448
				22	763.2238	37027	222.9	25.3	0.0206
				23	763.5763	13894	115.8	13.1	0.0550
				24	772.9305	32608	113.3	12.9	0.0237
				25	957.3547	14166	71.6	9.9	0.0676
				26	959.3485	13689	74.4	10.3	0.0701
				27	1077.8051	43657	80.0	12.2	0.0247
				28	1088.9186	52014	40.6	6.2	0.0209
				29	1445.5864	39947	82.7	15.8	0.0362
				30	1446.0677	18652	64.0	12.3	0.0775
				31	1458.4283	53224	33.6	6.4	0.0274
				32	1458.9103	44530	48.5	9.3	0.0328
				33	1867.8095	13317	36.9	6.9	0.1403
				34	1868,3444	21055	51.5	9.7	0.0887
				35	1882.9685	47697	43.7	8.2	0.0887
				36	2344.0236	60533	246.7	32.7	0.0395
				30		24173	172.4	22.9	0.0387
				37	2344.6522				0.0333
					2360.3662	70843	49.3	6.5	
				39 40	2874.9610 2892.3649	70561 81974	134.4 74.4	11.5 6.3	0.0407
				#	m/z	Res.	S/N		FWHM
				1	474,1860	3075	2	1.8	0.1542

#	m/z	Res.	S/N	1%	FWHM
2	475.1893	3082		0.5	0.1542
3	476.1827	3088		18.5	0.1542
4	477.1841	3095		20.8	0.1542
5	478.1815	3101		52.3	0.1542
6	479.1844	3108		15.3	0.1542
7	480.1802	3114		100.0	0.1542
8	481.1834	3121		30.6	0.1542
9	482,1816	3127		21.9	0.1542
10	483,1840	3133		5.8	0.1542
11	484.1869	3140		0.8	0.1542

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Compound 8d

RAJAVEL/ZHOU GUAN

Method: File Name: Source Type Focus Scan Begin Scan End	20190603-50_3000- D:\Data\IAC TESTYSY\2019060 Active 50 m/z 3000 m/z	bos.m inZHOUGUAN-2/24_P1-E Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	-7_01_8992.d Positive 3500 V -500 V 600.0 Vpp	Acquisition Date: Operator: Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	6/5/2019 6:36:34 PM Shuyang Yang / XZ 0.3 Bar 180 °C 4.0 l/min Source
Intens. x104 4- 3-	Se N H		¢•↓		+MS, 0.5-0.6min #29-37
2-	685.3844	1 1389 1077,8015	* ,7445	2074.1119 2344402	04 2893.0814
0 Intens x104- 3-	500	1000	1500	2000	+MS, 0.5-0.6min #29-37
2	1+ 1- 681.3850 682.3			$ \begin{array}{c} 1+\\ 686.3845 \\ 1+\\ 687.3854\\ 1 \end{array} $	1+ 688.3884 689.1543
×10 ⁴	. <u> </u>		685.3845		61 N 2 O 3 Se 1 , 685.3842
2-	1+ 1- 681.3870 682.3			1+ 686.3876 1+ 687.3866	1+ 1+

1+ 688.3886 689.3913 0 681 682 684 686 680 683 685 687 68 689

Bruker Daltonics ESI - micrOTOF Q II

MS Lab | IAC - SPST - TJU

Page 1 of 3

m/z

Evaluation Spectra / Validation Formula:											
Meas. m/z 685.384423		Ion Formula C39H61N2O3Se	Score 100.00	m/z 685.384555	err [mDa] -0.1	err [ppm] -0.2	mSigma 11.8	rdb 10.5	e ⁻ Conf even	N-Rule ok	Adduct M+H

