Electronic Supporting Information

Nickel(II)-catalyzed asymmetric thio-Claisen rearrangement of α-diazo pyrazoleamides with thioindoles

Wei Yang, Xiaobin Lin, Yongyan Zhang, Weidi Cao, Xiaohua Liu* and Xiaoming Feng*

[†]Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

E-mail: liuxh@scu.edu.cn; xmfeng@scu.edu.cn

Table of Contents

1 General information	2
2 General procedure for the synthesis of substrates and ligands	2
3 Characterization of α-diazo pyrazoleamides	4
4 Characterization of 2-(alkylthio)-1 <i>H</i> -indole	6
5 Characterization of chiral <i>N</i> , <i>N</i> '-dioxides	11
6 Typical experimental procedure for the asymmetric [3,3]-rearrangement	14
7 The list of substrates scope	24
8 Procedure for the transformation of product 3aa and 4aa	25
9 Control experiments and mechanistic studies	
10 X-ray crystal structure	
11 Spectral characterization data and HPLC conditions for the products	
12 References.	72
13 ¹ H, ¹³ C NMR spectra of the substrates and products	74
14 Copies of CD spectra in CH ₂ Cl ₂	157

1 General information

¹H NMR spectra were recorded at 400 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiple, br = broad), coupling constants (Hz), integration. ¹³C NMR data were collected at 100 MHz with complete proton decoupling. Melting points (Mp) were determined using OptiMelt automated melting point system. Enantiomeric excesses (ee) were determined by chiral HPLC analysis on Daicel chiralcel IA, chiralcel IC, chiralcel ID, chiralcel IE, chiralcel IF and chiralcel Phenomenex Lux 5u Cellulose-2 columns in comparison with the authentic racemates. Optical rotations were reported as follows: $[\alpha]^{T}_{D}$ (c: g/100 mL, in solvent). ESI-HRMS spectra were recorded on a commercial apparatus and methanol and water were used to dissolve the sample. THF was distilled from sodium benzophenone ketyl. CH₂Cl₂, CHCl₃, ClCH₂Cl₂Cl₂CHCHCl₂, Cl₂CHCHCl₂, Cl₂CHCH₂Cl were distilled over CaH₂. Unless noted, other commercial reagents were used without further purification.

2 General procedure for the synthesis of substrates and ligands

2.1 General procedure for the synthesis of α-diazo pyrazoleamides

 α -Diazo pyrazoleamides were synthesized according to our previous work¹. Olefinic acid was synthesized according to the literature².

(Z)-4-phenylbut-3-enoic acid has been prepared according the following route:

To a solution of NiCl₂(PPh₃)₂ (196 mg, 0.3 mmol, 0.02 equiv) in dry THF (15 mL) under nitrogen at 0 °C, 2,3-dihydrofuran (1.14 mL, 15 mmol, 1.0 equiv) was added. Then PhMgBr (24 mL, 24 mmol, 1 M in THF, 1.2 equiv) was added slowly into the mixture. The solution was stirred for 12 h at rt. The reaction was quenched with saturated aqueous NH₄Cl, and extracted with Et₂O. The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduce pressure. The crude residue was purified by flash chromatography on silica gel (EtOAc/PE = 1/5) to yield alcohol as colorless oil.

To a solution of the corresponding alcohol (1.0 equiv) in CH₃CN, periodic acid (2.0 equiv) was added at 0 °C. Finally the pyridinium chlorochromate (0.02 equiv). The reaction mixture was stirred at 35 °C. The reaction was quenched with saturated aqueous NaCl, and extracted with EtOAc. The combined organic extracts were dried over Na₂SO₄, filtered and concentrated under reduce pressure. The crude residue was purified by flash chromatography on silica gel (EtOAc/PE = 1/1) to yield alcohol as pale yellow oil.

2.2 General procedure for the synthesis of 2-(alkylthio)-1H-indole

According to the literature report³, to a solution of appropriate 2-oxindole (10 mmol, 1.0 equiv) in THF (15 mL), Lawesson's reagent (2.14g, 0.53 mmol, 0.53 equiv) was added. The reaction mixture was stirred under refluxing for 1 day. To the mixture was added saturated aq. NaHCO₃ (20 mL) and the aqueous layer was separated and extracted with ethyl acetate (20 mL \times 2). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was used in the next step without further purification.

Alkyl bromide and alkyl iodide (15 mmol, 1.5 equiv) was added to a solution of corresponding indole-2-thione(10 mmol, 1.0 equiv) and sodium carbonate (1.59g, 15 mmol, 1.5 equiv) in THF (20 mL) and the mixture was stirred for 1 h under refluxing. The reaction mixture was diluted with water (20 mL), extracted with ethyl acetate (20 mL \times 2) and the combined extracts were dried by anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified flash column chromatography (300-400 mesh silica gel) to afford the 2-(alkylthio)-1*H*-indole.

2.3 General procedure for the synthesis of 2-(phenylthio)-1H-indole

The 2-(phenylthio)-1H-indole (2h) was synthesized according to the literature⁴.

2.4 General procedure for the synthesis of 2-(ethylthio)-3-methyl-1H-indole

$$\sim$$
 SH + NCS $\xrightarrow{CH_2Cl_2}$ S^{-Cl}

To a solution of NCS (2.40 g, 18 mmol, 1.2 equiv) in dry CH_2Cl_2 (15 mL) under nitrogen, the ethanethiol (1.08 mL, 15 mmol, 1.0 equiv) was added dropwise slowly into the mixture. The reaction was carried out for 30 minutes. The reation solution was filtered with a pad of celite and the filtrate was concentrated in vacuo. The crude product was used in the next step without further purification.

The 2-(ethylthio)-3-methyl-1*H*-indole (**2q**) was synthesized according to the literature report⁵, to a solution of 3-methyl-1*H*-indole (1.31g, 10 mmol, 1.0 equiv) in CH_2Cl_2 (20 mL) was added ethyl hypochlorothioite (1.44g, 15 mmol, 1.5 equiv) dropwise slowly. After stirring for an additional 3h at room temperature, the reaction was quenched with saturated aq. NaHCO₃ (20 mL). After extraction of the aqueous phase with EtOAc (20 mL × 3), the combined organic extracts were washed with brine (70 mL × 1), dried over anhydrous Na₂SO₄, and concentrated. The crude material was purified by flash chromatography (300-400 mesh silica gel) to afford the 2-(ethylthio)-3-methyl-1*H*-indole.

2.5 General procedure for the synthesis of deuterated substrate

The substrate **2a** (1.63g, 1.0 mmol) was dissolved in MeOD (1.00 mL) and the mixture was stirred at room temperature for 1 hour. The alcohol was removed under vacuum, and the residue was dissolved in another 1 mL MeOD. After another 1 hour at room temperature, the alcohol was evaporated and 1-deuteriothioindole was obtained, and characterized in CHCl₃- d_6 for ¹H NMR analysis (91% purity).

2.6 General procedure for the synthesis of ligands

The chiral *N*,*N*'-dioxides were synthesized from corresponding anilines according to the previous work⁶. 2,6-Dialkoxyanilines and 2,6-diphenoxyaniline were synthesized according to the procedure below.

$$R \xrightarrow{\text{NO}_2} O_R \xrightarrow{\text{Zn (power), NH}_4\text{Cl}} R \xrightarrow{\text{NH}_2} O_R$$

R = Me, Et, *i*Pr, *i*Bu, *i*pentyl, Bn, Ph

To a suspension of 1,3-dialkoxy-2-nitrobenzene⁷ or ((2-nitro-1,3-phenylene)bis(oxy))dibenzene⁸ (40.0 mmol, 1.0 equiv.) and NH₄Cl(27.5 g, 420.0 mmol, 10.5 equiv) in CH₃COCH₃ and H₂O (5:1, v/v, 600 mL) was added zinc power (32.1 g, 15.0 equiv) slowly at room temperature. After the substrate was consumed (detected by TLC), the reaction mixture was filtered through a pad of celite and CH₃COCH₃ was removed in vacuum. Subsequently, H₂O (150 mL) was added and the mixture was extracted with CH₂Cl₂ (80 mL × 3). The organic phase was dried over anhydrous Na₂SO₄, purified on silica gel to afford the crude product (Pet/EtOAc = 8/1), which was directly used in the next step.

3 Characterization of α -diazo pyrazoleamides

(E)-4-(4-bromophenyl)-2-diazo-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-3-en-1-one (1j)

Red solid; M.p. 117-120 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.45 – 7.40 (m, 2H), 7.26 – 7.24 (m, 2H), 6.93 (d, *J* = 16.0 Hz, 1H), 5.99 (d, *J* = 16.0 Hz, 1H), 2.47 (s, 3H), 2.17 (s, 3H), 1.92 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 160.6, 150.9, 139.5, 135.8, 131.7, 127.4, 120.8, 120.6, 116.9, 114.5, 65.9, 12.2, 12.2, 7.6.

ESI-HRMS: calcd for $C_{16}H_{16}N_4O^{79}Br^+([M + H]^+) = 359.0502$, found 359.0503. $C_{16}H_{16}N_4O^{81}Br^+([M + H]^+) = 361.0482$, found 361.0484.

IR (neat): 2923, 2008, 1664, 1489, 1431, 1384, 1358, 1121, 949, 742 cm⁻¹.

(E)-2-diazo-4-(4-iodophenyl)-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-3-en-1-one (1k)

Red solid; M.p. 130-133 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.40 (m, 2H), 7.26 – 7.24 (m, 2H), 6.93 (d, *J* = 16.0 Hz, 1H), 5.99 (d, *J* = 16.0 Hz, 1H), 2.47 (s, 3H), 2.17 (s, 3H), 1.92 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 160.6, 150.9, 139.5, 137.7, 136.4, 127.7, 120.9, 116.9, 114.7, 91.9, 66.0, 12.2, 12.2, 7.6.

ESI-HRMS: calcd for $C_{16}H_{16}N_4OI^+([M+H]^+) = 407.0363$, found 407.0362.

IR (neat): 2922, 2086, 1663, 1487, 1430, 1384, 1358, 1121, 1003, 739 cm⁻¹.

(E)-2-diazo-4-(4-(trifluoromethyl)phenyl)-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-3-en-1-one (11)

Red solid; M.p. 109-111 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 – 7.55 (m, 2H), 7.48 – 7.46 (m, 2H), 7.08 (d, *J* = 16.0 Hz, 1H), 6.07 (d, *J* = 16.0 Hz, 1H), 2.47 (s, 3H), 2.18 (s, 3H), 1.92 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 160.4, 151.1, 140.3 (d, *J* = 32.3 Hz), 139.5, 128.6 (d, *J* = 32.3 Hz), 126.0, 125.6 (q, *J* = 3.9 Hz), 120.3, 117.1, 116.8, 66.2, 12.2, 12.2, 7.6; the resonance resulting from diazo group makes the CF₃ carbon undetectable.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -62.43.

ESI-HRMS: calcd for $C_{17}H_{16}N_4OF_{3^+}([M+H]^+) = 349.1271$, found 349.1276.

IR (neat): 2088, 1664, 1611, 1423, 1385, 1322, 1163, 1116, 1066, 946, 852, 732cm⁻¹.

(E)-2-diazo-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)pent-3-en-1-one (1s)

Orange solid; M.p. 63-67 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.47 – 7.45 (m, 2H), 7.35 – 7.31 (m, 2H), 7.28 – 7.25 (m, 1H), 6.34 (s, 1H), 2.46 (s, 3H), 2.18 (s, 3H), 2.12 (s, 3H), 1.91 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 162.7, 150.7, 142.5, 139.4, 135.7, 128.3, 127.3, 125.9, 116.5, 111.8, 64.5, 17.3, 12.2, 12.1, 7.6.

ESI-HRMS: calcd for $C_{17}H_{19}N_4O^+([M+H]^+) = 295.1553$, found 295.1552.

IR (neat): 1695, 1630, 1378, 1351, 1146, 735, 702, 529 cm⁻¹.

(Z/E)-2-diazo-4-phenyl-1-(3,4,5-trime thyl-1H-pyrazol-1-yl)but-3-en-1-one (1a)

64% (Z)-isomer

Orange solid; M.p. 105-108 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.40 – 7.28 (m, 3H), 7.24 – 7.18 (m, 2H), 6.93 (d, *J* = 16.0, 0.36 H), 6.60 (d, *J* = 11.4, 0.64 H), 6.31 (d, *J* = 11.4, 0.64 H), 6.06 (d, *J* = 16.0, 0.36 H), 2.46 (s, 3H), 2.17 (s, 1.08 H), 2.13 (s, 1.92 H), 1.91 – 1.89 (m, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 161.9, 160.8, 150.7, 139.4, 136.8, 135.1, 128.6, 128.5, 127.9, 126.95, 126.93, 125.9, 125.0, 122.2, 116.8, 116.6, 113.9, 113.4, 65.8, 65.3, 12.15, 12.14, 7.5. **IR** (neat): 2081, 1659, 1381, 1351, 1263, 748 cm⁻¹.

4 Characterization of 2-(alkylthio)-1H-indole

2-(methylthio)-1*H*-indole (2a)

White solid; M.p. 54-56 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 (s, 1H), 7.54 – 7.52 (m, 1H), 7.28 – 7.23 (m, 1H), 7.18 – 7.14 (m, 1H), 7.11 – 7.07 (m, 1H), 6.54 (dd, J = 2.0, 0.8 Hz, 1H), 2.49 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.9, 131.3, 128.7, 122.2, 120.1, 119.8, 110.4, 105.8, 19.26. **ESI-HRMS**: calcd for C₉H₁₀NS⁺ ([M+H]⁺) = 164.0528, found 164.0527.

IR (neat): 3368, 2361, 2335, 1481, 1441, 1314, 747, 633, 465, 432 cm⁻¹.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 (s, 0.09H), δ 7.54 – 7.52 (m, 1H), 7.28 – 7.24 (m, 1H), 7.18 – 7.14 (m, 1H), 7.11 – 7.07 (m, 1H), 6.55 (s, 1H), 2.49 (s, 3H).

2-(ethylthio)-1H-indole (2b)

Pale yellow solid; M.p. 39-41 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.91 (s, 1H), 7.47 – 7.45 (m, 1H), 7.15 – 7.12 (m, 1H), 7.09 – 7.05 (m, 1H), 7.02 – 6.98 (m, 1H), 6.53 (dd, *J* = 2.4, 0.8 Hz, 1H), 2.69 (q, *J* = 7.2 Hz, 2H), 1.15 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.9, 128.6, 128.5, 122.3, 120.0, 119.9, 110.4, 108.5, 30.5, 15.1.

ESI-HRMS: calcd for $C_{10}H_{12}NS^+([M+H]^+) = 178.0685$, found 178.0683.

IR (neat): 3381, 1437, 1337, 1313, 1282, 1257, 1230, 807, 746, 646, 511, 442 cm⁻¹.

2-(propylthio)-1H-indole (2c)

Pale yellow oil;

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.98 (s, 1H), 7.54 – 7.52 (m, 1H), 7.23 – 7.20 (m, 1H), 7.17 – 7.13 (m, 1H), 7.10 – 7.06 (m, 1H), 6.61 – 6.60 (m, 1H), 2.74(t, *J* = 7.2 Hz, 3H), 1.64 – 1.55 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.9, 129.0, 128.6, 122.3, 119.9, 110.5, 108.3, 108.3, 38.4, 23.1, 13.0.

ESI-HRMS: calcd for $C_{11}H_{13}NS^+$ ([M + H]⁺) = 192.0841, found 192.0840.

IR (neat): 3400, 2962, 2927, 2870, 1444, 1397, 1339, 1316, 1287, 1233, 793, 743, 643 cm⁻¹.

2-(butylthio)-1*H*-indole (2d)

Pale green oil;

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.92 (s, 1H), 7.54 – 7.52 (m, 1H), 7.23 – 6.98 (m, 3H), 6.60 – 6.59 (m, 1H), 2.74(t, *J* = 7.6Hz, 2H), 1.58 – 1.53 (m, 2H), 1.41 – 1.31 (m, 2H), 0.85 (t, *J* = 7.4, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.8, 129.1, 128.6, 122.2, 119.9, 110.5, 108.1, 36.1, 31.7, 21.5, 13.5.

ESI-HRMS: calcd for $C_{12}H_{16}NS^+([M + H]^+) = 206.0998$, found 206.0996.

IR (neat): 3398, 2957, 2927, 2866, 1443, 1396, 1339, 1315, 1280, 1226, 792, 743, 642 cm⁻¹.

2-(isobutylthio)-1*H*-indole (2e)

Pale yellow oil;

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.97 (s, 1H), 7.54 – 7.50 (m, 1H), 7.22 – 7.19 (m, 1H), 7.16 – 7.12 (m, 1H), 7.10 – 7.05 (m, 1H), 6.60 – 6.56 (m, 1H), 2.67 (d, *J* = 7.2 Hz, 2H), 1.83 – 1.73 (m, 1H), 0.98 (d, *J* = 6.8 Hz, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.8, 129.7, 128.6, 122.2, 119.9, 119.9, 110.4, 107.8, 45.4, 28.5, 21.6.

ESI-HRMS: calcd for $C_{12}H_{16}NS^+([M+H]^+) = 206.0998$, found 206.0996.

IR (neat): 3396, 2956, 2923, 2868, 1442, 1390, 1338, 1280, 1238, 791, 741, 641, 483, 443 cm⁻¹.

2-(dode cylthio)-1H-indole (2f)

White solid; M.p. 44-46 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.57 – 7.55 (m, 1H), 7.33 – 7.31 (m, 1H), 7.21 – 7.17 (m, 1H), 7.13 – 7.09 (m, 1H), 6.63 (d, J = 1.6 Hz, 1H), 2.83 (t, J = 7.2 Hz 2H), 1.66 – 1.61 (m, 2H), 1.43 – 1.36 (m, 2H), 1.31 – 1.26 (m, 16H), 0.89 (t, J = 7.2 Hz, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.93, 129.2, 128.7, 122.4, 120.1, 120.0, 110.4, 108.4, 36.7, 31.9, 29.9, 29.6, 29.6, 29.5, 29.3, 29.1, 28.5, 22.7, 14.1.

