Electronic Supplementary Information (ESI)

Construction of aptasensor for sensitive detection of 8-OH-dG

based on diffusion mediated electrochemiluminescence

quenching effect

Zhe Feng^a, Rui-Juan Zhao^a, Ze-Hua Lu^b, Li-ping Jia*^a, Rong-Na Ma^a, Wei Zhang^a,

Lei Shang^a, Qing-Wang Xue^a, Huai-Sheng Wang^{*a}

^aDepartment of Chemistry, Liaocheng University, Liaocheng 252000, China

^bLiaocheng Veterans Hospital, Liaocheng 252000, China

E-mail: jialiping@lcu.edu.cn; hswang@lcu.edu.cn

Experimental Sections:

Materials. 8-Hydroxy-2'-deoxygunosine (8-OH-dG) was purchased from Sigma-Aldrich. Melamine, urea, uric acid, ascorbic acid, guanine, and guanosine were obtained from Aladdin Inc. (Shanghai, China). Other reagents such as nitric acid (HNO₃), sodium hydroxide (NaOH), potassium peroxydisulfate $(K_2S_2O_8),$ dipotassium hydrogen phosphate (K₂HPO₄), potassium dihydrogen phosphate (KH₂PO₄), sodium chloride (NaCl), potassium chloride (KCl), zinc chloride (ZnCl₂), magnesium chloride (MgCl₂), and copper nitrate (Cu(NO₃)₂) were purchased from Shanghai Reagent Corporation (China). Exonuclease I (Exo I) was obtained from New England Biolabs (Beijing, China). The oligonucleotides used in this work were synthesized and purified by Sangon Biotech Co., Ltd(Shanghai, China). Table S1 displayed the sequences of all oligonucleotides. DNA was dissolved in 1×TE buffer. Tris-HCl buffer (10 mM, 100 mM NaCl, 5 mM MgCl₂, pH 7.4) was used for hybridizing of DNA. All DNA solutions were heated for 5 min at 95 °C and then cooled down to room temperature naturally before use. Phosphate buffer solution (PBS, 0.10 M pH 7.4) containing KH2PO4 and K2HPO4 was used for ECL detection. Milli-Q water (18 mQ·cm resistivity) obtained from a Millipore system was employed to prepare all solutions used in this work.

Apparatus. The transmission electron microscopic (TEM) image was observed on a JEM-2100 transmission electron microscope (JEOL Ltd., Japan) with an accelerating voltage of 200 kV. X-ray diffraction (XRD) patterns were measured on Bruker D8 (with a Cu K α radiation) instrument. Ultraviolet–visible (UV-vis) absorption spectra was obtained with a a Shimadzu UV-2550 spectrophotometer. The ECL measurements were performed on an electrogenerated chemiluminescence analyzer (Xi'an Remax Tech. Co. Ltd. China).

Preparation of g-C₃N₄ nanosheets. g-C₃N₄ NSs were synthesized following the reported method with slight modifications:¹ 5.0 g melamine was put in a muffle furnace and was heated to 550 °C at a 3°C·min⁻¹ rate of temperature rise. After being heated for 4 h at 550 °C and cooled to room temperature naturally, the synthesized

yellow bulk C_3N_4 was ground to fine powder. 1.0 g g- C_3N_4 powder was dispersed in 50 mL water with ultrasound for 8 h. The unexfoliated g- C_3N_4 was separated through centrifugation. Then 50 mL concentrated HNO₃ was dropped to the homogeneous g- C_3N_4 solution following with reflux for 24 h at 125°C. Finally, the obtained g- C_3N_4 was centrifuged and rinsed completely with water. After vacuum drying, 10 mg g- C_3N_4 was dissolved in 5 mL of water for further use.

