Electronic Supporting Information for

New Type of Carborane-based Electron-accepting Material

Sunhee Lee,^[a] Jisu Shin,^[b] Doo-Hyun Ko,^[b] and Won-Sik Han*^[a]

^[a] Department of Chemistry, Seoul Women's University, Seoul 01797, Republic of Korea.

^[b] Department of Applied Chemistry, Kyung Hee University Yongin, Gyeonggi 17104, Republic of Korea.

General experimental details	 S3-S4
Scheme S1. Synthetic scheme for II and III	 S5
Syntheses and spectroscopic characterisation for II and III	 S6
Figure S1. ¹ H NMR spectra for II and III	 S7
Figure S2. ¹³ C NMR spectra for II and III	 S8
Figure S3. ¹¹ B NMR spectra for II and III	 S9
Figure S4. ORTEP drawings showing thermal anisotropic displacements at the 30%	 \$10
probability level for II and III	510
Table S1. Crystallographic data for II and III	 S11
Table S2. Bond distances for II	 S12
Table S3. Bond distances for III	 S13
Table S4. Bond angles for II	 S14-S15
Table S5. Bond angles for III	 S16-S17
Computational method detail	 S18
Table S6. Optimized geometry coordinates for I	 S18
Table S7. Optimized geometry coordinates for II	 S19
Table S8. Optimized geometry coordinates for III	 S20
Table S9. Optimized geometry coordinates for I	 S21
Table S10. Optimized geometry coordinates for II	 S22
Table S11. Optimized geometry coordinates for III*-	 S23
Table S12. TD-DFT calculated transitions for I	 S24
Table S13. TD-DFT calculated transitions for II	 S25-S26
Table S14. TD-DFT calculated transitions for III	 S27-S29
Figure S5. TD-DFT calculated oscillation strengths with measured absorption spectra	 \$30
and isodensity plots for the orbitals included in the major transitions of I-III	350
Table S15. Selected TD-DFT calculated transitions for I–III	 S31
Geometrical changes between neutral and anionic species	 S31
Figure S6. Optimized structures of I–III and I ^{+–} –III ^{+–}	 S32
Table S16. Selected bond lengths (Å) in the DFT-optimised geometries of the neutral	 \$32
and radical-anionic states of I–III	552
Figure S7. Square wave voltammetry scan for III	 S33
References	 S34

EXPERIMENTAL SECTION

General Information

All the experimental procedures were performed under a dry nitrogen (N₂) or argon (Ar) atmosphere using standard Schlenk techniques. All solvents were distilled freshly and used under dry nitrogen or argon-purging. Phenylacetylene, TMEDA, copper iodide, copper chloride, NBS, silver nitrate, 2methyl-3-butyn-2-ol, n-butylamine, hydroxylamine hydrochloride, sodium hydroxide, decaborane, N,N-dimethylaniline were purchased from Aldrich or TCI and used without further purification. The starting materials, diphenylbutadiyne $(1)^1$, (bromoethynyl)benzene $(2)^2$, 2-methyl-6-phenylbuxa-3,5diyn-2-ol $(3)^3$, phenylbutadiyne $(4)^4$, and diphenylhexatriyne $(5)^5$ were prepared according to previously reported procedures. Reference compound I was also prepared according to previously reported procedure.⁶ ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded using a Bruker Fourier 300 MHz spectrometer operated at 300.1 and 75.4 MHz, respectively. ¹H and ¹³C NMR chemical shifts were measured in CDCl₃. Referenced to the relative peaks of CDCl₃ are 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR, respectively. ¹¹B NMR were acquired on 500MHz NMR spectrometer (AVANCE III HD, Bruker, Germany) at KBSI Western Seoul center. Elemental analyses were performed using a Carlo Erba Instruments CHNS-O EA 1108 analyser. A highresolution mass spectrometry (HR-MS) analysis was performed using a highly sensitive liquid chromatography–multistage MS (LC/MS/MSⁿ)(n = 10) spectrometer (Thermo Fisher Scientific, LCQ) Fleet Hyperbolic Ion Trap MS/MSⁿ Spectrometer).

Crystal Structures Determination

The structures of the (II) and (III) single crystal were determined at 223 K using an X-ray diffraction system (Bruker AXS GMBH) at the Korea Basic Science Institute, Seoul Western Centre that was equipped with a sealed-tube X-ray source (50 kV 30 mA); monochromatic Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) corresponding to graphite was obtained from the X-ray source. At this preliminary stage,

the unit cell constants were determined from a set of 45 narrow-frame (0.3° in ω) scans. A doublepass method of scanning was used to exclude any noise. The collected frames were integrated using an orientation matrix, which was developed using narrow frame scans. The *SMART* software package was used for data collection, while the *SAINT* software package⁷ was used for frame integration. Final cell constants were determined by conducting global refinement of the *xyz* centroids of the reflections, which were harvested from the entire data set. The structural solution and refinement were carried out using *SHELXTL PLUS* software package.⁸ The crystal structures of II and III have been deposited in the CCDC database (deposit numbers 1986098 and 1986099).

Absorption and Fluorescence Measurements

Absorption spectra were recorded using a Shimadzu (UV-3101PC) scanning spectrophotometer (Japan). Emission and excitation spectra were measured by using a Varian fluorescence spectrophotometer (Cary Eclipse) (Scinco, Korea).

DFT Calculations

Theoretical calculations for all complexes were conducted by the *Gaussian 16* Package.⁹ The groundstate geometries of **I–III** were optimised by using the B3LYP density functional theory (DFT) and 6-31G(d,p) basis set. The contours of the electron density were plotted by using *Chem3D version.10.0.*¹⁰

Cyclic Voltammetry Measurements

Cyclic voltammetry (CV) was performed in an electrolytic solution prepared using 0.1 M tetra-butyl ammonium hexafluorophosphate (NBu₄PF₆) at room temperature under an atmosphere of argon. For this purpose, CHI600E (CH Instrument, Inc., USA) was used. Glassy carbon, platinum wire, and Ag/AgNO₃ (0.1 M) were used as the working, counter, and reference electrodes, respectively. All the potentials were calibrated to the ferrocene/ferrocenium (Fc/Fc⁺) redox couple.

Scheme S1. Synthetic procedures for II and III.

Synthesis

1-(Phenylethynyl)-2-phenyl-o-carborane (II) A mixture of decaborane (0.39 g, 3.21 mmol), diphenylbutadiyne (1) (0.65 g, 1.63 mmol), and *N*,*N*-dimethylaniline (0.9 mL, 7.11 mmol) in toluene (15 mL) was stirred at 100 °C for 17 h under argon atmosphere. After cooling to room temperature, the mixture was filtered by vacuum filtration, washed with 1 M HCl aqueous solution and extracted with dichloromethane (DCM). The combined organic layers were dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified via recrystallisation with DCM and methanol after silica-gel column chromatography using toluene:hexane (*v:v*=1:1) as an eluent. White crystal; Yield: 74%; ¹H NMR (300 MHz, CDCl₃, δ): 7.76 (dt, *J* = 7.2 Hz, 1.5 Hz, 2H), 7.50–7.38 (m, 3H), 7.33-7.28 (m, 1H), 7.23-7.18 (m, 2H), 7.02 (dt, *J* = 6.9 Hz, 1.5 Hz), 3.85-1.40 (br, 10H); ¹³C NMR (75 MHz, CDCl₃, δ): 131.96, 131.22, 130.70, 129.78, 128.58, 128.42, 120.07, 85.44, 82.45, 82.12, 69.65; ¹¹B NMR (500 MHz, CDCl₃, δ): -2.1, -3.9, -9.2, -9.8. HRMS (FAB) calcd for C₁₆H₂₀B₁₀: 322.2496, found 322.2494; Elem. anal. calcd for C₁₆H₂₀B₁₀: C, 59.97; H, 6.29; B, 33.74 Found: C, 59.96; H, 6.27.

1,2-bis(2-Phenylcarboranyl)ethyne (III) A mixture of decaborane (0.107 g, 0.88 mmol), diphenylhexatriyne (5) (0.2 g, 0.88 mmol), and *N*,*N*-dimethylaniline (0.25 mL, 1.95 mmol) in toluene (5 mL) was stirred at 100 °C for 17 h under argon atmosphere. After cooling to room temperature, the mixture was filtered by vacuum filtration, washed with 1 M HCl aqueous solution and extracted with ethylacetate and DCM. The combined organic layers were dried over MgSO₄ and evaporated under reduced pressure. The crude product was purified via recrystallisation with DCM and methanol after silica-gel column chromatography using toluene:hexane (*v*:*v*=1:1) as an eluent. White transparent crystal; Yield: 53%; ¹H NMR (300 MHz, CDCl₃, δ): 7.56-7.51 (m, 2H), 7.44-1.37 (m, 8H), 3.90-1.20 (br, 10H); ¹³C NMR (75 MHz, CDCl₃, δ): 131.14, 130.89, 130.35, 128.83, 128.60, 128.44; ¹¹B NMR (500 MHz, CDCl₃, δ): -1.1, -3.9, -9.8. HRMS (FAB) calcd for C₁₈H₂₀B₁₀: 346.2496, found 346.2495; Elem. anal. calcd for C₁₈H₂₀B₁₀: C, 62.76; H, 5.85; B, 31.39; Found: C, 62.74; H, 5.84.

Figure S1. ¹H NMR spectra for (a) II and (b) III in CDCl₃.

(a)

Figure S2. ¹³C NMR spectra for (a) II and (b) III in CDCl₃.

Figure S3. ¹¹B NMR spectra for (a) II and (b) III in CDCl₃.

(b)

(b)

(a)

Figure S4. ORTEP(III)¹¹ drawings of (a) **II** and (b) **III** showing the thermal anisotropic displacement parameters at 30% probability. Hydrogen atoms are omitted for clarity.