ESI-HRMS: calcd for $C_{20}H_{32}NS^+$ ([M + H]⁺) = 318.2250, found 318.2245. **IR** (neat): 3372, 2914, 2848, 1467, 1441, 1273, 750, 716, 637, 485 cm⁻¹.

2-(benzylthio)-1H-indole (2g)

Pale yellow solid; M.p. 76-78 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.76 (s, 1H), 7.55 – 7.52 (m, 1H), 7.28 – 7.23 (m, 3H), 7.22 – 7.13 (m, 4H), 7.10 – 7.06 (m, 1H), 6.58 (dd, *J* = 2.0, 0.8 Hz, 1H), 3.98 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.3, 137.0, 128.8, 128.6, 128.4, 128.1, 127.3, 122.6, 120.3, 120.0, 110.5, 109.5, 41.9.

ESI-HRMS: calcd for $C_{15}H_{14}NS^+([M + H]^+) = 240.0841$, found 240.0839. **IR** (neat): 3383, 1488, 1447, 1340, 1274, 923, 746, 706, 634, 470, 637 cm⁻¹.

5-chloro-2-(methylthio)-1H-indole (2i)

White solid; M.p. 89-91 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.04 (s, 1H), 7.50 – 7.49 (m, 1H), 7.20 – 7.17 (m, 1H), 7.13 – 7.10 (m, 1H), 6.46 – 6.45 (m, 1H), 2.51 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 135.1, 133.4, 129.8, 125.7, 122.3, 119.1, 111.2, 104.7, 18.8.

ESI-HRMS: calcd for C₉H₉NS³⁵Cl⁺ ($[M + H]^+$) = 198.0139, found 198.0138. C₉H₉NS³⁷Cl⁺ ($[M + H]^+$) = 200.0109, found 200.0106.

IR (neat): 3389, 1442, 1396, 1316, 1060, 914, 866, 800, 761, 687, 636, 587, 459, 432 cm⁻¹.

5-bromo-2-(methylthio)-1*H*-indole (2j)

Pale yellow solid; M.p. 93-95 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.05 (s, 1H), 7.64 (d, J = 1.8 Hz, 1H), 7.25 – 7.21 (m, 1H), 7.15 – 7.13 (m, 1H), 6.44 – 6.43 (m, 1H), 2.50 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 135.4, 133.3, 130.5, 124.9, 122.2, 113.3, 111.7, 104.5, 18.8. ESI-HRMS: calcd for C₉H₉NS⁷⁹Br⁺ ([M + H]⁺) = 241.9634, found 241.9630. C₉H₉NS⁸¹Br⁺ ([M + H]⁺) = 243.9613, found 243.9609.

IR (neat): 3385, 1562, 1434, 1394, 1314, 1268, 1047, 866, 798, 759, 663, 635, 581, 466 cm⁻¹.

5-methoxy-2-(methylthio)-1*H*-indole (2k)

Pale yellow solid; M.p. 78-80 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.07 (s, 1H), 7.18 – 7.16 (m, 1H), 7.05 – 7.03 (m, 1H), 6.88 – 6.85 (m, 1H), 6.51 (dd, J = 2.0, 0.8 Hz, 1H), 3.87 (s, 3H), 2.49 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 154.2, 132.1, 131.9, 129.2, 112.4, 111.2, 105.6, 101.6, 55.8, 19.3.

ESI-HRMS: calcd for $C_{10}H_{12}NOS^+([M+H]^+) = 194.0634$, found 194.0633.

IR (neat): 3392, 2923, 1621, 1582, 1506, 1469, 1440, 1218, 1193, 1155, 1208, 973, 839, 795 cm⁻¹.

6-fluoro-2-(methylthio)-1H-indole (2l)

White solid; M.p. 76-78 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.04 (s, 1H), 7.44 (dd, J = 8.8, 5.4 Hz, 1H), 7.01 – 6.98 (m, 1H), 6.89 – 6.84 (m, 1H), 6.54 – 6.53 (m, 1H), 2.49 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 160.0 (d, J = 237.2 Hz), 136.7 (d, J = 12.4 Hz), 131.4 (d, J = 3.4 Hz), 125.2, 120.6 (d, J = 10.0 Hz), 108.9 (d, J = 24.3 Hz), 106.3, 96.9 (d, J = 26.1 Hz), 19.5.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -120.41.

ESI-HRMS: calcd for $C_9H_9NSF^+([M+H]^+) = 182.0434$, found 182.0431.

IR (neat): 3356, 1618, 1485, 1443, 1381, 1338, 1279, 1220, 1138, 960, 932, 843, 811, 758, 639, 612, 480, 441 cm⁻¹.

6-chloro-2-(methylthio)-1H-indole (2m)

White solid; M.p. 127-128 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.41 (d, 8.4 Hz, 1H), 7.26 – 7.24 (m, 1H), 7.07 – 7.04 (m, 1H), 6.50 – 6.49 (m, 1H), 2.49 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 137.1, 132.4, 128.0, 127.3, 120.8, 120.6, 110.3, 105.5, 19.0.

ESI-HRMS: calcd for C₉H₉NS³⁵Cl⁺ ($[M + H]^+$) = 198.0139, found 198.0138. C₉H₉NS³⁷Cl⁺ ($[M + H]^+$) = 200.0109, found 200.0106.

IR (neat): 3352, 1436, 1369, 1333, 1290, 1059, 912, 854, 811, 761, 734, 638, 481, 434 cm⁻¹.

6-bromo-2-(methylthio)-1H-indole (2n)

White solid; M.p. 136-138 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.01 (s, 1H), 7.44 – 7.43 (m, 1H), 7.39 – 7.37 (m, 1H), 7.21 – 7.19 (m, 1H), 6.51 – 6.49 (m, 1H), 2.51 (s, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.5, 132.5, 127.6, 123.4, 120.9, 115.6, 113.3, 105.5, 18.9. ESI-HRMS: calcd for C₉H₉NS⁷⁹Br⁺ ([M + H]⁺) = 241.9634, found 241.9631. C₉H₉NS⁸¹Br⁺ ([M + H]⁺) = 243.9613, found 243.9610

7-bromo-2-(methylthio)-1H-indole (20)

Pale green solid; M.p. 55-57 °C.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.23 (s, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.32 – 7.30 (m, 1H), 6.98 (t, *J* = 7.68 Hz, 1H), 6.60 (d, *J* = 2.0 Hz, 1H), 2.54 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 135.5, 132.7, 129.8, 124.4, 121.3, 118.9, 106.4, 103.7, 19.0.

ESI-HRMS: calcd for C₉H₉NS⁷⁹Br⁺ ($[M + H]^+$) = 241.9634, found 241.9630. C₉H₉NS⁸¹Br⁺ ($[M + H]^+$) = 243.9613, found 243.9610

IR (neat): 3311, 2361, 2335, 1416, 1329, 1273, 965, 810, 757, 659, 527 cm⁻¹.

6-chloro-5-(2-chloroethyl)-2-(methylthio)-1*H*-indole (2p)

White solid; M.p. 96-97 °C.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.99 (s, 1H), 7.40 (s, 1H), 7.31 (s, 1H), 6.47 – 7.46 (m, 1H), 3.76 (t, J = 7.6 Hz, 2H), 3.26 (t, J = 7.6 Hz, 2H), 2.50 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 136.3, 133.1, 128.0, 127.8, 127.1, 121.7, 111.1, 105.1, 43.9, 37.3, 18.9.

ESI-HRMS: calcd for $C_{11}H_{12}NS^{35}Cl_2^+$ ($[M + H]^+$) = 260.0062, found 260.0060. $C_{11}H_{12}NS^{35}Cl^{37}Cl^+$ ($[M + H]^+$) = 262.0033, found 262.0029. $C_{11}H_{12}NS^{37}Cl_2^+$ ($[M + H]^+$) = 264.0003, found 263.9998. **IR** (neat): 3356, 1453, 1320, 1267, 994, 913, 877, 758, 636, 484 cm⁻¹.

2-(ethylthio)-3-methyl-1*H*-indole (2q)

Pale yellow oil;

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.53 – 7.51 (m, 1H), 7.23 – 7.15 (m, 2H), 7.11 – 7.07 (m, 1H), 2.69 (q, *J* = 8.8 Hz, 2H), 2.37 (s, 3H), 1.18 (t, J = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 136.2, 128.5, 124.5, 122.8, 119.3, 119.0, 117.9, 110.5, 30.7, 15.3, 9.5.

ESI-HRMS: calcd for $C_{11}H_{14}NS^+$ ([M + H]⁺) = 192.0841, found 192.0844. **IR** (neat): 3401, 2920, 1446, 1374, 1331, 966, 740, 647 cm⁻¹.

2-(ethylthio)-1-methyl-1*H*-indole (2r)

Pale yellow oil;

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.53 (m, 1H), 7.26 – 7.17 (m, 2H), 7.10 – 7.06 (m, 1H), 6.66 (s, 1H), 3.76 (s, 3H), 2.78 – 2.72 (m, 2H), 1.26 – 1.22 (m, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 138.2, 131.3, 127.4, 121.9, 120.1, 119.6, 109.4, 108.2, 30.5, 29.8, 14.6.

ESI-HRMS: calcd for $C_{11}H_{14}NS^+$ ([M + H]⁺) = 192.0841, found 192.0839. **IR** (neat): 2923, 1454, 1317, 1258, 785, 739, 625 cm⁻¹.

5 Characterization of chiral N,N'-dioxides

L2-Pi(OMe)2

White power. M.p. 117-120 °C. $[\alpha]^{22}_{D} = +30.4$ (*c* = 0.26, in MeOH).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 11.75 (s, 2H), 7.14 (t, J = 8.4 Hz, 2H), 6.52 (d, J = 8.4 Hz, 4H), 4.50 – 4.37 (m, 2H), 4.07 – 3.95 (m, 2H), 3.76 (s, 12H), 3.65 – 3.57 (m, 2H), 3.53 – 3.45 (m, 2H), 3.09 (td, J = 12.0, 2.8 Hz, 2H), 2.72 – 2.57 (m, 2H), 2.50 – 2.38 (m, 2H), 2.12 – 2.01 (m, 2H), 1.90 – 1.78 (m, 2H), 1.67 – 1.56 (m, 2H), 1.46 – 1.30 (m, 2H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 167.0, 155.7, 127.8, 113.4, 104.4, 75.1, 65.9, 62.1, 56.0, 25.9, 21.9, 20.4.

ESI-HRMS: calcd for $C_{30}H_{43}N_4O_8^+$ ([M+H]⁺) = 587.3075, found 587.3080. **IR** (neat): 1676, 1594, 1539, 1477, 1257, 1112 cm⁻¹.

L₂-Pi(OEt)₂

White foam. M.p. 87-90 °C. $[\alpha]^{22}_{D}$ = +24.4 (*c* = 0.36, in MeOH). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 11.76 (s, 2H), 7.09 (t, *J* = 8.4 Hz, 2H), 6.50 (d, *J* = 8.4 Hz, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.52 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.52 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.52 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.52 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.52 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.54 - 3.55 (m, 2H), 3.55 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.55 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.55 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.55 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.55 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 4.04 - 3.92 (m, 10H), 3.64 - 3.55 (m, 2H), 3.55 - 4.42 (m, 4H), 4.40 (td, *J* = 9.2, 8.7, 3.8 Hz, 2H), 3.08 (td, *J* = 12.0, 2.8 Hz, 2H), 2.69 – 2.59 (m, 2H), 2.48 – 2.38 (m, 2H), 2.07 – 2.01 (m, 2H), 1.87 – 1.78 (m, 2H), 1.63 – 1.54 (m, 2H), 1.36 (t, *J* = 7.2 Hz, 14H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 166.6, 154.9, 127.4, 114.2, 105.5, 75.1, 65.8, 64.4, 62.1, 25.9, 22.0, 20.3, 15.0.

ESI-HRMS: calcd for $C_{34}H_{51}N_4O_8^+([M+H]^+) = 643.3701$, found 643.3706.

IR (neat): 1680, 1591, 1538, 1465, 1254, 1118, 1093 cm⁻¹.

L₂-Pi(OiPr)₂

White foam. M.p. 88-91 °C. $[\alpha]^{22}_{D} = -19.6$ (c = 0.28, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 11.65 (s, 2H), 7.09 (t, J = 8.4 Hz, 2H), 6.53 (d, J = 8.4 Hz, 4H), 4.56 – 4.45 (m, 4H), 4.33 (s, 2H), 4.18 – 4.00 (m, 2H), 3.70 – 3.37 (m, 4H), 3.09 (q, J = 12.0 Hz, 2H), 2.72 – 2.58 (m, 2H), 2.50 – 2.36 (m, 2H), 2.06 – 2.00 (m, 2H), 1.86 – 1.75 (m, 2H), 1.62 – 1.48 (m, 2H), 1.33 (dd, J = 6.0, 3.2 Hz, 26H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 166.1, 154.0, 127.1, 115.8, 106.5, 75.3, 71.2, 65.4, 62.2, 25.9, 22.4, 21.9, 20.2.

ESI-HRMS: calcd for $C_{38}H_{59}N_4O_8^+$ ([M+H]⁺) = 699.4327, found 699.4326. **IR** (neat): 1685, 1593, 1534, 1467, 1254, 1115, 1067 cm⁻¹.

L_2 -Pi(OiBu)₂

White foam. M.p. 88-91 °C. $[\alpha]^{22}_{D} = +43.6$ (*c* = 0.58, in MeOH).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 11.69 (s, 2H), 7.06 (t, *J* = 7.6 Hz, 2H), 6.48 – 6.46 (m, 4H), 4.48 – 4.10 (m, 4H), 3.64 – 3.54 (m, 12H), 3.09 – 2.41 (m, 5H), 2.07 – 1.39 (m, 13H), 0.98 – 0.92 (m, 24H).

¹³C NMR (100 MHz, CDCl₃) δ 166.2, 154.8, 127.2, 113.4, 104.6, 75.4, 74.7, 65.5, 61.6, 28.1, 25.9, 20.2, 19.2, 19.1.

ESI-HRMS: calcd for $C_{42}H_{67}N_4O_8^+$ ([M + H]⁺) = 755.4953, found 755.4954.

IR (neat): 1687, 1596, 1537, 1463, 1257, 1101 cm⁻¹.

L2-Pi(Oipentyl)2

White foam. M.p. 88-92 °C. $[\alpha]^{21}_{D} = +53.0$ (*c* = 0.26, in MeOH).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 11.63 (s, 2H), 7.11 (t, J = 8.3 Hz, 2H), 6.51 (d, J = 8.5 Hz, 4H), 4.43 (s, 2H), 4.08 – 3.92 (m, 8H), 3.58 (s, 4H), 3.11 – 1.40 (m, 28H), 0.92 – 0.91 (m, 24H). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.3, 154.9, 127.39, 113.6, 104.9, 75.1, 67.0, 65.3, 61.7, 37.8, 25.8, 24.8, 22.5, 21.8, 20.1.

ESI-HRMS: calcd for $C_{46}H_{75}N_4O_8^+([M+H]^+) = 811.5579$, found 811.5577.

IR (neat): 1679, 1593, 1537, 1462, 1253, 1096 cm⁻¹.

L₂-Pi(OBn)₂

White foam. M.p. 88-91 °C. $[\alpha]^{21}_{D} = +46.7$ (*c* = 0.42, in MeOH).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 12.04 (s, 2H), 7.50 – 7.43 (m, 8H), 7.38 (t, *J* = 7.2 Hz, 8H), 7.34 – 7.29 (m, 4H), 7.11 (t, *J* = 8.4 Hz, 2H), 6.62 (d, *J* = 8.4 Hz, 4H), 5.08 (s, 8H), 4.00 (br, 2H), 3.70 (br, 2H), 3.3 – 2.7 (m, 4H), 2.60 (t, *J* = 12.0 Hz, 2H), 2.44 – 2.28 (m, 2H), 2.20 – 2.06 (m, 2H), 1.73 – 1.64 (m, 2H), 1.57 – 1.44 (m, 2H), 1.25 – 1.14 (m, 2H), 1.05 – 0.85 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.5, 154.8, 136.9, 128.5, 128.0, 127.3, 114.5, 106.1, 74.5, 70.7, 64.8, 62.0, 25.9, 21.5, 20.0.

ESI-HRMS: calcd for $C_{54}H_{59}N_4O_8^+$ ([M+H]⁺) = 891.4327, found 891.4316. **IR** (neat): 1683, 1595, 1534, 1464, 1378, 1261, 1102, 744, 698 cm⁻¹.

L₂-Pi(OPh)₂

White foam. M.p. 98-101 °C. $[\alpha]^{21}_{D}$ = +39.6 (*c* = 0.26, in MeOH). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 12.12 (s, 2H), 7.36 – 7.28 (m, 8H), 7.13 – 7.00 (m, 14H), 6.57 (d, *J* = 8.4 Hz, 4H), 4.74 – 4.30 (m, 1H), 4.05 – 3.70 (m, 3H), 3.25 – 2.88 (m, 3H), 2.59 (t, *J* = 12.0 Hz, 2H), 2.16 – 1.98 (m, 4H), 1.60 – 1.38 (m, 4H), 1.29 – 1.18 (m, 1H), 1.09 – 0.62 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 156.5, 154.0, 129.9, 127.7, 123.9, 119.3, 118.8, 113.2, 100.0, 74.9, 65.3, 62.6, 25.4, 21.5, 20.0.

ESI-HRMS: calcd for $C_{50}H_{51}N_4O_8^+$ ([M+H]⁺) = 835.3701, found 835.3701. **IR** (neat): 1683, 1579, 1518, 1486, 1456, 1238, 1205, 1161, 1023, 752, 691 cm⁻¹.

