# **Electronic Supplementary Information for:**

# Bimetallic Iron-Tin Catalyst for $N_2$ to $NH_3$ and a Silyldiazenido Model Intermediate

Michael J. Dorantes,<sup>a§</sup> James T. Moore, <sup>a§</sup> Eckhard Bill, <sup>b</sup> Bernd Mienert,<sup>b</sup> and Connie C. Lu<sup>\*a</sup>

<sup>a</sup> Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States. E-mail: <u>clu@umn.edu</u>

<sup>b</sup> Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany.

§ co-first authors

# **Table of Contents**

|                                                                               | Page S |
|-------------------------------------------------------------------------------|--------|
| Experimental section (syntheses, computational details, catalysis conditions) | 3      |
| X-ray crystallography details                                                 | 7      |
| NMR spectra                                                                   | 8      |
| IR spectra                                                                    | 13     |
| X-ray structure metrics and comparisons                                       | 15     |
| CV data                                                                       | 17     |
| Mössbauer spectra and comparisons                                             | 19     |
| DFT calculations                                                              | 20     |
| Catalytic data                                                                | 29     |
| References                                                                    | 30     |

### **Experimental Section**

General Considerations. Unless otherwise stated, all manipulations were performed under an inert atmosphere in a glovebox or using standard Schlenk techniques. Standard solvents were deoxygenated by sparging with argon and dried by passing through activated alumina columns of a SG Water solvent purification system. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. or Sigma-Aldrich, degassed via freeze-pump-thaw cycles and stored over activated 4 Å molecular sieves. Elemental analyses were performed by Robertson Microlit Laboratories, Inc. (Ledgewood, NJ). All NMR spectra were recorded on Bruker 500 MHz, or Bruker 400 MHz spectrometers at ambient temperature unless otherwise stated. NMR referencing is perfomed in accordance with the IUPAC recommended Unified Chemical Shift Scale, with the deuterium lock acting as the primary reference, and Xi values are used to reference all other heteronuclei (<sup>13</sup>C, <sup>29</sup>Si, <sup>31</sup>P, <sup>119</sup>Sn). Cyclic voltammetry was performed using a CH instruments 600 electrochemical analyzer. The one-cell setup used a glassy carbon working electrode, Pt wirecounter electrode, and Ag reference electrode. Analyte solutions consisted of 0.4 M [nBu<sub>4</sub>N]PF<sub>6</sub> or K[BAr<sup>F</sup><sub>20</sub>] in THF and the voltammograms were referenced internally to the FeCp<sub>2</sub><sup>+/0</sup>(abbreviated as Fc<sup>+</sup>/Fc) redox couple. Mössbauer data were recorded on an alternatingcurrent constant-acceleration spectrometer. The sample temperature was maintained constant at 80 K in an Oxford Instruments Variox cryostat. The <sup>57</sup>Co/Rh source(1.8 GBg) was positioned at room temperature inside the gap of the magnet system at a zero-field position. Isomer shifts are quoted relative to Fe metal at 300 K. Mössbauer spectra were simulated using the program MFit written by Eckhard Bill. The chemicals, N(o-(NHCH<sub>2</sub>P<sup>i</sup>Pr<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>)<sub>3</sub><sup>1</sup> and K[BAr<sup>F</sup><sub>20</sub>],<sup>2</sup> were prepared as previously reported. The following chemicals were all purchased from Sigma-Aldrich. TMSCI was purified by distillation and degassed by freeze-pump thaw cycles prior to use. Decamethylcobaltocene (CoCp2<sup>\*</sup>) was sublimed prior to use. Diphenylammonium triflate ([Ph<sub>2</sub>NH<sub>2</sub>][OTf]) was used as received.

Synthesis of (N(o-(NCH<sub>2</sub>P<sup>i</sup>Pr<sub>2</sub>)C<sub>6</sub>H<sub>4</sub>)<sub>3</sub>)SnFeBr | LSnFeBr. This is a modified procedure from what was published in the literature.<sup>3</sup> To a stirring 5 mL THF solution of  $N(o-(NHCH_2P^iPr_2)C_6H_4)_3$ (300 mg, 0.443 mmol) was added *n*-BuLi (3 equiv, 1.33 mmol) dropwise at -30 °C. After warming to ambient temperature and stirring for 2 h, a 2mL THF solution of SnCl<sub>2</sub> (88.2 mg, 0.465 mmol) was added dropwise. The solution was allowed to stir for 12 h. All volatiles were removed under reduced pressure, the solid redissolved in ~4 mL of benzene, and the insoluble byproducts were filtered away. The filtrate was then dried under reduced pressure, and the resulting solid was washed with a 6:1 solution of hexane/Et<sub>2</sub>O. Crystals of Li(THF)<sub>3</sub>[LSn] were grown from a concentrated THF solution layered with pentane to yield dark-yellow crystals (321 mg, 72% yield). Then to a stirring 10 mL THF solution of Li(THF)<sub>3</sub>[LSn] (315 mg, 0.311 mmol), a suspension of FeBr<sub>2</sub> (67.0 mg, 0.311 mmol) in THF (5 mL) was added dropwise at ambient temperature. The reaction solution, which immediately changed color from yellow to dark red, was stirred for 12 h. After removing all volatiles under reduced pressure, the resulting solid was dissolved in benzene and the solution was filtered through Celite. After the filtrate was concentrated under reduced pressure to ~1 mL, and 2 mL Et<sub>2</sub>O was added. The red solution was then cooled to  $-30^{\circ}$ C overnight. The solution was decanted to obtain dark red crystals of LSnFeBr (213 mg, 68% yield). The <sup>1</sup>H spectrum matched that reported in the literature.<sup>3</sup>

Synthesis of  $(N(o-(NCH_2P^iPr_2)C_6H_4)_3)SnFeN_2 | LSnFeN_2 (1)$ . To a solution of LSnFeBr (100 mg, 0.099 mmol) in THF was added a slight excess of KC<sub>8</sub> (14.9 mg, 0.110 mmol), and the mixture was hand-stirred periodically over the course of an hour, resulting in a color change from dark red to yellow. The solution was then filtered through Celite, the solvent removed under reduced pressure, and the crude solid was redissolved in benzene and filtered once again. After concentrating the filtrate, Et<sub>2</sub>O was added, and then, the solution was stored at -30 °C overnight to yield yellow crystals of **1** (71 mg, 81% yield).