Identification code	II	III
Empirical formula	$C_{16}H_{10}B_{10}\\$	$C_{18}H_{10}B_{10}$
Formula weight	310.34	334.36
Temperature	223(2) K	223(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system, space group	Triclinic, P-1	Monoclinic, $P2_1/n$
Unit cell dimensions	$a = 7.2684(6)$ Å, $\alpha = 74.227(3)^{\circ}$	a = 10.796(1) Å
	$b = 10.407(1)$ Å, $\beta = 81.330(3)^{\circ}$	$b = 9.7951(9)$ Å, $\beta = 112.281(3)^{\circ}$
	$c = 12.774 (1) \text{ Å}, \gamma = 86.111(3)^{\circ}$	c = 13.782(1) Å
Volume	918.89(15) Å ³	1348.5(2) Å ³
Z, Calculated density	2, 1.122 Mg/m ³	4, 1.647 Mg/m ³
Absorption coefficient, μ	0.056 mm ⁻¹	0.083 mm ⁻¹
F(000)	312	672
Crystal size	$0.22 \times 0.16 \times 0.09 \text{ mm}$	$0.21 \times 0.14 \times 0.10 \text{ mm}$
θ range for data collection	2.265 to 28.426°	2.622 to 28.515°
Limiting indices	$-9 \le h \le 9, -13 \le k \le 13, -$	$-14 \le h \le 14, -13 \le k \le 13, -18 \le l$
Reflections collected /unique	$17 \le l \le 17$	≤ ₁₈
Completeness to $\theta = 28.40$	$29616 / 4611 [R_{\rm int} = 0.0798]$	$43152 / 3392 [R_{int} = 0.1113]$
Refinement method	99.9 %	100.0 %
Data / restraints / parameters	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Goodness-of-fit on F ²	4611 / 0 / 235	3392 / 0 / 173
Final <i>R</i> indices $[I > 2\sigma(I)]$	1.035	1.025
<i>R</i> indices (all data)	$R_1^a = 0.0597, w R_2^b = 0.1319$	$R_1^a = 0.0624, wR_2^b = 0.1498$
Largest diff. peak and hole	$R_1 = 0.1110, wR_2 = 0.1559$	$R_1 = 0.1065, wR_2 = 0.1764$
	0.258 and -0.221 e. Å ⁻³	0.254 and -0.276 e. Å ⁻³

Table S1. Crystal data and structure refinement for compounds II and III.

 ${}^{a}R_{1} = \sum ||F_{o}| + |F_{c}||$ (based on reflections with $F_{o}^{2} > 2\sigma F^{2}$), ${}^{b}wR_{2} = [\sum [w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]^{1/2}$; $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.095P)^{2}]$; $P = [\max(F_{o}^{2}, 0) + 2F_{c}^{2}]/3(\text{also with } F_{o}^{2} > 2\sigma F^{2})$

Compound II				
Bond	Length [Å]	Bond	Length [Å]	
C(1)-C(9)	1.440(2)	C(14)-C(15)	1.372(3)	
C(1)-B(2)	1.702(3)	C(15)-C(16)	1.374(3)	
C(1)-B(3)	1.703(3)	B(1)-B(8)	1.760(3)	
C(1)-C(2)	1.708(3)	B(1)-B(9)	1.771(3)	
C(1)-B(4)	1.723(3)	B(1)-B(2)	1.781(3)	
C(1)-B(1)	1.727(3)	B(2)-B(8)	1.771(3)	
C(2)-C(3)	1.506(2)	B(2)-B(7)	1.772(3)	
C(2)-B(5)	1.703(3)	B(2)-B(3)	1.778(3)	
C(2)-B(9)	1.708(3)	B(3)-B(7)	1.770(3)	
C(2)-B(1)	1.738(3)	B(3)-B(6)	1.777(3)	
C(2)-B(4)	1.742(3)	B(3)-B(4)	1.779(3)	
C(3)-C(4)	1.388(3)	B(4)-B(6)	1.761(3)	
C(3)-C(8)	1.390(3)	B(4)-B(5)	1.769(3)	
C(4)-C(5)	1.384(3)	B(5)-B(10)	1.773(3)	
C(5)-C(6)	1.378(3)	B(5)-B(6)	1.777(3)	
C(6)-C(7)	1.368(3)	B(5)-B(9)	1.783(3)	
C(7)-C(8)	1.390(3)	B(6)-B(7)	1.777(3)	
C(9)-C(10)	1.187(2)	B(6)-B(10)	1.783(3)	
C(10)-C(11)	1.435(2)	B(7)-B(10)	1.772(3)	
C(11)-C(16)	1.392(3)	B(7)-B(8)	1.783(3)	
C(11)-C(12)	1.392(3)	B(8)-B(9)	1.777(3)	
C(12)-C(13)	1.386(3)	B(8)-B(10)	1.781(3)	
C(13)-C(14)	1.378(4)	B(9)-B(10)	1.781(3)	

Table S2. Bond lengths [Å] for II.

Symmetry transformations used to generate equivalent atoms:

Compound III				
Bond	Length [Å]	Bond	Length [Å]	
C(1)-C(3)	1.502(2)	B(1)-B(5)	1.780(3)	
C(1)-C(2)	1.697(2)	B(2)-B(3)	1.777(3)	
C(1)-B(3)	1.698(2)	B(2)-B(7)	1.780(3)	
C(1)-B(2)	1.706(3)	B(2)-B(6)	1.781(3)	
C(1)-B(4)	1.745(3)	B(3)-B(7)	1.777(3)	
C(1)-B(1)	1.746(2)	B(3)-B(4)	1.780(3)	
C(2)-C(9)	1.436(2)	B(3)-B(8)	1.780(3)	
C(2)-B(5)	1.708(3)	B(4)-B(8)	1.756(3)	
C(2)-B(9)	1.710(3)	B(4)-B(9)	1.778(3)	
C(2)-B(4)	1.722(3)	B(5)-B(10)	1.769(3)	
C(2)-B(1)	1.722(3)	B(5)-B(6)	1.775(3)	
C(3)-C(4)	1.372(3)	B(5)-B(9)	1.778(3)	
C(3)-C(8)	1.379(3)	B(6)-B(10)	1.777(3)	
C(4)-C(5)	1.381(3)	B(6)-B(7)	1.782(3)	
C(5)-C(6)	1.368(3)	B(7)-B(10)	1.777(4)	
C(6)-C(7)	1.361(3)	B(7)-B(8)	1.785(3)	
C(7)-C(8)	1.380(3)	B(8)-B(9)	1.776(3)	
C(9)-C(9)#1	1.182(3)	B(8)-B(10)	1.780(3)	
B(1)-B(6)	1.757(3)	B(9)-B(10)	1.770(3)	
B(1)-B(2)	1.765(3)			

Table S3. Bond lengths [Å] for III.

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z

Compound II				
Bond	Angles [°]	Bond	Angles [°]	
C(9)-C(1)-B(2)	123.29(16)	C(1)-B(3)-B(4)	59.27(11)	
C(9)-C(1)-B(3)	123.12(16)	B(7)-B(3)-B(4)	107.37(16)	
B(2)-C(1)-B(3)	62.96(13)	B(6)-B(3)-B(4)	59.36(12)	
C(9)-C(1)-C(2)	114.96(14)	B(2)-B(3)-B(4)	107.86(16)	
B(2)-C(1)-C(2)	111.07(14)	C(1)-B(4)-C(2)	59.07(11)	
B(3)-C(1)-C(2)	111.33(14)	C(1)-B(4)-B(6)	104.93(15)	
C(9)-C(1)-B(4)	116.19(15)	C(2)-B(4)-B(6)	105.60(15)	
B(2)-C(1)-B(4)	114.14(14)	C(1)-B(4)-B(5)	105.26(15)	
B(3)-C(1)-B(4)	62.58(12)	C(2)-B(4)-B(5)	58.05(11)	
C(2)-C(1)-B(4)	61.02(11)	B(6)-B(4)-B(5)	60.48(12)	
C(9)-C(1)-B(1)	116.15(16)	C(1)-B(4)-B(3)	58.15(12)	
B(2)-C(1)-B(1)	62.57(13)	C(2)-B(4)-B(3)	106.23(15)	
B(3)-C(1)-B(1)	114.34(14)	B(6)-B(4)-B(3)	60.26(13)	
C(2)-C(1)-B(1)	60.78(11)	B(5)-B(4)-B(3)	108.45(15)	
B(4)-C(1)-B(1)	113.06(14)	C(2)-B(5)-B(4)	60.18(11)	
C(3)-C(2)-B(5)	122.00(15)	C(2)-B(5)-B(10)	105.72(15)	
C(3)-C(2)-C(1)	117.66(14)	B(4)-B(5)-B(10)	107.78(16)	
B(5)-C(2)-C(1)	108.87(14)	C(2)-B(5)-B(6)	106.51(15)	
C(3)-C(2)-B(9)	124.21(15)	B(4)-B(5)-B(6)	59.53(12)	
B(5)-C(2)-B(9)	63.00(12)	B(10)-B(5)-B(6)	60.27(13)	
C(1)-C(2)-B(9)	109.17(14)	C(2)-B(5)-B(9)	58.63(11)	
C(3)-C(2)-B(1)	119.20(15)	B(4)-B(5)-B(9)	108.34(15)	
B(5)-C(2)-B(1)	112.98(14)	B(10)-B(5)-B(9)	60.11(13)	
C(1)-C(2)-B(1)	60.17(11)	B(6)-B(5)-B(9)	108.50(16)	
B(9)-C(2)-B(1)	61.82(12)	B(4)-B(6)-B(3)	60.39(12)	
C(3)-C(2)-B(4)	115.62(14)	B(4)-B(6)-B(7)	107.87(15)	
B(5)-C(2)-B(4)	61.77(12)	B(3)-B(6)-B(7)	59.74(13)	
C(1)-C(2)-B(4)	59.92(11)	B(4)-B(6)-B(5)	59.99(12)	
B(9)-C(2)-B(4)	113.14(14)	B(3)-B(6)-B(5)	108.17(15)	
B(1)-C(2)-B(4)	111.61(14)	B(7)-B(6)-B(5)	107.54(16)	
C(4)-C(3)-C(8)	118.93(17)	B(4)-B(6)-B(10)	107.73(16)	
C(4)-C(3)-C(2)	119.27(16)	B(3)-B(6)-B(10)	107.66(16)	
C(8)-C(3)-C(2)	121.80(16)	B(7)-B(6)-B(10)	59.70(13)	
C(5)-C(4)-C(3)	120.54(19)	B(5)-B(6)-B(10)	59.75(13)	
C(6)-C(5)-C(4)	120.16(19)	B(3)-B(7)-B(10)	108.45(16)	
C(7)-C(6)-C(5)	119.77(18)	B(3)-B(7)-B(2)	60.27(13)	
C(6)-C(7)-C(8)	120.77(19)	B(10)-B(7)-B(2)	108.15(16)	
C(7)-C(8)-C(3)	119.82(18)	B(3)-B(7)-B(6)	60.12(13)	
C(10)-C(9)-C(1)	174.9(2)	B(10)-B(7)-B(6)	60.31(13)	
C(9)-C(10)-C(11)	177.8(2)	B(2)-B(7)-B(6)	108.35(15)	
C(16)-C(11)-C(12)	119.83(17)	B(3)-B(7)-B(8)	108.14(15)	
C(16)-C(11)-C(10)	120.37(17)	B(10)-B(7)-B(8)	60.14(14)	
C(12)-C(11)-C(10)	119.79(18)	B(2)-B(7)-B(8)	59.75(13)	

