SUPPORTING INFORMATION

Asymmetric Synthesis of Benzothiazolopyrimidines with High Catalytic Efficiency and Stereoselectivity under

 Bifunctional Phosphonium Salt System

 Bifunctional Phosphonium Salt System}

Dongming Lu, ${ }^{\text {a }}$ Jia-Hong Wu, ${ }^{\text {a }}$ Jianke Pan, ${ }^{\text {a }}$ Xue Chen, ${ }^{\text {a }}$ Xiaoyu Ren, ${ }^{\text {a }}$ and Tianli Wang*, ${ }^{*}$

[^0]1. General Information 2
2. Optimization of Reaction Conditions 3
3. Preparation of the Catalysts 4
4. General Procedure for the Synthesis of Substrates 8
5. General Procedure for the Asymmetric Synthesis of 3 and 4. 10
6. Scale-up Synthesis and Synthetic Elaboration of Product 43
7. Mechanistic Studies and Proposed Mechanism. 44
8. Crystal Structure of Product 4e. 46
9. Reference 48
10. NMR Spectra 49

1. General Information

All the starting materials were obtained from commercial sources and used without further purification unless otherwise stated. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{OD}$ or DMSO- d_{6} on a Brüker Advance 400 spectrometer. Chemical shifts (δ) were given in parts per million (ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br s (broad singlet). Coupling constants (J) were reported in Hertz (Hz). All high resolution mass spectra were obtained on a Thermo LTQ mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm . Flash chromatographic separations were performed on Merck 60 ($0.040-0.063 \mathrm{~mm}$) mesh silica gel. Enantiomeric excess was determined by HPLC analysis using chiral column described below in detail. Optical rotations were measured with polarimeter. The absolute configurations of the $[4+2]$ cyclization products were assigned on the basis of X-ray crystallographic analysis of the single crystal of compound $\mathbf{4 e}$.

All phosphonium salt catalysts used in this study were prepared via a P-alkylation reaction of our previously reported organophosphines according to the known procedures. ${ }^{[1]}$

2. Optimization of Reaction Conditions

Table S1: Screening of the bases in xylene. ${ }^{a}$

		3a		
Entry	Base	Yield (\%)	ee (\%)	$d r$
1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	80	78	>20:1
2	$\mathrm{Cs}{ }_{2} \mathrm{CO}_{3}$	90	55	>20:1
3	$\mathrm{K}_{3} \mathrm{PO}_{4}$	81	80	>20:1
4	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	trace	--	--
5	$\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	60	77	>20:1
6	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	50	45	>20:1
7	NaOAc	10	34	>20:1

[a] Reactions were performed with 1a $(0.1 \mathrm{mmol})$, 2a $(0.12 \mathrm{mmol}), \mathbf{P 1 2}$ (10 $\mathrm{mol} \%$) and corresponding base in toluene $(0.5 \mathrm{~mL})$ at room temperature. The $d r$ values were determined by ${ }^{1} \mathrm{H}$ NMR and ee values were determined by HPLC analysis. Isolated yield.

Table S2: Screening of the solvent. ${ }^{a}$

Entry	Solvent	Yield (\%)	ee (\%)	$d r$
1	Xylene	81	80	$>20: 1$
2	Toluene	79	77	$>20: 1$
3	DCM	89	44	$>20: 1$
4	EA	95	31	$18: 1$
5	MeCN	73	57	$>20: 1$
6	MTBE	60	54	$19: 1$
7	$\mathrm{Et}_{2} \mathrm{O}$	44	73	$>20: 1$
8	Hexane $_{9}$	Acetone	80	82
$20: 1$				

[a] Reactions were performed with $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.12 \mathrm{mmol}), \mathbf{P 1 2}(10 \mathrm{~mol} \%)$
and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.2 \mathrm{mmol})$ in corresponding solvent $(0.5 \mathrm{~mL})$ at room temperature. The $d r$ values were determined by ${ }^{1} \mathrm{H}$ NMR and ee values were determined by HPLC analysis. Isolated yield.

Table S3: Screening of the temperature and equivalents of base. ${ }^{a}$

	 1a	$\begin{array}{ll} \mathrm{Et} & \begin{array}{c} \begin{array}{c} \mathrm{P}_{12}(10 \mathrm{~mol}(\mathrm{~m}) \\ \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{xequiv.}) \end{array} \\ \cline { 1 - 3 } \\ \mathrm{CO}_{2}{ }^{t} \mathrm{Bu} \end{array} \\ \text { solvent, } \mathrm{T}, 36 \mathrm{~h} \end{array}$	 3a		
Entry	$\mathrm{T}\left({ }^{\mathrm{O}} \mathrm{C}\right)$	$\mathrm{K}_{3} \mathrm{PO}_{4}$ (x equiv.)	Yield (\%)	ee (\%)	$d r$
1	r.t.	2	80	82	>20:1
2	0	2	77	85	$>20: 1$
3	-10	2	78	84	$>20: 1$
4	-20	2	74	82	$>20: 1$
5	-10	4	91	90	$>20: 1$
6	-10	6	90	87	>20:1
$7{ }^{\text {b }}$	-10	4	82	73	>20:1

[a] Reactions were performed with $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.12 \mathrm{mmol}), \mathbf{P 1 2}(10 \mathrm{~mol} \%)$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ $(0.2 \mathrm{mmol})$ in corresponding solvent $(0.5 \mathrm{~mL})$ at corresponding temperature. The $d r$ values were determined by ${ }^{1} \mathrm{H}$ NMR and ee values were determined by HPLC analysis. Isolated yield.[b] 5 $\mathrm{mol} \% \mathrm{P} 12$ was used.

3. Preparation of the Catalysts

A. General procedures for preparation of phosphonium salts

The catalysts P1-5 are known compounds, and their characterization data were in agreement with those reported in the literature. The phosphonium bromides P6-12 were prepared according to the reported procedures ${ }^{[1]}$ and fully characterized.