Preparation of Nafion/C₃N₄/GCE. First, glassy carbon electrode (GCE, d=3 mm) was polished with 1.0 and 0.3 µm Al₂O₃ suspension on a microcloth in turn. After that, the electrode was rinsed with water and ethanol sequentially. The pretreated GCE was dried up with nitrogen flow before modification. 6 µL of g-C₃N₄ solution (2 mg·mL⁻¹) was added on the electrode surface and dried in air. Then 6 µL 0.05% Nafion was added on the g-C₃N₄ modified electrode surface and dried in air.

Homogeneous ECL detection. 10 μ L of 4 μ M 8-OH-dG aptamer was added into 40 μ L of four Fc-ssDNA (1 μ M for each) to hybridize for 2 h at 37°C. Then, different concentrations of 8-OH-dG and 100 μ L 2 unit per μ L Exo I were spiked into the above solution followed by incubation for 2 h at 37°C. Afterward, 0.01 M K₂S₂O₈ solution was added into the mixture and then 200 μ L total volume was achieved by adding 0.10 M PBS (pH 7.4). Finally, ECL measurements were performed in the resulting solution. The three-electrode ECL cell was consisted of a Nafion/g-C₃N₄ modified glassy carbon working electrode, an Ag/AgCl (KCl saturated) reference electrode, and a platinum counter electrode. The photomultiplier tube (PMT) was biased at 600 V, and the scan voltage was from 0 to -1.6 V with the scan rate of 100 mV•s⁻¹. For the specificity test, uric acid, urea, guanine, ascorbic acid, guanosine, Zn²⁺, Mg²⁺, Na⁺ and Cu²⁺, (1.0 μ M for each) were used to replace 8-OH-dG (100 pM) to perform ECL measurements under same conditions.

Figure captions:

Optimization of experimental conditions

The reaction time of aptamer with four short Fc-ssDNAs has great effect on the background signal of the ECL aptasensor. If the reaction time is too short, four short Fc-ssDNAs could not completely hybridize with aptamer, which would result in a big background quenching of ECL response. We found the quenching of ECL signals were obvious when the hybridization time was shorter than 1.5 h and then became stable when the reaction time was above 2.0 h (Fig. S1 A). Therefore, 2.0 h reaction time was chosen in all the following experiments. The concentration ratio of aptamer and Fc-ssDNAs was also optimized. As shown in Fig. S1B, the difference of ECL response (Δ ECL) between without and with 8-OH-dG was biggest when the concentration ratio was 1:1. In addition, the binding time of 8-OH-dG with aptamer was investigated (Fig. S1 C). With the extend of reaction time, ΔECL gradually increased when the time was less than 2.0 h and then became flat. Thus 2.0 h binding time was adopt in the experiment. In this work, the introduction of Exo I can enhance the detection sensitivity. Thus its concentration was optimized. As shown in Fig. S1D, Δ ECL increased with increasing the concentration of Exo I and then reached a plateau when the concentration was above 1 unit per μ L. So 1 unit per μ L Exo I was applied in the experiments.

Fig. S1. Optimization of experimental parameters. (A) Hybridization time between aptamer and four short Fc-DNAs. Grey column showed the ECL intensity of Nafion/C₃N₄/GCE in PBS containing K₂S₂O₈; red column showed the ECL intensity in PBS containing K₂S₂O₈ and the mixture of aptamer and Fc-ssDNAs with different hybridization time. (B) Concentration ratio of aptamer and Fc-DNAs. The concentration of aptamer was fixed at 0.2 μ M and the concentration of Fc-DNAs varied from 0.1 μ M to 0.4 μ M. And the concentrations of four Fc-DNAs were same. (C) Reaction time of 8-OH-dG with aptamer. (D) Concentration of Exo I . Δ ECL represented the difference of ECL response in the absence and presence of 8-OH-dG (10 pM). Error bars showed the standard deviations for three independent experiments.

Fig. S2. ECL responses of the aptasensor for different urine samples.

