Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Novel method for preparing stable near-infrared absorbers:

a new phthalocyanine family based on rhenium(I) complexes

Kei Murata, Yosuke Koike, and Kazuyuki Ishii*

Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Contents	Figure number	Page
1. Experimental details		S2–S3
2. Spectroscopic observations	Fig. S1	S4
	Fig. S2	S5
	Fig. S3	S6
3. Electrochemistry	Table S1	S 7
4. Tolerance to oxidation	Fig. S4	S 7
4. DFT analyses	Fig. S5	S 8
	Fig. S6	S9
	Table S2	S10
	Fig. S7	S11
	Table S3	S12
	Table S4	S13
	Table S5	S14–S16

1. Experimental details

General procedures

Materials: $\text{Re}_2(\text{CO})_{10}$ was purchased from Merck KGaA. The precursor, tetra-*tert*-butyl-29H,31Hphthalocyanine, was synthesized according to a literature procedure.¹ Here, *tert*-butyl groups were introduced to the macrocycle to just improve the solubility in organic solvents, and it was reasonably assumed that the electronic structures of the Pc ring were almost unchanged. Chloroform, decalin, and pyridine were purchased from Wako Pure Chemical Industries, Ltd.. Toluene was purchased from Kanto Chemical Co., Inc.. All of the chemicals were used as received without further purification.

Photophysical Measurements: UV-Vis absorption spectra were recorded with a V-570 UV/visible/NIR spectrophotometer (JASCO Co., Ltd.). MCD spectra for the Q band (> 500 nm) and B band (< 500 nm) regions were measured with a JASCO E-250 instrument equipped with a JASCO electromagnet (+1.35 to -1.35 T) and a JASCO J-720 spectrodichrometer equipped with a JASCO permanent magnet (0.47 T), respectively. ESI-MS spectra were measured with a Bruker HCT Ultra 125 spectrometer with chloroform/MeOH eluent. FT-IR spectra were measured with a JASCO FT/IR 4100typeA spectrometer using KBr pellets. NMR spectra were measured with a JEOL Resonance ECS 400 spectrometer.

Theoretical Study: DFT and TD-DFT calculations were performed with the Gaussian 16 package using the B3LYP functional.² The LANL2DZ and 6-31G(d,p) basis sets were used for the Re atom and other atoms, respectively.³ To address solvent effects, the polarizable continuum model (PCM, toluene) was used for excited states.⁴ For validation, the vibrational frequencies were calculated for the optimized geometry of the ground state. The orbital plots and graphical representations were produced with Molekel.⁵ For the strong ligand-field of CO, [Re(CO)₃]⁺ complexes are known to show diamagnetism, which are consistent with the NMR data of **Re₂Pc** and **Re₁Pc** (shown below). Thus, the DFT and TD-DFT calculations were carried out using S = 0.

Preparations

(Tetra-*tert*-butyl-phthalocyaninato)bis(tricarbonylrhenium(I) (**Re**₂**Pc**): Under a nitrogen atmosphere, a mixture of tetra-*tert*-butyl-29H,31H-phthalocyanine (60.7 mg, 0.0821 mmol) and Re₂(CO)₁₀ (80.7 mg, 0.124 mmol) was refluxed in decalin (10 mL) for 8 h. The crude product was purified by silica-gel column chromatography (*n*-hexane \rightarrow CHCl₃/*n*-hexane = 2/3 eluents) to give an analytically pure product of **Re**₂**Pc** (93.4 mg, 0.0731 mmol, 89.0% yield). UV–Vis (toluene, $\lambda_{max}/nm (10^{-4} \varepsilon /L mol^{-1} cm^{-1})$): 362 (4.52), 599 (1.06), 798 (7.24) nm. IR (KBr pellet, *v*(CO)/cm⁻¹): 1915, 2026. ESI-MS: *m/z* = 1278 [M]⁺. ¹H NMR (400 MHz, CDCl₃, r.t., δ /ppm): δ 9.57, 9.54 (s, 4 H, Pc), 9.51–9.43 (m, 4 H, Pc), 8.42 (d, *J* = 8.0 Hz, 4 H, Pc), 1.81–1.79 (m, 36 H, ^{*t*}Bu). Anal. found (calcd for C₅₄H₄₈N₈O₆Re₂): C 49.81 (50.77), H 3.79 (3.79), N 8.00 (8.77).

