Electronic supplementary information for

Conformation Change Significantly Affected the Optical and

Electronic Properties of Arylsulfonamide-Substituted

Anthraquinones

Takashi Takeda^{*} and Tomoyuki Akutagawa

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan

CONTENTS

Page

1.	Comparison of UV-Vis spectra of N-Me derivatives 1-4 and N-H derivatives 5-8	S2
2.	Comparison of reduction potentials of N-Me derivatives 1-4 and N-H derivatives 5-8	S2
3.	ORTEP drawings of 1	S3
4.	HOMO LUMO and oscillator strength of the HOMO-LUMO transition of 1-8	S3
5.	Solid state UV-Vis spectra of 1-4	S4
6.	Experimental section	S5
7.	¹ H NMR spectra of 1-4	S7
8.	Cartesian coordinates for optimized structures 1-4	S10
9.	Reference	S14

1. Comparison of UV-Vis spectra of N-Me derivatives 1-4 and N-H derivatives 5-8

Figure S1 UV-Vis spectra of 1-4 (bold line) and 5-8 (dotted line) in CH₂Cl₂.

2. Comparison of reduction potentials of N-Me derivatives 1-4 and N-H derivatives 5-8

Figure S2 Cyclic voltammograms of 1-8 in CH₂Cl₂ (0.1 M Bu₄NBF₄, 100 mV/sec).

3. ORTEP drawing of 1

Figure S3 ORTEP drawing of **1**. Front view (left) and side view (right). Displacement ellipsoids are drawn at the 50% probability level.

4. HOMO, LUMO and oscillator strength of the HOMO-LUMO transition of 1-8

Figure S4 LUMO (top), HOMO (bottom) and their energies for (a) **1**, (b) **2**, (c) **3**, and (d) **4**. Atomic orbital coefficients of 2py orbital of nitrogen atoms (y axis defined as perpendicular to the anthraquinone plane). HOMO: **1**: 0.04484, -0.04488, **2**: 0.29211, -0.29190, **3**: 0.15059, -0.14513, **4**: 0.02196, 0.02196, -0.02195, -0.02196; LUMO: **1**: 0.00282, 0.00283, **2**: -0.00495, -0.00497, **3**: 0.00231, -0.00280, **4**: 0.00167, -0.00167, 0.00167, 0.00167.

Oscillator strength of the HOMO-LUMO transition: 1: 0.0078, 2: 0.0004, 3: 0.0000, 4: 0.0000.

Figure S5 LUMO (top), HOMO (bottom) and their energies for (a) **5**, (b) **6**, (c) **7**, and (d) **8**. Atomic orbital coefficients of 2py orbital of nitrogen atoms (y axis defined as perpendicular to the anthraquinone plane). HOMO: **5**: -0.16150, 0.16474, **6**: -0.07353, -0.07330, **7**: 0.22514, 0.22522, **8**: 0.05006, 0.04984, 0.04999, 0.04980; LUMO: **5**: -0.04127, -0.04204, **6**: 0.02465, 0.02455, **7**: 0.06217, -0.06217, **8**: -0.02273, -0.02264, 0.02270, 0.02263.

Oscillator strength of the HOMO-LUMO transition: 5: 0.1891, 6: 0.1428, 7: 0.2421, 8: 0.3188.

5. Solid state UV-Vis spectra of 1-4

Figure S6 Normalized UV-Vis spectra of 1-4 in the solid state. The absorption of 4 overlapped with that of 3.

6. Experimental section

General methods. Commercially available reagents and solvents were used as received. Compounds **5-8** were prepared by as described in the literature.^{S1} ¹H (400 MHz) and ¹³C (100 MHz) NMR spectra were recorded on a Bruker Avance III 400 NMR spectrometer. Chemical shifts (δ) are expressed in ppm with reference to tetramethylsilane (¹H 0.00 ppm) or residual nondeuterated solvent (CDCl₃; ¹³C 77.0 ppm) as an internal standard. Mass spectra were recorded on a JMS-700 spectrometer at the NMR and MS Laboratory, Graduate School of Agriculture, Tohoku University. Elemental analyses were performed on a Microcoder JM10 at the Elementary Analysis Laboratory, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University. IR spectra were measured on a Thermo Scientific NICOLET 6700 FT-IR spectrometer.