6 Typical experimental procedure for the asymmetric [3,3]-rearrangement

6.1 Optimization of the reaction conditions

Table S1: Screen of metal salts

entry ^a	metal salt	yield $(\%)^b$	ee (%) ^c
1	Fe(OTf) ₂	34	7
2	Fe(OTf) ₃	43	6
3	Co(OTf) ₂	83	2
4	Ni(OTf) ₂	80	13
5	$Cu(OTf)_2$	54	1

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-1*H*-indole **2b** (0.1 mmol), diazo compound **1a** (0.1 mmol), metal salt (10 mol%), **L**₂-**PrPr**₂ (10 mol%) and CH₂Cl₂ (0.1 M) at 35 °C. ^{*b*} Isolated yields of **3ab**. ^{*c*} Determined by HPLC on a chiral stationary phase.

Table S2: Screening of chiral N,N'-dioxide ligands

 $\begin{array}{l} \textbf{L_2-PrPr_2:} \ Ar = 2,6 \ \textit{i} Pr_2 C_6 H_3, \ n = 1, \ m = 0 \\ \textbf{L_3-PrPr_2:} \ Ar = 2,6 \ \textit{i} Pr_2 C_6 H_3, \ n = 1, \ m = 1 \\ \textbf{L_2-PiPr_2:} \ Ar = 2,6 \ \textit{i} Pr_2 C_6 H_3, \ n = 2, \ m = 0 \\ \textbf{L_3-PiPr_2:} \ Ar = 2,6 \ \textit{i} Pr_2 C_6 H_3, \ n = 2, \ m = 1 \end{array}$

 $\begin{array}{l} \textbf{L_2-RaPr_2: } Ar = 2,6\text{-}\textit{i}Pr_2C_6H_3, \ m = 0\\ \textbf{L_3-RaPr_2: } Ar = 2,6\text{-}\textit{i}Pr_2C_6H_3, \ m = 1 \end{array}$

L₃-PePr₂: Ar = 2,6-*i*Pr₂C₆H₃

entry ^a	ligand	yield $(\%)^b$	ee (%) ^c
1	L ₂ -PrPr ₂	80	13
2	L ₃ -PrPr ₂	75	18
3	L ₂ -PiPr ₂	93	21
4	L ₃ -PiPr ₂	96	31
5	L ₂ -RaPr ₂	50	14
6	L ₃ -RaPr ₂	74	29
7	L ₃ -PePr ₂	40	25

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-1*H*-indole **2b** (0.1 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (10 mol%), **Ligand** (10 mol%) and CH₂Cl₂ (0.1 M) at 35 °C. ^{*b*} Isolated yields of **3ab**. ^{*c*} Determined by HPLC on a chiral stationary phase.

Table S3: Screen of metal salts

Ph Ph Ia	metal s + SEt <u>L₃-PiP</u> H H 2b	alt 10 mol% $r_2 10 mol\%$ $r_3 35 °C, 2 h$ H 3ab	$PG = \bigvee_{r,r,s}^{r,r,s} N-N$
entry ^a	metal salt	yield $(\%)^b$	ee (%) ^c
1	Ni(OTf) ₂	96	31
2	$Ni(NTf_2)_2$	88	4
3	Ni(BF ₄) ₂ .6H ₂ O	85	13
4	Ni(ClO ₄) ₂ .6H ₂ O	74	1
5	Ni(AcAc) ₂ .2H ₂ O	22	4
6	$Ni(C_2O_4)$ $2H_2O$	29	9
7^d	Ni(DME)Br ₂	83	28

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-1*H*-indole **2b** (0.1 mmol), diazo compound **1a** (0.1 mmol), metal salt (10 mol%), **L**₃-**PiPr**₂ (10 mol%) and CH₂Cl₂ (0.1 M) at 35 °C. ^{*b*} Isolated yields of **3ab**. ^{*c*} Determined by HPLC on a chiral stationary phase. ^{*d*} DME=1,2-dimethoxyethane.

Table S4: Screening of chiral N,N'-dioxide ligands

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-1*H*-indole **2b** (0.1 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (10 mol%), **Ligand** (10 mol%) and CH₂Cl₂ (0.1 M) at 35 °C. ^{*b*} Isolated yields of **3ab**. ^{*c*} Determined by HPLC on a chiral stationary phase.

Table S5: Screening of solvents and temperature

2^d	PhCH ₃	35	2 h	75	10
3^d	Et_2O	35	2 h	85	2
4^d	CH ₃ COOMe	35	2 h	81	16
5^d	CH ₃ CN	35	2 h	65	17
6^d	CH_2Cl_2	35	2 h	90	50
7^d	CHCl ₃	35	2 h	88	60
8^d	CH ₂ ClCH ₂ Cl	35	2 h	72	42
9^d	CHCl ₂ CH ₂ Cl	35	2 h	92	53
10^d	CHCl ₂ CHCl ₂	35	2 h	97	51
11^e	CH_2Cl_2	0	1 d	85	63
12^{e}	CH_2Cl_2	-10	1 d	91	77
13 ^e	CH_2Cl_2	-20	2 d	85	80
14^e	CH_2Cl_2	-30	4 d	10	50
15^e	CH_2Cl_2	-40	4 d	6	22
16	CHCl	-20	2 d	84	90

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-1*H*-indole **2b** (0.1 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (10 mol%), **L**₂-**Pi(OiBu)**₂ (10 mol%) and CHCl₃ (0.1 M) at -20 °C. ^{*b*} Isolated yields of **3ab**. ^{*c*} Determined by HPLC on a chiral stationary phase. ^{*d*} The reactions were carried out at 35 °C. ^{*e*} The reactions were carried out in CH₂Cl₂ (0.1 M).

Table S6: Screening of the reaction concentration

Ph PG +	SEt N H 2b	Ni(OTf) ₂ 10 mol% L₂-Pi(O<i>i</i>Bu)₂ 10 mol% CHCl ₃ , –20 °C	Ph O SEt H 3ab	$PG = \bigvee_{r \in \mathcal{X}^{c}}^{r \in \mathcal{X}^{c}} N - N$
entry ^a	concentration	time	yield $(\%)^b$	ee (%) ^c
1	0.2 M	31 h	87	92
2	0.1 M	2 d	84	90
3	0.05 M	3 d	81	87

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-1*H*-indole **2b** (0.1 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (10 mol%), **L**₂-**Pi(OiBu)**₂ (10 mol%) and CHCl₃ (0.2 M) at -20 °C. ^{*b*} Isolated yields of **3ab**. ^{*c*} Determined by HPLC on a chiral stationary phase.

|--|

3	2.5	3 d	39	92

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-1*H*-indole **2b** (0.1 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (x mol%), **L**₂-**Pi(OiBu)**₂ (x mol%) and CHCl₃ (0.2 M) at -20 °C. ^{*b*} Isolated yields of **3ab**. ^{*c*} Determined by HPLC on a chiral stationary phase.

Table S8: Screening of additives

Ph Ph 1a	G + Ni(OTf) ₂ 10 mol% S + SEt <u>L₂-Pi(O<i>i</i>Bu)₂ 10 mol%</u> dditives H CHCl ₃ , -20 °C 2b	Ph Ph N H 3ab	PG 0 –SEt PG	
entry ^a	additive	time	yield $(\%)^b$	ee (%) ^c
1	3Å MS (10 mg)	30 h	68	90
2	4Å MS (10 mg)	30 h	68	88
3	5Å MS (10 mg)	30 h	70	91
4	$NaBAr^{F_{4}}(10 \text{ mol}\%)$	36 h	59	80
5	<i>m</i> -CPBA(10 mol%)	27 h	79	90
6	3-Chlorobenzoic acid (10 mol%)	27 h	85	91
7	3-Nitrobenzoic acid (10 mol%)	27 h	77	86

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-1*H*-indole **2b** (0.1 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (10 mol%), **L**₂-**Pi(OiBu**)₂ (10 mol%), additives and CHCl₃ (0.2 M) at -20 °C. ^{*b*} Isolated yields of **3ab**. ^{*c*} Determined by HPLC on a chiral stationary phase.

 Table S9: Screening of the R group of 2-(alkylthio)-1H-indole 2

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-1*H*-indole **2b** (0.1 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (10 mol%), **L**₂-**Pi(OiBu)**₂ (10 mol%), and CHCl₃ (0.2 M) at -20 °C. ^{*b*} Determined by HPLC on a chiral stationary phase. ^{*c*} Isolated yields of **3aa**. ^{*d*} Isolated yields of **3ab**.

Table S10: Screen of the ratio of 1a and 2a

entry ^a	1a:2a	yield $(\%)^b$	ee (%) ^c
1	1.0:1.0	90	96
2^d	1.0:1.2	94	96
3 ^e	1.0:1.5	94	95
4f	1.0:2.0	91	95

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(methylthio)-1*H*-indole **2a** (0.1 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (10 mol%), **L**₂-**Pi(OiBu)**₂ (10 mol%), and CHCl₃ (0.2 M) at -20 °C. ^{*b*} Isolated yields of **3aa**. ^{*c*} Determined by HPLC on a chiral stationary phase. ^{*d*} **2a** (0.12 mmol) was used. ^{*e*} **2a** (0.15 mmol) was used.

Table S11: Screen of other representative chiral ligand

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(methylthio)-1*H*-indole **2a** (0.12 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (10 mol%), **Ligand** (10 mol%), and CHCl₃ (0.2 M) at -20 °C for 2 d. ^{*b*} Is olated yields of **3aa**. ^{*c*} Used as catalyst without Ni(OTf)₂.

Table S12: Variations from standard conditions when 3aa is derived to 4aa

o enter a	Tomotions	yield of 3aa	yield of 4aa	ee of 4aa
entry ^a variations		$(\%)^b$	(%) ^c	$(\%)^d$
1^e	without Ni(OTf) ₂	N.R.	N.R.	N.D.
2^e	without L2-Pi(OiBu)2	N.R.	N.R.	N.D.
3	none	94	87	96
4 ^e	Fe(OTf) ₂ instead of Ni(OTf) ₂	trace	trace	N.D.
5	Cu(OTf) ₂ instead of Ni(OTf) ₂	38	27	37
6	Co(OTf) ₂ instead of Ni(OTf) ₂	82	82	79
7	Ni(NTf ₂) ₂ instead of Ni(OTf) ₂	92	85	95
8f	Ni(DME)Br2 instead of Ni(OTf)2	92	84	94
9	L2-PiMe2 instead of L2-Pi(OiBu)2	41	24	33
10	L2-PiEt2 instead of L2-Pi(OiBu)2	99	84	50
11	L2-PiPr2 instead of L2-Pi(OiBu)2	86	68	61
12	L2-Pi(OMe)2 instead of L2-Pi(OiBu)2	96	67	58
13	L2-Pi(OEt)2 instead of L2-Pi(OiBu)2	89	64	62
14	L2-Pi(OiPr)2 instead of L2-Pi(OiBu)2	83	61	94
15	L2-Pi(Oipentyl)2 instead of L2-Pi(OiBu)2	86	74	77
16	CH ₂ Cl ₂ instead of CHCl ₃	76	54	90
17	THF instead of CHCl ₃	13	10	14

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(methylthio)-1*H*-indole **2a** (0.12 mmol), diazo compound **1a** (0.1 mmol), Ni(OTf)₂ (10 mol%), **L**₂-**Pi(OiBu)**₂ (10 mol%), and CHCl₃ (0.2 M) at -20 °C. ^{*b*} Isolated yields of **3aa**. ^{*c*} Isolated yields of **4aa**. ^{*d*} Determined by HPLC on a chiral stationary phase. ^{*e*} NR = no reaction, ND = not detected. ^{*f*} DME = 1,2-dimethoxyethane.

Table S13: The detailed screening of conditions for substrate 2q

5	$Co(NTf_2)_2$	L_2 -Pi(OiBu) ₂	35	79	50:50	53/61
6	$Co(ClO_4)_2 \cdot 6H_2O$	L_2 -Pi(OiBu) ₂	35	69	58:42	47/50
7	$Co(BF_4)_2 \cdot 6H_2O$	L_2 -Pi(OiBu) ₂	35	74	51:49	52/61
8	Co(OTf) ₂	L_2 -Pi(OiBu) ₂	20	69	42:58	62/80
9	Co(OTf) ₂	L_2 -Pi(OiBu) ₂	10	55	38:62	59/83
10	Co(OTf) ₂	L_2 -Pi(OiBu) ₂	0	27	36:64	50/86
11	Co(OTf) ₂	L_2 -Pi(OiBu) ₂	-10	24	34:66	52/89
12	Co(OTf) ₂	L ₂ -Pi(O <i>i</i> Pr) ₂	-10	53	25:75	60/80
13	Co(OTf) ₂	L ₂ -Pi(OPh) ₂	-10	53	33:67	56/73
14	$Co(OTf)_2$	L ₂ -Pi(OBn) ₂	-10	52	20:80	71/89

^{*a*} Unless otherwise noted, the reactions were carried out with 2-(ethylthio)-3-methyl-1*H*-indole **2q** (0.15 mmol), diazo compound **1a** (0.1 mmol), metal salt/**ligand**(1:1, 10 mol%) in CHCl₃ (0.2 M). ^{*b*} Isolated yields of **3aq**. ^{*c*} The dr value was determined by ¹H NMR analysis. ^{*d*} Determined by HPLC on a chiral stationary phase. ^{*e*} DME = 1,2-dimethoxyethane.

6.2 Typical procedure for the asymmetric [3,3]-rearrangement

Procedure A: A dry reaction tube was charged with L_2 -Pi(OiBu)₂ (7.6 mg, 10 mol%), Ni(OTf)₂ (3.6 mg, 10 mol%). Then CHCl₃ (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, thioindole **2** (0.12 mmol) was added successively at 35 °C. Then transfer the reaction tube to -20 °C, diazo compound **1** (0.10 mmol) was added finally. The reaction was detected by TLC. After the diazo compound **1** was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product (Pet/EtOAc = 15/1 to Pet/EtOAc = 7/1 as eluent). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IF in comparison with the authentic racemates.

Procedure B: A dry reaction tube was charged with L₂-Pi(O*i*Bu)₂ (7.6 mg, 10 mol%), Ni(OTf)₂ (3.6 mg, 10 mol%). Then CHCl₃ (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, thioindole **2** (0.12 mmol) was added successively at 35 °C. Then transfer the reaction tube to -20 °C, diazo compound **1** (0.10 mmol) was added finally. The reaction was detected by TLC. After the diazo compound **1** was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product **3** (Pet/EtOAc = 15/1 to Pet/EtOAc = 7/1 as eluent). The product **3** was dissolved in 1.0 mL of CH₂Cl₂, *m*-CPBA (2.1 equiv) was added saturated aq. NaHCO₃ (3 mL) and the aqueous layer was separated and extracted with CH₂Cl₂ (3 mL × 2). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and

concentrated. The residue was purified by column chromatography on silica gel to afford the product 4 (Pet/EtOAc = 7/1 to Pet/EtOAc = 4/1 as eluent). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IA, Daicel chiralcel IE, Daicel chiralcel IF in comparison with the authentic racemates.

Procedure C: A dry reaction tube was charged with L₂-Pi(O*i*Bu)₂ (7.6 mg, 10 mol%), Ni(NTf₂)₂ (6.2 mg, 10 mol%). Then CHCl₃ (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, thioindole **2** (0.12 mmol) was added successively at 35 °C. Then transfer the reaction tube to -20 °C, diazo compound **1** (0.10 mmol) was added finally. The reaction was detected by TLC. After the diazo compound **1** was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product **3** (Pet/EtOAc = 15/1 to Pet/EtOAc = 7/1 as eluent). The product **3** was dissolved in 1.0 mL of CH₂Cl₂, *m*-CPBA (2.1 equiv) was added saturated aq. NaHCO₃ (3 mL) and the aqueous layer was separated and extracted with CH₂Cl₂ (3 mL × 2). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel to afford the product **4** (Pet/EtOAc = 7/1 to Pet/EtOAc = 4/1 as eluent). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chirakcel IA, Daicel chirakcel IE, Daicel chirakcel IF in comparison with the authentic racemates.

Procedure D: A dry reaction tube was charged with L₂-Pi(OiPr)₂ (7.0 mg, 10 mol%), Ni(OTf)₂ (3.6 mg, 10 mol%). Then CHCl₃ (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, thioindole **2** (0.12 mmol) was added successively at 35 °C. Then transfer the reaction tube to -20 °C, diazo compound **1** (0.10 mmol) was added finally. The reaction was detected by TLC. After the diazo compound **1** was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product **3** (Pet/EtOAc = 15/1 to Pet/EtOAc = 7/1 as eluent). The product **3** was dissolved in 1.0 mL of CH₂Cl₂, *m*-CPBA (2.1 equiv) was added saturated aq. NaHCO₃ (3 mL) and the aqueous layer was separated and extracted with CH₂Cl₂ (3 mL × 2). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel to afford the product **4** (Pet/EtOAc = 7/1 to Pet/EtOAc = 4/1 as eluent). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IF in comparison with the authentic racemates.

Procedure E: A dry reaction tube was charged with L_2 -Pi(OBn)₂ (8.9 mg, 10 mol%), Co(OTf)₂ (3.6 mg, 10 mol%). Then CHCl₃ (0.5 mL) was added and the mixture was stirred at 35 °C for 30

minutes. Subsequently, thioindole 2q (0.15 mmol) was added successively at 35 °C. Then transfer the reaction tube to -10 °C, diazo compound 1 (0.10 mmol) was added finally. The reaction was detected by TLC. After the diazo compound 1 was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product 3 (Pet/EtOAc = 20/1 to Pet/EtOAc = 15/1 as eluent). The dr value was determined by ¹H NMR analysis and the enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IA in comparison with the authentic racemates.

6.3 General procedure for the preparation of the racemic products

Procedure F: A dry reaction tube was charged with *race*- L₂-PiPr₂ (6.3 mg, 10 mol%), Ni(OTf)₂ (3.6 mg, 10 mol%). Then CH₂Cl₂ (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, thioindole **2** (0.10 mmol) was added successively at 35 °C. Then transfer the reaction tube to 0 °C, diazo compound **1** (0.10 mmol) was added finally. The reaction was detected by TLC. After the diazo compound **1** was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product **3** (Pet/EtOAc = 15/1 to Pet/EtOAc = 7/1 as eluent). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IF.