<sup>1</sup>H{<sup>31</sup>P}s NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>):  $\delta$  15.1, 9.36, 7.91, 7.60, 6.40, -1.5. IR (KBr pellet):  $\nu$ (N<sub>2</sub>) 2011 cm<sup>-1</sup>. Anal. calcd for **1**·THF, C<sub>39</sub>H<sub>60</sub>N<sub>6</sub>P<sub>3</sub>FeSn·C<sub>4</sub>H<sub>10</sub>O (%): C, 54.11; H, 7.39; N, 8.80. Found: C 54.20; H 7.51; N 8.27.

Synthesis of  $K(THF) \cdot (N(o-(NCH_2P^iPr_2)C_6H_4)_3)SnFeN_2 | K(THF) \cdot LSnFeN_2 (2)$ . To a solution of LSnFeBr (200 mg, 0.199 mmol) in THF was added 2.2 equiv of KC<sub>8</sub> (54.1 mg, 0.437 mmol), and the reaction was stirred overnight, resulting in an intensification of the yellow color. The solution was decanted and then filtered through Celite. The filtrate was concentrated under reduced pressure to provide a crude solid. Orange crystals of **2** were grown by layering pentane onto a saturated THF solution stored at -30 °C for 2 days (168 mg, 86% yield).

<sup>1</sup>H{<sup>31</sup>P} NMR (400 MHz, THF-*d*<sub>8</sub>):  $\delta$  7.19 (br, 3H, aryl), 6.72 (br, 3H, aryl), 6.30 (br, 3H, aryl), 6.18 (br, 3H, aryl), 2.59 (6H, C*H*<sub>2</sub>P<sup>i</sup>Pr<sub>2</sub>), 2.22 (6H, C*H*Me<sub>2</sub>), 1.0 (br, 36H, C*H*<sub>3</sub>,). <sup>31</sup>P{<sup>1</sup>H} NMR (192 MHz, THF-*d*<sub>8</sub>):  $\delta$  88.2. <sup>119</sup>Sn NMR (149 MHz, THF-*d*<sub>8</sub>):  $\delta$  511.6 (q, *J*<sub>Sn-P</sub> = 610 Hz). IR (KBr pellet):  $\nu$ (N<sub>2</sub>) 1944 cm<sup>-1</sup>. Anal. calcd. for K(crypt-222)·LSnFeN<sub>2</sub>, K(C<sub>18</sub>N<sub>2</sub>H<sub>36</sub>O<sub>6</sub>)·C<sub>39</sub>H<sub>60</sub>N<sub>6</sub>P<sub>3</sub>FeSn: C 52.83, H 7.47, N 8.65. Found: C 50.38, H 7.06, N 6.65. This complex is highly air sensitive, and elemental analysis results were consistently poor.

Synthesis of  $(N(o-(NCH_2P^iPr_2)C_6H_4)_3)SnFeN_2SiMe_3 | LSnFe(N_2SiMe_3)$  (3): To a stirring solution of Na(THF)\_3[LSnFeN\_2] (178 mg. 0.199 mmol) in THF chilled to -78 °C, Me\_3SiCl (26.5 µL, 0.205 mmol) was added dropwise. The reaction was gradually warmed to room temperature (30 min), during which the solution color changed to dark purple. After stirring for another 30 min, the reaction solution was concentrated under reduced pressure to afford a solid. The crude residue was dissolved in pentane, and then, the solution was filtered through Celite. After removing all volatiles in vacuo, a lavendar-colored solid was obtained. Dichroic maroon/purple crystals were grown from a slow evaporation of a saturated Et<sub>2</sub>O solution of **3** (126.0 mg, 65% yield).

<sup>1</sup>H{<sup>31</sup>P} NMR (400 MHz, THF-*d*<sub>8</sub>):  $\delta$  7.28 (d, *J* = 7.7 Hz, 3H, aryl), 6.92 (t, *J* = 7.7 Hz, 3H, aryl), 6.50 (d, *J* = 7.9 Hz, 3H, aryl), 6.41 (t, *J* = 7.6 Hz, 3H, aryl), 2.94 (br, 6H, C*H*<sub>2</sub>PiPr<sub>2</sub>), 2.38 (br, 6H, C*H*Me<sub>2</sub>), 1.14 (br, 36H, PCH(C*H*<sub>3</sub>)<sub>2</sub>), 0.29 (s, 9H, Si(C*H*<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, THF-*d*<sub>8</sub>):  $\delta$  149.4 (C<sub>aryl</sub>), 135.19 (C<sub>aryl</sub>), 126.61 (C<sub>aryl</sub>), 125.86 (C<sub>aryl</sub>), 113.14 (C<sub>aryl</sub>), 109.76 (C<sub>aryl</sub>), 43.04 (m, C<sub>methine</sub>), 32.01 (C<sub>methylene</sub>), 18.92 (C<sub>methyl</sub>, PCH*Me*<sub>2</sub>), -0.90 (C<sub>methyl</sub>, Si*Me*<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (192 MHz, THF-*d*<sub>8</sub>):  $\delta$  101.3 (satellites: *J*<sub>Sn-P</sub> = 561 (<sup>119</sup>Sn) & 538 (<sup>117</sup>Sn) Hz). <sup>29</sup>Si NMR (79 MHz, THF-*d*<sub>8</sub>):  $\delta$  -11.0. <sup>119</sup>Sn NMR (149 MHz, THF-*d*<sub>8</sub>):  $\delta$  441.5 (q, *J*<sub>Sn-P</sub> = 559 Hz). IR (KBr pellet):  $\nu$ (N<sub>2</sub>) 1756 cm<sup>-1</sup>. Anal. Calcd. for **3**: C<sub>42</sub>H<sub>69</sub>N<sub>6</sub>P<sub>3</sub>FeSnSi: C, 52.90; H, 7.29; N, 8.81. Found: C 51.19, H 7.16, N 5.61; C 51.58, H 7.21, N 5.62. This complex is highly reactive, and elemental analysis results were consistently poor.

**Catalytic N**<sub>2</sub> **fixation and quantification of ammonia.** This procedure was adapted from the literature.<sup>4</sup> In a nitrogen-filled glovebox, a THF solution of precatalyst (6.9 µmol) was transferred equally to three Schlenk tubes (2.3 µmol). The THF was then evaporated to provide a thin film of precatalyst at the bottom of the Schlenk tube. The tube was then charged with a stir bar; and then, the acid and reductant were added as solids. After the tubes were stored at 77 K in a LN<sub>2</sub> cold well, Et<sub>2</sub>O was added to produce a final precatalyst concentration of 2.3 mM. The temperature of the system was allowed to equilibrate for 5 min, and then the tube was sealed with a Teflon screw-valve. This tube was transferred outside of the glovebox into a LN<sub>2</sub> bath and transported to a fume hood. The tube was then transferred to a dry ice/acetone bath where the reaction thawed at -78 °C and was stirred for 3 h. The tube was then warmed to ambient temperature and stirred for 5 min.