 Table S4. Bond angles [°] for II.

C(13)-C(12)-C(11)	119.1(2)	B(6)-B(7)-B(8)	108.33(16)	
C(14)-C(13)-C(12)	120.4(2)	B(1)-B(8)-B(2)	60.61(12)	
C(15)-C(14)-C(13)	120.3(2)	B(1)-B(8)-B(9)	60.09(12)	
C(14)-C(15)-C(16)	120.2(2)	B(2)-B(8)-B(9)	108.63(15)	
C(15)-C(16)-C(11)	120.1(2)	B(1)-B(8)-B(10)	108.02(15)	
C(1)-B(1)-C(2)	59.05(11)	B(2)-B(8)-B(10)	107.79(17)	
C(1)-B(1)-B(8)	104.57(15)	B(9)-B(8)-B(10)	60.09(13)	
C(2)-B(1)-B(8)	105.39(15)	B(1)-B(8)-B(7)	108.17(16)	
C(1)-B(1)-B(9)	105.47(15)	B(2)-B(8)-B(7)	59.82(13)	
C(2)-B(1)-B(9)	58.26(11)	B(9)-B(8)-B(7)	107.96(16)	
B(8)-B(1)-B(9)	60.43(13)	B(10)-B(8)-B(7)	59.63(13)	
C(1)-B(1)-B(2)	58.03(12)	C(2)-B(9)-B(1)	59.92(11)	
C(2)-B(1)-B(2)	106.05(15)	C(2)-B(9)-B(8)	105.94(16)	
B(8)-B(1)-B(2)	60.00(13)	B(1)-B(9)-B(8)	59.48(12)	
B(9)-B(1)-B(2)	108.41(16)	C(2)-B(9)-B(10)	105.18(16)	
C(1)-B(2)-B(8)	105.16(15)	B(1)-B(9)-B(10)	107.52(16)	
C(1)-B(2)-B(7)	104.65(15)	B(8)-B(9)-B(10)	60.08(13)	
B(8)-B(2)-B(7)	60.43(13)	C(2)-B(9)-B(5)	58.37(11)	
C(1)-B(2)-B(3)	58.52(12)	B(1)-B(9)-B(5)	107.72(15)	
B(8)-B(2)-B(3)	108.31(16)	B(8)-B(9)-B(5)	107.67(17)	
B(7)-B(2)-B(3)	59.81(13)	B(10)-B(9)-B(5)	59.69(12)	
C(1)-B(2)-B(1)	59.40(11)	B(7)-B(10)-B(5)	107.95(15)	
B(8)-B(2)-B(1)	59.39(13)	B(7)-B(10)-B(8)	60.23(13)	
B(7)-B(2)-B(1)	107.68(16)	B(5)-B(10)-B(8)	107.88(15)	
B(3)-B(2)-B(1)	108.14(15)	B(7)-B(10)-B(9)	108.24(16)	
C(1)-B(3)-B(7)	104.72(16)	B(5)-B(10)-B(9)	60.20(12)	
C(1)-B(3)-B(6)	105.10(16)	B(8)-B(10)-B(9)	59.83(13)	
B(7)-B(3)-B(6)	60.14(13)	B(7)-B(10)-B(6)	59.99(13)	
C(1)-B(3)-B(2)	58.52(12)	B(5)-B(10)-B(6)	59.98(13)	
B(7)-B(3)-B(2)	59.92(13)	B(8)-B(10)-B(6)	108.15(16)	
B(6)-B(3)-B(2)	108.08(17)	B(9)-B(10)-B(6)	108.34(14)	

Symmetry transformations used to generate equivalent atoms:

Compound III			
Bond	Angles [°]	Bond	Angles [°]
C(3)-C(1)-C(2)	117.43(13)	C(2)-B(4)-B(8)	104.84(14)
C(3)-C(1)-B(3)	122.40(14)	C(1)-B(4)-B(8)	105.13(14)
C(2)-C(1)-B(3)	109.35(13)	C(2)-B(4)-B(9)	58.47(11)
C(3)-C(1)-B(2)	123.95(15)	C(1)-B(4)-B(9)	106.13(14)
C(2)-C(1)-B(2)	108.99(13)	B(8)-B(4)-B(9)	60.34(12)
B(3)-C(1)-B(2)	62.96(11)	C(2)-B(4)-B(3)	104.52(14)
C(3)-C(1)-B(4)	116.14(14)	C(1)-B(4)-B(3)	57.57(11)
C(2)-C(1)-B(4)	60.01(11)	B(8)-B(4)-B(3)	60.45(13)
B(3)-C(1)-B(4)	62.24(11)	B(9)-B(4)-B(3)	108.44(15)
B(2)-C(1)-B(4)	113.32(14)	C(2)-B(5)-B(10)	104.49(14)
C(3)-C(1)-B(1)	118.67(14)	C(2)-B(5)-B(6)	104.73(15)
C(2)-C(1)-B(1)	60.01(10)	B(10)-B(5)-B(6)	60.19(13)
B(3)-C(1)-B(1)	112.80(14)	C(2)-B(5)-B(9)	58.71(11)
B(2)-C(1)-B(1)	61.51(11)	B(10)-B(5)-B(9)	59.85(12)
B(4)-C(1)-B(1)	111.47(14)	B(6)-B(5)-B(9)	108.18(15)
C(9)-C(2)-C(1)	114.39(14)	C(2)-B(5)-B(1)	59.13(11)
C(9)-C(2)-B(5)	123.01(15)	B(10)-B(5)-B(1)	107.35(15)
C(1)-C(2)-B(5)	111.67(14)	B(6)-B(5)-B(1)	59.25(13)
C(9)-C(2)-B(9)	123.69(15)	B(9)-B(5)-B(1)	108.13(14)
C(1)-C(2)-B(9)	111.51(13)	B(1)-B(6)-B(5)	60.53(12)
B(5)-C(2)-B(9)	62.71(12)	B(1)-B(6)-B(10)	108.01(16)
C(9)-C(2)-B(4)	116.35(15)	B(5)-B(6)-B(10)	59.75(13)
C(1)-C(2)-B(4)	61.39(10)	B(1)-B(6)-B(2)	59.86(12)
B(5)-C(2)-B(4)	114.19(13)	B(5)-B(6)-B(2)	108.32(15)
B(9)-C(2)-B(4)	62.40(11)	B(10)-B(6)-B(2)	107.87(15)
C(9)-C(2)-B(1)	115.47(15)	B(1)-B(6)-B(7)	107.90(15)
C(1)-C(2)-B(1)	61.42(10)	B(5)-B(6)-B(7)	107.96(16)
B(5)-C(2)-B(1)	62.53(12)	B(10)-B(6)-B(7)	59.93(14)
B(9)-C(2)-B(1)	114.17(14)	B(2)-B(6)-B(7)	59.97(13)
B(4)-C(2)-B(1)	113.82(13)	B(3)-B(7)-B(10)	107.91(16)
C(4)-C(3)-C(8)	118.19(18)	B(3)-B(7)-B(2)	59.94(12)
C(4)-C(3)-C(1)	119.96(16)	B(10)-B(7)-B(2)	107.87(15)
C(8)-C(3)-C(1)	121.85(17)	B(3)-B(7)-B(6)	107.93(14)
C(3)-C(4)-C(5)	120.8(2)	B(10)-B(7)-B(6)	59.91(13)
C(6)-C(5)-C(4)	120.6(2)	B(2)-B(7)-B(6)	59.99(12)
C(7)-C(6)-C(5)	118.9(2)	B(3)-B(7)-B(8)	59.98(13)
C(6)-C(7)-C(8)	120.9(2)	B(10)-B(7)-B(8)	59.96(13)
C(3)-C(8)-C(7)	120.5(2)	B(2)-B(7)-B(8)	107.89(15)
C(9)#1-C(9)-C(2)	175.7(3)	B(6)-B(7)-B(8)	107.88(16)
C(2)-B(1)-C(1)	58.58(10)	B(4)-B(8)-B(9)	60.43(12)
C(2)-B(1)-B(6)	104.87(15)	B(4)-B(8)-B(10)	108.03(15)
C(1)-B(1)-B(6)	105.53(14)	B(9)-B(8)-B(10)	59.69(13)

Table S5. Bond angles [°] for III.