Procedure G: A dry reaction tube was charged with *race*-L₂-**PiPr**₂ (6.3 mg, 10 mol%), Ni(OTf)₂ (3.6 mg, 10 mol%). Then CH₂Cl₂ (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, thioindole **2** (0.10 mmol) was added successively at 35 °C. Then transfer the reaction tube to 0 °C, diazo compound **1** (0.10 mmol) was added finally. The reaction was detected by TLC. After the diazo compound **1** was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product **3** (Pet/EtOAc = 15/1 to Pet/EtOAc = 7/1 as eluent). The product **3** was dissolved in 1.0 mL of CH₂Cl₂, *m*-CPBA (2.1 equiv) was added saturated aq. NaHCO₃ (3 mL) and the aqueous layer was separated and extracted with CH₂Cl₂ (3 mL × 2). The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel to afford the product **4** (Pet/EtOAc = 7/1 to Pet/EtOAc = 4/1 as eluent). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chirakel IA, Daicel chirakel IE, Daicel chirakel IF.

6.4 Procedure for the gram-scale of asymmetric [3,3]-rearrangement

A 50 mL of dry round-bottom flask was charged with L_2 -Pi(OiBu)₂(226.5 mg, 10 mol%), Ni(OTf)₂ (106.8 mg, 10 mol%). Then CHCl₃ (15 mL) was added and the mixture was stirred at 35 °C for 10 hours. Subsequently, **2a** (586.8 mg, 3.60 mmol) was added successively at 35 °C. Then transfer the reaction flask to -20 °C, diazo compound **1a** (840.0 mg, 3.00 mmol) was added finally. After **1a** was fully consumed (40 hours), the residue was purified by column chromatography on silica gel to afford the product **3aa** as white solid (1.21 g, 96% yield). The product **3aa** was dissolved in 30 mL of CH₂Cl₂, *m*-CPBA (497.0 mg, 2.1 equiv) was added saturated aq. NaHCO₃ (30 mL) and the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel to afford the product **4aa** as pale yellow solid (1.14 g, 85% yield, 97% ee).

7 The list of substrates scope

Table 7.1^{*a*}

^{*a*} Unless otherwise noted, the initial reactions were carried out with **1** (0.10 mmol), **2a** (1.2 equiv), Ni(OTf)₂/L₂-**Pi(OiBu)**₂ (1:1, 10 mol%) in CHCl₃ (0.2 M) at -20 °C. Isolated yield of **3** and isolated yield of **4** after two steps. The ee value of **4** was determined by HPLC analysis on a chiral stationary phase. ^{*b*} Ni(NTf₂)₂ was used instead of Ni(OTf)₂.

Table 7.2^{*a*}

^{*a*} Unless otherwise noted, the initial reactions were carried out with **1a** (0.10 mmol), **2** (1.2 equiv), Ni(OTf)₂/L₂-**Pi(OiBu)**₂ (1:1, 10 mol%) in CHCl₃ (0.2 M) at -20 °C. Isolated yield of **3** and isolated yield of **4** after two steps. The ee value of **4** was determined by HPLC analysis on a chiral stationary phase. ^{*b*} Ni(NTf₂)₂ was used instead of Ni(OTf)₂. ^{*c*} L₂-**Pi(OiPr)**₂ was used instead of L₂-**Pi(OiBu)**₂. ^{*d*} The reaction was carried out with **1a** (0.10 mmol), **2q** (1.5 equiv), Co(OTf)₂/L₂-**Pi(OBn)**₂ (1:1, 10 mol%) in CHCl₃ (0.2 M) at -10 °C. Isolated yield of **3aq**. The dr value was determined by ¹H NMR analysis and the ee value was for the major diastereoisomer.

8 Procedure for the transformation of product 3aa and 4aa

8.1 Transformation of product 4aa

8.1.1 Reduction of 4aa to 5aa

A dry tube was charged with 10% Pd/C (8.9 mg), **4aa** (0.20 mmol, 89.4 mg), then, MeOH (1.0 mL) was added. The mixture was stirred at room temperature for 24 h under an H₂ atmosphere. The reaction mixture was filtered with a pad of celite and the filtrate was concentrated in vacuo, the residue was purified by column chromatography on silica gel to afford the corresponding product **5aa** (Pet/EtOAc = 7/1 to Pet/EtOAc = 4/1 as eluent) as white solid (78.1 mg, 87% yield). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IC, in comparison with the authentic racemates.

8.1.2 Direct amidation with *L*-leucine methyl ester hydrochloride

According to literature report⁹, *L*-leucin methyl ester hydrochlorid (18.2 mg, 2.0 equiv), toluene (0.5 mL), and Et₃N (13 μ L, 2.0 equiv) was added into a reaction tube equipped with a stirring bar. After stirred at room temperature for 10 min, **5aa** (22.5 mg, 0.05 mmol), 1-hydroxybenzotriazole (14 mg, 2.0 equiv), and toluene (0.5 mL) was added continuously. Then the tube was sealed and heated at 45 °C for 5 days. The mixture was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give product **6aa** ((Pet/EtOAc = 4/1 to Pet/EtOAc = 2/1 as eluent) as white solid (19.4 mg, 80% yield). The diastereoselectivity was determined by ¹H NMR analysis.

8.1.3 Esterification

According to literature report⁹, **5aa** (22.5 mg, 0.05 mmol), MeOH (0.4 mL) and THF (0.1 mL), LiCl (10.6 mg, 5.0 equiv), and Et₃N (34 μ L, 5.0 equiv) was added in sequence to a dry tube equipped with a stirring bar. After stirred at 35 °C for 24 hours, the mixture was concentrated under reduced pressure and the crude residue was purified by silica gel column chromatography to give product **7aa** ((Pet/EtOAc = 7/1 to Pet/EtOAc = 4/1 as eluent) as white solid (17.6 mg, 95% yield). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IE, in comparison with the authentic racemates.

8.1.4 Reduction to alcohol

According to literature report¹⁰, to a solution of **5aa** (64.2 mg, 0.14 mmol) in MeOH (1.0 mL) was added NaBH₄ (42.3 mg, 8.0 equiv) at 0 °C and the mixture was stirred overnight at room temperature. After quenching with 1.0 M HCl, the resultant mixture was extracted with EtOAc. The combined organic layer was washed with brine and dried over Na₂SO₄. After evaporation of the organic solvent under reduced pressure, the crude mixture was purified by silica gel column chromatography to give

product **8aa** ((Pet/EtOAc = 4/1 to Pet/EtOAc = 1/1 as eluent) as white solid (47.1 mg, 96% yield). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IC, in comparison with the authentic racemates.

8.2 Transformation of product 3aa to chiral sulfoxide 9aa

The sulfoxide were synthesized according to our previous work9.

8.2.1 Procedure for the preparation of the racemic sulfoxide 9aa

A dry reaction tube was charged with racemic L₂-PiPr₂ (3.2 mg, 10 mol%), Fe(OTf)₃ (2.5 mg, 10 mol%). Then THF (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, racemic sulfide **3aa** (20.7 mg, 0.05 mmol) was added successively at 35 °C. Transfer the reaction tube to -20 °C, then 10% H₂O₂ (25 μ L, 5.0 equiv) was added finally. The reaction was detected by TLC. The reaction mixture was diluted by 2 ml H₂O, and extracted by EtOAc. The organic phase was passed through anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel to afford the corresponding racemic sulfoxide **9aa** (Pet/EtOAc = 4/1 to Pet/EtOAc = 1/2 as eluent) as white solid (8.6 mg, 40% yield).

8.2.2 Procedure for the preparation of the chiral sulfoxide 9aa

A dry reaction tube was charged with L₃-PiPr₂Ad (5.5 mg, 12 mol%), Fe(OTf)₃ (2.5 mg, 10 mol%). Then THF (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, sulfide **3aa** (20.7 mg, 0.05 mmol) was added successively at 35 °C. Then transfer the reaction tube to -20 °C, then 10% H₂O₂ (25 µL, 5.0 equiv) was added finally. The reaction was detected by TLC. The reaction mixture was diluted by 2 ml H₂O, and extracted by EtOAc. The organic phase was passed through anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel to afford the corresponding sulfoxide **9aa** (Pet/EtOAc = 4/1 to Pet/EtOAc = 1/2 as eluent) as white solid (10.8 mg, 50% yield). The dr value

was determined by ¹H NMR analysis and the enantiomeric excess (ee) was determined by highperformance liquid chromatography (HPLC) with Daicel chiralcel ID in comparison with the authentic racemates.

9 Control experiments and mechanistic studies

To verify the proton transfer process in this reaction, the 1-methyl-2-(methylthio)-1*H*-indole 2r was subjected to the standard conditions, but the reaction resulted in a mixture with a large residue of the substrates, and **3ar** was not detected (eq. 1). It suggested the significant role of the N-H unit in forming the key sulfonium ylide intermediate through proton transfer. Furthermore, the *N*-deuterium-labeled indole **2a** was used to probe into the proton shift process (eq. 2). We carried out the experiments in dry solvent without additional water, and only minor deuterium labeled product was obtained. When trace amount of H₂O (around 1.5 equiv) was added, the product was found nearly non-deuterium. However, the *d*-**3aa** product was found to be the major one if D₂O was used instead. When non-deuterium **2a** with D₂O were used in the reaction, the *d*-**3aa** product was also detected. The results indicated the trace amount of water in the system might be in charge of proton-transfer.

9.1 The enantioselective thio-Claisen rearrangement reaction of α -diazo pyrazoleamides 1a and 2-(ethylthio)-1-methyl-1*H*-indole 2r

Procedure: A dry reaction tube was charged with L_2 -Pi(OiBu)₂ (7.6 mg, 10 mol%), Ni(OTf)₂ (3.6 mg, 10 mol%), then CHCl₃ (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, 2-(methylthio)-1*H*-indole **2r** (0.12 mmol, 1.2 equiv) was added successively at 35 °C.

Then transfer the reaction tube to -20 °C, diazo compound 1a (0.10 mmol) was added finally. The reaction was stirred at -20 °C and detected by TLC. The desired product 3ar could not be detected.

9.2 Deuterium labeled experiments

To gain insight into the mechanism of the asymmetric thio-Claisen rearrangement reaction, the deuterium-labeled experiments were performed according to the equations shown below. After distilled from CaH₂, the solvent CH₂Cl₂ was treated without water or oxygen and dried over 4 Å MS, which was activited at 600 °C for 1 hour before use. All the substrates and reaction solvent were added to the reaction tube in the glove box under an N₂ atmosphere at room temperature. **Procedure:** A dry reaction tube was charged with L₂-Pi(OiBu)₂ (7.6 mg, 10 mol%) and Ni(OTf)₂ (3.6 mg, 10 mol%) in the glove box under an N₂ atmosphere. Then CH₂Cl₂ (0.5 mL) was added and the mixture was stirred at room temperature for 30 minutes. Subsequently, 2-(methylthio)-1*H*-indo le **2a**-*d* (0.12 mmol, 1.2 equiv) and diazo compound **1a** (0.10 mmol) was added successively. Then transfer the reaction tube to -20 °C, the additive (around 1.5 equiv) was added finally. After the diazo compound **1a** was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product. The deuterium-lablled ratios the products were detected by ¹H NMR.

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. f1 (ppm)

.5 9.0

9.3 The enantioselective thio-Claisen rearrangement reaction of (*Z/E*)-2-diazo-4-phenyl-1-(3,4,5-trimethyl-1*H*pyrazol-1-yl)but-3-en-1-one and 2-(methylthio)-1*H*-indole 2a

Procedure: A dry reaction tube was charged with L₂-Pi(OiBu)₂ (7.6 mg, 10 mol%), Ni(OTf)₂ (3.6 mg, 10 mol%), then CHCl₃ (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, 2-(methylthio)-1*H*-indole **2a** (0.12 mmol, 1.2 equiv) was added successively at 35 °C. Then transfer the reaction tube to -20 °C, diazo compound **1a** (0.10 mmol, Z/E = 1.77/1) was added finally. The reaction was stirred at -20 °C and detected by TLC. The desired product **3aa** was obtained in 86% yield with 93% ee. The enantioselectivity (ee) of product **3aa** was determined by high performance liquid chromatography (HPLC) with chiralcel IF in comparison with the authentic racemates.

9.4 Proposed catalytic model

10 X-ray crystal structure

Figure S1. X-ray Crystal Structure of product 4da

The crystal of product **4da** was obtained in the solvents of THF and n-hexane. CCDC 1974972 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>https://www.ccdc.cam.ac.uk/</u>.

Figure S2. X-ray Crystal Structure of chiral sulfoxide 9da

The crystal of product **4da** was obtained in the solvents of THF, Et_2O and n-hexane. CCDC 1998226 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via https://www.ccdc.cam.ac.uk/.

Note: The chiral sulfoxide 9da could be obtained through the following procedure.

Step 1: A dry reaction tube was charged with L_2 -Pi(O*i*Bu)₂ (7.6 mg, 10 mol%), Ni(OTf)₂ (3.6 mg, 10 mol%). Then CHCl₃ (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, sulfide **2a** (0.12 mmol) was added successively at 35 °C. Then transfer the reaction tube to -20 °C, diazo compound **1d** (0.10 mmol) was added finally. The reaction was detected by TLC. After the diazo compound **1d** was fully consumed (detected by TLC), the residue was purified by column chromatography on silica gel to afford the product **3da** as white solid (38.3 mg, 89% yield). The enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IF in comparison with the authentic racemates.

Step 2: A dry reaction tube was charged with L₃-PiPr₂Ad (12 mol%), Fe(OTf)₃ (10 mol%). Then THF (0.5 mL) was added and the mixture was stirred at 35 °C for 30 minutes. Subsequently, sulfide **3da** (38 mg, 0.088 mmol) was added successively at 35 °C. Then transfer the reaction tube to -20 °C, then 10% H₂O₂ (5.0 equiv) was added finally. The reaction was detected by TLC. The reaction mixture was diluted by 2 ml H₂O, and extracted by EtOAc. The organic phase was passed through anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel to afford the corresponding sulfoxide **9da** as white solid (33.1 mg, 84% yield). The dr value was determined by ¹H NMR analysis and the enantiomeric excess (ee) was determined by high-performance liquid chromatography (HPLC) with Daicel chiralcel IB in comparison with the authentic racemates.

Figure S3. X-ray Crystal Structure of the chiral nickel(II) complex

The crystal of L_2 -Pi(OiBu)₂/Ni(BF₄)₂·6H₂O complex was obtained in the solvents of THF and *n*hexane. CCDC 1948996 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via https://www.ccdc.cam.ac.uk/.

11 Spectral characterization data and HPLC conditions for the products

(R,E)-4-(2-(methylthio)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-2-en-1-one (3aa)

Following the typical procedure A.

39.1 mg, 94% yield; white solid; M.p. 49-52 °C. $R_f = 0.3$ (Pet/EtOAc = 10/1). Dissolved in isopropanol for HPLC; HPLC (Chiralcel IF column), n-hexane/i-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (minor) = 39.490 min, t (major) = 42.727 min. ee = 96%. $[\alpha]^{22}_{D}$ = +24.2 (c = 0.48, in CH₂Ch₂).

¹**H NMR** (400 MHz, Chloroform-d) δ 8.23 (s, 1H), 7.87 (dd, J = 15.2, 8.4 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.31 – 7.23 (m, 5H), 7.20 – 7.11 (m, 2H), 7.00 – 6.96 (m, 1H), 5.59 (d, *J* = 8.8 Hz, 1H), 2.48 (s, 3H), 2.28 (s, 3H), 2.16 (s, 3H), 1.89 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 165.1, 152.1, 150.4, 141.7, 139.8, 136.7, 128.4, 128.0, 126.5, 126.4, 122.9, 122.3, 120.5, 120.4, 119.9, 117.7, 110.8, 45.5, 20.2, 12.7, 12.3, 7.7. 127.8, **ESI-HRMS**: calcd for $C_{25}H_{26}N_3OS^+$ ([M + H]⁺) = 416.1791, found 416.1786.

IR (neat): 1692, 1633, 1491, 1427, 1381, 1353, 1008, 742, 702 cm⁻¹.

	Retention Time	Area	% Area
1	39.557	7723154	50.09
2	43.491	7693910	49.91

	Retention Time	Area	% Area
1	39.490	481744	2.02
2	42.727	23361773	97.98

(R,E)-4-(2-(methylthio)-1H-indol-3-yl)-4-(o-tolyl)-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-2en-1-one (3da)

Following the typical procedure A.

38.3 mg, 89% yield; white solid; M.p. 163-167 °C. $R_f = 0.3$ (Pet/EtOAc = 10/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (minor) = 30.931 min, t (major) = 42.863 min. ee = 94%. $[\alpha]^{21}_{D} = +34.9$ (c = 0.76, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.27 (s, 1H), 7.83 (dd, *J* = 15.6, 7.6 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.31 – 7.24 (m, 2H), 7.16 – 7.08 (m, 4H), 6.98 – 6.94 (m, 1H), 5.64 – 5.62 (m, 1H), 2.49 (s, 3H), 2.28 (s, 3H), 2.19 (s, 3H), 2.12 (s, 3H), 1.88 (s, 3H).

¹³C{¹H}NMR (100 MHz, Chloroform-*d*) δ 165.3, 152.1, 151.2, 140.0, 139.7, 136.54, 136.50, 130.5, 128.3, 127.7, 127.1, 126.7, 125.9, 122.7, 121.7, 120.1, 119.8, 119.7, 117.6, 110.7, 43.2, 19.8, 19.6, 12.8, 12.3, 7.7.

ESI-HRMS: calcd for $C_{26}H_{28}N_3OS^+$ ([M + H]⁺) = 430.1948, found 430.1943. **IR** (neat): 2923, 1683, 1631, 1426, 1008, 939, 740 cm⁻¹.

	Retention Time	Area	% Area
1	30.562	7704479	50.07
2	43.043	7683614	49.93

	Retention Time	Area	% Area
1	30.931	482922	3.02
2	42.863	15509772	96.98

(*R*,*E*)-4-(2-(ethylthio)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (3ab)

Following the typical procedure A.