Preparation of 1.^{S1}

To a suspension of NaH (60% in oil, 333 mg, 8.33 mmol) in dry DMF (20 mL) was added **5** (303 mg, 554 μ mol) under N₂. The mixture was stirred at rt for 45 min. To the resulting solution was added MeI (700 μ L, 11.0 mmol) at this temperature. The mixture was stirred at rt for 12 h. The mixture was diluted with an excess amount of water. The resulting precipitate was collected by filtration, washed with water, and then dried under vacuum. Recrystallization from EtOH gave **1** (171 mg, 54%) as an orange crystalline solid.

Mp: 236-237 °C. ¹H NMR (400 MHz): δ 8.24 (dd, J = 7.8, 1.3 Hz, 2H), 7.70 (d, J = 7.8 Hz, 4H), 7.63 (t, J = 7.6 Hz, 2H), 7.47 (dd, J = 7.8, 1.3 Hz, 2H), 7.31 (d, J = 7.8 Hz, 4H), 3.24 (s, 6H), 2.43 (s, 6H). ¹³C NMR (100 MHz): δ 182.6, 182.3, 143.5, 140.3, 136.0, 134.6, 133.6, 133.0, 129.6, 127.9, 126.9, 38.8, 21.6. IR: 3072, 2948, 2919, 1680, 1585, 1495, 1461, 1436, 1400, 1345, 1318, 1249, 1216, 1188, 1150, 1089, 1020, 1011, 957, 871, 850, 802, 752, 730, 688, 675, 651, 581, 563, 545, 517 cm⁻¹. HRMS (FAB) calcd for C₃₀H₂₇N₂O₆S₂: 575.1311 [(M+H)⁺]; found: 575.1309. Anal. Calcd for C₃₀H₂₆N₂O₆S₂: C, 62.70 H, 4.56; N, 4.87. Found: C, 62.55 H, 4.73; N, 4.78.

Preparation of 2.

A mixture of **6** (200 mg, 366 μ mol), K₂CO₃ (506 mg, 3.66 mmol) and MeI (455 μ L, 7.32 mmol) in DMF (10 mL) was stirred at 50 °C for 13.5 h in a sealed glass pressure vessel. After cooling to rt, the mixture was diluted with H₂O. The resulting precipitate was collected by filtration, washed with H₂O, and then dried under vacuum. Recrystallization from CHCl₃/EtOH gave **2** (195 mg, 93%) as a yellow solid.

Mp: 228-229 °C (decomp.). ¹H NMR (400 MHz, 50 °C): δ 7.92 (br s, 2H), 7.68 (dd, J = 5.7, 3.2 Hz, 2H), 7.57 (t, J = 8.2 Hz, 4H), 7.42 (s, 2H), 7.23 (d, J = 8.2 Hz, 4H), 3.35 (s, 6H), 2.39 (s, 6H). IR: 1670, 1590, 1463, 1348, 1322, 1305, 1254, 1201, 1156, 1087, 931, 910, 877, 809, 795, 727, 713, 679, 636, 596, 549, 516 cm⁻¹. HRMS (FAB) calcd for C₃₀H₂₇N₂O₆S₂: 575.1311 [(M+H)⁺]; found: 575.1310. Anal. Calcd for C₃₀H₂₆N₂O₆S₂: C, 62.70 H, 4.56; N, 4.87. Found: C, 62.88 H, 4.57; N, 4.82.

Preparation of 3.

To a suspension of NaH (60% in oil, 380 mg, 9.51 mmol) in dry DMF (30 mL) was added 7 (400 mg, 634 μ mol) under N₂. The mixture was stirred at rt for 45 min. To the resulting solution was added MeI (790 μ L, 12.7 mmol) at this temperature. The mixture was stirred at rt for 16.5 h. The mixture was diluted with an excess amount of water. The resulting precipitate was collected by filtration, washed with water, and then dried under vacuum. Recrystallization from CHCl₃/EtOH gave **3** (177 mg, 42%) as a yellow solid.