C(2)-B(1)-B(2)	105.15(13)	B(4)-B(8)-B(3)	60.43(12)	
C(1)-B(1)-B(2)	58.11(10)	B(9)-B(8)-B(3)	108.50(14)	
B(6)-B(1)-B(2)	60.73(13)	B(10)-B(8)-B(3)	107.67(16)	
C(2)-B(1)-B(5)	58.34(11)	B(4)-B(8)-B(7)	108.30(15)	
C(1)-B(1)-B(5)	106.03(14)	B(9)-B(8)-B(7)	107.91(15)	
B(6)-B(1)-B(5)	60.22(13)	B(10)-B(8)-B(7)	59.82(13)	
B(2)-B(1)-B(5)	108.77(15)	B(3)-B(8)-B(7)	59.81(13)	
C(1)-B(2)-B(1)	60.38(11)	C(2)-B(9)-B(10)	104.37(15)	
C(1)-B(2)-B(3)	58.31(11)	C(2)-B(9)-B(8)	104.48(15)	
B(1)-B(2)-B(3)	108.15(15)	B(10)-B(9)-B(8)	60.26(13)	
C(1)-B(2)-B(7)	105.36(15)	C(2)-B(9)-B(4)	59.12(11)	
B(1)-B(2)-B(7)	107.60(16)	B(10)-B(9)-B(4)	107.53(16)	
B(3)-B(2)-B(7)	59.95(12)	B(8)-B(9)-B(4)	59.23(12)	
C(1)-B(2)-B(6)	106.25(15)	C(2)-B(9)-B(5)	58.58(11)	
B(1)-B(2)-B(6)	59.41(12)	B(10)-B(9)-B(5)	59.81(13)	
B(3)-B(2)-B(6)	107.97(16)	B(8)-B(9)-B(5)	108.05(16)	
B(7)-B(2)-B(6)	60.04(13)	B(4)-B(9)-B(5)	108.13(15)	
C(1)-B(3)-B(2)	58.73(11)	B(5)-B(10)-B(9)	60.34(13)	
C(1)-B(3)-B(7)	105.82(14)	B(5)-B(10)-B(6)	60.07(13)	
B(2)-B(3)-B(7)	60.11(12)	B(9)-B(10)-B(6)	108.48(15)	
C(1)-B(3)-B(4)	60.19(10)	B(5)-B(10)-B(7)	108.41(16)	
B(2)-B(3)-B(4)	108.28(14)	B(9)-B(10)-B(7)	108.53(16)	
B(7)-B(3)-B(4)	107.58(16)	B(6)-B(10)-B(7)	60.16(13)	
C(1)-B(3)-B(8)	106.13(14)	B(5)-B(10)-B(8)	108.31(15)	
B(2)-B(3)-B(8)	108.21(15)	B(9)-B(10)-B(8)	60.06(13)	
B(7)-B(3)-B(8)	60.21(13)	B(6)-B(10)-B(8)	108.29(16)	
B(4)-B(3)-B(8)	59.12(12)	B(7)-B(10)-B(8)	60.22(13)	
C(2)-B(4)-C(1)	58.60(10)			

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z

Computational method. The calculations were performed with the *Gaussian16* package, using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) method with the B3LYP hybrid functional. All structures were optimized using DFT or TD-DFT method with a 6-31G(d,p) basis set. The starting coordinates were obtained from the X-ray structures. The calculations of the anion species were performed in the spin unrestricted regime. All calculations were performed in the gas phase.

Atom	x	у	z	Atom	x	у	z
С	2.372990	2.753790	-1.193885	В	-1.176926	-0.009037	1.411491
С	1.182791	2.028967	-1.196289	В	-2.941994	-0.009428	1.443365
С	2.988240	3.093017	0.010814	Н	3.915482	-3.657923	-0.011601
С	2.397339	-2.709640	-1.214272	Н	-4.499255	1.536850	0.009834
С	1.206961	-1.984955	-1.214415	Н	-4.499368	-1.536647	-0.009950
С	0.587488	1.624821	0.008264	Н	2.858286	2.978434	2.159887
С	-0.723015	0.879370	0.005960	Н	-1.918626	2.434048	1.515338
С	2.988194	-3.093048	-0.010657	Н	0.753743	1.711023	2.158849
С	2.397035	2.710070	1.214400	Н	2.814606	-3.057348	2.138184
С	0.587421	-1.624864	-0.008254	Н	-1.919369	-2.453295	1.482715
С	-0.723072	-0.879389	-0.006042	Н	-0.452677	-0.016521	2.338830
С	1.206670	1.985368	1.214469	Н	0.710105	-1.789583	2.140695
С	2.372585	-2.754291	1.193993	Н	-3.515458	-0.016614	2.480754
С	1.182375	-2.029483	1.196316	Н	2.815294	3.056483	-2.138060
В	-1.176898	0.008999	-1.411577	Н	0.710788	1.788702	-2.140708
В	-2.941987	0.009560	-1.443474	Н	-0.452650	0.016494	-2.338903
В	-2.068979	1.448514	-0.877465	Н	2.858874	-2.977636	-2.159725
В	-2.069381	-1.437226	-0.897125	Н	-3.515431	0.016836	-2.480885
В	-3.506714	0.888566	0.005855	Н	0.754304	-1.710253	-2.158823
В	-3.506767	-0.888454	-0.005965	Н	3.915521	3.657906	0.011816
В	-2.069279	1.437254	0.897033	Н	-1.919245	2.453319	-1.482780
В	-2.069110	-1.448474	0.877366	 Н	-1.918743	-2.434044	-1.515416

Table S6. Optimized geometry coordinates for I.

Atom	x	У	z	Atom	x	у	z
С	-0.992789	-1.108877	0.014698	Н	5.822366	-2.898748	-0.487707
С	-1.822206	0.413703	0.023664	С	3.844080	-2.090722	-0.277712
С	-1.019726	1.690408	-0.006459	Н	3.344895	-3.031035	-0.486559
С	-0.837240	2.377647	-1.216335	В	-1.786544	-0.574448	1.453904
Н	-1.258457	1.981554	-2.132043	Н	-1.105885	-0.251524	2.358281
С	-0.125733	3.574960	-1.254422	В	-1.871382	-2.269720	0.913356
Н	0.001794	4.090064	-2.201504	Н	-1.239284	-3.066982	1.514777
С	0.415807	4.109085	-0.085214	В	-1.887620	-2.270599	-0.867787
Н	0.970035	5.042343	-0.115357	Н	-1.266523	-3.068990	-1.479296
С	0.230314	3.440297	1.124688	В	-1.811563	-0.575010	-1.409797
Н	0.634648	3.851434	2.044655	Н	-1.141495	-0.234123	-2.316440
С	-0.483977	2.243544	1.165893	В	-3.278059	0.258252	-0.851713
Н	-0.628775	1.746539	2.116367	Н	-3.645229	1.209386	-1.450560
С	0.435510	-1.067321	0.003929	В	-3.354677	-1.426639	-1.409290
С	1.646707	-1.016109	-0.001912	Н	-3.872327	-1.705921	-2.438210
С	3.072068	-0.945719	-0.005006	В	-3.401164	-2.477549	0.037391
С	3.718907	0.275382	0.265792	Н	-3.958414	-3.523685	0.043062
Н	3.121454	1.156774	0.474562	В	-3.329156	-1.426706	1.482644
С	5.109144	0.343374	0.262140	Н	-3.825236	-1.707732	2.521604
Н	5.601051	1.288532	0.471189	В	-3.261902	0.260439	0.927965
С	5.869508	-0.796763	-0.008167	Н	-3.611113	1.213748	1.534338
Н	6.953782	-0.739192	-0.009329	В	-4.261671	-0.920036	0.045777
С	5.233826	-2.010990	-0.277158	Н	-5.443797	-0.833743	0.055406

 Table S7. Optimized geometry coordinates for II.