The reaction mixture was frozen using a LN<sub>2</sub> bath. To the frozen solution, excess NaO<sup>4</sup>Bu solution in MeOH (0.25 mM) was added dropwise over 1-2 min. While frozen, the headspace of the tube was evacuated. The sealed tube was warmed to ambient temperature and stirred for at least 10 min. The volatiles of the reaction mixture were vacuum transferred into an additional Schlenk tube that contained 3 mL of a 2.0 M HCl solution in Et<sub>2</sub>O (6 mmol). After completion of the transfer, the Schlenk tube containing HCl was sealed and warmed to ambient temperature. After waiting several min, the solvent was removed in vacuo, and the remaining crude was dissolved in H<sub>2</sub>O (1.0 mL). A small aliquot of this solution (10–100  $\mu$ L) was then analyzed for the presence of NH<sub>3</sub> (present as NH<sub>4</sub>Cl) using the indophenol method.<sup>5</sup> Quantification was performed by measuring the absorbance at 635 nm using UV–vis spectroscopy.

**Computational Methods.** Gas-phase geometry optimizations were performed using density functional theory (DFT) with the M06-L functional<sup>6</sup>, as implemented in the Gaussian 16 program<sup>7</sup> package, using the following basis sets: def2-TZVPP<sup>8</sup> for Fe and Sn; def2-TZVP for N, P, and Si; def2-SVP for C and H. In addition, the Stuttgart SDD pseudo potential<sup>7</sup> was used for Sn. For each complex, vibrational frequency analyses were performed to confirm that each optimized structure was in fact at energetic minima. Molecular orbitals were plotted using the VMD program<sup>9</sup>. Finally, the density derived electrostatic and chemical (DDEC6) bond orders were calculated using the Chargemol program<sup>10</sup> using the Gaussian-derived wavefunction (.wfx) file as input.

**X-Ray Crystallography.** All crystals were mounted on a 200 µm MiTeGen microloop and placed on a Bruker PHOTON-II CMOS diffractometer for data collection at 100 K. The data collection was carried out using Mo Kα radiation (graphite monochromator). The data intensity was corrected for absorption and decay (SADABS).<sup>11</sup> Final cell constants were obtained from least–squares fits of all measured reflections. The structure was solved using SHELXT–2014/5<sup>12</sup> and refined using refined using SHELXL-2016/7.<sup>13</sup> A direct methods solution was calculated which provided most non–hydrogen atoms from the E–map. Full matrix least–squares/difference Fourier cycles were performed to locate the remaining non–hydrogen atoms. All non–hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. Further refinement details can be found in the .cif file of this work.

**Table S1.** Crystallographic details for LSnFeN<sub>2</sub> (**1**),  $K(THF) \cdot LSnFeN_2$  (**2**), LSnFe(N<sub>2</sub>SiMe<sub>3</sub>) (**3**), and Li(THF)<sub>3</sub>·LSn.

|                                             | 1                                                                   | 2                                                                    | 3                                                                     | Li(THF)₃ <sup>.</sup> LSn          |
|---------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------|
| Chemical formula                            | C <sub>39</sub> H <sub>60</sub> FeN <sub>6</sub> P <sub>3</sub> Sn• | C <sub>39</sub> H <sub>60</sub> FeKN <sub>6</sub> P <sub>3</sub> Sn• | C <sub>40</sub> H <sub>69</sub> FeN <sub>6</sub> P <sub>3</sub> SiSn• | $C_{51}H_{72}LiN_4O_3P_3Sn\bullet$ |
|                                             | C <sub>4</sub> H <sub>8</sub> O                                     | C <sub>4</sub> H <sub>8</sub> O                                      | C <sub>4</sub> H <sub>10</sub> O                                      | C <sub>4</sub> H <sub>8</sub> O    |
| Fw                                          | 954.50                                                              | 991.68                                                               | 990.63                                                                | 1079.8137                          |
| Crystal System                              | monoclinic                                                          | orthorhombic                                                         | monoclinic                                                            | hexagonal                          |
| Space group                                 | P21/c                                                               | Pca21                                                                | P21/c                                                                 | P63                                |
| a (Å)                                       | 11.8994(7)                                                          | 19.5107(9)                                                           | 11.4678(13)                                                           | 13.6945(8)                         |
| b (Å)                                       | 16.0639(9)                                                          | 10.8907(6)                                                           | 21.538(2)                                                             | 13.6945(8)                         |
| c (Å)                                       | 24.3083(14)                                                         | 21.8866(10)                                                          | 19.703(2)                                                             | 18.3276(11)                        |
| α (°)                                       | 90                                                                  | 90                                                                   | 90                                                                    | 90                                 |
| β (°)                                       | 104.102(2)                                                          | 90                                                                   | 96.834(4)                                                             | 90                                 |
| γ (°)                                       | 90                                                                  | 90                                                                   | 90                                                                    | 120                                |
| Volume (Å <sup>3</sup> )                    | 4506.5(5)                                                           | 4650.6 (4)                                                           | 4831.8(9)                                                             | 2976.7(4)                          |
| Z                                           | 4                                                                   | 4                                                                    | 4                                                                     | 2                                  |
| Density (g/cm <sup>3</sup> )                | 1.407                                                               | 1.416                                                                | 1.362                                                                 | 1.218                              |
| µ (mm⁻¹)                                    | 1.022                                                               | 1.081                                                                | 0.979                                                                 | 0.55                               |
| λ (Å)                                       | 0.71073                                                             | 0.71073                                                              | 0.71073                                                               | 0.716                              |
| θ (°)                                       | 2.143 to 30.530                                                     | 2.639 to 30.560                                                      | 2.082 to 30.534                                                       | 2.809 to 30.606                    |
| Total Reflections                           | 97475                                                               | 39072                                                                | 119561                                                                | 5996                               |
| Unique reflections                          | 13753                                                               | 14075                                                                | 14762                                                                 | 4622                               |
| Data/restraints/<br>parameters              | 13753 / 0 / 510                                                     | 14075 / 1 / 517                                                      | 14762 / 0 / 538                                                       | 4622 / 139 / 266                   |
| R <sub>1</sub> , wR <sub>2</sub> (I>2σ (I)) | 0.0257, 0.0538                                                      | 0.0469, 0.0705                                                       | 0.0444, 0.0917                                                        | 0.054, 0.0133                      |



Fig. S1. <sup>1</sup>H{<sup>31</sup>P} NMR (400 MHz) of LSnFe(N<sub>2</sub>) (1) in C<sub>6</sub>D<sub>6</sub>, \* denotes residual C<sub>6</sub>H<sub>6</sub>



**Fig. S2.** <sup>1</sup>H{<sup>31</sup>P} NMR (400 MHz) of K(THF)·LSnFe(N<sub>2</sub>) (**2**) in THF- $d_{8,*}$  denotes THF resonances.