(S)-(2-((tert-butoxycarbonyl)amino)-3-methylbutyl)(methyl)diphenylphosphoni

m iodide (P6)

A yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.79-7.70(\mathrm{~m}, 6 \mathrm{H})$,
$7.70-7.63(\mathrm{~m}, 2 \mathrm{H}), 5.94(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.59(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 1 \mathrm{H})$,
2.79 (d, $J=14.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 1 \mathrm{H}), 1.33$ (s, 9H), 0.93 (dd, $J=$ 6.7, $0.8 \mathrm{~Hz}, 6 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.5,134.9(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 134.6$ (d, $J=2.9 \mathrm{~Hz}), 132.5(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=12.5 \mathrm{~Hz})$, $130.2(\mathrm{~d}, J=12.6 \mathrm{~Hz}), 119.7(\mathrm{dd}, J=150.7,85.7 \mathrm{~Hz}), 79.7,51.1(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}), 34.5$ $(\mathrm{d}, \mathrm{J}=13.1 \mathrm{~Hz}), 28.3,27.2(\mathrm{~d}, \mathrm{~J}=52.2 \mathrm{~Hz}), 19.4,18.1,8.6(\mathrm{~d}, \mathrm{~J}=54.5 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.18 ; \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2} \mathrm{PI}[\mathrm{M}-]^{+}=$ 386.2249 , found $=386.2247$.

(S)-(2-((tert-butoxycarbonyl)amino)propyl)(methyl)diphenylphosphonium

iodide (P7)

A white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 4 \mathrm{H})$, 7.08-7.01 (m, 4H), 3.49-3.44 (m, 1H), 2.73-2.61 (m, 2H), $2.10(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.70(\mathrm{dd}, J=6.7,2.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 156.5$, $135.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 133.0(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 131.1,130.9$, $122.6,120.7(\mathrm{~d}, J=15.5 \mathrm{~Hz}), 120.8,79.8(\mathrm{~d}, J=88.7 \mathrm{~Hz}), 43.1,31.0(\mathrm{~d}, J=52.0 \mathrm{~Hz})$, 28.4, $23.6(\mathrm{~d}, J=14.8 \mathrm{~Hz}), 6.9(\mathrm{~d}, J=54.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 21.33$. HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{PI}[\mathrm{M}-\mathrm{I}]^{+}=358.1936$, found $=358.1934$.
((2S,3R)-2-((tert-butoxycarbonyl)amino)-3-((tert-butyldiphenylsilyl)oxy)butyl)(m ethyl)diphenylphosphonium iodide (P8)

A white solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.60(\mathrm{~m}, 8 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 6 \mathrm{H})$, 7.34-7.28 (m, 6H), $5.77(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.80-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{td}$, $J=14.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=13.8,3.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0,135.6,135.5$, 134.6, 134.5, $133.1(\mathrm{~d}, J=40.0 \mathrm{~Hz}), 132.3,132.2,132.1,130.2,130.1,130.0,129.8$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}), 127.8,127.6,119.5,118.6,79.8,71.4(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 50.5,28.1$,
26.9, $24.1(\mathrm{~d}, J=55.4 \mathrm{~Hz}), 19.1,18.6,8.2(\mathrm{~d}, J=53.3 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 23.91. HRMS (ESI) m/z calcd for $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{NO}_{3} \mathrm{PSiI}\left[\mathrm{M}-\mathrm{I}^{+}=626.3214\right.$, found $=626.3210$.
((2S,3R)-2-((tert-butoxycarbonyl)amino)-3-((tert-butyldimethylsilyl)oxy)butyl)(m ethyl)diphenylphosphonium iodide (P9)

A white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.72(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 4 \mathrm{H})$, $5.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.33(\mathrm{t}, J=14.5 \mathrm{~Hz}, 9 \mathrm{H}), 2.83(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.3,134.8(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 134.6(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 132.3(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 132.3(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=13.0 \mathrm{~Hz}), 130.1(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}), 120.7,119.3(\mathrm{~d}, J=85.2 \mathrm{~Hz}), 79.9,70.1(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 50.8,28.2,25.8$, 23.76, 18.6, 17.9, $8.6(\mathrm{~d}, J=54.3 \mathrm{~Hz}),-4.6(\mathrm{~d}, J=9.5 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR $(162 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 23.91. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{NO}_{3} \mathrm{PSiI}[\mathrm{M}-\mathrm{I}]^{+}=502.2091$, found $=502.2095$.

benzyl((2S,3R)-2-((tert-butoxycarbonyl)amino)-3-((tert-butyldimethylsilyl)oxy)bu

 tyl)diphenylphosphonium bromide (P10)

A white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 4 \mathrm{H})$, 7.61-7.51 (m, 4H), 7.14-7.12 (m, 1H), 7.05 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.93(\mathrm{~m}, 2 \mathrm{H})$, $6.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=25.1,12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{t}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}$, $9 \mathrm{H}), 1.15(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 9 \mathrm{H}),-0.00(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 3 \mathrm{H})$, $-0.05(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0,134.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}$), $134.5(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 129.9,129.8,129.7$,
128.7 (d, $J=3.0 \mathrm{~Hz}), 128.1(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 127.5(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 117.7(\mathrm{~d}, J=28.0$ $\mathrm{Hz}), 116.9(\mathrm{~d}, J=31.0 \mathrm{~Hz}), 79.5,69.7(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 50.2(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 30.4(\mathrm{~d}, J$ $=45.0 \mathrm{~Hz}), 28.2,25.7,20.9(\mathrm{~d}, J=52.0 \mathrm{~Hz}), 17.7(\mathrm{~d}, J=14.0 \mathrm{~Hz}),-4.7(\mathrm{~d}, J=16.0$ $\mathrm{Hz}) .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 26.22. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{NO}_{3} \mathrm{PSiBr}[\mathrm{M}-\mathrm{Br}]^{+}=577.3141$, found $=577.3136$.
((2S,3R)-2-((tert-butoxycarbonyl)amino)-3-((tert-butyldimethylsilyl)oxy)butyl)(3,

5-dimethylbenzyl)diphenylphosphonium bromide (P11)

A white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 4 \mathrm{H})$, 7.62-7.55 (m, 4H), $6.76(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 2 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.94-4.87(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}$, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.02(\mathrm{~s}, 6 \mathrm{H}), 1.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.17-1.15(\mathrm{~m}, 3 \mathrm{H}), 0.75(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 9 \mathrm{H})$, $0.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}),-0.04(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $155.1,138.3(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 134.5,134.0(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 134.0(\mathrm{~d}, J=4.1 \mathrm{~Hz}) 129.8$ $(\mathrm{d}, J=5.3 \mathrm{~Hz}), 129.7,129.6,129.5,128.3(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 127.0(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 117.9$ (d, $J=8.5 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 79.5,69.8(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 50.3,30.5(\mathrm{~d}, J=$ 45.5 Hz), 28.3, 25.7, 21.4, 20.9, 17.8, 0.1, $-4.7(\mathrm{~d}, J=20.6 \mathrm{~Hz}) .{ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}) δ 26.14. HRMS (ESI) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{NO}_{3} \mathrm{PSiBr}[\mathrm{M}-\mathrm{Br}]^{+}=605.3454$, found $=605.3449$.
((2S,3R)-2-((tert-butoxycarbonyl)amino)-3-((tert-butyldimethylsilyl)oxy)butyl)(3,

