SUPPORTING INFORMATION

Asymmetric Synthesis of Benzothiazolopyrimidines with High Catalytic Efficiency and Stereoselectivity under Bifunctional Phosphonium Salt System

Dongming Lu,^a Jia-Hong Wu,^a Jianke Pan,^a Xue Chen,^a Xiaoyu Ren,^a and Tianli Wang^{*,a}

^a Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road, Chengdu 610064 P. R. China.

E-mail: wangtl@scu.edu.cn

1. General Information	2
2. Optimization of Reaction Conditions	3
3. Preparation of the Catalysts	4
4. General Procedure for the Synthesis of Substrates	8
5. General Procedure for the Asymmetric Synthesis of 3 and 4	10
6. Scale-up Synthesis and Synthetic Elaboration of Product	43
7. Mechanistic Studies and Proposed Mechanism	44
8. Crystal Structure of Product 4e.	46
9. Reference	48
10. NMR Spectra	49

1. General Information

All the starting materials were obtained from commercial sources and used without further purification unless otherwise stated. ¹H, ¹³C and ³¹P NMR spectra were recorded in CDCl₃, CD₃OD or DMSO- d_6 on a Brüker Advance 400 spectrometer. Chemical shifts (δ) were given in parts per million (ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br s (broad singlet). Coupling constants (*J*) were reported in Hertz (Hz). All high resolution mass spectra were obtained on a Thermo LTQ mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatographic separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel. Enantiomeric excess was determined by HPLC analysis using chiral column described below in detail. Optical rotations were measured with polarimeter. The absolute configurations of the [4 + 2] cyclization products were assigned on the basis of X-ray crystallographic analysis of the single crystal of compound **4e**.

All phosphonium salt catalysts used in this study were prepared via a P-alkylation reaction of our previously reported organophosphines according to the known procedures.^[1]

2. Optimization of Reaction Conditions

	$-Ph$ + CO_2Et Fba CO_2Et CO_2Bu X	212 (10 mol%) ase (2.0 equiv.) ylene, r.t., 12 h	CO2Et CO2'BU OTBS	Br Br Br Br Br Bu 'Bu
Entry	Base	Yield (%)	ee (%)	dr
1	K ₂ CO ₃	80	78	>20:1
2	Cs ₂ CO ₃	90	55	>20:1
3	K ₃ PO ₄	81	80	>20:1
4	K ₂ HPO ₄	trace		
5	K ₃ PO ₄ 7H ₂ O	60	77	>20:1
6	(NH ₄) ₂ CO ₃	50	45	>20:1
7	NaOAc	10	34	>20:1

Table S1: Screening of the bases in xylene.^{*a*}

[a] Reactions were performed with **1a** (0.1 mmol), **2a** (0.12 mmol), **P12** (10 mol%) and corresponding base in toluene (0.5 mL) at room temperature. The dr values were determined by ¹H NMR and ee values were determined by HPLC analysis. Isolated yield.

Table	52.	Screening	of the	solvent ^a
ladie	52:	Screening	or the	sorvent.

N S 1a	-Ph + CO ₂ Et -CO ₂ 'Bu 2a	P12 (10 mol%) K ₃ PO ₄ (2.0 equiv.) solvent, r.t., 12 h	H CO ₂ Et CO ₂ 'Bu	OTBS Br H HBoc 'Bu
Entry	Solvent	Yield (%)	ee (%)	dr
1	Xylene	81	80	>20:1
2	Toluene	79	77	>20:1
3	DCM	89	44	>20:1
4	EA	95	31	18:1
5	MeCN	73	57	>20:1
6	MTBE	60	54	19:1
7	Et ₂ O	44	73	>20:1
8	Hexane	80	82	>20:1
9	Acetone	81	30	>20:1

[a] Reactions were performed with 1a (0.1 mmol), 2a (0.12 mmol), P12 (10 mol%)

and K_3PO_4 (0.2 mmol) in corresponding solvent (0.5 mL) at room temperature. The dr values were determined by ¹H NMR and ee values were determined by HPLC analysis. Isolated yield.

	N N N N N N N N N N	CO ₂ Et K ₃ PO ₄ (x equiv.) CO ₂ /Bu 2a	$H CO_2Et CO_2'Bu Ph Ph S S 3a$	OTBS Br HBoch NHBoch 'Bu	
Entry	T (°C)	K_3PO_4 (x equiv.)	Yield (%)	ee (%)	dr
1	r.t.	2	80	82	>20:1
2	0	2	77	85	>20:1
3	-10	2	78	84	>20:1
4	-20	2	74	82	>20:1
5	-10	4	91	90	>20:1
6	-10	6	90	87	>20:1
7^b	-10	4	82	73	>20:1

Table S3: Screening of the temperature and equivalents of base.^{*a*}

[a] Reactions were performed with **1a** (0.1 mmol), **2a** (0.12 mmol), **P12** (10 mol%) and K_3PO_4 (0.2 mmol) in corresponding solvent (0.5 mL) at corresponding temperature. The *dr* values were determined by ¹H NMR and ee values were determined by HPLC analysis. Isolated yield.[b] 5 mol% **P12** was used.