**Fig. S3.** <sup>31</sup>P{<sup>1</sup>H} NMR (192 MHz) of K(THF)·LSnFe(N<sub>2</sub>) (**2**) in THF- $d_8$ . Inset is a zoom of the baseline that shows the average of the <sup>119</sup>Sn and <sup>117</sup>Sn satellites.





Fig. S5. <sup>1</sup>H{<sup>31</sup>P} NMR (400 MHz) of LSnFe(N<sub>2</sub>SiMe<sub>3</sub>) (3) in THF- $d_{8}$ , \* denotes THF resonances.



Fig. S6. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz) of LSnFe(N<sub>2</sub>SiMe<sub>3</sub>) (3) in THF-*d*<sub>8</sub>.



Fig. S7. <sup>1</sup>H-<sup>13</sup>C HMQC NMR of LSnFe(N<sub>2</sub>SiMe<sub>3</sub>) (3) in THF-d<sub>8</sub>.



140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2/ ppm

**Fig. S8.** <sup>31</sup>P{<sup>1</sup>H} NMR (192 MHz) of LSnFe(N<sub>2</sub>SiMe<sub>3</sub>) (**3**) in THF- $d_8$ . Inset is a zoom of the baseline that shows the <sup>119</sup>Sn and <sup>117</sup>Sn satellites.



**Fig. S9.** <sup>29</sup>Si NMR (79 MHz) of LSnFe(N<sub>2</sub>SiMe<sub>3</sub>) (**3**) in THF- $d_8$ . The broad peak is from siliconcontaining species in the structure of the NMR tube.

447.14 439.59 439.59



Fig. S10. <sup>119</sup>Sn NMR (149 MHz) of LSnFe(N<sub>2</sub>SiMe<sub>3</sub>) (3) in THF-d<sub>8</sub>.

## **Infrared Spectroscopy**



Fig. S11. IR spectrum of LSnFe(N<sub>2</sub>) (1) recorded as a KBr pellet.



**Fig. S12.** IR spectrum of [K(crypt-2.2.2)][LSnFe(N<sub>2</sub>)] (2) recorded as a KBr pellet. The peak occurring at 2009.9 cm<sup>-1</sup> corresponds to LSnFeN<sub>2</sub>.



**Fig. S13.** IR spectrum of LSnFe(N<sub>2</sub>SiMe<sub>3</sub>) (**3**) recorded as a KBr pellet. The peak occurring at 2011.8 cm<sup>-1</sup> corresponds to LSnFeN<sub>2</sub>.

## X-ray structure metrics and comparisons

|       | LSnFe(N <sub>2</sub> ) (1) | K[LSnFe(N <sub>2</sub> ) (2) | LSnFe(NNSiMe₃) (3) | LSnFeBr <sup>3</sup> | Li(THF)₃[LSn] |
|-------|----------------------------|------------------------------|--------------------|----------------------|---------------|
| N5-N6 | 1.112(2)                   | 1.143(6)                     | 1.182(3)           | N/A                  | N/A           |
| N6-Si | N/A                        | N/A                          | 1.746(3)           | N/A                  | N/A           |
| Fe-N5 | 1.7933(14)                 | 1.762(5)                     | 1.686(2)           | N/A                  | N/A           |
| Fe-Sn | 2.4470(3)                  | 2.4215(8)                    | 2.4800(5)          | 2.4830(6)            | N/A           |
| Fe-P1 | 2.3349(5)                  | 2.2313(15)                   | 2.2511(8)          | 2.3579(11)           | N/A           |
| Fe-P2 | 2.2883(5)                  | 2.2370(15)                   | 2.2744(8)          | 2.4031(11)           | N/A           |
| Fe-P3 | 2.2677(5)                  | 2.2158(15)                   | 2.2834(8)          | 2.3791(12)           | N/A           |
| Sn-N1 | 2.0970(13)                 | 2.109(4)                     | 2.094(2)           | 2.096(3)             | 2.163(5)      |
| Sn-N2 | 2.0958(13)                 | 2.107(4)                     | 2.089(2)           | 2.090(3)             | 2.163(5)      |
| Sn-N3 | 2.0936(13)                 | 2.135(4)                     | 2.095(2)           | 2.088(3)             | 2.163(5)      |
| Sn-N4 | 2.3978(12)                 | 2.482(4)                     | 2.450(2)           | 2.410(3)             | 2.679(11)     |

**Table S2.** Select metrical parameters (Å) for LSnFeN<sub>2</sub>, K[LSnFe(N<sub>2</sub>)], LSnFe(N<sub>2</sub>SiMe<sub>3</sub>), LSnFeBr, and Li(THF)<sub>3</sub>[LSn].