5-di-tert-butylbenzyl)diphenylphosphonium bromide (P12)

A white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{dd}, J=12.4,7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.79-7.74 (m, 4H), 7.66-7.59 (m, 5H), $7.42(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{t}, J$
$=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.50(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26$ $(\mathrm{s}, 9 \mathrm{H}), 1.16(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.1,135.3$ (d, $J=21.0 \mathrm{~Hz}$), 134.1, 133.9 (d, $J=9.2 \mathrm{~Hz}$), 132.1 $(\mathrm{d}, J=30.7 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 130.8,130.4(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 130.3(\mathrm{~d}, J=4.8$ $\mathrm{Hz}), 124.0,122.1,121.3,116.7(\mathrm{~d}, J=18.0 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=19.5 \mathrm{~Hz}), 79.8,69.8(\mathrm{~d}$, $J=13.8 \mathrm{~Hz}), 50.2,30.4(\mathrm{~d}, J=46.3 \mathrm{~Hz}), 28.3,25.7,21.5(\mathrm{~d}, J=51.3 \mathrm{~Hz}), 17.8,17.62$, $0.0,-4.7,-4.8 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 27.32. HRMS (ESI) m / z calcd for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{NO}_{3} \mathrm{PSiBr}[\mathrm{M}-\mathrm{Br}]^{+}=689.4939$, found $=689.4940$.

4. General Procedure for the Synthesis of Substrates

General procedure for preparing allenoates:

All 2-benzothiazolimines and allenoates were prepared from the corresponding literature procedure. ${ }^{[2,3]}$ Unknown compounds 2a, 2c and 2e-f were fully characterized.

5-(tert-butyl) 1-ethyl 2-ethylpenta-2,3-dienedioate (2a)

A colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.86(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.16$ $(\mathrm{m}, 2 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 217.8,165.6,163.6,106.5,94.0,81.7,61.5,28.2$, 21.8, 14.3, 12.4. HRMS (ESI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}=263.1259$, found $=$ 263.1257;

5-(tert-butyl) 1-ethyl 2-pentylpenta-2,3-dienedioate (2c)

A colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.82(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 9 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 218.1,165.6,163.6,104.8,93.5,81.7$, 61.5, 31.2, 28.2 (d, $J=11.5 \mathrm{~Hz}$), 27.5, 22.5, 14.3, 14.1. HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}=305.1729$, found $=305.1726$;

5-(tert-butyl) 1-ethyl 2-(3-chlorobenzyl)penta-2,3-dienedioate (2e)

A colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 5.86(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{qd}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.68 (ddd, $J=41.5,15.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 218.5,165.0,163.0,139.9,134.2,129.7,129.2,127.3,127.1$, 103.9, 94.1, 82.1, 61.8, 34.7, 28.2, 14.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+}=359.1026$, found $=359.1026$;

5-(tert-butyl) 1-ethyl 2-(2,4-dichlorobenzyl)penta-2,3-dienedioate (2f)

A colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.26$ $\mathrm{m}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}$, 2 H), 3.74 (ddd, $J=44.9,15.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.43$ ($\mathrm{s}, 9 \mathrm{H}$), 1.26 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (100 MHz, CDCl_{3}) $\delta 217.2,163.7,161.7,134.0,133.0,132.13,130.8,128.2$, 125.9, 101.7, 93.2, 80.8, 60.7, 30.8, 27.0, 13.1. HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}=393.0636$, found $=393.0634 ;$

5. General Procedure for the Asymmetric Synthesis of 3 and 4.

To a flame-dried round bottle flask with a magnetic stirring bar were added the 2-benzothiazolimines (0.1 mmol), allenoates (0.12 mmol), phosphonium salt P12 (0.01 mmol) and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.4 \mathrm{mmol})$, followed by the addition of Hexane $(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for $36-72 \mathrm{~h}$. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel to afford products $\mathbf{3 / 4}$.
tert-butyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-phenyl-2H-benzo[4,5]thiazolo[3 ,2-a]pyrimidine-3-carboxylate (3a)

White foam, $(42.2 \mathrm{mg}), 91 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+83.3\left(c 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.42-7.41 (m 2H), 7.34-7.32 (m, 1H), 7.29-7.27 (m, 1H), 7.26-7.25 $(\mathrm{m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H})$, 4.32-4.25 (m, 3H), $1.59(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 171.4, 164.7, 146.8, 141.3, 135.5, 128.5, 127.4, 126.9, 126.6, 125.7, 125.1, 124.5, 122.9, 115.1, 81.7, 61.4, 61.3, 39.2, 27.9,
16.1, 14.2. $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=487.1667$, found $=$ 487.1665; The ee value was $90 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=24.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=32.9 \mathrm{~min}$ (Chiralcel IC, $\lambda=254 \mathrm{~nm}, 10 \% i$-PrOH/hexanes, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$).
maU

PDA Ch1 254nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	24.989	139865	55.644	6552927	51.655
2	33.746	111489	44.356	6133136	48.345
Total		251354	100.000	12686063	100.000

tert-butyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-(p-tolyl)-2H-benzo[4,5]thiazolo [3,2-a]pyrimidine-3-carboxylate (3b)

White foam, $(43.0 \mathrm{mg}), 90 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+94.4\left(c 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.33-7.30 (m, 3H), 7.19-7.13 (m, 2H), 7.12-7.06 (m, 3H), $5.89(\mathrm{~s}, 1 \mathrm{H})$, 4.31-4.26 (m, 3H), 2.28 (s, 3H), 1.49 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.31$ (t, $J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,164.8,157.3,146.7,138.5,136.9$, 135.6, 129.1, 126.8, 125.6, 125.1, 124.4, 122.8, 115.0, 110.6, 81.5, 61.3, 61.2, 39.1, 27.9, 21.1, 16.1, 14.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=501.1824$, found $=501.1820$; The ee value was $90 \%, \mathrm{t}_{\mathrm{R}}($ major $)=25.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=31.0 \mathrm{~min}$ (Chiralcel IC, $\lambda=254 \mathrm{~nm}, 10 \% i$-PrOH/hexanes, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$).