(Tetra-*tert*-butyl-phthalocyaninato)tricarbonylrhenium(I) (**Re**₁**Pc**): Under air, **Re**₂**Pc** (77.5 mg, 0.0606 mmol) was dissolved in pyridine and then the solution was stirred at room temperature for 30 min. After removal of the solvent, the crude product was purified by gel-permeation chromatography (CHCl₃ eluent) to give an analytically pure product of **Re**₁**Pc** (52.9 mg, 0.0525 mmol, 87.3% yield). UV–Vis (toluene, λ_{max}/nm ($10^{-4} \varepsilon$ /L mol⁻¹ cm⁻¹)): 349 (4.76), 553 (0.861), 745 (11.1). IR (KBr pellet, ν (CO)/cm⁻¹): 1908, 2023. ESI-MS: m/z = 1008 [M]⁺. ¹H NMR (400 MHz, CDCl₃, r.t., δ /ppm): δ 9.59–9.16 (m, 8 H, Pc), 8.42–8.23 (m. 4 H, Pc), 1.79–1.73 (m, 36 H, ^{*t*}Bu), -1.28–1.42 (m, 1 H, N–H). Anal. found (calcd for C₅₁H₄₉N₈O₃Re): C 59.97 (60.76), H 5.09 (4.90), N 10.16 (11.11).

2. Spectroscopic observations

Fig. S1 Electronic absorption spectral changes during the demetallation reaction of Re_2Pc to form Re_1Pc : Time course after the addition of pyridine (150 µL) to a toluene solution of Re_2Pc (0.01 mM, 3mL). An isosbestic point was observed at 759 nm.

Fig. S2 FT-IR spectra of (a) Re₂Pc and (b) Re₁Pc (KBr pellet).

Fig. S3 1 H NMR spectra of (a) Re₂Pc and (b) Re₁Pc (400 MHz, CDCl₃, r.t.).

3. Electrochemistry

Complex	<i>E</i> ^{1+/0} / V	<i>E</i> ^{0/1-} / V	<i>E</i> ^{1-/2-} /V
Re₂Pc	+0.52 (0.08)	-0.96 (0.08)	-1.36 (0.08)
Re₁Pc	+0.32 (0.08)	-1.17 (0.07)	-1.56 (0.08)
ZnPc	+0.11 (0.07)	-1.20 (0.06)	-1.67 (0.08)

Table S1Electrochemical data (vs. Fc/Fc^+) of the Pc complexes.^a

^aObtained in CH₂Cl₂ with 0.1 M [n-Bu₄N](PF₆). The numbers in parentheses are the differences between the anodic and cathodic waves (V).

4. Tolerance to oxidation

Fig. S4 Electronic absorption spectral changes in the Q band region of (a) Re_2Pc , (b) Re_1Pc and (c) **ZnPc** under light irradiation ($\lambda_{irr.} = 425$ nm) in the presence of germanium tetraphenylporphyrin dihydroxide (GeTPP(OH)₂) as a singlet oxygen generator. Condition: A toluene solution of the corresponding Pc (5×10⁻⁶ M) and GeTPP(OH)₂ (absorbance at 425 nm: 1.4) was irradiated by blue LED under air. After the light irradiation for 12 min, the bleaching (53 %) of the Q band was observed in **ZnPc**, those were negligibly small in **Re**₁**Pc** and **Re**₂**Pc**.

4. DFT analyses

Fig. S5 Top and side views of the optimized structures of (a) **Re₂Pc'**, (b) **Re₁Pc'** and (c) **Re₂TPP** obtained by DFT.