Atom	x	у	z	-	Atom	x	У	z
С	-2.976471	3.788453	-0.888616		Н	-5.938849	-2.592139	-0.087309
С	-2.783084	4.378561	0.360179		Н	-2.828867	1.585947	2.287331
С	-3.103793	2.405483	-1.000607		Н	-5.096983	-0.110081	1.601601
С	-2.730135	3.575201	1.498960		Н	3.027906	-4.403245	-1.781915
С	-3.035120	1.586765	0.137085		Н	3.992435	2.916187	2.272078
С	-2.858421	2.191723	1.390607		Н	5.097149	0.109780	1.601237
С	-3.210688	0.094218	0.015850		Н	-3.447871	-4.365027	-0.386619
С	1.816000	0.918975	-0.156092		Н	-2.164772	-0.416676	2.261443
С	0.538763	0.273182	-0.161643		Н	2.165047	0.416441	2.261168
С	-0.538792	-0.272854	-0.161607		Н	-1.118384	-2.922558	1.124418
С	-1.816013	-0.918708	-0.155986		Н	-3.991925	-2.916577	2.272139
С	3.210875	-0.094334	0.015524		Н	2.680472	-5.455966	0.446011
С	3.102176	-2.405535	-1.001003		Н	2.831382	-1.585969	2.287271
С	2.974603	-3.788472	-0.888879		Н	2.594194	-4.022858	2.478365
С	3.035054	-1.586820	0.136784		В	3.868025	2.082826	-1.607124
С	2.782537	-4.378549	0.360135		В	2.158769	2.262830	-1.158464
С	2.859697	-2.191756	1.390511		В	3.394065	3.185965	-0.280374
С	2.731178	-3.575198	1.498999		В	2.839831	0.653597	-1.516359
Н	-3.031004	4.403223	-1.781580		В	-2.839903	-0.653447	-1.516297
Н	-2.681213	5.456005	0.445957		В	-4.494728	-0.589549	-0.873593
Н	4.261804	2.456838	-2.660144		В	4.836249	2.158886	-0.106615
Н	-3.265664	1.965884	-1.976840		В	4.494777	0.589483	-0.873959
Н	1.281371	2.647983	-1.850178		В	-3.867933	-2.082757	-1.606994
Н	3.448365	4.365042	-0.386476		В	2.061953	2.426327	0.613730
Н	-2.417028	0.021538	-2.383207		В	-2.158622	-2.262590	-1.158496
Н	-5.258257	0.164933	-1.368676		В	3.712032	2.350227	1.269587
Н	2.416873	-0.021118	-2.383436		В	-4.836007	-2.159046	-0.106399
Н	-4.261790	-2.456712	-2.660007		В	-4.399970	-0.754428	0.897017
Н	5.939144	2.591847	-0.087559		В	4.400167	0.754191	0.896677
Н	-2.592090	4.022878	2.478170		В	2.687104	0.917924	1.332979
Н	5.258138	-0.164996	-1.369311		В	-3.393711	-3.185954	-0.280391
Н	3.263035	-1.965971	-1.977416		В	-2.686898	-0.918103	1.333270
Н	1.118867	2.922689	1.124707		В	-2.061631	-2.426267	0.613671
Н	-1.281162	-2.647592	-1.850215		В	-3.711672	-2.350467	1.269691

 Table S8. Optimized geometry coordinates for III.

Atom	x	у	z	-	Atom	x	У	z
C	3.254688	2.274956	1.203184	_	В	0.000052	-0.956246	-1.221065
С	2.454801	1.135422	1.204531		В	-0.000213	-2.775812	-1.434435
С	3.659916	2.858041	-0.000341		Н	-4.282370	3.749101	0.000253
С	-3.252057	2.277010	1.203971		Н	1.490137	-4.438778	-0.000072
С	-2.452136	1.137497	1.205507		Н	-1.490133	-4.438779	0.000072
С	2.032261	0.536444	-0.000545		Н	3.559687	2.714820	-2.150894
С	1.195049	-0.675110	-0.000637		Н	2.466004	-1.988255	-1.587412
С	-3.659918	2.858038	0.000339		Н	2.144107	0.695677	-2.146858
С	3.252059	2.277008	-1.203972		Н	-3.564396	2.711152	-2.150175
С	-2.032261	0.536443	0.000545		Н	-2.466036	-1.987671	-1.586528
С	-1.195049	-0.675111	0.000639		Н	-0.000702	-0.236651	-2.168242
С	2.452138	1.137495	-1.205507		Н	-2.148860	0.691962	-2.145793
С	-3.254693	2.274949	-1.203186		Н	-0.000730	-3.343151	-2.482869
С	-2.454806	1.135416	-1.204531		Н	3.564387	2.711163	2.150173
В	-0.000052	-0.956245	1.221065		Н	2.148853	0.691971	2.145793
В	0.000216	-2.775813	1.434435		Н	0.000702	-0.236653	2.168243
В	1.495554	-2.009817	0.897673		Н	-3.559682	2.714826	2.150892
В	-1.495586	-2.010315	0.898463		Н	0.000733	-3.343151	2.482870
В	0.879707	-3.414554	-0.000119		Н	-2.144101	0.695683	2.146859
В	-0.879704	-3.414555	0.000120		Н	4.282368	3.749105	-0.000257
В	1.495588	-2.010313	-0.898462		Н	2.466038	-1.987670	1.586529
В	-1.495551	-2.009817	-0.897672		Н	-2.466003	-1.988258	1.587413

Table S9. Optimized geometry coordinates for I⁻⁻.

Atom	x	У	z	Atom	x	У	Z
С	-0.431780	-1.462745	0.000095	Н	6.087619	0.077960	-2.151003
С	-2.085260	0.254424	-0.000206	С	4.210520	-0.368415	-1.212187
С	-1.790453	1.699859	-0.000105	Н	3.677777	-0.494254	-2.149267
С	-1.650267	2.417678	-1.205124	В	-1.471368	-0.790712	1.232537
Н	-1.754713	1.889416	-2.146405	Н	-0.932465	-0.297679	2.169554
С	-1.384311	3.784483	-1.203782	В	-1.181387	-2.605269	0.903275
Η	-1.282567	4.309959	-2.150431	Η	-0.492480	-3.286159	1.592000
С	-1.247421	4.480205	-0.000032	В	-1.181677	-2.604706	-0.903572
Η	-1.036759	5.546480	0.000003	Η	-0.492821	-3.285422	-1.592539
С	-1.384391	3.784427	1.203680	В	-1.471439	-0.790297	-1.232376
Н	-1.282690	4.309872	2.150352	Н	-0.932617	-0.297649	-2.169643
С	-1.650367	2.417630	1.204962	В	-3.262621	-0.449360	-0.896770
Н	-1.754893	1.889315	2.146200	Н	-3.920262	0.266468	-1.582874
С	0.938410	-1.172096	0.000103	В	-2.772524	-2.057370	-1.434522
С	2.123173	-0.867420	0.000050	Η	-3.177666	-2.454076	-2.482501
С	3.500832	-0.537157	0.000018	В	-2.617593	-3.132468	-0.000004
С	4.210341	-0.367574	1.212207	Η	-2.929386	-4.282864	-0.000069
Н	3.677478	-0.492764	2.149305	В	-2.772196	-2.057618	1.434660
С	5.563609	-0.046074	1.206471	Η	-3.177423	-2.454279	2.482616
Н	6.087315	0.079448	2.150974	В	-3.261913	-0.449459	0.897025
С	6.251510	0.116573	-0.000014	Н	-3.919066	0.266342	1.583639
Η	7.308548	0.367952	-0.000023	В	-3.842882	-1.869622	0.000146
С	5.563778	-0.046911	-1.206490	Н	-5.002470	-2.144983	0.000237

Table S10. Optimized geometry coordinates for II⁻⁻.

Atom	x	У	z	 Atom	x	У	z
С	4.109775	-3.283769	-1.203361	Η	5.568208	3.534931	-0.000242
С	4.207453	-3.981614	0.001676	Η	3.840749	-1.372454	2.148425
С	3.913482	-1.905168	-1.205191	Η	5.385270	0.867494	1.572342
С	4.111084	-3.282613	1.206157	Η	-4.182827	3.814995	-2.148465
С	3.812485	-1.187279	0.000550	Η	-3.754107	-3.203899	2.477589
С	3.914790	-1.904020	1.206874	Η	-5.385130	-0.868118	1.572031
С	3.632030	0.284958	0.000005	Η	2.830963	4.785840	-0.001090
С	-1.576930	-1.231383	-0.000737	Η	2.442564	0.392211	2.221161
С	-0.461317	-0.405568	-0.000629	Н	-2.442366	-0.392049	2.220694
С	0.462070	0.405625	-0.000551	Η	0.940320	2.931656	1.589514
С	1.577725	1.231421	-0.000531	Η	3.754760	3.203768	2.478068
С	-3.632101	-0.284892	-0.000265	Η	-4.354578	5.058049	0.002156
С	-3.914232	1.905214	-1.205330	Η	-3.841503	1.372288	2.148246
С	-4.110980	3.283750	-1.203421	Η	-4.185412	3.812646	2.151632
С	-3.813068	1.187266	0.000366	В	-3.521540	-2.681516	-1.436814
С	-4.208959	3.981488	0.001657	В	-1.839299	-2.572970	-0.907607
С	-3.915674	1.903903	1.206730	В	-2.977810	-3.605675	-0.001256
С	-4.112422	3.282433	1.206095	В	-2.770599	-1.042914	-1.289711
Н	4.181492	-3.814975	-2.148436	В	2.771104	1.043251	-1.289705
Н	4.352704	-5.058224	0.002112	В	4.528928	1.332668	-0.895348
Н	-3.754678	-3.202438	-2.479683	В	-4.578419	-2.874728	-0.000834
Н	3.838423	-1.374512	-2.147171	В	-4.528531	-1.332809	-0.895766
Н	-0.940272	-2.930621	-1.592064	В	3.522322	2.681683	-1.436403
Н	-2.830020	-4.785754	-0.001621	В	-1.839054	-2.573527	0.905429
Н	2.443406	0.391423	-2.221626	В	1.840044	2.573219	-0.907251
Н	5.385932	0.866821	-1.571875	В	-3.521147	-2.682351	1.434993
Н	-2.442929	-0.390952	-2.221566	В	4.579120	2.874520	-0.000324
Н	3.755645	3.202653	-2.479200	В	4.528492	1.333022	0.895304
Н	-5.567367	-3.535356	-0.000862	В	-4.528205	-1.333287	0.894923
Н	4.183839	-3.812914	2.151660	В	-2.770216	-1.043736	1.288714
Н	-5.385597	-0.867220	-1.572403	В	2.978613	3.605750	-0.000797
Н	-3.838940	1.374634	-2.147338	В	2.770562	1.043894	1.289247
Н	-0.939808	-2.931607	1.589372	В	1.839687	2.573646	0.905707
Н	0.940978	2.930894	-1.591631	В	3.521749	2.682316	1.435442

Table S11. Optimized geometry coordinates for III⁻⁻.