Peak Table
Detector A 254 nm

Peak\#	Ret. Time	Height	Height\%	Area	Area $\%$
1	24.970	794397	46.565	32176126	41.214
2	29.516	145832	8.548	6449098	8.261
3	30.788	658325	38.589	32709433	41.897
4	39.769	107448	6.298	6736825	8.629
Total		1706002	100.000	78071483	100.000

mV

Detector A 254nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	25.023	1991227	95.456	85535250	95.165
2	31.044	94785	4.544	4346053	4.835
Total		2086012	100.000	89881303	100.000

tert-butyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-(4-methoxyphenyl)-2H-benzo[4 ,5]thiazolo[3,2-a]pyrimidine-3-carboxylate (3c)

White foam, $(41.5 \mathrm{mg}), 84 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+138.1\left(c 0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.35-7.32 (m, 3H), 7.21-7.12 (m, 3H), 6.82-6.78 (m, 2H), $5.85(\mathrm{~s}, 1 \mathrm{H})$, 4.28 (dd, $J=13.5,6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$, $1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.5,164.8,157.4,158.9$, 146.6, 135.6, 133.6, 128.1, 125.7, 125.1, 124.5, 122.9, 115.0, 113.8, 111.0, 81.6, 61.4, 60.9, 55.2, 39.2, 28.0, 16.1, 14.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=$ 517.1773 , found $=517.1755$; The ee value was $89 \%, \mathrm{t}_{\mathrm{R}}($ major $)=37.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)$ $=47.3 \mathrm{~min}($ Chiralcel IC, $\lambda=254 \mathrm{~nm}, 10 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mV

mV

tert-butyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-(4-fluorophenyl)-2H-benzo $[4,5]$ thiazolo[3,2-a]pyrimidine-3-carboxylate (3d)

White foam, (44.8 mg), 93% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+129.0\left(c \quad 0.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.94$ (ddd, J $=9.8,5.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.34-4.22(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.39$ (s, 9H), $1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.6,164.9,163.6$, 161.1, 157.8, 147.2, $137.6(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 135.7,128.8(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 125.3,124.8$, $124.6(\mathrm{~d}, J=281.0 \mathrm{~Hz}), 115.6,115.3(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 110.6,81.9,61.6,61.1,39.4$, 28.2, 16.3, 14.5. HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=505.1573$, found $=505.1571$; The ee value was $85 \%, \mathrm{t}_{\mathrm{R}}($ major $)=11.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=13.0 \mathrm{~min}$ (Chiralcel IC, $\lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$).
mV

Peak Table
Detector A 254 nm

Peak\#	Ret. Time	Height	Height\%	Area	Area $\%$
1	11.578	750950	43.365	17388276	38.495
2	12.989	676871	39.087	17073093	37.797
3	13.932	190395	10.995	5419662	11.998
4	21.687	113487	6.553	5289126	11.709
Total		1731703	100.000	45170157	100.000

mV

Peak Table

Peak\#	Ret. Time	Height	Height\%	Area	Area\%
1	11.605	1053359	92.281	26099105	92.300
2	13.064	88106	7.719	2177382	7.700
Total		1141466	100.000	28276487	100.000

tert-butyl(R)-2-(4-chlorophenyl)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2H-benzo[4,5]thiazolo[3,2-a]pyrimidine-3-carboxylate (3e)

White foam, $(44.3 \mathrm{mg}), 89 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+98.2\left(c 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.36-7.34 (m, 3H), 7.25-7.22 (m, 2H), 7.18-7.11 (m, 3H), $5.87(\mathrm{~s}, 1 \mathrm{H})$, $4.28(\mathrm{dd}, J=13.4,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,164.6,157.6,147.3,140.2,135.5$, 133.1, 128.6, 128.3, 125.7, 125.1, 124.6, 122.9, 115.1, 109.9, 81.7, 61.4, 61.0, 39.2, 28.0, 16.1, 14.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=521.1278$, found $=521.1427$; The ee value was $91 \%, \mathrm{t}_{\mathrm{R}}($ major $)=19.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=28.7 \mathrm{~min}$ (Chiralcel IC, $\lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$).

Peak Table
PDACh1 254nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	19.433	983422	56.666	40210957	48.131
2	28.328	752055	43.334	43334659	51.869
Total		1735478	100.000	83545616	100.000

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Height\%	Area	Area\%
1	19.556	1177492	96.064	48331101	95.492
2	28.682	48239	3.936	2281423	4.508
Total		1225731	100.000	50612524	100.000

tert-butyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-(m-tolyl)-2H-benzo[4,5]thiazol o[3,2-a]pyrimidine-3-carboxylate (3f)

White foam, $(43.0 \mathrm{mg}), 90 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+33.2\left(c \quad 0.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~d}, J=$
$7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.31-4.21(\mathrm{~m}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.40(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,165.1$, $157.7,146.9,141.7,138.2,135.9,128.5,128.4,128.1,125.9,125.3,124.7,124.0$, 123.1, 115.2, 110.9, 81.8, 61.8, 61.6, 39.4, 28.2, 21.8, 16.4, 14.5. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=501.1824$, found $=501.1822$; The ee value was 86%, t_{R} (major) $=24.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=26.9 \mathrm{~min}$ (Chiralcel IC, $\lambda=254 \mathrm{~nm}, 5 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	24.328	75293	92.657	4337639	92.988
2	26.911	5967	7.343	327116	7.012
Total		81260	100.000	4664754	100.000

tert-butyl (R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-(o-tolyl)-2H-benzo[4,5]thiazolo [3,2-a]pyrimidine-3-carboxylate (3g)

White foam, (36.8 mg), 77% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+96.8\left(c 0.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.22 \mathrm{~m}$, $1 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 5 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}, \mathrm{~J}=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.3$, $164.8,160.8,158.4,157.0,146.6,141.5,132.0,128.4,127.4,126.9,115.5$ ($\mathrm{d}, \mathrm{J}=9.0$ $\mathrm{Hz}), 112.7,112.4,110.5,110.4,110.2,81.6,61.8,61.4,39.1,28.0,16.1,14.2$. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=501.1824$, found $=501.1820$; The ee value was $86 \%, \mathrm{t}_{\mathrm{R}}($ major $)=16.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=26.1 \mathrm{~min}($ Chiralcel IC, $\lambda=254 \mathrm{~nm}, 2 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mV

Peak Table
Detector A 254nm

Peak\#	Ret. Time	Height	Height\%	Area	Area $\%$
1	16.179	98772	57.460	6365696	50.384
2	26.262	73126	42.540	6268787	49.616
Total		171897	100.000	12634483	100.000

mV

tert-butyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-(2-methoxyphenyl)-2H-benzo[4 ,5]thiazolo[3,2-a]pyrimidine-3-carboxylate (3h)

