Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Experimental Section

Synthesis of Sb₂S₃ nanoflowers

All the chemicals are of analytical grade and used as received. Sb_2S_3 nanoflowers were synthesized by a solvothermal method[1]. In typical, 1 mmol of $SbCl_3$ was dissolved in 30 mL of ethylene glycol, to which 0.5 g of L-cysteine was added under stirring until completely dissolved. The pH of the suspension was adjusted to 10 with a 10 mol/L NaOH aqueous solution. The resulting precursor solution was transferred into a 50mL Teflon-lined stainless autoclave, sealed and heated in the oven at 160 °C for 24 h. After cooling to room temperature, the precipitate was collected via centrifugation and further washed with de-ionized water and ethanol, and dried at 60 °C for 12 h. The dried precipitates were finally annealed in a tube furnace at 500 °C for 2 h in Ar atmosphere to obtain the Sb₂S₃ nanoflowers.

Characterizations

Scanning electron microscopy (SEM) was performed on a JSM-6701 microscope. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were carried out on a Tecnai G² F20 microscope. X-ray diffraction (XRD) pattern was recorded on a Rigaku D/max 2400 diffractometer. X-ray photoelectron spectroscopy (XPS) analysis was recorded on a PHI 5702 spectrometer. Nitrogen adsorption/desorption isotherms were recorded on an ASAP 2020 instrument. The UV-vis absorbance measurements were performed on a MAPADA P5 spectrophotometer. ¹H nuclear magnetic resonance (NMR) measurements were carried out on a 500 MHz Bruker superconducting-magnet NMR spectrometer. Prior to NMR measurements, all the feeding gases were respectively purified by an acid trap (0.05 M H₂SO₄) to eliminate the potential NO_x and NH₃ contaminants [2].

Electrochemical experiments

The electrochemical measurements were carried out on a CHI-760E electrochemical workstation Shanghai Chenhua Instrument Corp., China) using a three-electrode configuration with each as-prepared electrode, a graphite rod and a

Ag/AgCl electrode as the working, the counter and the reference electrodes, respectively. All potentials were referenced to reversible hydrogen electrode (RHE) by following equation: E_{RHE} (V)= $E_{Ag/AgCl}$ +0.197+0.059×pH. The CC substrate was pretreated by soaking it in 0.5 M H₂SO₄ for 12 h, and then washed with deionized water several times and dried at 60 °C for 24 h. To prepare working electrode, 1 mg catalyst and 5 µL of Nafion (5 wt%) were ultrasonically dispersed in 100 µL of ethyl alcohol to form a homogeneous ink. Then 20 µL of catalyst ink was loaded on a 1×1 cm² CC substrate and dried under ambient condition. The NRR tests were performed using an H-type two-compartment electrochemical cell separated by a Nafion 211 membrane. The Nafion membrane was pretreated by boiling it in 5% H₂O₂ solution for 1 h, 0.5 M H₂SO₄ for 1 h and deionized water for 1 h in turn. During each electrolysis, ultra-high-purity N₂ gas (99.999%) was continuously purged into the cathodic chamber at a flow rate of 20 mL min⁻¹. After each NRR electrolysis, the produced NH₃ and possible N₂H₄ were quantitatively determined by the indophenol blue method[3], and approach of Watt and Chrisp[4], respectively.

Determination of N₂H₄

4 mL of electrolyte was removed from the electrochemical reaction vessel. Then 50 μ L of solution containing NaOH (0.75 M) and NaClO ($\rho_{Cl} = \sim 4$), 500 μ L of solution containing 0.32 M NaOH, 0.4 M C₇H₆O₃, and 50 μ L of C₅FeN₆Na₂O solution (1 wt%) were respectively added into the electrolyte. After standing for 2 h, the UV-Vis absorption spectrum was measured and the concentration-absorbance curves were calibrated by the standard NH₄Cl solution with a series of concentrations.

NH₃ yield (
$$\mu$$
g h⁻¹ mg⁻¹_{cat}) = $\frac{c_{\rm NH_3} \times V}{t \times m}$ (1)

Faradaic efficiency was calculated by the following equation:

Faradaic efficiency (%) =
$$\frac{3 \times F \times c_{_{\rm NH_3}} \times V}{17 \times Q} \times 100\%$$
 (2)

where $c_{\rm NH3}$ (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of the electrolyte, t (h) is the reduction time and m (mg) is the mass loading of the catalyst on CC. F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the quantity of applied

electricity.