	Energ	Wavelengt					
Excited	v	h	f		Trans	itions	
state	(\mathbf{N})	(nm)	5		110110		
1		(1111)	0.0077	57 00	0.01040	76 79	0.(0201
1	5.0816	243.99	0.0077	$5/\rightarrow 80$	-0.01040	$76 \rightarrow 78$	0.60281
				$68 \rightarrow 81$	-0.01272	/6→80 7(22	-0.02467
				$69 \rightarrow 81$	0.01505	/6→83	0.02037
				$71 \rightarrow 80$	-0.02194	$//\rightarrow/8$	0.06966
				$74 \rightarrow 79$	-0.12328	//→80	0.28214
				/4→84	0.01252	//→85	0.02129
				/5→81	-0.18339	/5→81	-0.01324
	5.0100	227 0 4	0.1007	/5→82	-0.01145	//→80	0.01227
2	5.2103	237.96	0.1286	57→78	-0.01147	75→84	-0.01462
				58→78	-0.01011	76→78	-0.07390
				65→78	-0.01719	76→80	-0.08184
				67→82	-0.02410	77→78	0.68796
				69→84	-0.01134	77→80	-0.01736
				71→78	0.01756	77→83	-0.03032
				73→82	0.01612	77→87	0.01545
				74→81	0.02943	75→79	0.01453
				75→79	0.09473	77→78	-0.01892
3	5.3273	232.73	0.0901	60→78	0.01362	75_87	0.01473
				65→79	-0.01173	75→87 76→79	0.01473
				68→78	-0.01453	$76 \rightarrow 91$	-0.02084
				69→78	0.02317	$70 \rightarrow 81$	0.04402
				74→80	-0.06896	$7 \rightarrow 79$	0.23404
				75→78	0.65914	$73 \rightarrow 78$	-0.01439
				75→83	-0.03255	//→/9	0.01385
4	5.6116	220.94	0.0018	71→80	0.01067	7690	0.02050
				72→78	-0.01365	$70 \rightarrow 80$	0.02030
				74→79	0.52991	/6→83	-0.058/9
				74→84	-0.02241	/6→8/	0.01624
				75→81	0.11217	$//\rightarrow/8$	0.02482
				76→78	0.30014	//→80	-0.3319/
5	5.8437	212.17	0.0098	65→78	0.01228	76→80	0.38105
				68→79	-0.01028	77→78	-0.03153
				71→78	-0.02602	77→80	0.01881
				74→81	-0.01272	77→83	0.02688
				75→79	0.59086	75→79	-0.01636
				75→84	0.01635	77→78	0.01165

Table S12. TD-DFT calculated transitions for I.

	Energ	Wavelengt					
Excited	V	h	f		Trans	itions	
state	y (ND)		J		114115	1110115	
	(ev)	(nm)					
1	4.5593	271.93	0.0519	73→85	-0.01021	79→86	0.01167
				7/4→84	-0.02900	79→87	0.02587
				74→85	0.03196	79→88	0.02336
				$74 \rightarrow 8/$	0.01/98	/9→92	-0.01562
				$74 \rightarrow 88$	0.01598	$81 \rightarrow 88$	0.012/5
				$74 \rightarrow 89$	0.01012	82→85 82→84	-0.01115
				$77 \cdot 95$	-0.02508	$83 \rightarrow 84$	-0.44305
				77→83 77→87	0.02327	83→85 83→86	0.50745
				77_88	0.01330	$83 \rightarrow 80$ $83 \rightarrow 87$	0.05808
				$77 \rightarrow 80$	0.02212	83-88	0.11340
				$78 \rightarrow 85$	-0.02444	83→89	0.10473
				$78 \rightarrow 87$	-0.02444	83→92	-0.04401
				$70 \rightarrow 84$	-0.03548	$83 \rightarrow 97$	0.01312
				79→85	0.02134	83→84	0.01209
2	4 8151	257 49	0 4665	57→101	-0.01005		0.01209
_			0.1000	72→87	0.01282	79→97	-0.02681
				72→88	0.01169	79→98	-0.01027
				73→85	-0.01683	80→84	-0.02263
				73→87	-0.01315	80→85	0.02079
				73→88	-0.01197	$80 \rightarrow 8/$	0.0149/
				74→84	0.03579	$81 \rightarrow 8/$	0.04321
				74→85	0.02517	$81 \rightarrow 88$	-0.04/5/
				76→85	-0.01128	$82 \rightarrow 84$	-0.02950
				77→84	0.03966	$82 \rightarrow 83$	0.03019
				77→85	0.02340	$83 \rightarrow 84$ $83 \rightarrow 85$	0.30279
				77→89	-0.01163	83→85 83→86	0.43018
				78→84	-0.03082	$83 \rightarrow 80$ $83 \rightarrow 87$	0.04949
				78→85	-0.02569	83→88	0.07862
				78→87	-0.01147	83→89	-0.05613
				78→88	-0.01051	83→91	-0.01180
				79→84	0.07194	83→92	-0.01674
				79→85	-0.07317	83→94	0.02416
				79→86	-0.03594	79→92	0.01029
				79→87	-0.07672	83→84	-0.03639
				/9→88	-0.06939	83→85	-0.01697
				$79 \rightarrow 89$	-0.03069	83→89	-0.01314
2	4.0722	240.26	0.0015	79→92 74 ×97	0.03048	01 .05	0 16959
5	4.9722	249.30	0.0015	74→87	0.02090	$81 \rightarrow 83$	0.10838
				77_87	0.02562	$81 \rightarrow 80$	-0.01347
				77→88	-0.02858	81→88	-0.02049
				78→87	-0 02542	81→89	0.07093
				$78 \rightarrow 88$	0.02512	81→94	-0.01636
				80→84	0.04461	82→84	-0.01304
				80→85	0.01557	83→87	-0.31296
				81→84	0.50549	83→88	0.32349
4	5.1594	240.31	0.0101	72→84	0.01691	80→88	0.02192
				72→86	0.01172	80→90	-0.02303
				73→84	-0.01656	81→84	-0.04414
				75→84	-0.01078	81→85	0.04531
				75→86	-0.01066	82→84	-0.15719

Table S13. TD-DFT calculated transitions for II.