White foam, (36.5 mg), 74% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+148.8\left(c 0.35, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{td}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{td}, J=7.5,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H})$, $4.30-4.26(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,164.9,157.5,147.2,135.9,129.5,129.0,128.2,125.8,125.4$, 124.4, 123.0, 120.7, 114.8, 114.1, 111.1, 81.3, 61.6, 57.1, 56.0, 39.4, 28.1, 27.2, 16.5, 14.5. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=517.1773$, found $=517.1772$;

The ee value was $84 \%, \mathrm{t}_{\mathrm{R}}($ major $)=36.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=28.9 \mathrm{~min}($ Chiralcel $\mathrm{IG}, \lambda=$ $254 \mathrm{~nm}, 12 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Peak Table
Detector A 254 nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	28.051	504884	53.550	34478374	50.008
2	35.853	437944	46.450	34467595	49.992
Total		942828	100.000	68945969	100.000

mV

Peak Table
Detector A 254 nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	28.875	24449	8.816	1638334	7.852
2	36.070	252881	91.184	19227982	92.148
Tota1		277330	100.000	20866316	100.000

tert-butyl (R)-2-(3,4-dimethylphenyl)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2H-benzo [4,5]thiazolo $3,2-a$] pyrimidine-3-carboxylate (3i)

White foam, $(38.4 \mathrm{mg}), 78 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+125.1\left(c 0.43, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.26(\mathrm{~m}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5$, $164.9,157.3,146.6,138.9,136.5,135.7,135.6,129.5,128.5,125.6,125.1,124.3$, $124.0,122.8,114.9,110.7,81.5,61.3,61.2,39.1,28.0,19.9,19.4,16.1,14.3$. HSRMS $(\mathrm{ESI}) \mathrm{m} / 2$ calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=515.1980$, found $=515.1970$; The ee value was $92 \%, \mathrm{t}_{\mathrm{R}}($ major $)=29.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=32.8 \mathrm{~min}($ Chiralcel $\mathrm{IE}, \lambda=254 \mathrm{~nm}, 5 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mV

mV

tert-butyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-(thiophen-2-yl)-2H-benzo[4,5]t hiazolo[3,2-a]pyrimidine-3-carboxylate (3j)

White foam, (42.3 mg), 90% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+167.7\left(c \quad 0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.37-7.35 (m, 1H), 7.21-7.11 (m, 4H), $6.97(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86$ (dd, $J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=14.0,7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,164.2,158.9,147.1,145.4,135.5,126.3,125.7,125.0,124.6$, 124.5, 124.1, 122.9, 115.2, 110.8, 81.8, 61.4, 57.2, 39.1, 28.0, 16.1, 14.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}=493.1232$, found $=493.1223$; The ee value was $88 \%, \mathrm{t}_{\mathrm{R}}($ major $)=14.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=17.3 \mathrm{~min}($ Chiralcel IC, $\lambda=254 \mathrm{~nm}, 10 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

mV

Peak Table
Detector A 254 nm

Peak\#	Ret. Time	Height	Height\%	Area	Area $\%$
1	14.803	162275	94.307	4966967	93.902
2	17.336	9797	5.693	322564	6.098
Total		172072	100.000	5289531	100.000

tert-butyl (R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-8-fluoro-2-phenyl-2H-benzo[4,5]t hiazolo [3,2-a]pyrimidine-3-carboxylate (3k)

White foam, $(44.8 \mathrm{mg}), 93 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+191.2\left(c 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{ddd}, J$ $=10.3,8.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{td}, J=8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.19(\mathrm{~m}$, $3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5,165.0,161.1,158.0(\mathrm{~d}, J=118 \mathrm{~Hz}), 146.9,141.6,132.2,128.7$, 127.7, 127.1, $127.0(\mathrm{~d}, J=98.1 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 112.9(\mathrm{~d}, J=240.0 \mathrm{~Hz})$, $110.7,110.5,81.9,61.9,61.7,39.4,28.2,16.3,14.4$. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=505.1573$, found $=505.1571$; The ee value was $90 \%, \mathrm{t}_{\mathrm{R}}$ $($ major $)=21.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=26.0 \mathrm{~min}($ Chiralcel $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=0.5 \mathrm{~mL} / \mathrm{min})$.
mV

mV

Peak Table
Detector A 254nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	21.301	354474	95.273	14121367	94.813
2	25.973	17588	4.727	772521	5.187
Total		372061	100.000	14893888	100.000

tert-butyl (R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-8-methoxy-2-phenyl-2H-benzo[4, 5]thiazolo[3,2-a] pyrimidine-3-carboxylate (31)

White foam, (45.0 mg), 91% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+87.6\left(c 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.90(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.21(\mathrm{~m}$, $3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 171.5,164.9,161.5,157.0,147.1,141.6,129.4,128.4$, 127.3, 126.9, 126.5, 115.8, 111.5, $109.5108 .5,81.4,61.3,55.8,39.1,31.6,28.0,22.7$, 16.0, 14.2. $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=517.1773$, found $=$ 517.1754; The ee value was $91 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=15.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=26.7 \mathrm{~min}$ (Chiralcel IC, $\lambda=254 \mathrm{~nm}, 10 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	15.711	389633	61.574	14321161	50.871
2	26.920	243150	38.426	13830537	49.129
Total		632784	100.000	28151698	100.000

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	15.699	402206	96.871	14750116	95.360
2	26.945	12991	3.129	717726	4.640
Total		415198	100.000	15467842	100.000

Light yellow solid, (37.7 mg), 91% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+54.0\left(c 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 4.32-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.19(\mathrm{~m}, 1 \mathrm{H})$, $1.62(\mathrm{~s}, 2 \mathrm{H}), 1.45(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 172.8,165.9,156.9,144.7,143.4,128.7,127.6,127.4,121.3$, 105.7, 102.2, 81.8, 62.1, 62.0, 38.3, 28.2, 14.4, 13.8. HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=437.1511$, found $=437.1509$; The ee value was $80 \%, \mathrm{t}_{\mathrm{R}}$ $($ major $)=10.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=11.6 \mathrm{~min}($ Chiralcel $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 10 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mV

Peak Table
Detector A 254nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	10.597	446871	52.537	9044646	49.252
2	11.968	403716	47.463	9319320	50.748
Totall		850586	100.000	18363966	100.000

mV

Peak Table
Detector A 254 nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	10.261	94977	91.544	1940665	90.926
2	11.570	8774	8.456	193660	9.074
Total		103751	100.000	2134324	100.000

tert-butyl(R)-4-((S)-1-ethoxy-1-oxobutan-2-yl)-2-phenyl-2H-benzo[4,5]thiazolo[3, 2-a]pyrimidine-3-carboxylate (4a)