37.3 mg, 87% yield; white solid; M.p. 50-55 °C. $R_f = 0.3$ (Pet/EtOAc = 10/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (minor) = 32.048 min, t (major) = 36.759 min. ee = 92%. $[\alpha]^{22}_{D} = +20.0$ (c = 0.60, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.19 (s, 1H), 7.84 (dd, J = 15.6, 8.4 Hz, 1H), 7.47 – 7.43 (m,
1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.31 – 7.23 (m, 5H), 7.21 – 7.13 (m, 2H), 7.00 – 6.96 (m, 1H), 5.60 (d, *J* = 8.4 Hz, 1H), 2.71 (q, *J* = 7.2 Hz, 2H), 2.48 (s, 3H), 2.16 (s, 3H), 1.89 (s, 3H), 1.18 (t, *J* = 7.3 Hz, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 165.1, 152.1, 150.3, 141.7, 136.7, 128.3, 128.0, 126.4, 126.3, 122.9, 122.4, 121.3, 120.5, 119.7, 117.7, 110.7, 45.5, 31.1, 15.4, 12.7, 12.3, 7.7.

 $\label{eq:est-HRMS: calcd for C_{26}H_{28}N_3OS^+ ([M+H]^+) = 430.1948, \ found \ 430.1946.$

IR (neat): 1687, 1633, 1491, 1445, 1380, 1353, 1284, 1008, 939, 742, 701 cm⁻¹.

	Retention Time	Area	% Area
1	32.691	17808082	49.44
2	36.604	18208111	50.56

	Retention Time	Area	% Area
1	32.048	1180800	3.92
2	36.759	28942559	96.08

(*R*,*E*)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4aa)

Following the typical procedure B.

38.9 mg, 87% yield; white solid; M.p. 105-110 °C. R_f = 0.2 (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel**IF** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm, retention time: t (major) = 24.292 min, t (minor) = 29.860 min. ee = 96%. [α]¹⁷_D = +81.4 (*c* = 0.69, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.33 (s, 1H), 7.78 (dd, *J* = 15.6, 8.0 Hz, 1H), 7.50 – 7.42 (m, 3H), 7.32–7.26 (m, 4H), 7.26 – 7.19 (m, 2H), 7.06 – 7.02 (m, 1H), 6.01 (d, *J* = 8.0 Hz, 1H), 3.04 (s, 3H), 2.47 (s, 3H), 2.13 (s, 3H), 1.88 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.4 148.4, 140.4, 139.7, 136.0, 129.2, 128.6, 128.0, 126.9, 126.2, 126.0, 123.7, 122.8, 121.4, 121.3, 118.0, 112.5, 45.4, 43.6, 12.7, 12.3, 7.7. **ESI-HRMS**: calcd for C₂₅H₂₆N₃O₃S⁺ ([M + H]⁺) = 448.1689, found 448.1693.

IR (neat): 1696, 1635, 1381, 1353, 1310, 1187, 1143, 1089, 1007, 958, 70, 701, 523, 432 cm⁻¹.

	Retention Time	Area	% Area
1	24.577	17498224	49.64
2	30.055	17750350	50.36

	Retention Time	Area	%Area
1	24.292	11578376	98.01
2	29.860	234710	1.99

(R,E)-4-(2-fluorophenyl)-4-(2-(methylsulfonyl)-1H-indol-3-yl)-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-2-en-1-one (4ba)

Following the typical procedure B.

34.2 mg, 74% yield; white solid; M.p. 102-106 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 27.239 min, t (minor) = 37.359 min. ee = 93%. $[\alpha]^{22}_{D} = +69.0$ (c = 0.62, in CH₂Cl₂). 7

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.30 (s, 1H), 7.77 (dd, *J* = 15.6, 7.6 Hz, 1H), 7.54 – 7.52 (m, 1H), 7.47 – 7.38 (m, 3H), 7.33 – 7.29 (m, 1H), 7.26 – 7.21 (m, 1H), 7.14 – 6.97 (m, 3H), 6.19 (d, *J* = 7.6 Hz, 1H), 3.08 (s, 3H), 2.47 (s, 3H), 2.11 (s, 3H), 1.88 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 160.7 (d, J = 246.2 Hz), 152.4, 147.3, 139.7, 135.8, 129.7 (d, J = 3.7 Hz), 129.1 (d, J = 8.4 Hz), 128.8, 127.8 (d, J = 13.6 Hz), 126.3, 126.1, 124.2 (d, J = 3.5 Hz), 123.6, 122.3, 121.5, 120.2, 117.9, 115.8 (d, J = 21.6 Hz), 112.6, 45.2, 38.2, 12.7, 12.3, 7.7.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -114.53.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3FS^+$ ([M + H]⁺) = 466.1595, found 466.1595. **IR** (neat): 1705, 1695, 1380, 1353, 1339, 1139, 914, 752, 524 cm⁻¹.

1	27.703	2778541	49.83
2	37.252	2797254	50.17

	Retention Time	Area	% Area
1	27.239	31694850	96.59
2	37.359	1117628	3.41

(*S*,*E*)-4-(2-chlorophenyl)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ca)

Following the typical procedure B.

30.4 mg, 63% yield; white solid; M.p. 118-123 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiracel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 26.044 min, t (minor) = 37.556 min. ee = 91%. [α]²²_D = -16.0 (c = 0.52, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.36 (s, 1H), 7.70 (dd, *J* = 15.6, 7.2 Hz, 1H), 7.52 – 7.50 (m, 1H), 7.45 – 7.39 (m, 2H), 7.38 – 7.28 (m, 3H), 7.24 – 7.18 (m, 2H), 7.08 – 7.04 (m, 1H), 6.26 (dd, *J* = 7.2, 1.6 Hz, 1H), 2.90 (s, 3H), 2.46 (s, 3H), 2.10 (s, 3H), 1.86 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.5, 147.9, 139.7, 138.1, 135.7, 134.4, 130.1, 130.1, 129.1, 128.7, 127.0, 126.9, 126.1, 123.6, 122.3, 121.6, 120.0, 117.9, 112.6, 44.8, 41.8, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3{}^{35}ClS^+$ ([M + H]⁺) = 482.1300, found 482.1304. $C_{25}H_{25}N_3O_3{}^{37}ClS^+$ ([M + H]⁺) = 484.1270, found 484.1277.

IR (neat): 1695, 1635, 1380, 1352, 1315, 1189, 1137, 1004, 958, 940, 745, 524, 503, 431 cm⁻¹.

	Retention Time	Alea	70 Alea
1	26.128	15525662	49.81
2	37.028	15642912	50.19

	Retention Time	Area	% Area
1	26.044	27945125	95.28
2	37.556	1383496	4.72

(R,E)-4-(2-(methylsulfonyl)-1H-indol-3-yl)-4-(o-tolyl)-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-2-en-1-one (4da)

Following the typical procedure B.

37.8 mg, 82% yield; white solid; M.p. 174-180 °C. R_f = 0.3 (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: t (major) = 17.638 min, t (minor) = 24.729 min. ee = 92%. [α]¹⁹_D = +11.5 (*c* = 0.75, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.24 (s, 1H), 7.76 (dd, *J* = 15.6, 6.8 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.35 – 7.23 (m, 3H), 7.19 – 7.12 (m, 3H), 7.08 – 7.04 (m, 1H), 6.13 (dd, *J* = 7.2, 1.6 Hz, 1H), 2.81 (s, 3H), 2.49 (s, 3H), 2.29 (s, 3H), 2.12 (s, 3H), 1.89 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.9, 152.39, 149.29, 139.7, 138.8, 137.3, 135.7, 130.9, 128.5, 128.3, 127.3, 127.0, 126.1, 123.1, 122.7, 121.5, 121.2, 117.9, 112.4, 44.6, 41.5, 19.7, 19.7, 12.7, 12.3, 7.6.

ESI-HRMS: calcd for $C_{26}H_{28}N_3O_3S^+$ ([M + H]⁺) = 462.1846, found 462.1850.

IR (neat): 2361, 2310, 1681, 1624, 1385, 1356, 1314, 1274, 1138, 758, 747 cm⁻¹.

	Retention Time	Area	%Area
1	17.445	9799732	49.73
2	23.724	9907150	50.27

	Retention Time	Area	% Area
1	17.638	24956247	95.94
2	24.729	1056782	4.06

(*R*,*E*)-4-(3-fluorophenyl)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ea)

Following the typical procedure B.

38.2 mg, 82% yield; white solid; M.p. 104-107 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 18.978 min, t (minor) = 21.770 min. ee = 93%. [α]¹⁸_D = +82.8 (c = 0.69, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.38 (s, 1H), 7.71 (dd, J = 15.2, 8.4 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.41 – 7.39 (m, 1H), 7.33 – 7.29 (m, 1H), 7.24 – 7.20 (m, 1H), 7.10 – 7.03 (m, 2H), 7.02 – 6.98 (m, 1H), 6.93 – 6.89 (m, 1H), 6.00 (d, J = 8.4 Hz, 1H), 3.09 (s, 3H), 2.47 (s, 3H), 2.13 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.6, 162.9 (d, J = 245.0 Hz), 152.6, 147.3, 142.9 (d, J = 6.8 Hz), 139.7, 136.0, 130.1 (d, J = 8.2 Hz), 129.3, 126.3, 125.7, 124.2, 123.7 (d, J = 2.9 Hz), 122.6, 121.6, 120.6, 118.1, 115.0 (d, J = 22.2 Hz), 113.9 (d, J = 20.9 Hz), 112.6, 45.6, 43.2 (d, J = 1.8 Hz), 12.7, 12.3, 7.7.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -112.39.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3FS^+$ ([M + H]⁺) = 466.1595, found 466.1591. **IR** (neat): 1696, 1381, 1353, 1312, 1136, 1007, 957, 937, 747, 523, 432 cm⁻¹.

	Retention Time	Area	% Area
1	18.978	15326409	96.67
2	21.770	527544	3.33

(*R*,*E*)-4-(3-chlorophenyl)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4fa)

Following the typical procedure B.

39.0 mg, 81% yield; white solid; M.p. 111-115 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 18.162 min, t (minor) = 20.999 min. ee = 93%. [α]¹⁹_D = +88.0 (c = 0.75, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.41 (s, 1H), 7.72 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.42 – 7.40 (m, 1H), 7.35 – 7.30 (m, 2H), 7.22 – 7.18 (m, 3H), 7.10 – 7.05 (m, 1H), 6.01 (d, *J* = 8.4, 1H), 3.11 (s, 3H), 2.49 (s, 3H), 2.15 (s, 3H), 1.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.6, 152.6, 147.2, 142.5, 139.7, 136.0, 134.5, 129.8, 129.3, 128.0, 127.2, 126.3, 126.2, 125.7, 124.2, 122.5, 121.6, 120.5, 118.1 112.7, 45.6, 43.2, 12.7,

12.3, 7.7.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3^{35}ClS^+$ ([M + H]⁺) = 482.1300, found 482.1304. $C_{25}H_{25}N_3O_3^{37}ClS^+$ ([M + H]⁺) = 484.1270, found 484.1275.

IR (neat): 1696, 1636, 1426, 1381, 1353, 1312, 1187, 1144, 1087, 1006, 959, 831, 787, 744, 682, 523 cm⁻¹.

	Retention Time	Area	% Area
1	19.042	3165185	50.21
2	21.631	3138827	49.79

	Retention Time	Area	% Area
1	18.162	12103848	96.58
2	20.999	428117	3.42

Following the typical procedure C.

42.6 mg, 92% yield; white solid; M.p. 94-100 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiracel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 18.350 min, t (minor) = 21.557 min. ee = 95%. [α]¹⁸_D = +80.9 (c = 0.47, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.16 (s, 1H), 7.78 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.50 – 7.42 (m, 3H), 7.34 – 7.30 (m, 1H), 7.18 – 7.13 (m, 2H), 7.11 – 7.02 (m, 3H), 5.98 (d, *J* = 8.4 Hz, 1H), 3.07 (s, 3H), 2.49 (s, 3H), 2.28 (s, 3H), 2.15 (s, 3H), 1.89 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.4, 148.5, 140.3, 139.7, 138.2, 136.0, 129.3, 128.7, 128.4, 127.7, 126.2, 126.1, 125.0, 123.6, 122.9, 121.5, 121.4, 117.9, 112.5, 45.5, 43.6, 21.5, 12.7, 12.3, 7.6.

ESI-HRMS: calcd for $C_{26}H_{28}N_3O_3S^+([M+H]^+) = 462.1846$, found 462.1850.

IR (neat): 1696, 1636, 1380, 1352, 1311, 1128, 1142, 1089, 1007, 958, 750, 702, 523, 433 cm⁻¹.

	Retention Time	Area	% Area
1	18.548	11782411	50.61
2	21.484	11497594	49.39

	Retention Time	Area	% Area
1	18.350	37298051	97.54
2	21.557	939831	2.46

(*R*,*E*)-4-(4-fluorophenyl)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ha)

Following the typical procedure B.

41.5 mg, 89% yield; white solid; M.p. 100-105 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 16.412 min, t (minor) = 21.238 min. ee = 94%. [α]²⁶_D = +68.7 (c = 0.67, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.36 (s, 1H), 7.73 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.50 – 7.39 (m, 3H), 7.35 – 7.25 (m, 3H), 7.08 – 7.04 (m, 1H), 7.00 – 6.91 (m, 2H), 5.99 (d, *J* = 8.4 Hz, 1H), 3.09 (s, 3H), 2.48 (s, 3H), 2.15 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.7, 161.7 (d, J = 244.3 Hz), 152.5, 148.0, 139.7, 136.1 (d, J = 3.4 Hz), 136.0, 129.6 (d, J = 7.9 Hz), 129.3, 126.3, 125.8, 123.9, 122.7, 121.5, 121.1, 118.0, 115.4 (d, J = 21.2 Hz), 112.6, 45.5, 42.9, 12.6, 12.3, 7.6.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -115.68.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3FS^+$ ([M + H]⁺) = 466.1595, found 466.1606.

IR (neat): 1697, 1636, 1505, 1381, 1353, 1312, 1224, 1144, 1090, 1008, 959, 824, 746, 523 cm⁻¹.

1	16.482	7595627	51.12
2	21.121	7262678	48.88

	Retention Time	Area	% Area
1	16.412	16041092	96.87
2	21.238	518703	3.13

(*R*,*E*)-4-(4-chlorophenyl)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ia)

Following the typical procedure B.

36.6 mg, 76% yield; white solid; M.p. 114-120 °C. R_f = 0.2 (Pet/EtOAc =4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm, retention time: t (major) = 21.546 min, t (minor) = 27.640 min. ee = 93%. [α]¹⁹_D = +67.5 (*c* = 0.73, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.35 (s, 1H), 7.72 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.41 – 7.39 (m, 1H), 7.35 – 7.31 (m, 1H), 7.26 – 7.24 (m, 4H), 7.09 – 7.04 (m, 1H), 5.98 (dd, *J* = 8.4, 1.2 Hz, 1H), 3.10 (s, 3H), 2.48 (s, 3H), 2.15 (s, 3H), 1.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.6, 152.6, 147.5, 139.7, 138.9, 136.0, 132.8, 129.3, 129.3, 128.7, 126.3, 125.7, 124.1, 122.6, 121.6, 120.7, 118.1, 112.6, 45.6, 42.9, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3{}^{35}ClS^+$ ([M + H]⁺) = 482.1300, found 482.1305. $C_{25}H_{25}N_3O_3{}^{37}ClS^+$ ([M + H]⁺) = 484.1270, found 482.1274.

IR (neat): 1696, 1636, 1489, 1380, 1353, 1311, 1279, 1186, 1144, 1090, 1008, 958, 940, 818, 750, 522 cm⁻¹.

	Retention Time	Area	% Area
1	21.546	25231568	96.34
2	27.640	959913	3.66

(*R*,*E*)-4-(4-bromophenyl)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ja)

Following the typical procedure B.

43.1 mg, 82% yield; white solid; M.p. 125-130 °C. R_f = 0.2 (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IA** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: t (major) = 11.039 min, t (minor) = 14.767 min. ee = 92%. [α]²⁴_D = +55.8 (*c* = 0.76, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.36 (s, 1H), 7.71 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.51 – 7.38 (m, 5H), 7.35 – 7.30 (m, 1H), 7.20 – 7.18 (m, 2H), 7.10 – 7.03 (m, 1H), 5.97 (d, *J* = 8.4 Hz, 1H), 3.11 (s, 3H), 2.48 (s, 3H), 2.15 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.6, 152.6, 147.4, 139.7, 139.5, 136.1, 131.7, 129.7, 129.4, 126.4, 125.7, 124.2, 122.6, 121.6, 121.0, 120.7, 118.1, 112.7, 45.6, 43.0, 12.6, 12.3, 7.6.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3^{79}BrS^+$ ([M + H]⁺) = 526.0795, found 526.0801. $C_{25}H_{25}N_3O_3^{81}BrS^+$ ([M + H]⁺) = 528.0774, found 528.0780.

IR (neat): 2361, 2354, 1696, 1636, 1380, 1353, 1310, 1144, 1007, 959 cm⁻¹.

	Retention Time	Area	% Area
1	11.035	9003009	50.37
2	14.979	8869137	49.63

	Retention Time	Area	% Area
1	11.039	997561	3.86
2	14.767	24839138	96.14

(R,E)-4-(4-iodophenyl)-4-(2-(methylsulfonyl)-1H-indol-3-yl)-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-2-en-1-one (4ka)

Following the typical procedure B.