Determination of N₂H₄

5 mL of electrolyte was removed from the electrochemical reaction vessel. The 330 mL of color reagent containing 300 mL of ethyl alcohol, 5.99 g of $C_9H_{11}NO$ and 30 mL of HCl were prepared, and 5 mL of color reagent was added into the electrolyte. After stirring for 10 min, the UV-Vis absorption spectrum was measured and the concentration-absorbance curves were calibrated by the standard N_2H_4 solution with a series of concentrations.

Calculation details

First-principles calculations were carried out by using the Cambridge sequential total energy package (CASTEP), based on the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional [5]. DFT-D method was adopted to account for the van der Waals interactions throughout the calculations. The Brillouin zone was sampled by $3 \times 3 \times 1$ Monkhorst–Pack k-point mesh. The electron wave functions were expanded using plane waves with a cutoff energy of 400 eV, and the convergence criteria of energy and force change during all calculations were set to 2×10^{-5} eV and 0.02 eV Å⁻¹, respectively. The Sb₂S₃ (130) was modeled by a 2×2 supercell, and a vacuum space of around 15 Å was set along the z direction to avoid the interaction between periodical images.

The Gibbs free energy (ΔG , 298 K) of reaction steps is calculated by [6]:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{3}$$

where ΔE is the adsorption energy, ΔZPE is the zero point energy difference and $T\Delta S$ is the entropy difference between the gas phase and adsorbed state. The entropies of free gases were acquired from the NIST database.

Fig. S1. Lattice line measurement obtained from the noise-filtered HRTEM image of Sb_2S_3 .

Fig. S2. (a) UV-vis absorption spectra of indophenol assays with NH_4Cl after incubated for 2 h at ambient conditions. (b) Calibration curve used for calculation of NH_3 concentrations.

Fig. S3. (a) UV-vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S4. (a) UV-vis spectra of the electrolytes (stained with the chemical indicator based on the method of Watt and Chrisp) after 2 h of electrolysis on Sb_2S_3 at various potentials, and (b) corresponding N_2H_4 concentrations in the electrolytes.

Fig. S5. Mass of produced NH_3 after NRR electrolysis at various times (1-4 h) on Sb_2S_3 at -0.3 V.

Fig. S6. Morphologies of Sb_2S_3 after stability test. (a) SEM image. (b) TEM image. (c) HRTEM image.

Fig. S7. XRD pattern of Sb_2S_3 before and after stability test.

Fig. S8. XPS spectra of Sb_2S_3 after stability test. (a) Sb2p. (b) S2p.

Fig. S9. Free energy diagrams of distal NRR pathway on $\mathrm{Sb}_2\mathrm{S}_3$ at zero and applied energy of -0.84 V.

Catalyst	Electrolyte	Determination method	Optimum Potential (V Vs RHE)	NH₃ yield (μg h ⁻¹ mg ⁻¹)	FE (%)	Ref.
Bi ₄ V ₂ O ₁₁ -CeO ₂ nanofibers	0.1 M HCl	Indophenol blue method	-0.2	23.21	10.16	[7]
CoP hollow nanocage	1.0 M KOH	Indophenol blue method	-0.4	10.78	7.36	[8]
Fe-N/C hybrid	0.1 M KOH	Indophenol blue method	-0.2	34.83	9.28	[9]
MoO ₂ with oxygen vacancies	0.1 M HCl	Indophenol blue method	-0.15	12.2	8.2	[10]
PC/Sb/SbPO4	0.1 M HCl	Indophenol blue method	-0.15	33.4	31	[11]
Mo ₂ C/C	0.5 M Li ₂ SO ₄	Nessler's reagent method	-0.3	11.3	7.8	[12]
Mo single atoms	0.1 M KOH	Indophenol blue method	-0.3	34	14.6	[13]
Sulfur-doped graphene	0.1 M HCl	Indophenol blue method	-0.6	27.3	11.5	[14]
Amorphous Pd _{0.2} Cu _{0.8} /RGO	0.1 M KOH	Indophenol blue method	-0.2	2.8	0.6	[15]
MoS ₂ with Li-S Interactions	0.1 M Li ₂ SO ₄	Indophenol blue method	-0.2	43.4	9.81	[16]
Defect-rich MoS ₂ nanoflower	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.4	29.28	8.34	[17]
Nb ₂ O ₅ nanofibers	0.1 M HCl	Indophenol blue method	-0.55	43.6	9.26	[18]
S-doped carbon nanospheres	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.7	19.07	7.47	[19]
C-doped TiO ₂ nanoparticles	0.1 M Na ₂ SO ₄	Indophenol blue method	-0.7	16.22	1.84	[20]
$MnO_2-Ti_3C_2T_x$ MXene nanohybrid	0.1 M HCl	Indophenol blue method	-0.55	34.12	11.39	[21]
MoO ₃ nanosheets	0.1 M HCl	Indophenol blue method	-0.5	29.43	1.9	[22]
CoP hollow nanocage	1.0 M KOH	Indophenol blue method	-0.4	10.78	7.36	[8]
Sb ₂ S ₃ nanoflowers	0.5 M LiClO ₄	Indophenol blue method	-0.5	33.4	24.1	This work