Fig. S6 Plots of the skeletal deviation of the atoms from the $4N_m / 4C_m$ mean plane for (a) **Re₂Pc'**, (b) **Re₁Pc'** and (c) **Re₂TPP**. "N" indicates a nitrogen atom in pyrrol units, and "N_m" and "C_m" indicate nitrogen and carbon atoms at *meso*-positions, respectively.

Table S2Selected bond lengths and a dihedral angle of the rhenium coordination environment in therhenium phthalocyanine and porphyrin complexes.

Complay		Dihedral Angle / °					
Complex	/(Re-N1)	/ (Re-N2)	/ (Re-N3)	/ (Re-C1)	/ (Re-C2)	/ (Re-C3)	$\theta (X_m - C_p - N1 - Re)^c$
Re ₂ Pc' ^a	2.175	2.429	2.429	1.935	1.907	1.907	26.3
Re₁Pc' ^a	2.156	2.396	2.396	1.936	1.913	1.913	25.4
Re₂TPP ^a	2.190	2.459	2.461	1.935	1.902	1.903	28.9
Re ₂ TPP (exp) ^b	2.169	2.382	2.407	1.868	1.847	1.854	28.5

^aBased on the optimized structure calculated at B3LYP/LanL2DZ (for Re), 6-31G(d,p) (for other atoms) level. ^bBased on the structure experimentally obtained by X-ray single crystal structure analysis.⁶ ^cX_m: nitrogen / carbon atoms at *meso*-positions. C_p : β -pyrrolic carbon atoms adjacent to the pyrrolic nitrogens.

Fig. S7 (a) Molecular orbital energies and distributions (isosurface value: 0.03), and (b) HOMO distributions (isosurface value: 0.008) of **ZnPc'**, **Re₁Pc'** and **Re₂Pc'** calculated by DFT. For **ZnPc'**, the a_{1u} , a_{2u} , e_{gx} and e_{gy} orbitals in the Gouterman's four orbital model were calculated to be the HOMO, HOMO-4 and degenerate LUMOs, respectively. The notations of a_{1u} ', a_{2u} ', e_{gy} ' and e_{gx} are used for the a_{1u} - and a_{2u} -like π orbitals and e_{gy} - and e_{gx} -like π^* orbitals of **Re₁Pc'** and **Re₂Pc'**, respectively.

Complex	Natural Atomic Orbital Charges										
Complex	М	N1	N2	$C_p^{1 b}$	C_p^{2b}	C_p^{3b}	N_m^{1c}	N_m^{2c}			
ZnPc'	+1.337	-0.697		+0.446			-0.495				
Re₁Pc'	-0.782	-0.502	-0.549	+0.469	+0.456	+0.452	-0.488	-0.492			
Re₂Pc'	-0.717	-0.514	-0.563	+0.468	+0.470	+0.471	-0.484	-0.484			
Complex		Mulliken Atomic Charges									
Complex	М	N1	N2	$C_p^{1 b}$	C_p^{2b}	C_p^{3b}	Nm ^{1 ℃}	${\sf N_m}^{2c}$			
ZnPc'	+1.156	-0.704		+0.380			-0.433				
Re₁Pc'	+0.435	-0.576	-0.563	+0.383	+0.381	+0.372	-0.429	-0.424			
Re₂Pc'	+0.489	-0.557	-0.627	+0.371	+0.400	+0.400	-0.424	-0.424			

Table S3 Selected natural atomic orbital (NAO) charges and Mulliken charges of the optimizedstructures of ZnPc', Re_1Pc' and Re_2Pc' calculated by DFT.^{*a*}

^aAnalysis based on the optimized structures calculated at B3LYP/LanL2DZ (for Re), 6-31G(d,p) (for other atoms) level. ^bβ-pyrrolic carbon aoms adjascent to the pyrrolic nitrogens. ^cnitrogen atoms at *meso*-positions.