| Compound                                                                                                  | <u>Fe-N Bond</u><br>Length Å | <u>N-N Bond</u><br>Length Å | <u>N-N IR Vibrational</u><br><u>Frequency (cm<sup>-1</sup>)</u> | Ref.      |
|-----------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|-----------------------------------------------------------------|-----------|
| LSnFeN <sub>2</sub> (1)                                                                                   | 1.7933(14)                   | 1.112(2)                    | 2010                                                            | This work |
| K[LSnFeN2] <b>(2)</b>                                                                                     | 1.762(5)                     | 1.143(6)                    | 1943°                                                           | This work |
| LSnFe(N2SiMe₃) <b>(3)</b>                                                                                 | 1.686(2)                     | 1.182(3)                    | 1756                                                            | This work |
| (LAIFe) <sub>2</sub> (µ-N <sub>2</sub> )                                                                  | 1.843(4)                     | 1.146(7)                    | 2012 <sup>d</sup>                                               | 14        |
| K[LAIFeN <sub>2</sub> ]                                                                                   | 1.783(3)                     | 1.135(4)                    | 1925°                                                           | 14        |
| LAIFeN2(SiMe2CH2)2                                                                                        | 1.661(2)                     | 1.351(3)                    | N/A                                                             | 14        |
| Fe(depe) <sub>2</sub> N <sub>2</sub>                                                                      | 1.748(8)                     | 1.142(7)                    | 1956                                                            | 15        |
| [Fe(depe) <sub>2</sub> N <sub>2</sub> SiMe <sub>3</sub> ][B(Ar <sup>F</sup> <sub>4</sub> ) <sub>4</sub> ] | 1.732(6)                     | 1.194(8)                    | 1732                                                            | 16        |
| Fe(depe)(depe•SiMe <sub>3</sub> )<br>(N <sub>2</sub> SiMe <sub>3</sub> ) <sub>2</sub>                     | 1.642(6)                     | 1.382(2)                    | N/A                                                             | 17        |
| (P <sub>3</sub> <sup>Si</sup> )FeN <sub>2</sub>                                                           | 1.8191(1)                    | 1.1245(2)                   | 2003                                                            | 18        |
| Na[(P <sub>3</sub> <sup>Si</sup> )FeN <sub>2</sub> ]                                                      | 1.763(3)                     | 1.147(4)                    | 1891                                                            | 18        |
| (P3 <sup>Si</sup> )Fe(N2SiMe3)                                                                            | 1.695(2)                     | 1.195(3)                    | 1748                                                            | 18        |
| (P <sub>3</sub> <sup>B</sup> )FeN <sub>2</sub> <sup>a</sup>                                               | 1.881                        | 1.097                       | 2009                                                            | 19        |
| Na[(P <sub>3</sub> <sup>B</sup> )FeN <sub>2</sub> ]                                                       | 1.776(2)                     | 1.149(2)                    | 1879                                                            | 19        |
| (P <sub>3</sub> <sup>B</sup> )Fe(N <sub>2</sub> SiMe <sub>3</sub> )                                       | 1.6960(8)                    | 1.225 <sup>b</sup>          | 1741                                                            | 20        |
| (P <sub>3</sub> <sup>C</sup> )FeN <sub>2</sub>                                                            | 1.797(2)                     | 1.134(4)                    | 1992*                                                           | 21        |
| K[(P <sub>3</sub> <sup>C</sup> )FeN <sub>2</sub> ]                                                        | 1.7397(16)                   | 1.153(2)                    | 1870*                                                           | 21        |
| (P <sub>3</sub> <sup>C</sup> )Fe(N <sub>2</sub> SiMe <sub>3</sub> )                                       | N/A                          | N/A                         | 1736*                                                           | 21        |

Table S3. Comparison of geometrical parameters of relevant Fe-N<sub>2</sub> derived complexes.

<sup>a</sup>Computationally derived parameters, <sup>b</sup>Average of two molecules. All IR were taken using KBr pellets, <sup>c</sup>Countercation encapsulated in [2,2,2]-cryptand, <sup>d</sup>Assumed to be a monomer, <sup>\*</sup>thin-film deposit exceptions

## **Cyclic Voltammetry**



**Fig. S14.** Cyclic voltammetry study of LSnFeN<sub>2</sub> (**1**) in 0.4 M [ $^{n}Bu_{4}N$ ][PF<sub>6</sub>] in THF at varying scan rates, scanned cathodically.



**Fig. S15.** Cyclic voltammetry study of K(THF)·LSnFeN<sub>2</sub> (**2**) in 0.4 M [<sup>n</sup>Bu<sub>4</sub>N][PF<sub>6</sub>] in THF at varying scan rates, scanned anodically.



Fig. S16. Cyclic voltammetry study of  $LSnFe(N_2SiMe_3)$  (3) in 0.4 M K[B(Ar<sup>F20</sup>)<sub>4</sub>] in THF at 200 mV/s scanned cathodically.

## Mössbauer Spectroscopy



**Fig. S17.** Zero-field Mössbauer spectra. All spectra were recorded at 80 K. Experimental data is indicated by the dotted points. Components:  $LSnFeN_2$  in red,  $K[LSnFeN_2]$  in yellow, and  $LSnFe(N_2SiMe_3)$  in blue.

| <sup>57</sup> Fe Mössbauer Parameters* (mm/s)      |                                                     |                        |       |  |  |  |  |  |
|----------------------------------------------------|-----------------------------------------------------|------------------------|-------|--|--|--|--|--|
| Compound                                           | δ                                                   | ΔΕα                    | Width |  |  |  |  |  |
| 1                                                  | 0.47                                                | 0.52                   | 0.54  |  |  |  |  |  |
| 2                                                  | 0.35                                                | 1.62                   | 0.27  |  |  |  |  |  |
| 3                                                  | 0.26                                                | 1.76                   | 0.28  |  |  |  |  |  |
| LAIFeN <sub>2</sub>                                | 0.54                                                | 0.91                   | —     |  |  |  |  |  |
| [LAIFeN <sub>2</sub> ] <sup>-</sup>                | 0.38                                                | 1.24                   | -     |  |  |  |  |  |
| (P <sub>3</sub> <sup>Si</sup> )FeN <sub>2</sub>    | 0.38                                                | 0.71                   | -     |  |  |  |  |  |
| [(P₃ <sup>Si</sup> )FeN₂] <sup>−</sup>             | 0.22                                                | 0.98                   | -     |  |  |  |  |  |
| (P₃ <sup>si</sup> )FeN₂SiMe₃                       | 0.19                                                | 1.26                   | -     |  |  |  |  |  |
| <sup>a</sup> (P₃ <sup>B</sup> )FeN₂                | 0.56                                                | 3.34                   | _     |  |  |  |  |  |
| <sup>a</sup> [(P₃ <sup>B</sup> )FeN₂] <sup>−</sup> | 0.40                                                | 1.01                   | _     |  |  |  |  |  |
| *All spectra recorded at 80K with r                | no external magnetic field applied, <sup>a</sup> wi | th 50 mT applied field |       |  |  |  |  |  |

| Table  | S4.   | Compiled               | Mössbauer      | parameters   | for  | LSnFe(N <sub>2</sub> ) | <b>(1</b> ),                 | K[LSnFe(N <sub>2</sub> )] | <b>(2</b> ), |
|--------|-------|------------------------|----------------|--------------|------|------------------------|------------------------------|---------------------------|--------------|
| LSnFe( | NNSil | Me₃) ( <b>3</b> ), and | d other releva | nt compounds | from | the literature         | <b>e.</b> <sup>14, 18-</sup> | 19, 22                    |              |