White foam, (42.5 mg), 89% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+88.4\left(c \quad 0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 2 \mathrm{H})$, 7.15-7.11 (m, 1H), 7.10-7.08 (m, 2H), 7.07-7.01 (m, 1H), 5.89 (s, 1H), 4.29-4.18 (m, $2 \mathrm{H}), 3.98(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 1 \mathrm{H})$, $1.32(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.2,164.9,157.5,146.4,141.7,135.9,128.6,127.5,127.2,125.8,125.43$, 124.7, 123.1, 115.7, 110.8, 81.7, 62.0, 61.4, 46.7, 28.2, 24.7, 14.5, 11.9. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=501.1824$, found $=501.1820$; The ee value was $90 \%, \mathrm{t}_{\mathrm{R}}($ major $)=50.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=56.9 \mathrm{~min}($ Chiralcel IC, $\lambda=254 \mathrm{~nm}, 10 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mV

Peak Table
Detector A 254 nm

Peak\#	Ret. Time	Area	Height	Height\%	Area\%
1	52.030	7655227	68987	52.796	51.397
2	58.382	7238949	61679	47.204	48.603
Total		14894176	130666	100.000	100.000

mV

tert-butyl (R)-4-((S)-1-ethoxy-1-oxohexan-2-yl)-2-phenyl-2H-benzo[4,5]thiazolo[3,

2-a]pyrimidine-3-carboxylate (4b)

White foam, $(48.0 \mathrm{mg}), 92 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+138.1\left(c 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 3 \mathrm{H})$, 7.19-7.11 (m, 3H), $5.97(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.28(\mathrm{~m}, 2 \mathrm{H})$, 4.10 (dd, $J=13.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.15$ (m, 1H), 1.96-1.86 (m, 1H), 1.40 (s, 9H), $1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 3 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.73(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,164.7,157.5,146.2,141.1,135.6,128.4$, $127.4,127.0,125.7,125.2,124.6,122.9,115.4,81.6,61.5,61.3,44.7,30.8,29.1,28.0$, 22.2, 14.3, 13.7. $\mathrm{HRMS}(\mathrm{ESI}) m / z$ calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=529.2173$, found $=529.2135$; The ee value was $87 \%, \mathrm{t}_{\mathrm{R}}($ major $)=35.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=40.0 \mathrm{~min}$ (Chiralcel IC, $\lambda=254 \mathrm{~nm}, 2 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$).
mV

Peak Table
Detector A 254nm

Peak\#	Ret. Time	Height	Height\%	Area	Area $\%$
1	35.964	247993	52.301	20817849	50.820
2	39.935	226171	47.699	20145640	49.180
Total		474164	100.000	40963489	100.000

mV

tert-butyl(R)-4-((S)-1-ethoxy-1-oxoheptan-2-yl)-2-phenyl-2H-benzo[4,5]thiazolo[3 ,2-a]pyrimidine-3-carboxylate (4c)

White foam, (47.3 mg), 91% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+199.8\left(c 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.22-7.20 (m, 1H), 7.19-7.16 (m, 2H), 7.14-7.09 (m, 1H), 5.96 (s, 1H), 4.39-4.26 (m, $2 \mathrm{H}), 4.10(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$, $1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.07(\mathrm{~m}, 3 \mathrm{H}), 0.99-0.88(\mathrm{~m}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,165.2,157.7,146.8,141.9,136.2,128.8$, 127.7, 127.4, 126.0, 125.7, 124.9, 123.3, 115.8, 111.0, 81.9, 62.3, 61.70, 44.9, 31.6, 31.5, 28.4, 27.1, 22.8, 14.7, 14.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}=$ 521.2474 , found $=521.2467$; The ee value was $89 \%, \mathrm{t}_{\mathrm{R}}($ major $)=114.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)$ $=98.6 \mathrm{~min}$ (Chiralcel IG, $\lambda=254 \mathrm{~nm}, 2 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mAU

Peak Table
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Height\%	Area	Area\%
1	97.526	155285	53.774	35877931	47.604
2	110.354	14644	5.071	3429293	4.550
3	117.476	118846	41.155	36059840	47.846
Total		288774	100.000	75367064	100.000

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Height\%	Area	Area\%
1	98.566	28785	8.227	6058249	5.338
2	114.847	321109	91.773	107440870	94.662
Total		349894	100.000	113499119	100.000

tert-butyl (R)-4-((S)-1-ethoxy-1-ox0-3-phenylpropan-2-yl)-2-phenyl-2H-benzo[4,5]
thiazolo[3,2-a]pyrimidine-3-carboxylate (4d)

White foam, $(47.5 \mathrm{mg}), 88 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+194.4\left(c 0.40, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 3 \mathrm{H})$, 7.06-7.00 (m, 4H), 6.81-6.71 (m, 2H), 5.94 (s, 1H), 4.51 (dd, $J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.46-4.28 (m, 2H), $3.55(\mathrm{dd}, J=13.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=13.6,10.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.47(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.60,164.92$, $157.0,145.8,141.5,137.3,135.3,128.5,128.3,128.1,127.2,126.9,126.7,125.7$, 125.0, 124.1, 122.4, 115.3, 110.5, 81.5, 61.5, 61.3, 45.9, 36.8, 28.1, 14.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=563.1980$, found $=563.1980$; The ee value was $82 \%, \mathrm{t}_{\mathrm{R}}($ major $)=39.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=31.5 \mathrm{~min}($ Chiralcel IE, $\lambda=254 \mathrm{~nm}, 5 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

mV

Peak Table
Detector A 254nm

Peak\#	Ret. Time	Height	Height\%	Area	Area\%
1	31.542	53746	13.585	4399162	8.792
2	39.436	341868	86.415	45636842	91.208
Total		395614	100.000	50036004	100.000

tert-butyl(R)-4-((S)-3-(3-chlorophenyl)-1-ethoxy-1-oxopropan-2-yl)-2-phenyl-2H-benzo[4,5]thiazolo[3,2-a]pyrimidine-3-carboxylate (4e)

Yellow solid, $(54.9 \mathrm{mg}), 93 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+119.3\left(c 0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 4 \mathrm{H})$, $7.13(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.63(\mathrm{~m}$, $2 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=$ $13.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=13.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,164.8,157.0,145.7,141.3,139.4,135.1$, $134.3,129.8,128.3,128.0,127.2,127.1,126.9,126.8,125.7,125.1,124.4,122.8$, $115.2,110.5,81.7,61.6,61.2,45.5,36.5,28.1,14.3$; HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=597.1591$, found $=597.1569$; The ee value was $99.5 \%, \mathrm{t}_{\mathrm{R}}$ $($ major $)=11.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=16.6 \mathrm{~min}($ Chiralcel $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 5 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mAU