				76→84	-0.01522	82→85	0.12650
				76→86	0.02254	82→86	0.29684
				79→84	-0 22522	82→87	-0.06271
				79→85	-0.08542	82→88	-0.06429
				79-00	0.00512	82 00	0.00129
				<i>19</i> →94	-0.02038	$82 \rightarrow 91$	0.02440
				80→84	0.40446	83→84	0.03168
				80→85	-0.34450	83→87	0.02544
				80→86	0.09814	83→88	0.03039
				80→87	0.02097	82→86	0.01553
5	5.2932	234.23	0.0239	67→84	-0.01508	00 06	0.04404
				70→84	-0.01031	80→86	-0.04424
				72→84	0.01689	81→85	-0.01527
				72-01	0.01009	81→87	0.01074
				72,03	0.01210	81→88	-0.01175
				73→04 72 05	-0.02409	82→84	0.53221
				/3→85	-0.01127	82→85	0.07690
				7/4→87/	-0.01037	82→86	-0.04468
				76→84	-0.02786	82-80	-0.04301
				77→87	-0.01114	82 .81	-0.0+301
				78→84	-0.01615	$03 \rightarrow 04$	0.02124
				79→84	-0.29991	83→85	0.08624
				79→85	-0 10737	83→86	-0.13508
				79-87	-0.01147	83→87	-0.13804
				70,89	-0.01147	83→88	-0.13100
				79→00 70 04	-0.01001	83→89	-0.04597
				/9→94	-0.03127	83→92	0.02067
				80→84	0.14428	83→97	-0.01188
-				80→85	0.10304	00 ,,	0.01100
6	5.5219	224.53	0.1392	71→85	0.01239	80→85	0.19103
				71→89	-0.01304	80→86	0.13281
				72→85	-0.01773	81→84	-0.01099
				74→84	-0.01532	81→86	-0.01521
				75→85	0.01599	82→84	-0.08504
				76→84	0.01308	$82 \rightarrow 85$	0.62016
				76-85	-0.01974	82-86	-0.02010
				78-84	0.02232	82	0.11310
				70,04	0.02232	82 /87	0.11510
				78→83	0.01383	82→88	0.100/4
				/8→89	-0.01360	82→90	-0.03/62
				79→84	-0.02757	82→97	-0.01328
				79→85	0.12236	83→85	-0.01063
				79→86	0.01738	83→88	0.02307
				79→87	0.02451	83→89	0.04823
				79→88	0.02192	82→84	0.01151
				80→84	-0.03172	82→85	-0.02543
7	5 7733	214 76	0.1868	62→84	-0.01119	79→97	-0.02262
,	0.,,000		0.1000	$72 \rightarrow 84$	-0.01588	$80 \rightarrow 84$	0.03409
				$73 \rightarrow 84$	0.03344	80→85	-0.06874
				71 . 91	0.03344	80 . 86	-0.00074
				74→04 74 05	-0.04049	80→80 80 87	-0.07819
				/4→85	-0.01409	80→87	-0.01946
				/4→94	-0.012/8	80→88	-0.02144
				76→84	0.01257	81→87	0.03235
				76→85	0.01927	81→88	-0.03278
				77→84	-0.03716	82→84	0.01871
				77→85	-0.01524	82→85	-0.08242
							0.04021
				77→94	-0.01111	82→86	-0.04821
				$77 \rightarrow 94$ $78 \rightarrow 84$	-0.01111 0.06843	$\begin{array}{c} 82 \rightarrow 86 \\ 82 \rightarrow 87 \end{array}$	-0.04821
				$77 \rightarrow 94$ $78 \rightarrow 84$ $78 \rightarrow 85$	-0.01111 0.06843 0.01519	$82 \rightarrow 86$ $82 \rightarrow 87$ $82 \rightarrow 88$	-0.04821 -0.05602
				$77 \rightarrow 94$ $78 \rightarrow 84$ $78 \rightarrow 85$ $78 \rightarrow 80$	-0.01111 0.06843 0.01519	$82 \rightarrow 86$ $82 \rightarrow 87$ $82 \rightarrow 88$ $83 \rightarrow 84$	-0.04821 -0.05602 -0.04896
				$77 \rightarrow 94$ $78 \rightarrow 84$ $78 \rightarrow 85$ $78 \rightarrow 89$ $70 \qquad 94$	-0.01111 0.06843 0.01519 -0.01680	$82 \rightarrow 86$ $82 \rightarrow 87$ $82 \rightarrow 88$ $83 \rightarrow 84$	-0.04821 -0.05602 -0.04896 0.10890
				$77 \rightarrow 94$ $78 \rightarrow 84$ $78 \rightarrow 85$ $78 \rightarrow 89$ $79 \rightarrow 84$ $70 \rightarrow 64$	-0.01111 0.06843 0.01519 -0.01680 -0.19091	$82 \rightarrow 86$ $82 \rightarrow 87$ $82 \rightarrow 88$ $83 \rightarrow 84$ $83 \rightarrow 85$	-0.04821 -0.05602 -0.04896 0.10890 0.04402
				$77 \rightarrow 94$ $78 \rightarrow 84$ $78 \rightarrow 85$ $78 \rightarrow 89$ $79 \rightarrow 84$ $79 \rightarrow 85$	-0.01111 0.06843 0.01519 -0.01680 -0.19091 0.62561	$82 \rightarrow 86$ $82 \rightarrow 87$ $82 \rightarrow 88$ $83 \rightarrow 84$ $83 \rightarrow 85$ $83 \rightarrow 86$	-0.04821 -0.05602 -0.04896 0.10890 0.04402 -0.01502
				$77 \rightarrow 94$ $78 \rightarrow 84$ $78 \rightarrow 85$ $78 \rightarrow 89$ $79 \rightarrow 84$ $79 \rightarrow 85$ $79 \rightarrow 86$	-0.01111 0.06843 0.01519 -0.01680 -0.19091 0.62561 -0.01263	82->86 82->87 82->88 83->84 83->85 83->86 83->89	-0.04821 -0.05602 -0.04896 0.10890 0.04402 -0.01502 0.11005
				$77 \rightarrow 94$ $78 \rightarrow 84$ $78 \rightarrow 85$ $78 \rightarrow 89$ $79 \rightarrow 84$ $79 \rightarrow 85$ $79 \rightarrow 86$ $79 \rightarrow 87$	-0.01111 0.06843 0.01519 -0.01680 -0.19091 0.62561 -0.01263 -0.01423	82->86 82->87 82->88 83->84 83->85 83->86 83->89 83->94	$\begin{array}{c} -0.04821 \\ -0.05602 \\ -0.04896 \\ 0.10890 \\ 0.04402 \\ -0.01502 \\ 0.11005 \\ -0.03106 \end{array}$
				$77 \rightarrow 94$ $78 \rightarrow 84$ $78 \rightarrow 85$ $78 \rightarrow 89$ $79 \rightarrow 84$ $79 \rightarrow 85$ $79 \rightarrow 86$ $79 \rightarrow 87$ $79 \rightarrow 88$	-0.01111 0.06843 0.01519 -0.01680 -0.19091 0.62561 -0.01263 -0.01423 -0.01262	$82 \rightarrow 86$ $82 \rightarrow 87$ $82 \rightarrow 88$ $83 \rightarrow 84$ $83 \rightarrow 85$ $83 \rightarrow 86$ $83 \rightarrow 89$ $83 \rightarrow 94$ $83 \rightarrow 108$	$\begin{array}{c} -0.04821 \\ -0.05602 \\ -0.04896 \\ 0.10890 \\ 0.04402 \\ -0.01502 \\ 0.11005 \\ -0.03106 \\ 0.01236 \end{array}$

	Energ	Wavelengt					
Excited	Life B	h	f		Trans	itions	
state	y ()		J		Talis	1110115	
	(ev)	(nm)					
1	4.9420	250.88	0.0043	92→120	0.03582	115→139	0.01584
				92→123	-0.01791	$115 \rightarrow 142$	-0.01259
				92→132	0.01323	116→121	-0.08933
				$99 \rightarrow 12/$	-0.010//	$116 \rightarrow 122$	-0.05449
				$10/\rightarrow 120$ 108 120	0.02015	$110 \rightarrow 124$ $117 \rightarrow 120$	0.01459
				$108 \rightarrow 120$ $108 \rightarrow 123$	0.04002	$117 \rightarrow 120$ $117 \rightarrow 125$	0.43873
				$100 \rightarrow 123$ $112 \rightarrow 120$	-0.01331	$117 \rightarrow 123$ $118 \rightarrow 120$	-0.02984
				$112 \rightarrow 120$ $112 \rightarrow 123$	-0.01168	$118 \rightarrow 120$ $118 \rightarrow 123$	-0.01262
				$112 \rightarrow 123$ $114 \rightarrow 121$	-0.01164	$110 \rightarrow 125$ $118 \rightarrow 125$	0.08993
				114→122	0.01318	118→131	-0.01085
				115→120	0.46339	119→121	0.02146
				115→123	-0.11235	119→124	0.09432
				115→132	0.03359	119→130	-0.01212
2	4.9640	249.77	0.0101	109→125	-0.01007	110 . 104	0 12272
				114→120	-0.01577	$118 \rightarrow 124$	-0.133/3
				116→120	0.61100	$110 \rightarrow 130$ $110 \rightarrow 120$	0.01556
				116→123	0.02782	$119 \rightarrow 120$ $119 \rightarrow 123$	-0.23300
				116→125	-0.02370	$119 \rightarrow 125$ $119 \rightarrow 125$	-0 13967
				117→121	-0.13051	$119 \rightarrow 129$ $119 \rightarrow 131$	0.01453
				117→122	-0.08562	118→124	-0.01012
				117→124	0.04524	119→125	-0.01053
	4 0007	249.02	0.0010	$118 \rightarrow 121$	-0.05899	115 120	0.01407
3	4.9807	248.93	0.0019	$92 \rightarrow 120$	0.034/1	$115 \rightarrow 139$ $115 \rightarrow 142$	0.0149/
				$92 \rightarrow 123$	-0.01/10	$113 \rightarrow 142$ 116 \lambda 121	-0.01204
				$92 \rightarrow 132$ $99 \rightarrow 127$	-0.01300	$110 \rightarrow 121$ $116 \rightarrow 122$	0.10984
				$107 \rightarrow 120$	0.01715	$116 \rightarrow 122$ $116 \rightarrow 124$	-0.01359
				108→120	0.03804	$117 \rightarrow 120$	-0.42553
				108→123	-0.01248	117→123	-0.02959
				112→120	0.02921	117→125	0.03021
				112→123	-0.01033	118→120	-0.12525
				113→127	-0.01006	118→125	-0.10468
				114→121	-0.01049	119→120	0.02286
				114→122	0.01477	119→121	-0.02693
				115→120	0.48946	119→122	0.01483
				115→123	-0.11277	119→124	-0.10818
	4 00 47	240.72	0.1071	$115 \rightarrow 132$	0.03206	119→130	0.01123
4	4.9847	248.73	0.1071	$93 \rightarrow 120$	0.01259	117→124	-0.01785
				$102 \rightarrow 120$	-0.01118	118→120	0.01048
				$114 \rightarrow 120$ $114 \rightarrow 122$	0.05830	118→122	0.01392
				$114 \rightarrow 123$ $115 \rightarrow 120$	-0.0108/	118→124	-0.03908
				115 - 120 115 - 121	-0.01402	118→127	-0.02049
				115→122	0.01664	118→129	0.01387
				116→120	0 23196	119→120	0.65215
				116→125	0.02325	119→123	-0.08518
				117→120	0.01567	119→125	-0.04072
				117→121	-0.04149	$119 \rightarrow 128$	-0.01392
				117→122	-0.01425	119→132	0.01111

 Table S14. TD-DFT calculated transitions for III.