Effect of different numbers of Fc-ssDNA on the performance of aptasensor

In this work, we used four kinds of short Fc-DNA to hybridize with long aptamer sequence in order to improve the sensitivity. Fig. S3 shows the ECL responses using different numbers of Fc-DNA. The differences of ECL intensity (Δ ECL) in the absence and presence of 8-OH-dG are 1808, 3521, 4411, 5570, respectively when one, two, three and four kinds of Fc-DNA hybridized with aptamer. The results indicate that the signal simplification could be realized by increasing numbers of Fc-DNA hybridized with every aptamer.

Fig. S3. ECL responses of the aptasensor using different numbers of Fc-DNAs. Grey column showed the ECL intensity of Nafion/C₃N₄/GCE in PBS containing $K_2S_2O_8$ +dsDNA (formed by hybridization between aptamer and Fc-DNA); blue column showed the ECL intensity in PBS containing $K_2S_2O_8$ +dsDNA+100 pM 8-OH-dG+Exo I.

Effect of DNA and Exo I on ECL response of g-C₃N₄

In order to study if DNA and Exo I have influence on the ECL of $g-C_3N_4$, comparison experiments were done. As shown in Fig. S4, the ECL responses of $g-C_3N_4$ almost have no change in the presence of four short ssDNA and Exo I (curve b and c). However, Fc-labeled ssDNA can effectively quench the ECL response of $g-C_3N_4$ (curve d). With the adding of Exo I , the ECL response decreased furtherly. The reason is that Exo I can digest Fc-labeled ssDNA into mononucleotide. The Fclabeled mononucleotide can freely diffuse toward the electrode surface resulting in the ECL quenching of $g-C_3N_4$. The results indicated that only Fc can quench the ECL of $g-C_3N_4$ while ssDNA and Exo I have no influence on the ECL of $g-C_3N_4$.

Fig. S4. ECL responses of Nafion/g-C₃N₄/GCE in different solutions. (a) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈; (b) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+0.2 μ M ssDNA without Fc-labeled ; (c) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+1 unit per μ L Exo I ; (d) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+0.2 μ M Fc-ssDNA; (e) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+0.2 μ M Fc-ssDNA; (e) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+0.2 μ M Fc-ssDNA; (e) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+0.2 μ M Fc-ssDNA; (e) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+0.2 μ M Fc-ssDNA; (e) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+0.2 μ M Fc-ssDNA; (e) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+0.2 μ M Fc-ssDNA; (e) 0.1 M PBS (pH 7.4) containing 0.01 M K₂S₂O₈+0.2 μ M Fc-ssDNA+1 unit per μ L Exo I .

Table sections:

Oligo Name	Sequence (5' to 3')
	<u>GCG GGC GAT CGG CGG GGG GTG CGT GCG CTC TGT GCC AGG</u>
Aptamer	GGG TGG GAC AGA TCA TAT GGG GGT GCT TTT TTT (The underline
	and italics represent 8-OH-dG aptamer sequence)
Fc-DNA1	CCGCCGATCGCCCGC-(CH ₂) ₆ -Fc
Fc-DNA2	ACAGAGCGCACGCAC-(CH ₂) ₆ -Fc
Fc-DNA3	TCTGTCCCACCCCCT-(CH ₂) ₆ -Fc
Fc-DNA4	AAAAAAGCACCCCC-(CH ₂) ₆ -Fc

 Table S1. The sequence of the oligonucleotides used in the experiment

Table S2. Comparison of various method	ods for 8-OH-dG detection.
--	----------------------------