Complex	State	E/eV	f	Com	positions ^a
ZnPc'	S _{1x}	1.997	0.6161	96%	HOMO (π (Pc), a_{1u}) \rightarrow LUMO (π^* (Pc), e_{gy})
Zin c				4%	HOMO-4 (π (Pc), a_{2u}) \rightarrow LUMO (π^* (Pc), e_{gx})
	S _{1y}	1.997	0.6161	96%	HOMO ($\pi(Pc)$, a_{1u}) \rightarrow LUMO ($\pi^*(Pc)$, e_{gx})
				4%	HOMO-4 (π (Pc), a_{2u}) \rightarrow LUMO (π^* (Pc), e_{gy})
	S _{9x}	3.614	0.3172	45%	HOMO-7 (π (Pc)) \rightarrow LUMO (π [*] (Pc), e _{gx})
				42%	HOMO-4 (π (Pc), a_{2u}) \rightarrow LUMO (π^{*} (Pc), e_{gx})
	S _{9y}	3.614	0.3172	45%	HOMO-7 (π (Pc)) \rightarrow LUMO (π^* (Pc), e _{gx})
		2 000	0 7005	42%	HOMO-4 (π (Pc), a_{2u}) \rightarrow LUMO (π (Pc), e_{gy})
	S _{13x}	3.690	0.7305	53%	HOMO-8 (π (PC)) \rightarrow LUMO (π '(PC), e_{gx})
				18%	HOMO-4 (π (PC), a_{2u}) \rightarrow LOMO (π (PC), e_{gx})
	S.,	3 600	0 7307	F20/	$HOMO ? (\pi(PC)) \rightarrow LOMO (\pi(PC), e_{gx})$
	O _{13y}	5.090	0.7307	00%	HOMO 4 (π (PC)) \rightarrow LOMO (π (PC), e_{gy})
				10%	$HOMO-7 (\pi(FC), a_{2u}) \rightarrow LOMO (\pi(FC), e_{gy})$
	S.	1 817	0 1112	0.20/	$HOMO(r(Pc)) \rightarrow LOMO(r(Pc), e_{gy})$
Re₁Pc′	U _{1x}	1.017	0.4442	93% 5%	$HOMO(\pi(FC), a_{1u}) \rightarrow LOMO(\pi(FC), e_{gy})$ $HOMO(1(d_{\pi}(Pc)), \ldots) = LIMO(1(\pi^*(Pc), c_{yy}))$
	S.	1 810	0 4017	0.5%	$HOMO(\pi(Pc)) \rightarrow LUMO(\pi(Pc)), e_{gx})$
	U _{1y}	1.010	0.4017	2%	$HOMO_1(\pi(FC), a_{1u}) \rightarrow LUMO(\pi^*(Pc), e_{gx})$
	S	2 303	0.0172	0.7%	$HOMO(1 (d\pi(Re))) \rightarrow LUMO(\pi^*(Re), e_{gy})$
	S ₂	2.358	0.0837	03%	$HOMO-1 (d\pi(Re)) \rightarrow LUMO+1 (\pi^*(Pc) - e^{-1})$
	S ₂	2.000	0.0007	08%	$HOMO-2 (d\pi(Re)) \rightarrow LUMO(\pi^*(Re) e^{-i})$
	<u>S₂</u>	2 478	0.0243	98%	$HOMO-2 (d\pi(Re)) \rightarrow LUMO+1 (\pi^*(Pc), e_g)$
	Sor	3 392	0.0173	41%	$HOMO-7 (\pi(Pc)) \rightarrow I I IMO (\pi^*(Pc) - e_{gx})$