Mp: 268-270 °C (decomp.). ¹H NMR (400 MHz, 50 °C): δ 8.08 (br d, J = 7.8 Hz, 2H), 7.65(t, J = 7.8 Hz, 2H), 7.63 (d, J = 8.5 Hz, 4H), 7.50 (d, J = 7.8 Hz, 2H), 7.44 (d, J = 8.5 Hz, 4H), 3.35 (s, 6H), 1.33 (s, 18H). IR: 3076, 2957, 1675, 1596, 1580, 1457, 1438, 1400, 1349, 1310, 1267, 1190, 1158, 1112, 1085, 1018, 877, 825, 807, 773, 756, 710, 626, 581, 552 cm⁻¹. HRMS (FAB) calcd for C₃₆H₃₉N₂O₆S₂: 659.2250 [(M+H)⁺]; found: 659.2250. Anal. Calcd for C₃₆H₃₈N₂O₆S₂: C, 65.60 H, 5.81; N, 4.25. Found: C, 62.60 H, 5.86; N, 4.22.

Preparation of 4.

To a suspension of NaH (60% in oil, 304 mg, 7.60 mmol) in dry DMF (30 mL) was added **8** (400 mg, 380 μ mol) under N₂. The mixture was stirred at rt for 45 min. To the resulting solution was added MeI (710 μ L, 11.4 mmol) at this temperature. The mixture was stirred at rt for 17 h. The mixture was diluted with an excess amount of water. The resulting precipitate was collected by filtration, washed with water, and then dried under vacuum. Recrystallization from CHCl₃/EtOH gave **4** (264 mg, 63%) as a yellow solid.

Mp: 253-255 °C (decomp.). ¹H NMR (400 MHz): δ 7.76 (d, J = 8.6 Hz, 8H), 7.56 (d, J = 8.6 Hz, 8H), 7.25 (s, 4H), 3.20 (s, 12H), 1.37 (s, 36H). IR: 2964, 2871, 1702, 1595, 1477, 1397, 1349, 1333, 1307, 1269, 1217, 1160, 1111, 1085, 1042, 936, 888, 865, 842, 812, 793, 762, 671, 630, 601, 580, 547 cm⁻¹. HRMS (FAB) calcd for C₅₈H₆₉N₄O₁₀S₄: 1109.3897 [(M+H)⁺]; found: 1109.3899. Anal. Calcd for C₅₈H₆₈N₄O₁₀S₄: C, 62.79 H, 6.18; N, 5.05. Found: C, 62.57 H, 6.13; N, 5.00.

X-ray structural analysis. Crystallographic data for single crystals were collected using a diffractometer equipped with a rotating anode fitted with a multilayer confocal optic using Cu-K α ($\lambda = 1.54187$ Å) radiation. Structure refinements were carried out using the full-matrix least-squares method on F^2 . Calculations were performed using the Crystal Structure and SHELEX software packages.^{S3} Parameters were refined using anisotropic temperature factors, except for the hydrogen atom.

Crystal data of 1: A single-crystalline sample was obtained by recrystallization from CHCl₃/hexane. $C_{30}H_{22}N_2O_6S_2$, M = 570.63, P_{21}/c (#14), a = 9.9499(4) Å, b = 9.6309(4) Å, c = 27.2708(11) Å, $\beta = 93.901(7)$ °, V = 2607.20(19) Å³, Z = 4, Dc = 1.454 g cm⁻³. Independent reflections 4693 (all), T = 100 K, $\mu = 22.745$ cm⁻¹, R = 6.15%. CCDC 2013362. **Crystal data of 2 · (CHCl₃)₂:** A single-crystalline sample was obtained by recrystallization from CHCl₃/hexane. C₃₂H₂₈Cl₆N₂O₆S₂, M = 813.42, C2/c (#15), a = 52.9762(19) Å, b = 15.1879(5) Å, c = 13.2000(5) Å, $\beta = 102.745(7)$ °, V = 10359.0(7) Å³, Z = 12, Dc = 1.565 g cm⁻³. Independent reflections 9364 (all), T = 100K, $\mu = 60.76$ cm⁻¹, R = 5.41%. CCDC 2013365.

Crystal structures of 5-8 have already in published in the literature.^{S2}

5·(MeCN)	CCDC 1550096
5·(EtCN)	CCDC 1550093
6	CCDC 1550105
7	CCDC 1550102
8·(Fluorobenzene) ₂	CCDC 1550149
8·(Benzonitrile) ₂	CCDC 1576397

7. ¹H NMR spectra of 1-4

Figure S7 ¹H NMR spectrum of 1.