29.5 mg, 51% yield; pale yellow solid; M.p. 130-136 °C. $R_{\rm f}$ = 0.2 (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 25.110 min, t (minor) = 32.542 min. ee = 95%. $[\alpha]^{23}_{D} = +47.3$ (*c* = 0.64, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.29 (s, 1H), 7.70 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.50 – 7.40 (m, 3H), 7.35 – 7.31 (m, 1H), 7.10 – 7.05 (m, 3H), 5.96 (d, J = 8.4 Hz, 1H), 3.10 (s, 3H), 2.48 (s, 3H), 2.15 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.6, 152.6, 147.4, 140.2, 139.7, 137.7, 136.0, 130.0, 129.4, 126.4, 125.8, 124.2, 122.6, 121.6, 120.7, 118.1, 112.6, 92.5, 45.6, 43.1, 12.6, 12.3, 7.6. ESI-HRMS: calcd for C₂₅H₂₅N₃O₃IS⁺ ([M + H]⁺) = 574.0656, found 574.0672.

IR (neat): 2361, 2355, 1696, 1353, 1308, 1143, 750, 521 cm⁻¹.

	Retention Time	Area	% Area
1	25.417	4068326	50.36
2	32.667	4010647	49.64

	Retention Time	Area	% Area
1	25.110	11551346	97.50
2	32.542	296345	2.50

(*R*,*E*)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-4-(4-(trifluoromethyl)phenyl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4la)

Following the typical procedure B.

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.33 (s, 1H), 7.74 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.55 – 7.43 (m, 6H), 7.40 – 7.32 (m, 2H), 7.10 – 7.06 (m, 1H), 6.07 (d, *J* = 8.4 Hz, 1H), 3.13 (s, 3H), 2.48 (s, 3H), 2.15 (s, 3H), 1.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.6, 152.7, 146.9, 144.5, 139.8, 136.1, 129.5, 129.3 (d, *J* = 32.0 Hz), 128.3, 126.8 (q, *J* = 275.7 Hz), 126.5, 125.7, 125.6 (q, *J* = 3.6 Hz), 124.5, 122.5, 121.7, 120.4, 118.1, 112.7, 45.7, 43.4, 12.6, 12.3, 7.6.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -62.46.

ESI-HRMS: calcd for $C_{26}H_{25}N_3O_3F_3S^+$ ([M + H]⁺) = 516.1563, found 516.1562. **IR** (neat): 2360, 2351, 1697, 1354, 1320, 1121, 1067, 10111, 958, 824, 750, 522 cm⁻¹.

	Retention Time	Area	% Area
1	16.256	3286912	49.92
2	20.597	3297135	50.08

	Retention Time	Area	% Area
1	16.381	14627255	94.25
2	20.901	892518	5.75

Following the typical procedure C.

38.7 mg, 84% yield; white solid; M.p. 100-106 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 24.881 min, t (minor) = 32.764 min. ee = 94%. [α]¹⁸_D = +65.3 (c = 0.53, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.19 (s, 1H), 7.78 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.51 – 7.42 (m, 3H), 7.35 – 7.29 (m, 1H), 7.21 – 7.19 (m, 2H), 7.11 – 7.02 (m, 3H), 5.98 (d, *J* = 8.4 Hz, 1H), 3.06 (s, 3H), 2.48 (s, 3H), 2.30 (s, 3H), 2.15 (s, 3H), 1.89 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.4, 148.6, 139.7, 137.3, 136.5, 136.0, 129.3, 129.2, 127.9, 126.2, 126.1, 123.6, 122.9, 121.6, 121.4, 117.9, 112.5, 45.6, 43.3, 21.0, 12.7, 12.3, 7.6.

ESI-HRMS: calcd for $C_{26}H_{28}N_3O_3S^+([M+H]^+) = 462.1846$, found 462.1850. **IR** (neat): 1696, 1635, 1380, 1352, 1311, 1187, 1143, 1007, 958, 939, 811, 749, 522 cm⁻¹.

	Retention Time	Area	% Area
1	24.881	19135177	97.05
2	32.764	582078	2.95

(*R*,*E*)-4-(4-methoxyphenyl)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4na)

Following the typical procedure B.

41.1 mg, 86% yield; white solid; M.p. 100-104 °C. $R_f = 0.1$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 34.050 min, t (minor) = 42.393 min. ee = 91%. [α]²³_D = +47.2 (c = 0.69, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.33 (s, 1H), 7.76 (dd, *J* = 15.6, 8.0 Hz, 1H), 7.49 – 7.41 (m, 3H), 7.33 – 7.29 (m, 1H), 7.23 – 7.19 (m, 2H), 7.08 – 7.04 (m, 1H), 6.83 – 6.77 (m, 2H), 5.96 (d, *J* = 8.4 Hz, 1H), 3.76 (s, 3H), 3.05 (s, 3H), 2.48 (s, 3H), 2.14 (s, 3H), 1.89 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.9, 158.4, 152.4, 148.8, 139.7, 136.0, 132.5, 129.1, 129.1, 126.2, 126.1, 123.5, 122.9, 121.7, 121.4, 117.9, 114.0, 112.5, 77.2, 55.2, 45.4, 42.9, 12.7, 12.3, 7.6.

ESI-HRMS: calcd for $C_{26}H_{28}N_3O_4S^+$ ([M + H]⁺) = 478.1795, found 478.1801.

IR (neat): 2362, 2250, 1696, 1634, 1509, 1353, 1303, 1247, 1180, 1143, 1007, 959, 823 cm⁻¹.

	Retention Time	Area	% Area
1	34.784	16722550	49.54
2	42.027	17034081	50.46

	Retention Time	Area	%Area
1	34.050	54177694	95.61
2	42.393	2487693	4.39

(S,E)-4-(furan-2-yl)-4-(2-(methyls ulfonyl)-1H-indol-3-yl)-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-2-en-1-one (40a)

Following the typical procedure B.

29.7 mg, 68% yield; pale yellow solid; M.p. 103-109 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 23.315 min, t (minor) = 26.133 min. ee = 92%. [α]²⁵_D = +36.7 (*c* = 0.48, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.22 (s, 1H), 7.66 (dd, *J* = 15.6, 7.2 Hz, 1H), 7.59 – 7.57 (m, 1H), 7.50 – 7.42 (m, 2H), 7.37 – 7.28 (m, 2H), 7.13 – 7.09 (m, 1H), 6.33 – 6.25 (m, 2H), 6.03 (d, *J* = 7.2 Hz, 1H), 3.20 (s, 3H), 2.47 (s, 3H), 2.13 (s, 3H), 1.88 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.7, 152.9, 152.4, 145.3, 142.1, 139.6, 135.9, 129.1, 126.3, 125.9, 124.1, 122.6, 121.5, 119.1, 118.0, 112.4, 110.4, 107.1, 45.8, 38.2, 12.7, 12.3, 7.6.

ESI-HRMS: calcd for $C_{23}H_{24}N_3O_4S^+$ ([M + H]⁺) = 438.1482, found 438.1484.

IR (neat): 2361, 2356, 1697, 1639, 1353, 1313, 1142, 1009, 959,747, 522, 433 cm⁻¹.

1	22.874	4402311	50.88
2	26.093	4250383	49.12

	Retention Time	Area	% Area
1	23.315	14417834	95.81
2	26.133	630185	4.19

(*R*,*E*)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-4-(thiophen-3-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4pa)

Following the typical procedure B.

32.1 mg, 70% yield; pale yellow solid; M.p. 90-94 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IA** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (minor) = 11.522 min, t (major) = 13.465 min. ee = 94%. [α]²⁴_D = +50.0 (c = 0.49, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.23 (s, 1H), 7.73 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.52 – 7.43 (m, 3H), 7.35 – 7.31 (m, 1H), 7.26 – 7.23 (m, 1H), 7.13 – 7.02 (m, 2H), 6.94 – 6.92 (m, 1H), 5.98 (d, *J* = 8.0, Hz, 1H), 3.10 (s, 3H), 2.48 (s, 3H), 2.15 (s, 3H), 1.89 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.5, 147.9, 140.9, 139.7, 136.0, 128.9, 127.8, 126.3, 126.1, 125.9, 123.3, 122.7, 121.8, 121.4, 121.0, 118.0, 112.5, 45.6, 39.9, 12.7, 12.3, 7.7. ESI-HRMS: calcd for C₂₃H₂₄N₃O₃S₂⁺ ([M + H]⁺) = 454.1254, found 454.1262.

IR (neat): 1696, 1636, 1381, 1352, 1311, 1141, 1008, 959, 832, 747, 523, 433 cm⁻¹.

	Retention Time	Area	% Area
1	11.524	44209759	49.86
2	13.495	44452280	50.14

	Retention Time	Area	% Area
1	11.552	1402786	3.09
2	13.465	44036773	96.91

(*R*,*E*)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-4-(naphthalen-2-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4qa)

Following the typical procedure B.

43.9 mg, 88% yield; pale yellow solid; M.p. 132-136 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 27.178 min, t (minor) = 36.345 min. ee = 94%. [α]²³_D = +104.1 (c = 0.59, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.37 (s, 1H), 7.90 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.83 – 7.76 (m, 3H), 7.74 – 7.72 (m, 1H), 7.57 – 7.53 (m, 1H), 7.47 – 7.44 (m, 4H), 7.41 – 7.39 (m, 1H), 7.33 – 7.28 (m, 1H), 7.04 – 6.98 (m, 1H), 6.20 (d, *J* = 8.4 Hz, 1H), 3.10 (s, 3H), 2.51 (s, 3H), 2.15 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.5, 148.2, 139.7, 138.0, 136.1, 133.3, 132.3, 129.4, 128.4, 127.9, 127.6, 126.5, 126.2, 126.2, 126.1, 125.9, 124.0, 122.8, 121.5, 121.2, 118.0, 112.5, 77.2, 45.5, 43.7, 12.7, 12.3, 7.6.

ESI-HRMS: calcd for $C_{29}H_{28}N_3O_3S^+([M + H]^+) = 498.1846$, found 498.1852. **IR** (neat): 1696, 1634, 1381, 1352, 1312, 1142, 958, 820, 747, 523, 477, 432 cm⁻¹.

	Retention Time	Area	% Area
1	27.278	25985452	50.04
2	35.598	25941592	49.96

	Retention Time	Area	% Area
1	27.178	84552113	97.01
2	36.345	2604004	2.99

(*E*)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-5-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)pent-2-en-1-one (4ra)

Following the typical procedure B.

2.5 mg, 5% yield; white solid; M.p. 72-78 °C. $R_f = 0.3$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel IA column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (minor) = 8.594 min, t (major) = 12.229 min. ee = 78%. $[\alpha]^{21}_{D} = -50.0$ (c = 0.08, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.82 (s, 1H), 7.60 – 7.58 (m, 1H), 7.46 – 7.38 (m, 3H), 7.26 – 7.22 (m, 2H), 7.15 – 7.08 (m, 3H), 6.94 – 6.92 (m, 2H), 4.82 – 4.76(m, 1H), 3.51 – 3.45 (m, 1H), 3.39 – 3.35 (m, 1H), 2.46 (s, 3H), 2.37 (s, 3H), 2.17 (s, 3H), 1.89 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 165.3, 155.8, 152.3, 145.5, 139.8, 134.9, 130.2, 128.6, 127.7, 126.9, 126.8, 126.5, 125.6, 123.8, 121.0, 118.5, 117.8, 112.2, 47.3, 44.9, 25.8, 12.7, 12.3, 7.7. **ESI-HRMS**: calcd for C₂₆H₂₈N₃O₃S⁺ ([M + H]⁺) = 462.1846, found 462.1848.

IR (neat): 1696, 1634, 1380, 1352, 1300, 1142, 1089, 1013, 962, 937, 821, 751, 700, 521 cm⁻¹.

	Retention Time	Area	% Area
1	8.492	4789849	50.04
2	12.128	4781959	49.96

	Retention Time	Area	% Area
1	8.594	2016843	11.05
2	12.229	16239190	88.95

(*E*)-4-(2-(methylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)pent-2-en-1-one (4sa)

Following the typical procedure B.

18.0 mg, 39% yield; white solid; M.p. 85-90 °C. $R_f = 0.4$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IA** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (minor) = 15.541 min, t (major) = 18.840 min. ee = 82%. [α]²⁸_D = -191.5 (c = 0.26, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.25 (s, 1H), 8.04 (d, *J* = 16.0 Hz, 1H), 7.42 – 7.37 (m, 4H), 7.32 – 7.17 (m, 4H), 7.19 – 7.17 (m, 1H), 6.96 (t, *J* = 8.0 Hz, 1H), 2.84 (s, 3H), 2.50 (s, 3H), 2.25 (s, 3H), 2.18 (s, 3H), 1.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.9, 152.3, 150.0, 139.5, 135.9, 133.7, 130.2, 129.8, 129.3, 128.4, 126.5, 126.2, 122.7, 121.9, 121.4, 121.0, 117.8, 112.7, 44.8, 42.0, 40.1, 12.8, 12.3, 7.7.

ESI-HRMS: calcd for $C_{26}H_{28}N_3O_3S^+$ ([M + H]⁺) = 462.1846, found 462.1848.

IR (neat): 1695, 1630, 1378, 1351, 1321, 1264, 1146, 1027, 735, 702, 529, 434 cm⁻¹.

	Retention Time	Area	% Area
1	15.496	3436950	50.62
2	18.799	3353364	49.38

Ph O O S Et H O Following the typical procedure B.

35.0 mg, 76% yield; white solid; M.p. 100-104 °C. $R_{\rm f}$ = 0.3 (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 24.761 min, t (minor) = 28.750 min. ee = 92%. [α]¹⁸_D = +83.4 (c = 0.70, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.19 (s, 1H), 7.71 (dd, *J* = 15.6, 8.0 Hz, 1H), 7.42 – 7.35 (m, 3H), 7.26 – 7.13 (m, 6H), 7.00 – 6.96 (m, 1H), 5.91 (d, J = 8.0 Hz, 1H), 3.14 – 3.01 (m, 2H), 2.40 (s, 3H), 2.06 (s, 3H), 1.81 (s, 3H), 1.16 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.3, 148.4, 140.5, 139.7, 136.2, 128.6, 128.0, 127.7, 126.9, 126.1, 126.1, 123.8, 122.9, 121.8, 121.3, 117.9, 112.5, 51.7, 43.6, 12.7, 12.3, 7.6, 7.3. **ESI-HRMS**: calcd for C₂₆H₂₈N₃O₃S⁺ ([M + H]⁺) = 462.1846, found 462.1850.

IR (neat): 1696, 1635, 1380, 1352, 1311, 1276, 1185, 1129, 1090, 987, 938, 831, 754, 727, 701, 622, 526, 506 cm⁻¹.

	Retention 1 mile	Alca	70 Alca
1	24.724	2170506	50.09
2	28.364	2162682	49.91

	Retention Time	Area	% Area
1	24.761	23646608	96.00
2	28.750	984210	4.00

(*R*,*E*)-4-phenyl-4-(2-(propylsulfonyl)-1*H*-indol-3-yl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ac)

Following the typical procedure B.

40.5 mg, 84% yield; white solid; M.p. 111-115 °C. $R_f = 0.4$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 27.137 min, t (minor) = 34.282 min. ee = 89%. $[\alpha]^{24}_{D} = +56.5$ (*c* = 0.20, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.24 (s, 1H), 7.80 (dd, J = 15.6, 8.0 Hz, 1H), 7.51 – 7.43 (m, 3H), 7.36 – 7.26 (m, 5H), 7.24 – 7.19 (m, 1H), 7.08 – 7.04 (m, 1H), 5.98 (d, J = 8.0 Hz, 1H), 3.13 – 3.00 (m, 2H), 2.48 (s, 3H), 2.14 (s, 3H), 1.89 (s, 3H), 1.73 – 1.64 (m, 2H), 0.83 (t, J = 7.2 Hz, 3H). ¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.3, 148.6, 140.5, 139.6, 136.0, 128.6, 128.2, 128.0, 126.9, 126.2, 126.0, 123.7, 122.9, 121.6, 121.4, 117.9, 112.5, 59.0, 43.7, 16.4, 12.7, 12.3, 12.3, 7.7.

ESI-HRMS: calcd for $C_{27}H_{30}N_3O_3S^+([M+H]^+) = 476.2002$, found 476.2008.

IR (neat): 1697, 1637, 1381, 1354, 1315, 1181, 1132, 1088, 1011, 959, 846, 803, 760, 728, 701, 531, 430 cm⁻¹.

	Retention Time	Area	% Area
1	27.391	10422587	49.35
2	33.940	10698578	50.65

	Retention Time	Area	% Area
1	27.137	52712748	94.60
2	34.282	3010237	5.40

(*R*,*E*)-4-(2-(butylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trime thyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ad)

Following the typical procedure C.

46.4 mg, 95% yield; white solid; M.p. 90-92 °C. $R_f = 0.5$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 23.254 min, t (minor) = 31.040 min. ee = 85%. [α]²³_D = +48.7 (c = 0.45, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.21 (s, 1H), 7.80 (dd, *J* = 15.6, 8.0 Hz, 1H), 7.52 – 7.44 (m, 3H), 7.35 – 7.26 (m, 5H), 7.24 – 7.19 (m, 1H), 7.10 – 7.05 (m, 1H), 5.98 (d, *J* = 8.4 Hz, 1H), 3.14 – 3.03 (m, 2H), 2.48 (s, 3H), 2.14 (s, 3H), 1.67 – 1.58 (m, 2H), 1.27 – 1.18 (m, 2H), 0.74 (t, *J* = 7.2 Hz, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.7, 152.3, 148.7, 140.5, 139.6, 136.1, 128.6, 128.3, 128.0, 126.9, 126.2, 126.0, 123.6, 122.9, 121.6, 121.4, 117.9, 112.5, 57.2, 43.7, 24.4, 21.3, 13.3, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{28}H_{32}N_3O_3S^+([M + H]^+) = 490.2159$, found 490.2162. **IR** (neat): 1696, 1635, 1380, 1352, 1294, 1127, 1089, 1005, 936, 745, 701, 625, 522 cm⁻¹.

1	23.727	15389195	49.54
2	31.461	15673136	50.46

	Retention Time	Area	% Area
1	23.254	21171881	92.52
2	31.040	1711200	7.48

(*R*,*E*)-4-(2-(isobutylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trime thyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ae)

Following the typical procedure C.