# **Density Functional Theory**

|                         | LSnFe       | N <sub>2</sub> , 1 | K[LSnF     | K[LSnFeN₂], 2 |            | SiMe₃), 3 |
|-------------------------|-------------|--------------------|------------|---------------|------------|-----------|
| Metric                  | Exp.        | Calc.              | Exp.       | Calc.         | Exp.       | Calc.     |
| Sn-M                    | 2.4470(3)   | 2.4806             | 2.4215(8)  | 2.43206       | 2.4800(5)  | 2.5125    |
| FSR                     | 0.95        | 0.96               | 0.94       | 0.94          | 0.96       | 0.97      |
| Fe-Pavg                 | 2.2970(8)   | 2.3137             | 2.2280(23) | 2.2160        | 2.2696(14) | 2.2578    |
| Fe-P <sub>3</sub> Plane | 0.3206(3)   | 0.386              | 0.3197(2)  | 0.352         | 0.3672(1)  | 0.427     |
| Fe-N5                   | 1.7933(14)  | 1.8044             | 1.762(5)   | 1.787         | 1.686(2)   | 1.668     |
| N5-N6                   | 1.112(2)    | 1.12698            | 1.143(6)   | 1.13421       | 1.183(3)   | 1.186     |
| Si-N                    | N/A         | N/A                | N/A        | N/A           | 1.745(3)   | 1.716     |
| Sn-Navg                 | 2.0954(22)  | 2.1053             | 2.117(2)   | 2.1098        | 2.0927(22) | 2.0898    |
| Sn-N₃ Plane             | 0.5875(7)   | 0.596              | 0.6485(6)  | 0.677         | 0.6367(4)  | 0.633     |
| Sn-N4                   | 2.3978(12)  | 2.4211             | 2.482(4)   | 2.521         | 2.450(2)   | 2.475     |
| P1-Fe-P2                | 116.881(18) | 112.91             | 119.22(6)  | 117.54        | 117.35(3)  | 116.73    |
| P2-Fe-P3                | 107.295(18) | 104.89             | 118.65(6)  | 117.49        | 120.43(3)  | 116.36    |
| P3-Fe-P1                | 129.923(18) | 133.60             | 116.52(6)  | 117.53        | 114.51(3)  | 116.45    |
| N4-Sn-Fe                | 178.96(3)   | 177.77             | 179.86(11) | 179.98        | 179.76(6)  | 179.93    |
| N1-Sn-N2                | 111.26(5)   | 110.38             | 110.82(16) | 110.17        | 110.93(8)  | 111.24    |
| N2-Sn-N3                | 112.26(5)   | 113.16             | 113.74(16) | 110.25        | 110.47(9)  | 111.21    |
| N3-Sn-N1                | 113.86(5)   | 113.38             | 106.30(16) | 110.23        | 112.11(8)  | 111.26    |

**Table S5.** Comparison of experimental (X-ray) and calculated geometrical parameters for complexes 1, 2, and 3.



**Fig. S18.** Selected Kohn-Sham orbitals of LSnFeN<sub>2</sub> (1) plotted with an isovalue of 0.05. <sup>*a*</sup>Contributions from the Sn-Fe  $\sigma$ -bond and Fe d<sub>x2-y2</sub> are both split between two molecular orbitals, respectively.



**Fig. S19.** Selected Kohn-Sham orbitals of  $[LSnFeN_2]^-$  (2) plotted with an isovalue of 0.05. "Contributions from the Sn–Fe  $\sigma^*$  bond are split between two molecular orbitals.



**Fig. S20.** Selected Kohn-Sham orbitals of LSnFeN<sub>2</sub>SiMe<sub>3</sub> (**3**) plotted with an isovalue of 0.05. <sup>*a*</sup>Contributions from the Sn–Fe  $\sigma$ -bond are split among two molecular orbitals.

| Orbital                            | Label    | Energy (eV)  | % Fe 3d    | % Sn 5s  | % Sn 5p  | % N5 2p | % N6 2p |
|------------------------------------|----------|--------------|------------|----------|----------|---------|---------|
| Sn-Fe σ <sup>a</sup>               | SOMO8,7  | -5.63, -5.28 | 10.2, 21.4 | 4.9, 8.6 | 9.2, 9.3 | < 3     | < 3     |
| Fe d <sub>xz</sub>                 | SOMO-6   | -5.06        | 78.5       | < 3      | < 3      | < 3     | 6.7     |
| Fe d <sub>yz</sub>                 | SOMO-5   | -5.00        | 76.7       | < 3      | < 3      | < 3     | 5.6     |
| Fe d <sub>xy</sub>                 | SOMO-2   | -4.35        | 58         | < 3      | < 3      | < 3     | 3.4     |
| Fe d <sub>x2-y2</sub> <sup>a</sup> | SOMO-1,0 | -4.27, -4.22 | 22.3, 32.3 | <3       | < 3      | < 3     | < 3     |
| Sn-Fe σ*                           | LUMO     | -1.12        | 35.5       | 16       | < 3      | < 3     | < 3     |

Table S6. Molecular orbital composition analysis for LSnFeN<sub>2</sub>, (1).

<sup>a</sup> Contributions from these bonds were split among two molecular orbitals

**Table S7.** Molecular orbital composition analysis for [LSnFeN2]<sup>-</sup>, (2).

| Orbital               | Label     | Energy (eV) | % Fe 3d    | % Sn 5s  | % Sn 5p | % N5 2p | % N6 2p |
|-----------------------|-----------|-------------|------------|----------|---------|---------|---------|
| Sn-Fe σ               | HOMO–7    | -2.34       | 21.2       | 15.8     | 15.5    | < 3     | < 3     |
| Fe d <sub>xz</sub>    | HOMO–3    | 1 20        | 71.6       |          | < 2     | < 3     | 9.1     |
| Fe d <sub>yz</sub>    | HOMO-2    | -1.39       | 71.0       | < 3      | < 3     |         |         |
| Fe d <sub>xy</sub>    | HOMO–1    | 0.46        | -0.46 59.2 | - 0      | 3 < 3   | < 3     | ΕĴ      |
| Fe d <sub>x2-y2</sub> | НОМО      | -0.40       |            | < 3      |         |         | 5.3     |
| Sn-Fe σ* ª            | LUMO+6,+7 | 2.42, 2.58  | 21.2, 17.7 | 7.7, 9.9 | < 3     | < 3     | < 3     |