Figure S9 ¹H NMR spectrum of 3.

Figure S10 ¹H NMR spectrum of 4.

8. Cartesian Coordinates for optimized structures 1-4

a. Optimized structure of **1**

Г

E(RB3LYP) = -2515.94134656 a.u.

Number of imaginary frequency: 0

Atom	Flement	Cartesian Coorinates					
No.	Liement	Х	Y	Z			
1	S	-2.751827	-1.418072	0.079166			
2	S	2.751590	-1.418108	0.079991			
3	0	0.000117	0.567903	1.972344			
4	0	0.000441	5.051277	-0.773200			
5	0	2.417336	-2.615363	0.851430			
6	0	2.046088	-1.028263	-1.139489			
7	0	-2.046805	-1.028250	-1.140595			
8	0	-2.417433	-2.615438	0.850370			
9	N	2.582075	-0.117639	1.144218			
10	N	-2.581563	-0.117730	1.143472			
11	С	1.282624	1.885517	0.470806			
12	С	1.277754	3.168557	-0.111779			
13	С	-2.515012	1.207343	0.608491			
14	С	-1.277021	3.168560	-0.112053			
15	С	-3.679577	3.128258	-0.335494			
16	С	3.696492	1.843725	0.211731			
17	С	-6.329154	-1.056589	-1.823464			
18	С	-5.363856	-2.239268	0.512278			
19	С	-4.496969	-1.553763	-0.342301			
20	С	2.515572	1.207383	0.609147			
21	С	-1.282029	1.885492	0.470480			
22	С	3.680365	3.128228	-0.334698			
23	С	2.470081	3.787570	-0.503517			
24	С	-3.695837	1.843734	0.210882			
25	С	0.000394	3.900988	-0.349050			
26	С	-2.469254	3.787595	-0.504039			
27	С	7.221551	-1.730907	-0.978958			
28	С	5.363625	-2.239928	0.511873			
29	С	-6.717519	-2.318029	0.190749			
30	С	4.496529	-1.554042	-0.342213			
31	С	-4.972614	-0.965720	-1.516782			
32	С	6.328273	-1.056729	-1.823871			
33	С	6.717136	-2.318835	0.189829			

Atom	Flement	Cartesian Coorinates					
No.	Liement	Х	Y	Z			
34	С	-8.683928	-1.337620				
35	С	-7.222252	-1.730372	-0.978013			
36	С	4.971833	-0.965746	-1.516684			
37	С	8.683089	-1.853563	-1.339040			
38	С	0.000229	1.340171	1.025625			
39	Н	-4.610330	3.603286	-0.632256			
40	Н	4.636116	1.313895	0.330040			
41	Н	-6.699106	-0.603477	-2.740298			
42	Н	-4.976768	-2.722855	1.403012			
43	Н	4.611181	3.603228	-0.631305			
44	Н	2.414834	4.781089	-0.935209			
45	Н	-4.635512	1.313957	0.329002			
46	Н	-2.413906	4.781124	-0.935694			
47	Н	4.976772	-2.723690	1.402615			
48	Н	-7.392232	-2.853853	0.854146			
49	Н	-4.280054	-0.461222	-2.181922			
50	Н	6.697971	-0.603403	-2.740697			
51	Н	7.392002	-2.854963	0.852829			
52	Н	-9.308319	-1.971388	-0.446173			
53	Н	-9.037165	-0.973961	-1.887257			
54	Н	-8.858997	-2.727855	-1.977426			
55	Н	4.279128	-0.460941	-2.181441			
56	Н	9.308153	-1.968129	-0.447518			
57	Н	8.858463	-2.731082	-1.975399			
58	Н	9.035266	-0.976665	-1.892391			
59	С	-2.888940	-0.288256	2.564714			
60	Н	-3.925483	-0.009153	2.803529			
61	Н	-2.713267	-1.330280	2.834053			
62	Н	-2.195934	0.331995	3.136586			
63	С	2.889144	-0.288106	2.565522			
64	Н	2.195671	0.331734	3.137292			
65	Н	2.713942	-1.330243	2.834727			
66 H		3.925480	-0.008495 2.804618				

b. Optimized structure of 2 E(RB3LYP) = -2515.94229569 a.u. Number of imaginary frequency: 0