	Ugx	0.002	0.0110	33%	$HOMO-6 (\pi(Pc) + d\pi(Re)) \rightarrow I \cup MO+1 (\pi^*(Pc) =)$
				13%	HOMO-11 (π (Pc)) \rightarrow LUMO (π^* (Pc), $e_{\pi'}$)
	Sav	3.414	0.1109	31%	HOMO-7 (π (Pc)) \rightarrow LUMO+1 (π *(Pc), e_{qx} ')
	0)			24%	HOMO-8 (π (Pc)) \rightarrow LUMO (π *(Pc), $e_{\pi y}$)
				16%	HOMO-11 (π (Pc)) \rightarrow LUMO+1 (π *(Pc), e_{qx})
				15%	HOMO-4 (π (Pc), a_{2u} ') \rightarrow LUMO (π *(Pc), e_{qv} ')
	S _{12x}	3.469	0.1773	62%	HOMO-4 (π (Pc), a_{2u} ') \rightarrow LUMO (π *(Pc), e_{qv} ')
				13%	HOMO-7 (π (Pc)) \rightarrow LUMO+1 (π *(Pc), e _{gx} ')
				11%	HOMO-11 (π (Pc)) \rightarrow LUMO+1 (π *(Pc), e_{gx})
	S _{12y}	3.501	0.4672	83%	HOMO-4 (π (Pc), a_{2u} ') \rightarrow LUMO+1 (π *(Pc), e_{gx} ')
Re-Pc'	S _{1x}	1.640	0.3595	96%	HOMO (π (Pc), a_{1u} ') \rightarrow LUMO (π *(Pc), e_{gy} ')
	S _{1y}	1.691	0.2320	88%	HOMO (π (Pc), a_{1u} ') \rightarrow LUMO+1 (π *(Pc), e_{gx} ')
				6%	HOMO-2 (d π (Re)) \rightarrow LUMO (π *(Pc), e _{gy} ')
				5%	HOMO-1 (d π (Re)) \rightarrow LUMO (π *(Pc), e_{gy})
	S _{2x}	1.971	0.0077	94%	HOMO-1 (d π (Re)) \rightarrow LUMO (π *(Pc), e _{gy} ')
	S _{3x}	2.135	0.1079	91%	HOMO-2 (d π (Re)) \rightarrow LUMO (π *(Pc), e _{gy} ')
	S _{2y}	2.160	0.0220	94%	HOMO-1 (d π (Re)) \rightarrow LUMO+1 (π^* (Pc), e _{gx} ')
	S _{3y}	2.278	0.0286	96%	HOMO-2 (d π (Re)) \rightarrow LUMO+1 (π^{*} (Pc), e _{gx} ')
	S _{10x}	3.278	0.3573	81%	HOMO-7 (π (Pc), a_{2u} ') \rightarrow LUMO (π *(Pc), e_{gy} ')
				13%	HOMO ($\pi(Pc)$, a_{1u}) \rightarrow LUMO+5 ($d\pi(Re) + \pi^*(Pc)$)
	S ₁₇	3.410	0.1652	79%	HOMO ($\pi(Pc)$, a_{1u}) \rightarrow LUMO+5 ($d\pi(Re)$ + $\pi^*(Pc)$)
				11%	HOMO-7 (π (Pc), a_{2u} ') \rightarrow LUMO (π *(Pc), e_{gy} ')
	S _{10y}	3.474	0.6296	76%	HOMO-7 ($\pi(Pc)$, a_{2u}) \rightarrow LUMO+1 ($\pi^*(Pc)$, e_{gx})
				16%	HOMO ($\pi(Pc)$, a_{1u}) \rightarrow LUMO+3 ($\pi^*(Pc)$)