<sup>a</sup> Contributions from these bonds were split among two molecular orbitals

| <b>Table S8.</b> Molecular orbital composition analysis for $LSnFeN_2SiMe_3$ , (3) | ). |
|------------------------------------------------------------------------------------|----|
|------------------------------------------------------------------------------------|----|

| Orbital               | Label   | Energy (eV)  | % Fe 3d    | % Sn 5s  | % Sn 5p    | % N5 2p | % N6 2p |
|-----------------------|---------|--------------|------------|----------|------------|---------|---------|
| Sn-Fe σ <sup>a</sup>  | HOMO8,7 | -5.47, -5.14 | 10.4, 17.0 | 6.3, 8.8 | 11.1, 8.9  | < 3     | < 3     |
| Fe d <sub>xz</sub>    | HOMO–6  | 4.05         | 60         | ~ 2      | ~ 2        | ~ 2     | 4.2     |
| Fe d <sub>yz</sub>    | HOMO–5  | -4.95 60     | < 3        | < 3      | < 3        | 4.2     |         |
| Fe d <sub>xy</sub>    | HOMO-1  | 2 70         | 50.0       | < 0      | < 2        | F 0     | 2.0     |
| Fe d <sub>x2-y2</sub> | НОМО    | -3.70        | -3.70 30.3 | < 3      | < 3        | 5.2     | 3.9     |
| Fe-N <sub>2</sub> π*  | LUMO    | 1.00         | 00.0       | - 0      | <i>.</i> 0 | 20.0    | 17.0    |
| Fe-N <sub>2</sub> π*  | LUMO+1  | -1.30        | -1.36 29.3 | < 3      | < 3        | 30.9    | 17.0    |
| Sn-Fe σ*              | LUMO+3  | -0.68        | 33.5       | 17       | < 3        | < 3     | < 3     |

<sup>a</sup> Contributions from these bonds were split among two molecular orbitals

| Selected Atoms | LSnFeN <sub>2</sub> , 1 | [LSnFeN₂]⁻, 2 | LSnFe(N₂SiMe₃), 3 |
|----------------|-------------------------|---------------|-------------------|
| Sn–Fe          | 0.7339                  | 0.7999        | 0.6831            |
| Fe–N5          | 1.1317                  | 1.1972        | 1.5033            |
| N5–N6          | 2.5806                  | 2.5604        | 2.1777            |
| Avg. Fe–P      | 0.8211                  | 1.0297        | 0.9219            |
| Fe             | -0.6106                 | -0.8134       | -0.7060           |
| Sn             | 0.9833                  | 0.9949        | 1.0105            |
| N5             | 0.0678                  | 0.0978        | 0.0854            |
| N6             | -0.1539                 | -0.2418       | -0.3743           |
| Δ(N5-N6)       | 0.2217                  | 0.3395        | 0.4598            |

**Table S9.** DDEC6-derived bond order and partial charges between selected atoms in complexes **1**, **2**, and **3**. Here, N5 refers to the proximal N, while N6 refers to the distal N.



**Figure S21.** Plot of the DDEC6-derived N-N bond order vs. the Fe-N bond order, for complexes **1**, **2**, and **3**.





| l | Linear Fit            |                       |
|---|-----------------------|-----------------------|
| N | V5 Charge = -0.483168 | + 0.5689319*Sn Charge |

| Summary of Fit             |          |
|----------------------------|----------|
| RSquare                    | 0.265597 |
| RSquare Adj                | -0.46881 |
| Root Mean Square Error     | 0.018267 |
| Mean of Response           | 0.083651 |
| Observations (or Sum Wgts) | 3        |

| Analysis of Variance |                             |        |                  |        |          |       |       |     |  |
|----------------------|-----------------------------|--------|------------------|--------|----------|-------|-------|-----|--|
| Source               | DF                          | S<br>S | oum of<br>quares | м      | ean Squa | re    | F Rat | tio |  |
| Model                | 1                           | 0.00   | 012067           |        | 0.0001   | 21    | 0.36  | 17  |  |
| Error                | Error 1 0.00033367 0.000334 |        | 34               | Prob > | • F      |       |       |     |  |
| C. Total 2 0.0004    |                             | 045434 |                  |        |          | 0.655 | 3     |     |  |
| Parame               | Parameter Estimates         |        |                  |        |          |       |       |     |  |
| Term                 | Esti                        | mate   | Std Er           | ror    | t Ratio  | Pr    | ob> t |     |  |
| Intercept            | -0.48                       | 33168  | 0.942            | 598    | -0.51    | C     | .6985 |     |  |
| Sn Charge            | 0.56                        | 89319  | 0.946            | 053    | 0.60     | C     | .6553 |     |  |



#### Linear Fit

N5 Charge = 0.0667315 - 0.0659159\*N6 Charge

| Summary of Fit             |          |  |  |  |
|----------------------------|----------|--|--|--|
| RSquare                    | 0.235649 |  |  |  |
| RSquare Adj                | -0.5287  |  |  |  |
| Root Mean Square Error     | 0.018635 |  |  |  |
| Mean of Response           | 0.083651 |  |  |  |
| Observations (or Sum Wgts) | 3        |  |  |  |

#### Analysis of Variance Sum of Source DF Squares Mean Square F Ratio

|          |   |            | Contraction of the American State of the Ame |          |
|----------|---|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Model    | 1 | 0.00010706 | 0.000107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3083   |
| Error    | 1 | 0.00034727 | 0.000347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prob > F |
| C. Total | 2 | 0.00045434 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6773   |
|          |   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

#### **Parameter Estimates**

| Term      | Estimate  | Std Error | t Ratio | Prob> t |
|-----------|-----------|-----------|---------|---------|
| Intercept | 0.0667315 | 0.032315  | 2.07    | 0.2871  |
| N6 Charge | -0.065916 | 0.118715  | -0.56   | 0.6773  |

Figure S22. Plot of the DDEC6 derived Sn charge versus the charges of N6, N5, and Fe, respectively, for complexes 1, 2, and 3.



Figure S23. Plots of the DDEC6-derived Fe charge versus the charges of N5 and N6, respectively.



**Figure S24.** Plot of the DDEC6-derived charges of Sn and Fe versus the charge difference of N5 and N6,  $\Delta$ (N5–N6), which serves as a measure of the polarization of the N<sub>2</sub> unit.