r						
Atom	Flement	t Cartesian Coorinates				
No.	LIGHTEHL	Х	Y	Z		
1	S	3.902684	0.230832	-0.448976		
2	s	-3.902816	0.231067	0.448748		
3	0	-4.950253	0.599458	1.403088		
4	0	3.530578	1.080487	0.684792		
5	0	1.968497	2.591975	-1.826979		
6	0	-3.530604	1.080574	-0.685090		
7	0	4.950049	0.599080	-1.403453		
8	0	-1.968484	2.592211	1.826841		
9	N	-2.498366	-0.046946	1.338678		
10	N	2.498164	-0.047271	-1.338750		
11	С	-0.599128	1.276765	0.377930		
12	С	-0.546751	3.844682	0.438376		
13	С	0.599076	1.276699	-0.377988		
14	С	0.547102	3.844621	-0.438325		
15	С	-0.619558	-1.151870	0.316463		
16	С	0.619336	-1.151934	-0.316324		
17	С	-1.130678	2.571767	0.934947		
18	С	-1.234620	0.045978	0.678939		
19	С	4.351731	-1.371675	0.231569		
20	С	1.130764	2.571640	-0.935005		
21	С	-4.190415	-3.014980	-1.982491		
22	С	1.234465	0.045840	-0.678931		
23	С	-4.351824	-1.371520	-0.231621		
24	С	5.183305	-2.222830	-0.501786		
25	С	-5.013581	-3.891410	-1.264591		
26	С	-0.545835	6.261470	0.438569		
27	С	0.546630	6.261408	-0.438310		
28	С	5.377654	-5.250174	1.814673		
29	С	-5.506019	-3.472469	-0.018380		
30	С	1.090416	5.058457	-0.877552		
31	С	-5.183389	-2.222606	0.501824		
32	С	-3.856898	-1.757712	-1.477495		
33	С	5.505972	-3.472623	0.018560		

Atom	Element	Cartesian Coorinates					
No.	Element	Х	Y	Z			
34	с	3.856831	-1.757733	1.477495			
35	С	4.190386	-3.014935	1.982636			
36	с	5.013568	-3.891426	1.264831			
37	С	-5.377551	-5.250265	-1.814243			
38	С	-1.089846	5.058581	0.877702			
39	н	-1.121549	-2.085320	0.550986			
40	н	1.121269	-2.085432	-0.550784			
41	н	-3.812003	-3.314197	-2.956815			
42	н	5.586969	-1.895263	-1.453983			
43	н	-0.970777	7.202616	0.776305			
44	н	0.971747	7.202505	-0.775963			
45	н	6.464327	-5.359691	1.915007			
46	н	4.932296	-5.417374	2.799999			
47	н	5.034430	-6.053219	1.150684			
48	н	-6.159973	-4.131949	0.547648			
49	н	1.935737	5.031362	-1.556574			
50	н	-5.587079	-1.894941	1.453976			
51	н	-3.239366	-1.072853	-2.048509			
52	н	6.159924	-4.132159	-0.547405			
53	н	3.239290	-1.072823	2.048437			
54	н	3.811993	-3.314049	2.956999			
55	н	-6.464252	-5.360218	-1.913761			
56	н	-4.932854	-5.417237	-2.799906			
57	н	-5.033498	-6.053213	-1.150560			
58	н	-1.935176	5.031584	1.556717			
59	С	2.538140	-0.211256	-2.793683			
60	н	3.577577	-0.174898	-3.119856			
61	н	2.095560	-1.171671	-3.085043			
62	н	2.001836	0.612711	-3.272197			
63	С	-2.538470	-0.210937	2.793589			
64	н	-3.577865	-0.173539	3.119781			
65	н	-2.096800	-1.171758	3.085021			
66	н	-2 001382	0.612533	3 272079			

c. Optimized structure of **3**

E(RB3LYP) = -2751.81851735 a.u.