Peak Table
PDA Ch1 254nm

Peak\# $\#$	Ret. Time	Height	Height\%	Area	Area\%
1	10.744	53522	46.912	1648028	42.723
2	12.070	9175	8.042	315354	8.175
3	14.674	7905	6.929	332028	8.607
4	16.336	43487	38.117	1562083	40.495
Total		114090	100.000	3857493	100.000

tert-butyl(R)-4-((S)-3-(2,4-dichlorophenyl)-1-ethoxy-1-oxopropan-2-yl)-2-phenyl-2H-benzo[4,5]thiazolo[3,2-a]pyrimidine-3-carboxylate (4f)

Yellow solid, (57.7 mg), 95% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+148.7\left(c 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H})$, 7.14-7.00 (m, 5H), $6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=10.5,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.44-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=13.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=13.5,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.5$, $165.2,157.6,146.2,141.6,135.5,134.7$, 134.1, 134.0, 132.2, 129.4, 128.7, 127.9, 127.7, 127.3, 126.0, 125.9, 124.9, 122.8, 116.0, 111.2, 82.2, 62.0, 61.7, 43.6, 34.5, 28.5, 14.7. HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=631.1201$, found $=$ 631.1192; The ee value was $84 \%, \mathrm{t}_{\mathrm{R}}$ (major) $=16.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=10.7 \mathrm{~min}$ (Chiralcel IG, $\lambda=254 \mathrm{~nm}, 5 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$).

Peak Table
PDACh1 254 nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	10.674	735089	41.026	21460730	36.334
2	12.020	229495	12.808	7665313	12.978
3	14.574	205701	11.480	7899797	13.375
4	16.122	621481	34.685	22038563	37.313
Total		1791765	100.000	59064404	100.000

methyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-phenyl-2H-benzo[4,5]thiazolo[3,2 -a]pyrimidine-3-carboxylate (4g)

White foam, $(38.4 \mathrm{mg}), 91 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+33.2\left(c 0.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=8.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, $2 H), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.26(\mathrm{~m}$, $3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,166.1,157.2,148.1,141.0,135.5,128.6,127.5,127.0,125.7$, 124.7, 122.9, 115.1, 108.4, 100.0, 61.4, 51.9, 39.5, 29.7, 16.3, 14.3. HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=445.1198$, found $=445.1195$; The ee value was 87%, $\mathrm{t}_{\mathrm{R}}($ major $)=40.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=37.0 \mathrm{~min}($ Chiralcel IE, $\lambda=254 \mathrm{~nm}, 10 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mAU

Peak Table
PDACh1 254nm

Peak\#	Ret. Time	Height	Height\%	Area	Area\%
1	37.153	220609	51.896	12953130	50.620
2	41.269	204489	48.104	12635641	49.380
Total		425098	100.000	25588771	100.000

mAU

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	37.046	25548	7.322	1392768	6.473
2	40.616	323388	92.678	20123993	93.527
Total		348936	100.000	21516761	100.000

ethyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-phenyl-2H-benzo[4,5]thiazolo[3,2-a lpyrimidine-3-carboxylate (4h)

White foam, $(38.8 \mathrm{mg}), 89 \%$ yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+129.0\left(c 0.60, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.42-7.40 (m, 2H), $7.33(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H})$, 7.22-7.09 (m, 4H), 6.02 ($\mathrm{s}, 1 \mathrm{H}), 4.34-4.23(\mathrm{~m}, 3 \mathrm{H}), 4.22-4.12(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.4,165.6,157.4,147.7,141.1,135.5,128.5,127.5,127.0,125.7,125.2$, 124.6, 122.9, 115.1, 108.9, 61.5, 61.0, 39.4, 31.6, 22.7, 16.2, 14.2. HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=459.1354$, found $=459.1357$; The ee value was 86%, $\mathrm{t}_{\mathrm{R}}($ major $)=30.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=51.7 \mathrm{~min}($ Chiralcel $\mathrm{IC}, \lambda=254 \mathrm{~nm}, 10 \%$ $i-\mathrm{PrOH} /$ hexanes, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
mV

Peak Table
Detector A 254nm

Peak\#	Ret. Time	Height	Height\%	Area	Area $\%$
1	32.995	93349	52.836	6590998	44.065
2	35.902	21909	12.400	1701542	11.376
3	53.516	61419	34.764	6664738	44.558
Total		176678	100.000	14957278	100.000

tert-butyl(R)-4-((S)-1-(tert-butoxy)-1-oxopropan-2-yl)-2-phenyl-2H-benzo[4,5]thi azolo[3,2-a]pyrimidine-3-carboxylate (4i)

White foam, (45.7 mg), 90% yield; $[\alpha]^{25}{ }_{\mathrm{D}}=+107.9\left(c 0.45, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 1.48-1.45(\mathrm{~m}$, $12 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,164.5,157.2,147.7,141.9$, $135.8,128.4,127.3,127.0,125.6,125.1,124.3,122.9,114.8,110.1,81.7,81.2,61.8$, 40.1, 28.2, 28.0, 15.8. HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=515.1980$, found $=515.1972$; The ee value was $86 \%, \mathrm{t}_{\mathrm{R}}($ major $)=16.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=26.0 \mathrm{~min}$ (Chiralcel IC, $\lambda=254 \mathrm{~nm}, 2 \% i-\mathrm{PrOH} /$ hexanes, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$).
mV

Peak Table
Detector A 254 nm

Peak\#	Ret. Time	Height	Height\%	Area	Area $\%$
1	16.179	98772	57.460	6365696	50.384
2	26.262	73126	42.540	6268787	49.616
Total		171897	100.000	12634483	100.000

mV

Peak Table
Detector A 254nm

Peak\#	Ret. Time	Height	Height\%	Area	Area $\%$
1	16.135	120354	92.936	10896037	92.902
2	26.053	9149	7.064	832464	7.098
Total		129502	100.000	11728501	100.000

6. Scale-up Synthesis and Synthetic Elaboration of Product

(i). General procedure of scale-up synthesis

To a flame-dried round bottle flask with a magnetic stirring bar were added 2-benzothiazolimine $\mathbf{1 a}(1.0 \mathrm{~g}, 4.20 \mathrm{mmol})$, allenoate $\mathbf{2 e}(1.20 \mathrm{mmol})$, phosphonium salt $\mathbf{P 1 2}(0.15 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(6.00 \mathrm{mmol})$, followed by the addition of Hexane. The reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 8 days. The reaction was added $\mathrm{H}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$, and the mixture was extracted with $\mathrm{DCM}(10 \mathrm{~mL} x 3)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel to afford $\mathbf{4 e}(1.61 \mathrm{~g}, 67 \%$ yield, $>99 \%$ ee, $>20: 1$ dr) as a yellow solid.