Table S4 Excitation energies and compositions of the selected excited singlet states of **ZnPc'**, **Re₁Pc'** and **Re₂Pc'** calculated by TD-DFT (transition percentage $\ge 10\%$ except for the S_{1x} and S_{1y} states).^{*a*}

^{*a*}In the TD-DFT calculation for **ZnPc'**, the a_{1u} , a_{2u} , e_{gx} and e_{gy} orbitals in the Gouterman's four orbital model were calculated to be the HOMO, HOMO-4 and degenerate LUMOs, respectively. The notations of a_{1u} ', a_{2u} ', e_{gy} ' and e_{gx} ' are used for the a_{1u} - and a_{2u} -like π orbitals and e_{gy} - and e_{gx} -like π^* orbitals of **Re₁Pc'** and **Re₂Pc'**, respectively.

Re ₂	Pc(S ₀) E _{tot}	= -2505.5545	ā.u.	Н	2.50452	-5.20098	-0.20544
Re	0.22229	-0.00001	-1.63371	Н	5.40202	-2.51201	0.24277
Re	-0.22227	0.00003	1.63366	Н	5.40196	2.51209	0.24279
0	1.01979	-2.13071	-3.69274	Н	2.50443	5.20098	-0.20546
С	0.70907	-1.33506	-2.90585	Н	-2.50454	5.20096	0.20541
С	-1.55739	-0.00005	-2.39387	С	-5.41230	1.42731	-0.22581
Ν	-0.00005	1.78411	-0.00008	С	-5.41226	-1.42745	-0.22578
Ν	2.12007	0.00000	-0.57052	Н	-1.23023	-7.35159	0.09797
Ν	0.00002	-1.78414	0.00004	Н	1.23034	-7.35157	-0.09795
С	0.70908	1.33498	-2.90591	Н	7.50405	-1.23327	0.68072
0	-2.61854	-0.00001	-2.86225	Н	7.50402	1.23339	0.68073
С	-1.12386	2.63719	0.10407	Н	1.23022	7.35156	-0.09797
С	1.12376	2.63720	-0.10413	Н	-1.23035	7.35156	0.09792
С	2.87714	1.10870	-0.31898	С	-6.57857	0.70353	-0.47570
С	2.87717	-1.10868	-0.31898	С	-6.57855	-0.70371	-0.47569
С	1.12383	-2.63721	-0.10408	Н	-5.40206	2.51198	-0.24269
С	-1.12379	-2.63723	0.10415	Н	-5.40200	-2.51212	-0.24264
0	1.01978	2.13058	-3.69287	Н	-7.50410	1.23323	-0.68056
С	-0.70903	-1.33496	2.90588	Н	-7.50407	-1.23343	-0.68054
С	-0.70904	1.33509	2.90580				
С	1.55740	0.00006	2.39385				
С	0.69874	4.01850	-0.05624				
С	-0.69884	4.01849	0.05617				
С	4.25235	-0.70584	-0.05361				
С	4.25233	0.70589	-0.05361				
Ν	2.41058	2.34349	-0.21707				
С	-0.69876	-4.01852	0.05624				
С	0.69882	-4.01851	-0.05618				
Ν	2.41063	-2.34348	-0.21707				
Ν	-2.12008	-0.00002	0.57051				
Ν	-2.41065	2.34347	0.21709				
Ν	-2.41059	-2.34352	0.21713				
0	-1.01972	-2.13056	3.69284				
0	-1.01975	2.13074	3.69270				
0	2.61856	0.00010	2.86218				
С	-2.87716	-1.10872	0.31902				
С	-2.87718	1.10866	0.31900				
С	-1.42371	-5.21494	0.11749				
С	1.42379	-5.21491	-0.11744				
С	5.41226	-1.42735	0.22590				
С	5.41223	1.42742	0.22591				
С	1.42369	5.21490	-0.11748				
С	-1.42381	5.21489	0.11742				
С	-4.25238	0.70582	0.05368				
С	-4.25236	-0.70592	0.05369				
С	-0.70445	-6.40229	0.05720				
С	0.70455	-6.40228	-0.05716				
С	6.57853	-0.70357	0.47584				
С	6.57851	0.70367	0.47585				
С	0.70444	6.40227	-0.05720				
С	-0.70456	6.40226	0.05715				

Table S5 Cartesian coordinates and ZPE corrected total energy of the optimized structures.