Table S1. Comparison of optimum NH₃ yield and Faradic efficiency (FE) for recently reported state-of-the-art NRR electrocatalysts at ambient conditions.

Supplementary references

- [1]. X. Chen, X. Li, P. Wei, X. Ma, Q. Yu and L. Liu, Chinese J. Catal., 2020, 41, 435-441.
- [2]. B. Hu, M. Hu, L. C. Seefeldt and T. L. Liu, ACS Energy Lett., 2019, 4, 1053-1054.
- [3]. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836.
- [4]. G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006-2008.
- [5]. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220, 567-570.
- [6]. A. A. Peterson, *Energy Environ. Sci.*, 2010, **3**, 1311-1315.
- [7]. C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, *Angew. Chem. Int. Edit.*, 2018, 130, 6181-6184.
- [8]. W. Guo, Z. Liang, J. Zhao, B. Zhu, K. Cai, R. Zou and Q. Xu, Small Methods, 2018, 2, 1800204.
- [9]. Y. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng and C. Wang, ACS Catal., 2018, 9, 336-344.
- [10]. G. Zhang, Q. Ji, K. Zhang, Y. Chen, Z. Li, H. Liu, J. Li and J. Qu, *Nano Energy*, 2019, 59, 10-16.
- [11]. X. Liu, H. Jang, P. Li, J. Wang, Q. Qin, M. G. Kim, G. Li and J. Cho, Angew. Chem. Int. Edit., 2019, 58, 13329-13334.
- [12]. H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue and H. Wang, Adv. Mater., 2018, 30, 1803694.
- [13]. L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lu, S. Bak, Z. Liang, S. Zhao and E. Stavitski, Angew. Chem. Int. Edit., 2018, 58, 2321-2325.
- [14]. L. Xia, J. Yang, H. Wang, R. Zhao, H. Chen, W. Fang, A. M. Asiri, F. Xie, G. Cui and X. Sun, *Chem. Commun.*, 2019, 55, 3371-3374.
- [15]. M. M. Shi, D. Bao, S. J. Li, B. R. Wulan, J. M. Yan and Q. Jiang, *Adv. Energy. Mater.*, 2018, 8, 1800124.
- [16]. Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang and H. Zhao, *Adv. Energy. Mater.*, 2019, 9, 1803935.
- [17]. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri and L. Chen, Adv. Energy. Mater., 2018, 8, 1801357.
- [18]. J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, Nano Energy, 2018, 52, 264-270.
- [19]. L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, *Small Methods*, 2018, 3, 1800251.
- [20]. Y. Wang, Q. Pan, B. Zhong, Y. Luo, G. Cui, X.-D. Guo and X. Sun, *Nanoscale Adv.*, 2019, 1, 961-964.
- [21]. W. Kong, F. Gong, Q. Zhou, G. Yu, L. Ji, X. Sun, A. M. Asiri, T. Wang, Y. Luo and Y. Xu, J. Mater. Chem. A, 2019, 7, 18823-18827.
- [22]. J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, J. Mater. Chem. A, 2018, 6, 12974-12977.