(ii). Synthetic elaboration of product

To a solution of $\mathbf{4 e}(57.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ in DCM $(5.0 \mathrm{~mL})$ was added TFA $(18.9 \mathrm{mg}$, 0.5 mmol) at $0^{\circ} \mathrm{C}$. Then, the mixture was allowed to stir under nitrogen atmosphere at room temperature for 8 h . After stirring for 8 h , the reaction mixture was quenched with saturated aqueous NaCl , the aqueous phase was extracted three times with DCM. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduce pressure. The residue was purified by silica gel column chromatography to afford the desired product 5 as a light-yellow oil ($45.2 \mathrm{mg},>99 \%$ ee, $>20: 1 \mathrm{dr}$).

Yellow oil; $[\alpha]^{25}{ }_{\mathrm{D}}=+97.2\left(c 0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.38(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.16-6.98(\mathrm{~m}, 5 \mathrm{H})$, $6.71(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=17.7,11.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.33(\mathrm{dd}, J=$ $13.2,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.08(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) $\delta 170.6,156.0,142.7,141.0,135.7,133.3,130.1,128.5,128.3,127.5,127.4$, 127.2, 126.7, 126.1, 124.2, 124.0, 123.2, 114.7, 62.0, 60.9, 45.3, 36.3, 14.6. HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}=541.0965$, found $=541.0940$.

7. Mechanistic Studies and Proposed Mechanism

Figure S1. Deuterium-labeling Experiment.

(i). General procedure of \boldsymbol{d}-3a

To a flame-dried round bottle flask with a magnetic stirring bar were added the2-benzothiazolimine 1a $(0.10 \mathrm{mmol})$, allenoate 2a $(1.20 \mathrm{mmol})$, phosphonium salt $\mathbf{P 1 2}(0.10 \mathrm{mmol})$ and $\mathrm{K}_{3} \mathrm{PO}_{4}(4.00 \mathrm{mmol})$, followed by the addition of hexane and deuterium oxide ($24 \mu \mathrm{~L}, 1.20 \mathrm{mmol}$). The reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 36 h . Then, the aqueous phase was extracted three times with DCM. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give $\boldsymbol{d}-3 \mathbf{a}$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.43-7.41 (m 2H), 7.34-7.32 (m, $1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H})$, $5.91(\mathrm{~s}, 1 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 2.5 \mathrm{H}), 1.68(\mathrm{~s}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 1 \mathrm{H})$, $1.39(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{DN}_{2} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}=488.1730$, found $=488.1726$.

(ii). Control Experiments and Mechanism

The methylated catalysts P12-1 was prepared and used for the [4+2] reaction to test the reactivities and enantioselectivities. The results were displayed in Figure S2 When methylated catalysts were used, the enantioselectivities decreased. The result clearly verify the significance of the hydrogen bonding in the catalytic system. On the basis of the experiments, the deuterium-labeling experiment, our previous research and the absolute configuration, a plausible mechanism was presented.
a) Control experiments:

b) Postulated mechanism:

Figure S2. Control experiments and postulated mechanism.

8. Crystal Structure of Product 4e.

the X-ray crystal of $\mathbf{4 e}$ was obtained (Table S4). CCDC 1966944 contains the supplementary crystallographic data of the adduct $\mathbf{4 e}$ for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Table S4. Crystal data and structure refinement for $\mathbf{4 e}$.

Identification code	WTL-LDM-150K
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$
Formula weight	575.10
Temperature/K	150.01(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1}$
$a / A ̊$	8.29029(17)
$b / A ̊$	20.9516(4)
$c / A ̊$	8.39594(16)
a $/{ }^{\circ}$	90
$\beta /{ }^{\circ}$	97.0201(18)
$\gamma /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	1447.40(5)
Z	2
ρ calcg/cm ${ }^{3}$	1.320
μ / mm^{-1}	2.165
F(000)	604.0
Crystal size/mm ${ }^{3}$	$0.6 \times 0.3 \times 0.3$
Radiation	CuK $\alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 8.44$ to 143.534	
Index ranges	-9 \leqslant h $\leqslant 10,-25 \leqslant k \leqslant 25,-10 \leqslant 1 \leqslant 6$
Reflections collected	13708

Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e $\AA^{-3} 0.26 /-0.41$
Flack parameter

5560 [Rint $=0.0453$, Rsigma $=0.0483$]
5560/1/365
1.048
$R_{1}=0.0536, w R_{2}=0.1369$
$R_{1}=0.0554, w R_{2}=0.1404$

9. Reference

[1] (a) X. Han, Y. Wang, F. Zhong and Y. Lu, J. Am. Chem. Soc., 2011, 133, 1726; (b) X. Han, F. Zhong, Y. Wang and Y. Lu, Angew. Chem., Int. Ed., 2012, 51, 767; (c) F. Zhong, X. Han, Y. Wang and Y. Lu, Chem. Sci., 2012, 3, 1231; (d) F. Zhong, X. Han, Y. Wang and Y. Lu, Angew. Chem., Int. Ed., 2011, 50, 7837; (e) F. Zhong, J. Luo, G.-Y. Chen, X. Dou and Y. Lu, J. Am. Chem. Soc., 2012, 134, 10222; (f) F. Zhong, X. Dou, X. Han, W. Yao, Q, Zhu, Y. Meng and Y. Lu, Angew. Chem., Int. Ed., 2013, 52, 943.
[2] (a) Q. Ni, X. Song, J. Xiong, G. Raabe and D. Enders, Chem. Commun., 2015, 51, 1263; (b) L. Jarrige, D. Glava cc, G. Levitre, P. Retailleau, G. Bernadat, L. Neuville and G. Masson, Chem. Sci., 2019, 10, 3765.
[3] (a) T. Hashimoto, Y. Naganawa and K. Maruoka, J. Am. Chem. Soc., 2009, 131, 6614;
(b) T. Hashimoto, K. Sakata, F. Tamakuni, M. J. Dutton and K. Maruoka, Nat. Chem. , 2013, 5, 240.

10. NMR Spectra

NTL-20190730-2HE-1

TIL-20191225-4+2CAT-4

(

(

[^0]: ${ }^{\text {a }}$ Key Laboratory of Green Chemistry \& Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road, Chengdu 610064 P. R. China.

 E-mail: wangtl@scu.edu.cn