5	5.0034	247.80	0.0017	96→120	-0.01204	118→123	-0.08676
				115→120	-0.04682	118→125	-0.02213
				115→126	0.01333	$118 \rightarrow 128$	-0.01489
				115 + 120 $116 \rightarrow 121$	0.01555	110 + 120 $118 \rightarrow 132$	0.01014
				116 ,121	0.01014	110 ,132	0.01014
				$110 \rightarrow 124$	0.02948	119→121 110 122	0.01510
				$11/\rightarrow 120$	-0.24299	119→122	0.01032
				$117 \rightarrow 123$	0.02815	119→124	-0.01317
				117→125	-0.02580	119→127	-0.02257
				118→120	0.65153	119→129	0.01570
6	5.3500	231.75	0.0005	109→125	0.01317	117_127	0.02440
				111→124	0.01080	$117 \rightarrow 127$	0.02440
				114→120	-0.07976	$11/\rightarrow 129$	-0.02800
				114→123	0.01331	118→120	0.01328
				115→121	0.04205	118→121	0.204/9
				115→122	-0.04884	118→122	-0.06537
				115 122	0.01001	118→123	-0.01159
				$110 \rightarrow 120$ 11(-121)	0.23700	118→124	0.21051
				110→121	0.07145	118→125	-0.04088
				116→122	0.03563	118→130	-0.01936
				116→123	-0.25461	$119 \rightarrow 120$	-0.02194
				116→125	0.02134	$119 \rightarrow 120$ $110 \rightarrow 121$	-0.031/13
				116→128	-0.03000	110 122	-0.03143
				117→120	0.04424	$119 \rightarrow 122$	0.02000
				117→121	0.39694	$119 \rightarrow 123$	0.01544
				117→122	0 20593	119→124	-0.04019
				$117 \rightarrow 123$	-0.04871	119→125	0.22580
				$117 \rightarrow 123$	-0.06485	119→126	-0.01684
				$117 \rightarrow 121$	0.00103	119→131	-0.01824
7	5 3518	231.67	0.0021	100-124	0.01133		
/	5.5510	231.07	0.0021	$109 \rightarrow 124$ 111 125	-0.01323	117→124	0.01178
				$111 \rightarrow 123$	-0.01093	117→125	0.05620
				$114 \rightarrow 120$	0.01465	117→128	-0.02920
				$114 \rightarrow 122$	0.01005	118→120	0.06908
				114→124	0.01024	118→121	-0.03756
				115→120	-0.03403	118→122	0.01342
				116→120	-0.04603	118→123	-0.06096
				116→121	0.41537	118→124	-0.04182
				116→122	0.20333	$118 \rightarrow 125$	-0 21977
				116→123	0.04965	118-126	0.01870
				116→124	-0.03048	110 120	0.01070
				116→127	0.02604	$110 \rightarrow 131$	0.01622
				116→129	-0.02914	$119 \rightarrow 121$ 110 . 122	-0.10142
				117→120	0.22712	$119 \rightarrow 122$	0.11098
				117→121	-0.06892	$119 \rightarrow 124$	-0.22290
				117→122	-0.03514	119→125 110 120	-0.03821
				117→123	-0.25152	119→130	0.02035
8	5.3844	230.27	0.0112	86→120	0.01144	112→121	-0.01692
				88→120	-0.01201	112→122	0.02603
				92→121	-0.01748	112→133	0.01028
				92→122	0.02685	$112 \rightarrow 120$	0.53123
				92→133	0.02064	$114 \rightarrow 123$	-0.09097
				$93 \rightarrow 120$	-0.01652	$114 \rightarrow 123$	0.02460
				99→126	0.01338	$115 \rightarrow 121$	-0.24696
				102 120	0.01007	115 121	0 22521
				$102 \rightarrow 120$ 102 122	-0.03997	$113 \rightarrow 122$ 115 124	0.52551
				$102 \rightarrow 123$ $102 \rightarrow 121$	0.01343	$113 \rightarrow 124$	0.01525
				$103 \rightarrow 121$	-0.01117	$115 \rightarrow 130$	-0.02665
				$104 \rightarrow 120$	-0.02951	$113 \rightarrow 133$	0.05/21
				105→121	-0.01209	116→120	0.035/5
				106→120	-0.01041	116→123	-0.03886
				$10/\rightarrow 121$	-0.015/1	117/→122	0.08651
				108→121	-0.01434	118→121	0.07657
				108→122	0.02727	118→122	0.02861
				108→133	0.01065	118→124	0.03602
		1		109→120	0.04162	119→120	-0.06741

				111→121	-0.01268	119→123	0.02879
				111→127	0.01071	119→125	0.03810
9	5.4349	228.13	0.0001	$\begin{array}{c} 93 \rightarrow 121 \\ 93 \rightarrow 122 \\ 96 \rightarrow 126 \\ 102 \rightarrow 121 \\ 102 \rightarrow 122 \\ 111 \rightarrow 126 \\ 114 \rightarrow 121 \\ 114 \rightarrow 122 \end{array}$	-0.01006 0.01407 -0.01584 0.01075 -0.01334 -0.01524 -0.04727 0.06466	$ \begin{array}{c} 117 \rightarrow 120 \\ 117 \rightarrow 123 \\ 117 \rightarrow 126 \\ 118 \rightarrow 125 \\ 118 \rightarrow 126 \\ 119 \rightarrow 121 \\ 119 \rightarrow 122 \\ 119 \rightarrow 124 \\ \end{array} $	-0.03914 0.05717 -0.02256 0.07053 0.08051 -0.41521 0.51708 0.09029
		227.40	0.0000	116→121	-0.16291	117 121	0.020
10	5.4504	227.48	0.0039	$93 \rightarrow 126$ $96 \rightarrow 121$ $96 \rightarrow 122$ $109 \rightarrow 126$ $111 \rightarrow 122$ $115 \rightarrow 122$ $116 \rightarrow 120$ $116 \rightarrow 123$	0.01288 0.01299 -0.01863 -0.01144 -0.01275 0.02016 0.03252 -0.04733	$117 \rightarrow 121$ $117 \rightarrow 122$ $117 \rightarrow 124$ $118 \rightarrow 121$ $118 \rightarrow 122$ $118 \rightarrow 124$ $119 \rightarrow 125$ $119 \rightarrow 126$	0.21487 -0.09635 -0.01160 -0.39255 0.51589 0.08132 0.06423 0.08619

Figure S5. (a) TD-DFT calculated oscillation strengths with measured absorption spectra and (b) isodensity plots for the orbitals included in the major transitions of **I–III**, and their energy levels.

Compound	Wavelengt h (nm)	Osc. Strength	Major Contributions
I	237.96	0.1286	$HOMO \rightarrow LUMO (95\%)$
	232.73	0.0901	$H-2 \rightarrow LUMO (87\%)$
II	271.94	0.0519	HOMO \rightarrow LUMO (40%), HOMO \rightarrow L+1 (52%)
	257.49	0.4665	HOMO \rightarrow LUMO (51%), HOMO \rightarrow L+1 (37%)
	248 73	0 1071	HOMO \rightarrow LUMO (85%)
III	230.27	0.0112	$H-5 \rightarrow LUMO (56\%), H-4 \rightarrow L+2 (21\%)$

Table S15. Selected TD-DFT calculated transitions for I–III and their major contributions.

Geometrical changes between neutral and anionic species. The optimised structures of the anionic species, I⁻⁻III⁻⁻, are depicted in Figure S6 along with the neutral species for comparison. Note that the atom labels are differed from Figure 2 for comparison. The most notable structural differences between the neutral and the anionic geometries of I–III are the lengthening of the carboranyl C–C bonds (C1–C2) upon reduction. Along with this structural change, II⁻⁻ and III⁻⁻ exhibit important geometrical changes. The bond lengths between the carboranyl atom and the phenyl substituent (C1–C3) and between the carboranyl carbon and ethynyl group (C2–C4) in II⁻⁻ and III⁻⁻ are slightly shorter than those of their corresponding neutral species, while the ethynyl C–C bonds (C4–C5) are longer than that of the neutral species (Table S6). Moreover, the bond distance between the phenyl-substituted carbon and neighbouring boron in the carborane cage of II⁻⁻ contracted upon reduction, while the distance between the ethynyl-substituted carbon and the neighbouring boron was extended. This trend is even more pronounced in III⁻⁻. Therefore, we confirmed that the added electron is stabilized through the σ^* orbital of the carborane cage and the π^* orbital of the ethynyl group, rather than the π^* orbital of the phenyl group.

Figure S6. Optimized structures of **I**–**III** and **I**⁻–**III**⁻, with selected atoms labelled (note: the atom labels are differed from Figure 2 for comparison).

	I	 '-	Ш	II'-	III	III ^{.–}
C1–C2	1.759	2.390	1.734	2.384	1.733	2.262
C1–C3	1.508	1.473	1.508	1.475	1.508	1.483
C2–C4	1.508	1.473	1.429	1.401	1.431	1.388
C4–C5	-	-	1.212	1.223	1.208	1.229
C5–C6	-	-	1.427	1.417	1.431	1.388
C1–B1	1.724	1.731	1.739	1.729	1.742	1.726
C2–B1	1.725	1.732	1.728	1.747	1.725	1.767
B1-B2	1.765	1.832	1.763	1.827	1.762	1.808

Table S16. Selected bond lengths (Å) in the DFT-optimised geometries of the neutral and radical-anionic states of **I–III**. Atom labels are provided in Figure 4a.

Figure S7. Square wave voltammetry scan for III from positive to negative potentials.

References

- [1] J. S. Lampkowski, J. K. Villa, T. S. Young, D. D. Young, Angew. Chem. Int. Ed. 2015, 54, 9343–9346.
- [2] C. D. Campbell, R. L. Greenaway, O. T. Holton, P. R. Walker, H. A. Chapman, C. A. Russell, G. Carr, A. L. Thomson, D. A. Anderson, *Chem. Eur. J.* 2015, *21*,12627–12639.
- [3] K. Balaraman, V. Kesavan, Synthesis, 2010, 20, 3461–3466.
- [4] K. Mizukoshi, O. Shuji, K. Tatsumi, S. Satoru, M. Hiro, Bull. Chem. Soc. Jpn. 2008, 81, 1028–1037.
- [5] M. X. W. Jiang, M. Rawat, W. D. Wulff., J. Am. Chem. Soc. 2004, 126, 5970-5971.
- [6] M. M. Fein, J. Bobinski, N. Mayes, N. Schwartz, M. S. Cohen, Inorg. Chem. 1963, 2, 1111-1115.
- [7] SMART and SAINT, Bruker Analytical X-ray Division, Madison, WI, 2002.
- [8] G. M. Sheldrick, SHELXTL-PLUS Software Package, Bruker Analytical X-ray Division, Madison, WI, 2002.
- [9] J. Frisch et al., Gaussian 16, Revision C.01, M., Gaussian, Inc., Wallingford CT, 2016.
- [10] Cambridge Soft Corporation, Cambridge, MA, USA. http://www.cambridgesoft.com/.
- [11] L. J. Farrugia, J. Appl. Cryst. 2012, 45, 849-854.