## **Catalytic Data**

**Table S10.** Comparison of the catalytic  $N_2$  reduction mediated by the LSnFeN<sub>2</sub> complexes and other Fe-based complexes.

|                       |                                             | N <sub>2</sub> + 66      | e⁻ + 6H⁺ →                            | $Ph_2NH_2$ , $CoCp_2^*$<br>Fe compound<br>Et <sub>2</sub> O, -78 °C, 3 h | 2 NH <sub>3</sub> |           |
|-----------------------|---------------------------------------------|--------------------------|---------------------------------------|--------------------------------------------------------------------------|-------------------|-----------|
| Entry                 | Catalyst                                    | Cp* <sub>2</sub> Co (eq) | [Ph <sub>2</sub> NH <sub>2</sub> ][O] | [f] (eq) NH <sub>3</sub> (eq)                                            | yield             | ref.      |
| 1                     | LSnFeN <sub>2</sub>                         | 54                       | 108                                   | <u>5.9(5)</u><br>6.5<br>5.8                                              | 33%               | this work |
| <b>2</b> ,c           | LSnFeN <sub>2</sub> +Hg(s)                  | 54                       | 108                                   | 5.4<br><u>5.2(8)</u><br>5.8<br>5.6<br>4 1                                | 29%               | this work |
| 3                     | [LSnFeN <sub>2</sub> ] <sup>-</sup>         | 54                       | 108                                   | <u>0.9(3)</u><br>1.2<br>0.8<br>0.6                                       | 5%                | this work |
| 4                     | LSnFe(N₂SiMe₃)                              | 54                       | 108                                   | <u>4.6(2)</u><br>4.7<br>4.7<br>4.3                                       | 26%               | this work |
| 5                     | P₃ <sup>B</sup> Fe⁺                         | 54                       | 108                                   | 12.8(5)                                                                  | 72%               | 22        |
| <b>6</b> <sup>b</sup> | P <sub>3</sub> <sup>B</sup> Fe <sup>+</sup> | 162 x 3                  | 322 x 3                               | 84(8)                                                                    | 52%               | 22        |
| 7                     | P₃ <sup>Si</sup> Fe                         | 54                       | 108                                   | 1.2(1)                                                                   | 7%                | 22        |
| 8                     | Fe(depe) <sub>2</sub>                       | 54                       | 108                                   | 1.1(2)                                                                   | 6%                | 23        |

The catalyst, acid,  $Cp_{2}^{*}Co$ , and  $Et_{2}O$  were sealed in a vessel at -196 °C under an N<sub>2</sub> atmosphere followed by warming to -78 °C and stirring for 3 hours. Catalytic conditions were adapted from previous work by Peters, et al.<sup>8</sup> <sup>b</sup>This experiment the reaction was allowed to proceed for 3 h at -78 °C before cooling to -196 °C and replenishing additional substrate and solvent. <sup>c</sup>200 equivalents of Hg (with respect to **1**) were added to the reaction vessel before the start of catalysis.

### References

- 1. P. A. Rudd, S. Liu, L. Gagliardi, V. G. Young, Jr. and C. C. Lu, *J. Am. Chem. Soc.*, 2011, **133**, 20724-20727.
- 2. P. Romanato, S. Duttwyler, A. Linden, K. K. Baldridge and J. S. Siegel, *J. Am. Chem. Soc.*, 2010, **132**, 7828-7829.
- 3. S. C. Coste, B. Vlaisavljevich and D. E. Freedman, Inorg. Chem., 2017, 56, 8195-8202.
- 4. M. J. Chalkley, T. J. Del Castillo, B. D. Matson, J. P. Roddy and J. C. Peters, ACS Cent. Sci., 2017, 3, 217-223.
- 5. (a) M. W. Weatherburn, *Analytical Chemistry*, 1967, **39**, 971-974; (b) W. T. Bolleter, C. J. Bushman and P. W. Tidwell, *Analytical Chemistry*, 1961, **33**, 592-594.
- 6. Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar and X. He, Proc Natl Acad Sci U S A, 2017, 114, 8487-8492.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian Inc., Wallingford CT*, 2016.
- 8. A. Hellweg and D. Rappoport, *Phys Chem Chem Phys*, 2015, **17**, 1010-1017.
- 9. W. Humphrey, Dalke, A. and Schulten, K., J. Molec. Graphics, 1996, 14, 33-38.
- 10. N. G. Limas and T. A. Manz, RSC Advances, 2018, 8, 2678-2707.
- 11. R. H. Blessing, Acta Crystallogr A, 1995, 51 (Pt 1), 33-38.
- 12. G. M. Sheldrick, Acta Crystallogr C Struct Chem, 2015, 71, 3-8.
- 13. C. B. Hubschle, G. M. Sheldrick and B. Dittrich, J Appl Crystallogr, 2011, 44, 1281-1284.
- 14. P. A. Rudd, N. Planas, E. Bill, L. Gagliardi and C. C. Lu, Eur. J. Inorg. Chem., 2013, 2013, 3898-3906.
- 15. L. R. Doyle, P. J. Hill, G. G. Wildgoose and A. E. Ashley, Dalton Trans., 2016, 45, 7550-7554.
- 16. A. D. Piascik, P. J. Hill, A. D. Crawford, L. R. Doyle, J. C. Green and A. E. Ashley, *Chem. Comm.*, 2017, **53**, 7657-7660.
- 17. A. D. Piascik, R. Li, H. J. Wilkinson, J. C. Green and A. E. Ashley, J. Am. Chem. Soc., 2018.
- 18. Y. Lee, N. P. Mankad and J. C. Peters, *Nat. Chem.*, 2010, 2, 558-565.
- 19. M. E. Moret and J. C. Peters, Angew. Chem. Int. Ed. Edgl., 2011, 50, 2063-2067.
- 20. M. E. Moret and J. C. Peters, J. Am. Chem. Soc., 2011, 133, 18118-18121.
- 21. S. E. Creutz and J. C. Peters, J. Am. Chem. Soc., 2014, 136, 1105-1115.
- 22. M. J. Chalkley, T. J. Del Castillo, B. D. Matson and J. C. Peters, *J. Am. Chem. Soc.*, 2018, **140**, 6122-6129.
- 23. P. J. Hill, L. R. Doyle, A. D. Crawford, W. K. Myers and A. E. Ashley, *J. Am. Chem. Soc.*, 2016, **138**, 13521-13524.