Number of imaginary frequency: 0

Atom	Flement	Cartesian Coorinates					
No.	Liement	Х	Y	Z			
1	S	-4.284243	1.878759	-0.318031			
2	S	4.284380	-1.829799	0.411457			
3	0	-3.512131	1.337292	-1.439372			
4	0	-1.081074	2.482747	0.355759			
5	0	3.587897	-1.241578	1.558105			
6	0	-4.573379	3.307603	-0.176219			
7	0	1.075283	-2.428591	-0.073988			
8	0	4.527809	-3.268740	0.287668			
9	Ν	3.467072	-1.346404	-0.987040			
10	Ν	-3.527518	1.388550	1.110323			
11	С	0.624383	-1.295565	0.034594			
12	С	-0.652090	1.347493	0.195133			
13	С	-5.861849	1.016146	-0.322870			
14	С	-2.746070	0.190745	1.088692			
15	С	-9.661379	-1.113821	-0.327439			
16	С	2.688803	-0.147000	-0.937681			
17	С	1.361385	-0.088660	-0.441886			
18	С	-1.404860	0.136010	0.632455			
19	С	0.709694	1.160986	-0.407515			
20	С	-0.750585	-1.112001	0.608933			
21	С	6.071735	0.229706	0.916697			
22	С	-1.391007	-2.266449	1.076146			
23	С	-5.981600	-0.209913	-0.980657			
24	С	2.626423	2.240784	-1.407962			
25	С	-2.691215	-2.197268	1.556960			
26	С	-6.958099	1.574884	0.331517			
27	С	-3.365529	-0.975447	1.546208			
28	С	3.296426	1.016745	-1.417003			
29	С	-7.204966	-0.873905	-0.965438			
30	С	8.158746	-0.976536	-0.482934			
31	С	8.378747	0.278375	0.104656			
32	С	1.340257	2.313738	-0.891297			
33	С	6.926503	-1.623753	-0.385005			
34	С	-8.328921	-0.343772	-0.306722			
35	С	-8.176016	0.893832	0.336231			
36	С	7.308564	0.859514	0.808460			
37	С	5.883315	-1.013295	0.308450			
38	С	9.727272	1.014996	0.016187			
39	С	-10.770689	-0.390145	0.459140			
40	С	9.515429	2.395927	-0.649550			
41	С	-9.457002	-2.512078	0.303797			
42	С	-10.134646	-1.275628	-1.791895			

Atom	Element	Cart	esian Coorina	tes
No.	Liement	Х	Y	Z
43	С	10.766970	0.237334	-0.812635
44	С	10.295594	1.213835	1.441791
45	н	5.263867	0.681872	1.481844
46	Н	-0.845082	-3.202473	1.041743
47	Н	-5.130686	-0.621887	-1.512186
48	н	3.114521	3.131338	-1.793508
49	н	-3.187882	-3.089721	1.926842
50	н	-6.866427	2.542682	0.813512
51	н	-4.392348	-0.905518	1.891163
52	н	4.310988	0.942418	-1.795511
53	н	-7.282793	-1.822176	-1.489366
54	н	8.955864	-1.474398	-1.023002
55	н	0.797663	3.251082	-0.843135
56	н	6.783175	-2.604712	-0.825973
57	н	-9.016087	1.351395	0.846007
58	н	7.440402	1.822470	1.293312
59	н	-11.693238	-0.979791	0.419632
60	н	-10.506672	-0.261812	1.515113
61	н	-10.993522	0.596691	0.038043
62	н	8.818916	3.021872	-0.082074
63	Н	10.468137	2.934785	-0.715810
64	н	9.116979 2.286110		-1.664712
65	н	-10.398025	0.398025 -3.074744	
66	н	-8.710063	-3.101227	-0.238289
67	н	-9.126860	-2.428924	1.345676
68	Н	-11.080628	-1.829439	-1.825617
69	н	-10.295184	-0.298883	-2.261959
70	н	-9.406217	-1.822964	-2.398960
71	Н	11.703052	0.805089	-0.854324
72	н	10.994658	-0.739345	-0.370936
73	н	10.431325	0.078212	-1.843780
74	Н	9.619978	1.800261	2.073047
75	н	10.462201	0.249812	1.935495
76	н	11.254929	1.743440	1.397586
77	С	-3.410805	2.296701	2.254930
78	н	-2.381831	2.653326	2.356012
79	н	-4.056585	3.158135	2.084780
80	н	-3.724596	1.780601	3.169587
81	С	3.278488	-2.273359	-2.106564
82	н	3.934292	-3.132248	-1.963898
83	н	2.246062	-2.633274	-2.139193
84	н	3.534976	-1.771243	-3.046336

d. Optimized structure of **4**

(Terminal *t*Bu groups were replaced with Me groups) E(RB3LYP) = -4343.10074070 a.u.