н -2.50444 -5.20102 0.20549

Re ₁ Pc	(S ₀) E _{tot}	=	-2086.9435	a.u.
Re	0.21911		0.00003	1.11654
0	1.06994		2.13173	3.16091
С	0.73880		1.34240	2.37619
С	0.73869		-1.34258	2.37599
C	-1 54979		0 00025	1 90295
N	-0 05913		-1 86977	-0 35533
IN NT	-0.05913		-1.00977	-0.33533
IN	-0.05913		1.86978	-0.35534
Ν	2.05271		0.00001	-0.01811
0	1.06976		-2.13215	3.16051
0	-2.61805		0.00000	2.35809
С	1.06776		-2.68577	-0.40665
С	-1.14612		-2.68568	-0.61277
С	-1.14614		2.68568	-0.61278
С	1.06774		2.68579	-0.40667
С	2.79771		1.11081	-0.29511
С	2.79772		-1.11078	-0.29512
C	-0.71926		-4.07161	-0.75684
C	0 67671		-4 06942	-0 63862
N	-2 13166		-2 37087	-0 75565
C	0 67669		1 06944	-0 63963
C	0.07000		4.00944	-0.03002
0	-0.71929		4.07160	-0.75685
Ν	-2.43468		2.3/085	-0./5566
С	4.15678		-0.70499	-0.64201
С	4.15678		0.70504	-0.64201
Ν	2.35413		-2.35666	-0.35723
Ν	2.35411		2.35669	-0.35723
С	-2.88690		-1.14282	-0.86755
С	-2.88691		1.14280	-0.86755
С	1.41827		5.24535	-0.76553
С	-1.42463		5.24940	-1.01024
С	5.29943		-1.42667	-0.98506
С	5.29942		1.42673	-0.98505
С	-1.42459		-5.24941	-1.01024
С	1.41832		-5.24532	-0.76554
С	-4.26758		0.70791	-0.77528
С	-4.26758		-0.70795	-0.77527
Ν	-2.13344		-0.00001	-1.01913
С	0.71562		6.42588	-1.00026
С	-0.68844		6.42796	-1.11968
С	6.45009		-0.70358	-1.30168
C	6.45009		0.70365	-1.30167
C	-0 68838		-6 42796	-1 11968
C	0 71568		-6 42586	-1 00027
с ц	2 / 9957		5 22967	-0 68067
11 Ц	-2 50495		5 22200	-1 10927
п 11	-2.30403		J.23000	-1.10927
п	3.20700		2.31133	-0.99780
п	2.4990L		-3.22963	-0.08068
н	5.28/61		-2.51148	-0.99/81
Н	-2.50481		-5.23890	-1.1092/
C	-5.45947		1.42738	-0.65133
С	-5.45946		-1.42743	-0.65132
Н	1.25643		7.36285	-1.09595
Н	-1.20279		7,36705	-1.30185

Н	7.36285	-1.23360	-1.55739
Н	7.36284	1.23368	-1.55738
Н	-1.20272	-7.36706	-1.30186
Н	1.25650	-7.36282	-1.09597
Н	-1.12600	-0.00001	-1.11364
С	-6.64401	0.70527	-0.54658
С	-6.64401	-0.70532	-0.54658
Н	-5.45003	2.51202	-0.63783
Н	-5.45001	-2.51206	-0.63782
Н	-7.58807	1.23422	-0.45689
Н	-7.58806	-1.23427	-0.45689