34.2 mg, 70% yield; white solid; M.p. 91-96 °C. $R_f = 0.4$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IA** column), n-hexane/i-PrOH=90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (minor) = 19.974 min, t (major) = 21.6417777 min. ee = 81%. $[\alpha]^{22}_{D}$ = +45.6 (*c* = 0.50, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.20 (s, 1H), 7.80 (dd, J = 15.6, 8.0 Hz, 1H), 7.53 – 7.44 (m, 3H), 7.37 – 7.26 (m, 5H), 7.24 – 7.20 (m, 1H), 7.10 – 7.05 (m, 1H), 5.98 (d, J = 8.0 Hz, 1H), 3.04 – 2.95 (m, 2H), 2.49 (s, 3H), 2.22 – 2.17 (m, 1H), 2.15 (s, 3H), 1.90 (s, 3H), 0.96 – 0.92 (m, 6H). ¹³C{¹H} **NMR** (100 MHz, Chloroform-*d*) δ 164.7, 152.3, 148.6, 140.5, 139.6, 136.0, 129.1, 128.6, 128.1, 126.9, 126.2, 126.0, 123.6, 122.9, 121.4, 121.3, 117.9, 112.5, 65.0, 43.8, 24.0, 22.5, 22.5, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{28}H_{32}N_3O_3S^+$ ([M + H]⁺) = 490.2159, found 490.2153.

IR (neat): 1696, 1635, 1380, 1352, 1230, 1130, 1086, 1006, 938, 832, 746, 700, 627, 518 cm⁻¹.

	Retention Time	Area	% Area
1	19.693	5631621	49.79
2	21.513	5679543	50.21

	Retention Time	Area	% Area
1	19.974	4731951	9.65
2	21.641	44278422	90.35

(*R*,*E*)-4-(2-(dodecylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4af)

Following the typical procedure B.

41.8 mg, 70% yield; colorless oil; $R_f = 0.5$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 16.883 min, t (minor) = 22.012 min. ee = 85%. [α]²³_D = +53.8 (c = 0.71, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.29 (s, 1H), 7.80 (dd, J = 15.6, 8.4 Hz, 1H), 7.55 – 7.42 (m, 3H), 7.34 – 7.19 (m, 6H), 7.08 – 7.04 (m, 1H), 5.99 (d, J = 8.4 Hz, 1H), 3.10 – 3.06 (m, 2H), 2.48 (s, 3H), 2.14 (s, 3H), 1.89 (s, 3H), 1.69 – 1.55 (m, 2H), 1.29 – 1.03 (m, 18H), 0.87 (t, J = 6.8 Hz, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.7, 152.3, 148.7, 140.6, 139.6, 136.1, 128.6, 128.2, 128.0, 126.9, 126.2, 126.0, 123.6, 122.9, 121.6, 121.3, 117.9, 112.5, 57.4, 43.7, 31.9, 29.5, 29.3, 29.3, 29.2, 28.8, 28.0, 22.6, 22.6, 14.1, 12.7, 12.3, 7.6.

ESI-HRMS: calcd for $C_{36}H_{48}N_3O_3S^+$ ([M + H]⁺) = 602.3411, found 602.3421. **IR** (neat): 2852, 1699, 1635, 1380, 1352, 1296, 1129, 1006, 745, 523 cm⁻¹.

	Retention Time	Area	% Area
1	17.066	6138805	50.56
2	21.958	6002792	49.44

1	16.883	44878308	92.68
2	22.012	3545345	7.32

(R,E)-4-(2-(benzylsulfonyl)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but (R,E)-4-(2-(benzylsulfonyl)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but (R,E)-4-(2-(benzylsulfonyl)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but (R,E)-4-(2-(benzylsulfonyl)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but (R,E)-4-(2-(benzylsulfonyl)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but (R,E)-4-(2-(benzylsulfonyl)-1H-pyrazol-1-yl)but (R,E)-4-(benzylsulfonyl-1H-pyrazol-1-yl)but (R,E)-4-(benzylsulfonyl-1H-pyrazol-1H-pyrazol-1-yl)but (R,E)-4-(benzylsulfonylsulfonyl-1H-pyrazol-1+yl)but (R,E)-4-(benzylsulfony	t–
2-en-1-one (4ag)	

Ph O O S-Bn N O Following the typical procedure D.

39.1 mg, 75% yield; pale yellow solid; M.p. 96-100 °C. $R_f = 0.3$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 30.322 min, t (minor) = 36.249 min. ee = 87%. $[\alpha]^{20}_{D} = +50.2$ (c = 0.76, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.82 (s, 1H), 7.78 (dd, *J* = 15.6, 8.0 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.36 – 7.25 (m, 6H), 7.24 – 7.19 (m, 2H), 7.17 – 7.12 (m, 2H), 7.07 – 6.99 (m, 3H), 6.02 (d, *J* = 8.0, 1H), 4.35 – 4.25 (m, 2H), 2.48 (s, 3H), 2.10 (s, 3H), 1.87 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.4, 148.8, 140.6, 139.6, 136.0, 130.7, 129.0, 128.6, 128.6, 128.2, 127.3, 127.2, 126.9, 126.1, 125.8, 123.6, 122.8, 122.5, 121.3, 117.9, 112.4, 63.4, 43.6, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{31}H_{30}N_3O_3S^+([M+H]^+) = 524.2002$, found 524.2008.

IR (neat): 1693, 1634, 1380, 1351, 1312, 1190, 1147, 1117, 1089, 1005, 936, 914, 871, 830, 726, 696, 640, 601, 516, 430 cm⁻¹.

	Retention Time	Area	% Area
1	30.638	3300653	49.74
2	36.154	3335086	50.26

	Retention Time	Area	% Area
1	30.322	15736056	93.51
2	36.249	1092402	6.49

(*R*,*E*)-4-phenyl-4-(2-(phenyls ulfonyl)-1*H*-indol-3-yl)-1-(3,4,5-trime thyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ah)

Following the typical procedure B.

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH=90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 28.159 min, t (minor) = 35.053 min. ee = 20%. [α]²²_D = +17.2 (c = 0.60, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.18 (s, 1H), 7.93 – 7.91 (m, 2H), 7.65 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.43 – 7.32 (m, 6H), 7.31 – 7.28 (m, 1H), 7.20 – 7.12 (m, 5H), 7.02 – 6.98 (m, 1H), 6.00 (d, *J* = 8.4 Hz, 1H), 2.46 (s, 3H), 2.19 (s, 3H), 1.91 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.7, 152.1, 147.8, 141.4, 140.3, 139.6, 136.2, 133.3, 130.2, 129.3, 128.4, 127.9, 127.1, 126.7, 126.2, 126.1, 123.7, 122.9, 121.4, 121.3, 117.8, 112.4, 43.5, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{30}H_{28}N_3O_3S^+([M+H]^+) = 510.1846$, found 510.1848.

IR (neat): 1694, 1634, 1353, 1304, 1184, 1147, 1086, 1005, 936, 831, 749, 723, 618, 549, 431cm⁻¹.

	Retention Time	Area	% Area
1	28.228	2903889	50.06
2	35.120	2897487	49.94

	Retention Time	Area	%Area
1	28.159	1859627	60.21
2	35.053	1228756	39.79

(*R*,*E*)-4-(5-chloro-2-(methylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ai)

Following the typical procedure B.

36.4 mg, 76% yield; white solid; M.p. 110-114 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time : t (major) = 14.679 min, t (minor) = 18.418 min. ee = 94%. [α]²²_D = +103.2 (c = 0.72, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.57 (s, 1H), 7.71 (dd, *J* = 15.6, 8.4, 1.2 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.38 – 7.34 (m, 2H), 7.29 – 7.23 (m, 6H), 5.97 (d, *J* = 8.4 Hz, 1H), 3.07 (s, 3H), 2.49 (s, 3H), 2.14 (s, 3H), 1.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.6, 147.7, 139.9, 139.8, 134.3, 130.6, 128.7, 127.9, 127.2, 127.1, 126.9, 126.8, 124.2, 121.8, 120.7, 118.0, 113.8, 45.4, 43.4, 12.7, 12.3, 7.6.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3{}^{35}ClS^+$ ([M + H]⁺) = 482.1300, found 482.1299. $C_{25}H_{25}N_3O_3{}^{37}ClS^+$ ([M + H]⁺) = 484.1270, found 484.1271.

IR (neat): 1696, 1635, 1354, 1307, 1137, 960, 758, 701, 535, 431cm⁻¹.

	Retention Time	Area	% Area
1	14.738	4244328	49.42
2	18.230	4344377	50.58

	Retention Time	Area	% Area
1	14.679	15454206	97.13
2	18.418	456355	2.87

(*R*,*E*)-4-(5-bromo-2-(methylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4aj)

Following the typical procedure C.

45.5 mg, 87% yield; white solid; M.p. 107-111 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 18.909 min, t (minor) = 23.142 min. ee = 95%. [α]¹⁷_D = +126.5 (c = 0.43, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.27 (s, 1H), 7.69 (dd, J = 15.4, 8.4, 1H), 7.52 – 7.41 (m, 2H), 7.38 – 7.35 (m, 1H), 7.31 – 7.22 (m, 6H), 5.94 (d, J = 8.4 Hz, 1H), 3.05 (s, 3H), 2.47 (s, 3H), 2.13 (s, 3H), 1.88 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.7, 152.6, 147.6, 139.8, 139.8, 134.4, 130.4, 129.4, 128.7, 127.9, 127.4, 127.2, 124.9, 124.1, 120.6, 118.1, 114.6, 114.1, 45.4, 43.3, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3^{79}BrS^+$ ([M + H]⁺) = 526.0795, found 526.0798. $C_{25}H_{25}N_3O_3^{81}BrS^+([M + H]^+) = 528.0774$, found 528.0779.

IR (neat): 1697, 1636, 1381, 1354, 1308, 1137, 1005, 959, 937, 802, 759, 700, 533, 429 cm⁻¹.

	Retention Time	Area	% Area
1	18.909	34632145	97.51
2	23.142	884361	2.49

(*R*,*E*)-4-(5-methoxy-2-(methylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ak)

Following the typical procedure C.

38.0 mg, 80% yield; white solid; M.p. 111-116 °C. $R_f = 0.2$ (Pet/EtOAc = 3/1).

MeO Ph O I N= t H O t

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IF** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 30.334 min, t (minor) = 34.237 min. ee = 95%. [α]¹⁸_D = +123.0 (c = 0.30, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.05 (s, 1H), 7.73 (dd, *J* = 15.6, 8.0 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.34 – 7.27 (m, 5H), 7.25 – 7.21 (m, 1H), 7.00 – 6.97 (m, 1H), 6.73 – 6.72 (m, 1H), 6.00 (d, *J* = 8.0 Hz, 1H), 3.60 (s, 3H), 3.04 (s, 3H), 2.46 (s, 3H), 2.12 (s, 3H), 1.88 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.9, 154.6, 152.4, 148.1, 140.3, 139.6, 131.2, 129.5, 128.6, 128.1, 126.9, 126.5, 123.8, 120.6, 118.0, 117.9, 113.4, 102.6, 55.4, 45.4, 43.5, 12.7, 12.3, 7.7. **ESI-HRMS**: calcd for C₂₆H₂₈N₃O₄S⁺ ([M + H]⁺) = 478.1795, found 478.1800.

IR (neat): 1696, 1634, 1456, 1380, 1354, 1308, 1218, 1178, 1133, 1081, 1024, 1005, 968, 941, 836, 807, 759, 703, 622, 517, 434 cm⁻¹.

	Retention Time	Area	% Area
1	30.241	5902159	50.86
2	33.739	5703648	49.14

	Retention Time	Area	% Area
1	30.334	7807778	97.56
2	34.237	195516	2.44

(*R*,*E*)-4-(6-fluoro-2-(methylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4al)

Following the typical procedure B.

35.2 mg, 76% yield; pale yellow solid; M.p. 91-96 °C. $R_f = 0.3$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 15.172 min, t (minor) = 19.361 min. ee = 96%. $[\alpha]^{21}_{D}$ = +76.4 (c = 0.42, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.35 (s, 1H), 7.73 (dd, J = 15.6, 8.0 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.39 – 7.35 (m, 1H), 7.30 – 7.26 (m, 4H), 7.26 – 7.22 (m, 1H), 7.12 – 7.09 (m, 1H), 6.85 – 6.80 (m, 1H), 6.00 (d, J = 8.0, 1H), 3.06 (s, 3H), 2.49 (s, 3H), 2.15 (s, 3H), 1.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 161.9 (d, J = 243.3 Hz), 152.6, 148.0 , 140.2, 139.8, 136.2 (d, J = 12.6 Hz), 130.0 (d, J = 38.6 Hz), 129.7 (d, J = 3.8 Hz), 128.7, 128.0, 127.1, 124.3 (d, J = 10.2 Hz), 124.0, 122.2 (d, J = 87.4 Hz), 118.05 , 111.3 (d, J = 25.0 Hz), 98.4 (d, J = 25.9 Hz), 45.5, 43.5 , 12.7, 12.3, 7.7.

¹⁹**F**{¹**H**} **NMR** (376 MHz, CDCl₃) δ -113.86.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3FS^+$ ([M + H]⁺) = 466.1595, found 466.1599. **IR** (neat): 1696, 1629, 1354, 1303, 1191, 1133, 957, 756, 702, 557, 488 cm⁻¹.

	Retention Time	Area	% Area
1	15.200	10477926	49.89
2	19.234	10525882	50.11

	Retention Time	Area	% Area
1	15.172	19182322	98.02
2	19.361	388009	1.98

(*R*,*E*)-4-(6-chloro-2-(methylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4am)

Following the typical procedure C.

44.9 mg, 93% yield; white solid; M.p. 120-125 °C. $R_f = 0.3$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 14.252 min, t (minor) = 17.824 min. ee = 96%. $[\alpha]^{21}_{D}$ = +84.9 (c = 0.59, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.37 (s, 1H), 7.70 (dd, *J* = 15.6, 8.4 Hz, 1H), 7.47 – 7.40 (m, 2H), 7.32 – 7.21 (m, 6H), 7.00 – 6.98 (m, 1H), 5.98 (d, *J* = 8.4, 1H), 3.05 (s, 3H), 2.47 (s, 3H), 2.13 (s, 3H), 1.88 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.6, 147.9, 140.1, 139.7, 136.2, 132.3, 129.9, 128.7, 127.9, 127.1, 124.5, 124.1, 123.8, 122.5, 121.6, 118.1, 112.3, 45.4, 43.4, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3{}^{35}ClS^+$ ([M + H]⁺) = 482.1300, found 482.1299. $C_{25}H_{25}N_3O_3{}^{37}ClS^+$ ([M + H]⁺) = 484.1270, found 484.1271.

IR (neat): 1696, 1354, 1314, 1274, 1132, 959, 847, 757, 701, 534 cm⁻¹.

	Retention Time	Area	% Area
1	14.277	10644440	50.07
2	17.645	10615350	49.93

	Retention Time	Area	% Area
1	14.252	12964558	97.96
2	17.824	269612	2.04

R,E)-4-(6-bromo-2-(methylsulfonyl)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol	-
-yl)but-2-en-1-one (4an)	

Following the typical procedure C.

45.6 mg, 87% yield; white solid; M.p. 105-109 °C. $R_f = 0.3$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 14.776 min, t (minor) = 18.503 min. ee = 95%. [α]²²_D = +74.1 (c = 0.46, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.40 (s, 1H), 7.69 (dd, J = 15.6, 8.0, 1H), 7.59 – 7.57 (m, 1H), 7.45 – 7.40 (m, 1H), 7.28 – 7.26 (m, 4H), 7.25 – 7.21 (m, 2H), 7.14 – 7.11 (m, 1H), 5.97 (d, J = 8.0, 1H), 3.04 (s, 3H), 2.47 (s, 3H), 2.13 (s, 3H), 1.88 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.6, 147.9, 140.1, 139.8, 136.6, 130.2, 129.8, 128.7, 127.9, 127.1, 125.1, 124.8, 124.0, 121.6, 120.1, 118.1, 115.4, 45.4, 43.4, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{25}H_{25}N_3O_3^{79}BrS^+$ ([M + H]⁺) = 526.0795, found 526.0796. $C_{25}H_{25}N_3O_3^{81}BrS^+([M + H]^+) = 528.0774$, found 528.0779.

IR (neat): 1696, 1637, 1381, 1354, 1314, 1276, 1182, 1132, 1088, 1007, 959, 845, 803, 757, 701, 530 cm⁻¹.

	Retention Time	Area	% Area
1	14.842	5636851	50.13
2	18.342	5607945	49.87

1	14.776	15892912	97.51
2	18.503	359045	2.49

(R,E)-4-(7-bromo-2-(methylsulfonyl)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol	-
1-yl)but-2-en-1-one (4ao)	

Following the typical procedure B.

30.4 mg, 58% yield; white solid; M.p. 102-105 °C. $R_f = 0.3$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 20.808 min, t (minor) = 24.880 min. ee = 48%. [α]²¹_D = +33.3 (c = 0.21, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.97 (s, 1H), 7.73 (dd, J = 15.6, 8.0 Hz, 1H), 7.51 – 7.40 (m, 3H), 7.31 – 7.28 (m, 4H), 7.26 – 7.22 (m, 1H), 6.98 – 6.94 (m, 1H), 6.01 (d, J = 8.0, 1H), 3.09 (s, 3H), 2.48 (s, 3H), 2.15 (s, 3H), 1.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.6, 152.5, 147.7, 140.0, 139.7, 134.7, 130.2, 128.7, 128.5, 128.0, 127.1, 127.1, 124.1, 122.6, 122.5, 122.2, 118.0, 105.7, 45.4, 43.6, 26.9, 12.7, 12.3, 7.7. **ESI-HRMS**: calcd for $C_{25}H_{25}N_3O_3^{79}BrS^+$ ([M + H]⁺) = 526.0795, found 526.0796. $C_{25}H_{25}N_3O_3^{81}BrS^+$ ([M + H]⁺) = 528.0774, found 528.0771.

IR (neat): 2361, 2310, 1695, 1636, 1425, 1381, 1354, 1316, 1187, 1141, 1092, 961 cm⁻¹.