Number of imaginary frequency: 0

Atom	Flement	Cartesian Coorinates						
No.	Liement	Х	Y	Z				
1	S	2.737041	3.891947	0.397802				
2	S	2.737066	-3.891969	-0.397673				
3	0	-0.000180	1.721907	1.999042				
4	0	2.393399	-5.017635	-1.266409				
5	0	2.393420	5.017619	1.266547				
6	0	2.045349	3.610759	-0.859259				
7	0	2.045449	-3.610798	0.859433				
8	N	2.556077	2.503349	1.341059				
9	Ν	2.556042	-2.503363	-1.340905				
10	С	1.292058	0.596755	0.374257				
11	С	4.487109	-4.058607	-0.011357				
12	С	1.292051	-0.596784	-0.374047				
13	С	4.487060	4.058588	0.011377				
14	С	-0.000165	1.080952	0.959487				
15	С	2.517439	-1.234219	-0.683695				
16	С	3.714157	0.616837	0.323815				
17 C		2.517454	1.234198	0.683863				
18	С	3.714151	-0.616849	-0.323693				
19	С	5.343980	-4.673866	-0.928538				
20	С	5.343986	4.673856	0.928500				
21	С	7.233673	4.292242	-0.576129				
22	С	7.233760	-4.292254	0.575974				
23	С	4.983088	-3.571027	1.196366				
24	С	8.738238	4.444994	-0.861825				
25	С	6.345463	-3.690667	1.479220				
26	С	8.738345	-4.444998	0.861571				
27	С	4.982964	3.571004	-1.196375				
28	С	6.345320	3.690648	-1.479316				
29	С	6.698483	4.780915	0.630184				
30	С	6.698496	-4.780922	-0.630307				
31	С	9.109751	5.947322	-0.862216				
32	С	9.140158	3.850079	-2.224792				
33	С	9.109864	-5.947324	0.861957				
34	С	9.546012	3.717087 0.239371					
35	С	9.546042	-3.717101	-0.239688				
36	С	9.140354	-3.850064	2.224504				
37	Н	4.652346	1.108408	0.559985				
38	н	4.652334	-1.108411	-0.559900				

Atom	Flomont	Cartesian Coorinates						
No.	Element	Х	Y	Z				
73	N	-2.556371	2.503479	1.340852				
74	С	-1.292391	-0.596800	-0.373994				
75	С	-4.486944	4.058837	0.010757				
76	С	-1.292388	0.596781	0.374229				
77	С	-4.487039	-4.058830	-0.010733				
78	С	-0.000179	-1.080972	-0.959266				
79	С	-2.517779	1.234262	0.683786				
80	С	-3.714486	-0.616863	-0.323616				
81	С	-2.517782	-1.234260	-0.683581				
82	С	-3.714484	0.616889	0.323781				
83	С	-5.343901	4.674312	0.927718				
84	С	-5.343943	-4.674272	-0.927765				
85	С	-7.233610	-4.292688	0.576900				
86	С	-7.233474	4.292709	-0.577060				
87	С	-4.982778	3.571159	-1.196981				
88	С	-8.738162	-4.445503	0.862635				
89	С	-6.345094	3.690912	-1.480078				
90	С	-8.738005	4.445536	-0.862899				
91	С	-4.982946	-3.571178	1.196986				
92	С	-6.345282	-3.690924	1.479991				
93	С	-6.698418	-4.781427	-0.629390				
94	С	-6.698356	4.781474	0.629252				
95	С	-9.109635	-5.947833	0.863121				
96	С	-9.140087	-3.850523	2.225573				
97	С	-9.109464	5.947870	-0.863417				
98	С	-9.545977	-3.717680	-0.238594				
99	С	-9.545903	3.717727	0.238279				
100	С	-9.139843	3.850553	-2.225861				
101	н	-4.652677	-1.108440	-0.559767				
102	н	-4.652672	1.108487	0.559898				
103	Н	-4.946149	5.087942	1.848532				
104	Н	-4.946136	-5.087881	-1.848564				
105	н	-4.303308	3.123046	-1.914074				
106	Н	-6.704968	3.312726	-2.430120				
107	н	-4.303518	-3.123091	1.914135				
108	Н	-6.705215	-3.312758	2.430020				
109	Н	-7.348079	-5.268875	-1.350345				
110	Н	-7.348058	5.268950	1.350151				