Re2	TPP(S ₀) E _{tot}	= -2750.995	8 a.u.	0	1.33432	-2.14034	-3.56715
С	-2.99901	1.12563	0.12395	0	1.37521	2.11931	-3.56478
С	-2.47158	2.42019	0.02393	С	3.02011	1.06825	-0.12298
С	-3.52277	-3.46947	-0.13116	С	4.33838	-0.72290	0.23782
С	-3.60503	-4.22495	-1.31254	С	4.36981	-3.81068	-0.90119
С	-4.56844	-5.22416	-1.45070	С	3.51470	-4.30157	1.30522
С	-5.46357	-5.48536	-0.41085	С	3.52272	3.46960	0.13149
С	-5.39273	-4.73903	0.76688	С	4.35151	0.63984	0.23814
С	-4.43277	-3.73574	0.90468	С	5.31094	-4.83155	-0.76277
С	-3.45566	3.53610	-0.12916	С	4.45926	-5.31847	1.44401
С	-4.36984	3.81098	0.90081	С	3.60346	4.22638	1.31216
С	-5.31097	4.83183	0.76217	С	4.43426	3.73459	-0.90333
С	-4.33848	0.72298	-0.23728	С	5.35864	-5.58765	0.40987
С	-5.35867	5.58768	-0.41064	С	4.56684	5.22556	1.45059
С	-4.45931	5.31825	-1.44473	С	5.39421	4.73785	-0.76526
С	-3.51476	4.30136	-1.30572	С	5.46351	5.48546	0.41175
С	1.32637	-0.01449	2.45599	Н	-2.91740	-4.01565	-2.12667
С	-0.96840	1.34153	2.80416	Н	-4.62337	-5.79411	-2.37372
С	-0.99371	-1.32744	2.80212	Н	-6.21259	-6.26445	-0.51896
С	-4.35162	-0.63975	-0.23743	Н	-6.08281	-4.93857	1.58160
С	-3.02010	-1.06811	0.12332	Н	-4.37252	-3.16089	1.82408
С	-2.51747	-2.37232	0.02181	Н	-4.32760	3.22868	1.81649
С	-1.14405	-2.69817	-0.00841	Н	-6.00442	5.03763	1.57247
С	-0.72011	-4.06171	-0.00770	Н	-5.13107	1.39536	-0.52946
С	0.64186	-4.07481	-0.00212	Н	-6.09304	6.38050	-0.51942
С	-1.09200	2.71978	-0.00459	Н	-4.49646	5.89553	-2.36408
Ν	-2.24417	0.02132	0.40159	Н	-2.82416	4.08571	-2.11565
Ν	-0.01773	-1.84309	-0.00059	Н	-5.15703	-1.29675	-0.52961
0	2.34753	-0.02401	3.00818	Н	-1.38322	-4.91231	0.00698
0	-1.33472	2.13969	3.56759	Н	1.28846	-4.93794	-0.02086
0	-1.37523	-2.11982	3.56419	Н	-1.28851	4.93808	0.01994
Re	-0.39803	0.00231	1.57901	Н	1.38315	4.91248	-0.00801
С	1.09199	-2.71967	0.00431	Н	5.13089	-1.39530	0.53017
С	-0.64191	4.07495	0.00144	Н	4.32756	-3.22817	-1.81674
Ν	0.01772	1.84328	0.00045	Н	2.82407	-4.08611	2.11517
Re	0.39815	-0.00237	-1.57902	Н	5.15684	1.29677	0.53067
С	2.47154	-2.42010	-0.02405	Н	6.00441	-5.03715	-1.57311
С	0.72006	4.06188	0.00698	Н	4.49641	-5.89596	2.36323
С	1.14401	2.69833	0.00816	Н	2.91464	4.01811	2.12554
С	-1.32631	0.01457	-2.45583	Н	4.37523	3.15877	-1.82220
С	0.96816	-1.34192	-2.80392	Н	6.09304	-6.38048	0.51849
С	0.99391	1.32703	-2.80252	Н	4.62056	5.79652	2.37307
Ν	2.24425	-0.02117	-0.40154	Н	6.08549	4.93638	-1.57922
С	2.99900	-1.12550	-0.12379	Н	6.21252	6.26454	0.52007
С	3.45562	-3.53604	0.12884				
С	2.51747	2.37248	-0.02169				
0	-2.34744	0.02417	-3.00808				

References

- 1. S. Bo, D. Tang, X. Liu and Z. Zhen, Dyes Pigm., 2008, 76, 35-40.
- Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- (a) T. H. Dunning and P. J. Hay in *Modern Theoretical Chemistry* (Ed. H. F. Schaefer III), Plenum, New York, 1976, vol. 3, p. 1; (b) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, 82, 284–298; (c) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, 82, 299–310.
- 4. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999-3094.
- 5. U. Varetto, Molekel 5.4; Swiss National Supercomputing Centre, Lugano, Switzerland, 2009.
- M. Tsutsui, C. P. Hrung, D. Ostfeld, T. S. Srivastava, D. L. Cullen and E. F. Meyer Jr., J. Am. Chem. Soc., 1975, 97, 3952–3965.