Method	LOD	Linear range	Reference	
Electrochemistry	31.3 nM	0.5 μM – 35 μM	2	
Electrochemistry	18.8 nM	$0.0563 \ \mu M - 16.4 \ \mu M$	3	
Electrochemistry	0.875 nM	5.6 nM – 1155 nM	4	
HPLC-MS/MS	0.5 nM		5	
CE-ECD	2.6 nM	0.01–1.5 μM	6	
ECL immunosensor	0.3 nM	0.7-700 nM	7	
colorimetric aptasensor	141 pM	0.466 - 247 nM	8	
CD spectra	33 pM	0.05 nM – 2 nM	9	
RLS spectra	27.3 pM	90.8 pM - 14.1 nM	10	
Electroaptasensor	2.7 pM	10 pM - 100 μM	11	
ECL aptasensor	38.8 aM	50 aM - 1 fM	12	
ECL aptasensor	25 fM	100 fM-10 nM	13	
Homogeneous ECL	1 5 fM	10 fM 10 pM	Prosont work	
aptasensor	1.3 1111	10 1141-10 11141	I I CSCIIU WUIK	

Urine	Detected	Spiked	Total found	Recovery	RSD
Samples	(nM)	(nM)	(nM)	(%)	(%)
Healthy 1	0.64	1	1.75	111	2.14
		10	11.61	109.7	3.05
Healthy 2	0.30	1	1.39	109	2.43
		10	9.98	96.8	3.57
Cancer 1	30.55	50	86.60	112.1	3.67
		100	144.01	113.5	2.78
Cancer 2	18.79	50	75.54	113.5	4.02
		100	126.94	108.2	2.96

Table S3. The application of the proposed ECL aptasensor for 8-OH-dG detection in human urine samples (n = 3).

References:

- X. J. Li, X. Y. Zhang, H. M. Ma, D. Wu, Y. Zhang, B. Du, Q. Wei, *Biosens. Bioelectron.*, 2014, 55, 330-336.
- X. Sun, L. Zhang, H. Zhang, H. Qian, J. Ji, L. Tang, Z. Li and G. Zhang, *Anal. Methods.*, 2015, 7, 6664–6671.
- Z. P. Guo, X. H. Liu, Y. L. Liu, G. F. Wu and X. Q. Lu, *Biosens. Bioelectron.*, 2016, 86, 671–676.
- 4. L. P. Jia, J. F. Liu and H. S. Wang, Biosens. Bioelectron., 2015, 67, 139-145.
- 5. A. Weimann, D. Belling and H. E. Poulsen, Nucleic Acids Res., 2002, 30, E7.
- S. W. Zhang, C. J. Zou, N. Luo, Q. F. Weng, L. S. Cai, C. Y. Wu and J. Xing, Chin. Chem. Lett., 2010, 21, 85-88.
- T. T. Zhang, H. M. Zhao, X. F. Fan, S. Chen and X. Quan, *Talanta.*, 2015, 131, 379–385.
- H. Liu, Y. H. Wang, J. C. Wang, J. H. Xue, B. Zhou, H. Zhao, S. D. Liu, X. Tang,
 S. H. Chen, M. H. Li and J. X. Cao, *Anal. Biochem.*, 2014, 458, 4–10.
- Y. J. Liu, M. Wei, L. Q. Zhang, Y. J. Zhang, W. Wei, L. H. Yin, Y. P. Pu and S. Q. Liu, *Anal. Chem.*, 2016, 88, 6509–6514.

- H. Q. Guo, K. P. Xue and L. S. Yan, Sens. Actuators. B-Chem., 2012, 171–172, 1038–1045.
- L. P Jia, L. J. Wang, R. N. Ma, L. Shang, W. Zhang, Q. W. Xue and H. S. Wang, *Talanta.*, 2018, **179**, 414–419.
- Y. Q. Lv, S. Y. Chen, Y. F. Shen, J. J. Ji, Q. Zhou, S. Q Liu and Y. J. Zhang, J. Am. Chem. Soc., 2018, 140, 2801–2804.
- R. N. Zhao, L. P. Jia, Z. Feng, R. N. Ma, W. Zhang, L. Shang, Q. W. Xue and H. S. Wang, *Biosens. Bioelectron.*, 2019, 144, 111669.