	•								
39	н	4.946118	-5.087439	-1.849331	111	н	-8.892604	-6.423370	-0.098966
40	н	4.946180	5.087433	1.849315	112	н	-10.180635	-6.072821	1.063012
41	н	4.303682	-3.123093	1.913630	113	н	-8.553650	-6.489434	1.636521
42	н	6.705457	-3.312566	2.429251	114	н	-8.926170	-2.777060	2.282859
43	н	4.303514	3.123064	-1.913594	115	н	-8.626836	-4.347711	3.056327
44	н	6.705256	3.312544	-2.429368	116	н	-10.217061	-3.980426	2.379521
45	н	7.348158	5.268243	1.351207	117	н	-8.892486	6.423409	0.098681
46	н	7.348128	-5.268242	-1.351375	118	н	-10.180451	6.072867	-1.063375
47	н	8.892692	6.422798	0.099895	119	н	-8.553426	6.489460	-1.636786
48	н	10.180761	6.072293	-1.062061	120	н	-9.341869	-4.125802	-1.233979
49	н	8.553804	6.488975	-1.635604	121	н	-9.307182	-2.648092	-0.259196
50	н	8.926196	2.776628	-2.282148	122	н	-10.621338	-3.821510	-0.050734
51	н	8.626949	4.347339	-3.055528	123	н	-9.341857	4.125849	1.233677
52	н	10.217141	3.979946	-2.378709	124	н	-9.307123	2.648136	0.258900
53	н	8.892749	-6.422812	-0.100134	125	н	-10.621250	3.821569	0.050347
54	н	10.180887	-6.072288	1.061738	126	н	-8.925924	2.777089	-2.283130
55	н	8.553967	-6.488970	1.635386	127	н	-8.626538	4.347738	-3.056584
56	н	9.341911	4.125145	1.234786	128	н	-10.216807	3.980457	-2.379879
57	н	9.307189	2.647502	0.259902	129	С	-2.850295	2.546700	2.774477
58	н	10.621378	3.820895	0.051534	130	н	-2.651557	3.555719	3.137065
59	н	9.341880	-4.125176	-1.235083	131	н	-3.890317	2.267265	2.997189
60	н	9.307208	-2.647519	-0.260221	132	н	-2.166022	1.861260	3.278318
61	н	10.621421	-3.820896	-0.051917	133	С	2.849968	2.546343	2.774702
62	н	8.926391	-2.776613	2.281862	134	н	2.651470	3.555373	3.137394
63	н	8.627201	-4.347316	3.055281	135	н	2.165509	1.861014	3.278445
64	н	10.217348	-3.979924	2.378352	136	н	3.889913	2.266624	2.997405
65	s	-2.737070	-3.892010	-0.397289	137	С	-2.850200	-2.546651	-2.774316
66	S	-2.737001	3.892008	0.397430	138	н	-2.651458	-3.555667	-3.136911
67	0	-0.000211	-1.721946	-1.998810	139	н	-3.890201	-2.267191	-2.997092
68	0	-2.393349	5.017720	1.266111	140	н	-2.165879	-1.861215	-3.278099
69	0	-2.393374	-5.017707	-1.265972	141	с	2.849849	-2.546340	-2.774566
70	0	-2.045325	-3.610639	0.859702	142	н	2.651339	-3.555368	-3.137257
71	0	-2.045179	3.610603	-0.859510	143	н	2.165352	-1.861012	-3.278260
72	Ν	-2.556366	-2.503463	-1.340672	144	н	3.889777	-2.266607	-2.997329

9. Reference

S1. T. Takeda, Y. Suzuki, J. Kawamata, S. Noro, T. Nakamura, T. Akutagawa *Phys. Chem. Chem. Phys.* 2017, **19**, 23905-23909.

S2. T. Takeda, S. Noro, T. Nakamura, Y. Suzuki, J. Kawamata, T. Akutagawa CrystEngComm 2018, 20, 17-24.