Calibration Info:					Mass List:						
Date:		9 9:55:27 A	M	#	m/z	S/N	1%	FWHM			
Polarity:	Positive			1	681,3850	Res. 14123	160.8	20.4	0.0482		
Calibration spec			70-276: Scan	2	682.3877	12175	167.3	21.3	0.0462		
Reference mass			-TOF (ESI) (pos)	3	683.3840	13203	421.6	53.7	0.0518		
Calibration mode	e: Enhance	ed Quadrati	C	4	684.3861	13044	421.6	22.5	0.0518		
				5	685.3844	13044	784.0	100.0			
Reference m/z	Resulting m/z	Intensity	Error [ppm]	6	686.3845	13814	314.8	40.2	0.0496 0.0574		
118.0863				7	687.3854	12648	211.2	27.0	0.0543		
322.0481	322.0483	388	0.620	8							
622.0290	622.0280	15153	-1.470		703.3650	12840	123.4	16.3	0.0548		
922.0098	922.0094	41384	-0.416	9	704.3673	13222	155.5	20.6	0.0533		
1221.9906	1221.9921	49441	1.229	10	705.3662	13597	370.8	49.1	0.0519		
1521.9715	1521.9732	55484	1.156	11	706.3667	11181	137.2	18.2	0.0632		
1821.9523	1821.9532	37553	0.467	12	707.3667	14935	694.6	92.3	0.0474		
2121.9332	2121.9324	45641	-0.365	13	708.3663	13459	298.3	39.7	0.0526		
2421.9140	2421.9052	11689	-3.620	14	709.3651	12623	182.7	24.4	0.0562		
2721.8948	2721.9014	2676	2.398	15	763.2074	9189	103.6	14.9	0.0831		
Standard deviati	ion: 2.296			16	1365.7615	12669	125.3	24.4	0.1078		
				17	1366.7649	12724	140.6	27.4	0.1074		
				18	1367.7593	13811	231.3	45.0	0.0990		
				19	1368.7623	13004	167.8	32.7	0.1053		
				20	1369.7612	13016	241.9	47.1	0.1052		
				21	1370.7591	13915	177.2	34.5	0.0985		
				22	1371.7623	11299	114.7	22.3	0.1214		
				23	1372.7631	11080	64.4	12.5	0.1239		
				24	1386.7458	13088	71.0	13.8	0.1060		
				25	1387.7412	14235	153.2	29.8	0.0975		
				26	1388.7425	12631	158.7	30.9	0.1099		
				27	1389.7445	15107	286.4	55.8	0.0920		
				28	1390.7446	13562	201.0	39.1	0.1025		
				29	1391.7416	14318	285.1	55.5	0.0972		
				30	1392.7454	13847	204.4	39.8	0.1006		
				31	1393.7444	13446	149.1	29.0	0.1037		
				32	1394.7437	14078	86.1	16.8	0.0991		
				33	2052.1351	13940	110.5	13.8	0.1472		
				34	2053.1301	13019	96.8	12.1	0.1577		
				35	2054.1280	14606	104.0	13.0	0.1406		
				36	2073.1179	15498	112.5	13.9	0.1338		
				37	2074.1119	14991	138.0	17.0	0.1384		
				38	2075.1128	11228	102.2	12.6	0.1848		
				39	2076.1167	14453	118.6	14.6	0.1436		
				40	2344.0204	21349	185.9	16.7	0.1098		
				#	m/z	Res.	S/N	1%	FWHM		
				1	679.3901	13693		1.7	0.0496		
				2	680.3935	13713		0.7	0.0496		
				3	681.3870	13733		18.2	0.0496		
				4	682.3885	13754		22.5	0.0496		

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU

Page 2 of 3

#	m/z	Res.	S/N	1%	FWHM
5	683.3859	13774		53.8	0.0496
6	684.3887	13794		21.7	0.0496
7	685.3845	13814		100.0	0.0496
8	686.3876	13834		42.4	0.0496
9	687.3866	13854		26.3	0.0496
10	688.3886	13875		8.8	0.0496
11	689.3913	13895		1.8	0.0496
12	690.3944	13915		0.3	0.0496

Bruker Daltonics ESI - micrOTOF Q II MS Lab | IAC - SPST - TJU