	Retention Time	Area	% Area
1	20.726	11970687	49.65
2	24.603	12141059	50.35

	Retention Time	Area	% Area
1	20.808	20585135	73.90
2	24.880	7270801	26.10

(*R*,*E*)-4-(6-chloro-5-(2-chloroethyl)-2-(methylsulfonyl)-1*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (4ap)

Following the typical procedure C.

P٢

CI

CI

51.5 mg, 95% yield; white solid; M.p. 95-101 °C. $R_f = 0.3$ (Pet/EtOAc = 4/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 14.514 min, t (minor) = 23.941 min. ee = 95%. $[\alpha]^{21}_{D}$ = +86.8 (*c* = 0.59, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.39 (s, 1H), 7.71 (dd, *J* = 15.6, 8.0 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.47 – 7.42 (m, 1H), 7.31 – 7.28 (m, 5H), 7.25 – 7.21 (m, 1H), 5.99 (d, *J* = 8.0, 1H), 3.65 – 3.56 (m, 2H), 3.18 – 3.08 (m, 2H), 3.07 (s, 3H), 2.49 (s, 3H), 2.14 (s, 3H), 1.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.6, 147.9, 139.9, 139.8, 135.4, 132.5, 130.3, 128.8, 128.7, 128.0, 127.2, 125.0, 124.8, 124.1, 121.3, 118.1, 113.2, 45.4, 43.5, 43.4, 37.0, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{27}H_{28}N_3O_3{}^{35}Cl_2S^+$ ([M + H]⁺) = 544.1223, found 544.1226. $C_{27}H_{28}N_3O_3{}^{35}Cl_3{}^{37}Cl_S^+$ ([M + H]⁺) = 546.1193, found 546.1197. $C_{27}H_{28}N_3O_3{}^{37}Cl_2S^+$ ([M + H]⁺) = 548.1164, found 548.1168.

IR (neat): 1696, 1633, 1354, 1311, 1175, 1132, 956, 853, 756, 702, 558 cm⁻¹.

(*E*)-4-(2-(ethylthio)-3-methyl-3*H*-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (3aq)

Following the typical procedure E.

22.9 mg, 52% yield; pale yellow oil. $R_f = 0.2$ (Pet/EtOAc = 10/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IA** column), n-hexane/i-PrOH = 98/2, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{minor isomer}(minor) = 5.405$ min, $t_{major isomer}(major) = 6.609$ min. $t_{major isomer}(major) = 6.609$ min.

(minor) = 9.698 min, $t_{minor \, isomer}$ (major) = 13.217 min. 80:20 dr (determined by ¹H NMR analysis), 89% ee (major), 77% ee (minor). [α]²²_D = +82.4 (c = 0.45, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.28 (m, 3H), 7.26 – 7.18 (m, 3H), 7.15 – 6.94 (m, 4H), 6.91 – 6.89 (m, 0.8H), 6.68 – 6.66 (m, 0.2H), 4.00 (d, *J* = 10.0 Hz, 0.8H), 3.95 (d, *J* = 10.0 Hz, 0.2H), 3.86 – 3.30 (m, 0.8H), 3.25 – 3.19 (m, 0.8H), 3.15 – 3.10 (m, 0.2H), 3.08 – 3.01 (m, 0.2H), 2.52 (s, 0.6 H), 2.44 (s, 2.4 H), 2.22 (s, 0.6 H), 2.17 (s, 2.4 H), 1.92 (s, 0.6 H), 1.88 (s, 2.4 H), 1.48 (s, 0.6 H), 1.41 (t, *J* = 7.2 Hz, 2.4H), 1.33 (s, 0.6 H), 1.26 – 1.23 (m, 0.6H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.3, 155.0, 152.1, 146.8, 140.9, 137.8, 129.6, 128.3, 127.9, 127.3, 123.9, 123.42, 123.40, 118.7, 117.7, 61.9, 55.7, 25.3, 22.9, 14.1, 12.7, 12.3, 7.6. **ESI-HRMS**: calcd for C₂₇H₃₀N₃OS⁺ ([M + H]⁺) = 444.2104, found 444.2102.

IR (neat): 2926, 1701, 1638, 1507, 1452, 1353, 1007, 770, 708 cm⁻¹.

	Retention Time	Area	% Area
1	5.248	5525888	14.17
2	6.460	14038671	35.99
3	9.556	14034772	35.98
4	12.983	5408318	13.86

	Retention Time	Area	% Area
1	5.405	684669	2.14
2	6.609	23460238	73.49
3	9.698	1401843	4.39
4	13.217	6377267	19.98

(R)-4-(2-(methylsulfonyl)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)butan-

1-one (5aa) 78.1 mg, 87% yield; white solid; M.p. 85-88 °C. $R_f = 0.4$ (Pet/EtOAc = 3/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiracel **IC** column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 24.882 min, t (minor) = 31.536 min. ee = 97%. $[\alpha]^{21}_{D} = +42.3$ (c = 0.44, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.03 (s, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.39 – 7.33 (m, 3H), 7.26 – 7.16 (m, 3H), 7.10 – 7.03 (m, 2H), 4.99 (d, *J* = 8.0, 1H), 3.18 – 2.95 (m, 2H), 2.95 (s, 3H), 2.81 – 2.63 (m, 2H), 2.33 (s, 3H), 2.01 (s, 3H), 1.77 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 173.3, 152.0, 142.7, 139.3, 136.0, 129.3, 128.4, 127.9, 126.4, 126.3, 125.9, 124.0, 123.0, 121.1, 117.1, 112.5, 45.4, 40.3, 34.0, 29.1, 12.6, 12.2, 7.5.

ESI-HRMS: calcd for $C_{25}H_{28}N_3O_3S^+([M+H]^+) = 450.1846$, found 450.1846.

IR (neat): 3316, 1714, 1492, 1303, 1189, 1141, 957, 931, 835, 746, 702, 588, 523, 431 cm⁻¹.

	Retention Time	Area	% Area
1	24.852	18911670	50.50
2	31.385	18539925	49.50

	Retention Time	Area	% Area
1	24.882	5406861	98.62
2	31.536	75511	1.38

$methyl\,((R)-4-(2-(methylsulfonyl)-1H-indol-3-yl)-4-phenylbutanoyl)-L-leucinate\,(6aa)$

19.4 mg, 80% yield; white solid; M.p. 90-94 °C. $R_f = 0.2$ (Pet/EtOAc = 2/1). >19:1 dr (determined by ¹H NMR analysis). $[\alpha]^{19}_D = +21.8$ (c = 0.22, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.00 (s, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.46 – 7.44 (m, 1H), 7.39 – 7.34 (m, 3H), 7.28 – 7.24 (m, 2H), 7.19 – 7.13 (m, 2H), 5.91 (d, *J* = 8.0 Hz, 1H), 4.93 – 4.89 (m, 1H), 4.64 – 4.58 (m, 1H), 3.70 (s, 3H), 2.98 (s, 3H), 2.77 – 2.61 (m, 2H), 2.36 – 2.30 (m, 1H), 2.24 – 2.16 (m, 1H), 1.66 (s, 1H), 1.61 – 1.47 (m, 2H), 0.92 (t, *J* = 6.0 Hz, 6H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 173.6, 172.3, 142.5, 135.8, 129.6, 128.5, 127.9, 126.5, 126.1, 123.4, 123.0, 121.3, 112.6, 52.2, 50.7, 45.3, 41.6, 40.4, 34.7, 30.3, 24.8, 22.8, 22.0.

ESI-HRMS: calcd for $C_{26}H_{33}N_2O_5S^+([M+H]^+) = 485.2105$, found 485.2104.

IR (neat): 3353, 2957, 2361, 1740, 1654, 1527, 1445, 1310, 1204, 1144, 959, 751, 701, 525 cm⁻¹.

methyl (R)-4-(2-(methylsulfonyl)-1H-indol-3-yl)-4-phenylbutanoate (7aa)

17.6 mg, 95% yield; white solid; M.p. 49-53 °C. $R_f = 0.2$ (Pet/EtOAc = 4/1). Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IE** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (major) = 33.061 min, t (minor) = 40.515 min. ee = 97%. $[\alpha]^{19}_{D} = +35.8$ (c = 0.26, in CH₂Cl₂).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.98 (s, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.46 – 7.34 (m, 4H), 7.29 – 7.25 (m, 2H), 7.20 – 7.13 (m, 2H), 4.97 – 4.93 (m, 1H), 3.60 (s, 3H), 2.94 (s, 3H), 2.76 – 2.60 (m, 2H), 2.47 – 2.27 (m, 2H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 173.7, 142.5, 135.9, 129.5, 128.5, 127.9, 126.5, 126.4, 126.1, 123.5, 122.8, 121.3, 112.6, 51.5, 45.3, 40.2, 32.5, 29.5.

ESI-HRMS: calcd for $C_{20}H_{22}NO_4S^+$ ([M + H]⁺) = 372.1264, found 372.1269. **IR** (neat): 2361, 1729, 1445, 1307, 1143, 957, 752, 700, 525 cm⁻¹.

(R)-4-(2-(methylsulfonyl)-1H-indol-3-yl)-4-phenylbutan-1-ol (8aa)

47.1 mg, 96% yield; white solid; M.p. 58-61 °C. $R_f = 0.2$ (Pet/EtOAc = 2/1). Dissolved in isopropanol for HPLC; HPLC (Chiralcel IC column), n-hexane/i-PrOH = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: t (minor) = 21.326 min, t (major) = 28.040 min. ee = 97%. $[\alpha]^{21}D$ = +35.4 (c = 0.84, in CH_2Cl_2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.30 (s, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.36 – 7.29 (m, 3H), 7.25 - 7.21 (m, 1H), 7.18 - 7.14 (m, 2H), 7.10 - 7.01 (m, 2H), 4.87 (t, J = 8.0 Hz, 1H), 3.56 (t, J = 1.00 Hz 6.4 Hz, 2H), 2.82 (s, 3H), 2.34 (q, J = 8.0 Hz, 2H), 1.83 - 1.80 (m, 1H), 1.62 - 1.53 (m, 1H), 1.46– 1.37 (m, 1H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 143.3, 136.0, 129.1, 128.4, 127.8, 126.4, 126.3, 125.9, 124.3, 122.8, 121.1, 112.6, 62.5, 45.3, 40.7, 31.2, 30.9.

ESI-HRMS: calcd for $C_{19}H_{22}NO_3S^+$ ([M + H]⁺) = 344.1315, found 344.1316.

28.214

IR (neat): 3316, 1520, 1447, 1299, 1189, 1132, 1053, 957, 744, 700, 578, 522, 431 cm⁻¹.

5811609

50.05

	Retention Time	Area	% Area
1	21.326	523615	1.48
2	28.040	34809613	98.52

(1R,2S,E)-4-(2-(methylsulfinyl)-1H-indol-3-yl)-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1yl)but-2-en-1-one (9aa)

10.8 mg, 50% yield; white solid; M.p. 113-117 °C. $R_f = 0.2$ (Pet/EtOAc = 1/1).

Dissolved in isopropanol for HPLC; HPLC (Chiralcel ID column), nhexane/i-PrOH = 80/20, flow rate 1.0 mL/min, λ = 220 nm, retention time: $t_{major isomer}$ (major) = 35.759 min, $t_{major isomer}$ (minor) = 58.670 min. $t_{minor isomer}$ $(\text{minor}) = 28.885 \text{ min}, t_{\text{minor isomer}} (\text{major}) = 49.096 \text{ min}. 92:8 \text{ dr} (\text{determined})$ by ¹H NMR analysis), 99% ee (major). $[\alpha]^{19}_{D} = -219.1$ (c = 0.11, in CH₂Cl₂).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 10.22 (s, 1H), 7.67 (dd, J = 15.6, 8.0 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.42 – 7.38 (m, 2H), 7.30 – 7.28 (m, 3H), 7.26 – 7.22 (m, 3H), 7.08 – 7.04 (m, 1H), 5.43 (d, J = 8.0 Hz, 1H), 2.84 (s, 3H), 2.49 (s, 3H), 2.16 (s, 3H), 1.90 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.7, 152.4, 149.3, 140.7, 139.7, 137.3, 133.1, 128.8, 128.0, 127.2, 126.6, 124.6, 123.1, 120.8, 120.7, 117.9, 117.9, 112.3, 45.1, 42.3, 12.7, 12.3, 7.7. **ESI-HRMS**: calcd for C₂₅H₂₆N₃O₂S⁺ ([M + H]⁺) = 432.1740, found 432.1745.

IR (neat): 2361, 1699, 1636, 1380, 1353, 1284, 1025, 748, 701 cm⁻¹.

(1*R*,2*S*,*E*)-4-(2-(methylsulfinyl)-1*H*-indol-3-yl)-4-(o-tolyl)-1-(3,4,5-trimethyl-1*H*-pyrazol-1-yl)but-2-en-1-one (9da)

33.1 mg, 84% yield; white solid; M.p. 170-175 °C. $R_f = 0.2$ (Pet/EtOAc = 1/1).

Dissolved in isopropanol for HPLC; **HPLC** (Chiralcel **IB** column), n-hexane/i-PrOH = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: $t_{minor\,isomer}$ (minor) = 10.502 min, $t_{major\,isomer}$ (minor) = 10.983 min. $t_{minor\,isomer}$ (major) = 13.591 min, $t_{major\,isomer}$ (minor) = 15.928 min. > 19:1 dr

(determined by ¹H NMR analysis), 97% ee (major). $[\alpha]^{19}{}_{D} = -214.0 (c = 0.20, \text{ in CH}_2\text{Cl}_2).$ ¹H NMR (400 MHz, Chloroform-*d*) δ 10.53 (s, 1H), 7.60 (dd, *J* = 15.6, 7.2 Hz, 1H), 7.53 – 7.51 (m, 1H), 7.35 – 7.33 (m, 1H), 7.24 – 7.10 (m, 6H), 7.08 – 7.04 (m, 1H), 5.53 (d, *J* = 7.2 Hz, 1H), 2.77 (s, 3H), 2.47 (s, 3H), 2.23 (s, 3H), 2.10 (s, 3H), 1.87 (s, 3H).

¹³C{¹H} NMR (100 MHz, Chloroform-*d*) δ 164.8, 152.3, 149.4, 139.7, 138.7, 137.1, 136.5, 133.1, 130.9, 128.2, 127.5, 127.0, 126.3, 124.5, 123.2, 120.6, 120.4, 117.9, 112.3, 110.0, 42.13, 42.06, 19.8, 12.7, 12.3, 7.7.

ESI-HRMS: calcd for $C_{26}H_{28}N_3O_2S^+$ ([M + H]⁺) = 446.1897, found 446.1893. **IR** (neat): 2922, 1698, 1634, 1377, 1352, 1089, 1023, 742 cm⁻¹.

	Retention Time	Area	% Area
1	10.892	1395443	35.43
2	11.805	575872	14.62
3	13.496	1410469	35.81
4	16.626	556962	14.14

Loo 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 Minutes

	Retention Time	Area	% Area
1	10.502	85390	0.49
2	10.983	257150	1.49
3	13.591	588102	3.40
4	15.928	16349968	94.61

12 References

- 1. X. B. Lin, Y. Tang, W. Yang, F. Tan, L. L. Lin, X. H. Liu and X. M. Feng, J. Am. Chem. Soc., 2018, 140, 3299.
- 2. R. Z. Guo, J. C. Huang and X. D. Zhao, ACS Catal., 2018, 8, 926.
- 3. L. K. Ransborg, L. Albrecht, C. F. Weise, J. R. Bak and K. A. Jørgensen, Org. Lett., 2012, 14, 724.
- 4. S. P. Zhou, G. H. Xiao and Y. Liang, Tetrahedron Letters, 2017, 58, 338.
- 5. V. Boyarskikh, A. Nyong and J. D. Rainier, Angew. Chem., Int. Ed., 2008, 47, 5374.
- 6. Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin and X. M. Feng, Synlett., 2005, 16, 2445.
- 7. W. R. Carroll, C. Zhao, M. D. Smith, P. J. Pellechia and K. D. Shimizu, Org. Lett., 2011, 13, 4320.
- 8. E. Schiebel, S.Santacroce, L. Falivene, I. Göttker-Schnetmann, L. Caporaso, and S. Mecking, *ACS Catal.*, 2019, **9**, 3888.
- 9. D. Uraguchi, K. Yamada and T. Ooi, Angew. Chem., Int. Ed., 2015, 54, 9954.
- 10. K. Ishihara and M. Fushimi, J. Am. Chem. Soc., 2008, 130, 7532.
- 11. F. Wang, L. L. Feng, S. X. Dong, X. H. Liu and X. M. Feng, Chem. Commun., 2020, 56, 3233.

13 ¹H, ¹³C NMR spectra of the substrates and products

(Z/E)-2-diazo-4-phenyl-1-(3,4,5-trimethyl-1H-pyrazol-1-yl)but-3-en-1-one

 7.405

 7.405

 7.401

 7.357

 7.353

 7.353

 7.353

 7.353

 7.353

 7.353

 7.353

 7.353

 7.353

 7.353

 7.353

 7.353

 7.353

 7.354

 7.355

 7.355

 7.355

 7.355

 7.355

 7.355

 7.356

 7.355

 7.356

 7.357

 7.356

 7.357

 7.356

 7.357

 7.356

 7.357

 7.356

 7.357

 7.358

 6.912

 6.912

 6.912

 6.925

 6.932

 6.932

 6.943

 7.129

 7.129

 7.129

 7.129

 7.129

 6.932

 6.943

L2-Pi(OMe)2

L₂-Pi(OBn)₂

0.0311

3da

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

4ga

3aq

$\begin{array}{c} 7.524\\ 7.427\\ 7.336\\ 7.377\\ 7.277\\ 7.287\\ 7.287\\ 7.286\\ 7.260\\ 7.260\\ 7.260\\ 7.260\\ 7.125\\ 7.$

COSY spectra of 4aa

HSQC spectra of 4aa

14 Copies of CD spectra in CH₂Cl₂

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

--

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

Smooth (s):0