3. Preparation of the Catalysts

A. General procedures for preparation of phosphonium salts

The catalysts **P1-5** are known compounds, and their characterization data were in agreement with those reported in the literature. The phosphonium bromides **P6-12** were prepared according to the reported procedures^[1] and fully characterized.

(S)-(2-((*tert*-butoxycarbonyl)amino)-3-methylbutyl)(methyl)diphenylphosphoni <u>m iodide (P6)</u>

PPh₂Mel[⊖]

A yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.90 (m, 2H), 7.79-7.70 (m, 6H), 7.70-7.63 (m, 2H), 5.94 (d, *J* = 10.4 Hz, 1H), 4.69-4.59 (m, 1H), 3.85-3.76 (m, 1H),

2.79 (d, J = 14.0 Hz, 3H), 2.11-2.03 (m, 1H), 1.70 (s, 1H), 1.33 (s, 9H), 0.93 (dd, J = 6.7, 0.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5 , 134.9 (d, J = 2.7 Hz), 134.6 (d, J = 2.9 Hz), 132.5 (d, J = 10.3 Hz), 132.3 (d, J = 9.8 Hz), 130.4 (d, J = 12.5 Hz), 130.2 (d, J = 12.6 Hz), 119.7 (dd, J = 150.7, 85.7 Hz), 79.7, 51.1 (d, J = 5.3 Hz), 34.5 (d, J = 13.1 Hz), 28.3, 27.2 (d, J = 52.2 Hz), 19.4, 18.1, 8.6 (d, J = 54.5 Hz); ³¹P NMR (162 MHz, CDCl₃) δ 23.18; HRMS (ESI) m/z calcd for C₂₃H₃₃NO₂PI [M-I]⁺ = 386.2249, found = 386.2247.

(S)-(2-((*tert*-butoxycarbonyl)amino)propyl)(methyl)diphenylphosphonium <u>iodide (P7)</u>

A white solid; ¹H NMR (400 MHz, MeOD) δ 7.32-7.27 (m, 2H), 7.21-7.10 (m, 4H), 7.08-7.01 (m, 4H), 3.49-3.44 (m, 1H), 2.73-2.61 (m, 2H), 2.10 (d, *J* = 14.2 Hz, 3H), 0.70 (dd, *J* = 6.7, 2.5 Hz, 3H), 0.59 (s, 9H). ¹³C NMR (100 MHz, MeOD) δ 156.5, 135.4 (d, *J* = 2.9 Hz), 133.3 (d, *J* = 10.0 Hz), 133.0 (d, *J* = 10.0 Hz), 131.1, 130.9, 122.6, 120.7 (d, *J* = 15.5 Hz), 120.8, 79.8 (d, *J* = 88.7 Hz), 43.1, 31.0 (d, *J* = 52.0 Hz), 28.4, 23.6 (d, *J* = 14.8 Hz), 6.9 (d, *J* = 54.8 Hz). ³¹P NMR (162 MHz, MeOD) δ 21.33. HRMS (ESI) m/z calcd for C₂₁H₂₉NO₂PI [M-I]⁺ = 358.1936, found = 358.1934.

<u>((2S,3R)-2-((tert-butoxycarbonyl)amino)-3-((tert-butyldiphenylsilyl)oxy)butyl)(m</u> ethyl)diphenylphosphonium iodide (P8)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.60 (m, 8H), 7.59-7.54 (m, 6H), 7.34-7.28 (m, 6H), 5.77 (d, J = 10.0 Hz, 1H), 4.14 (s, 2H), 3.80-3.71 (m, 1H), 3.06 (td, J = 14.5, 4.3 Hz, 1H), 2.77 (dd, J = 13.8, 3.6 Hz, 3H), 1.24 (s, 9H), 1.13 (d, J = 5.0 Hz, 3H), 0.98 (d, J = 3.0 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 135.6, 135.5, 134.6, 134.5, 133.1 (d, J = 40.0 Hz), 132.3, 132.2, 132.1, 130.2, 130.1, 130.0, 129.8 (d, J = 3.0 Hz), 127.8, 127.6, 119.5, 118.6, 79.8, 71.4 (d, J = 14.1 Hz), 50.5, 28.1,

26.9, 24.1 (d, J = 55.4 Hz), 19.1, 18.6, 8.2 (d, J = 53.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 23.91. HRMS (ESI) m/z calcd for C₃₈H₄₉NO₃PSiI [M-I]⁺ = 626.3214, found = 626.3210.

((2S,3R)-2-((*tert*-butoxycarbonyl)amino)-3-((*tert*-butyldimethylsilyl)oxy)butyl)(m ethyl)diphenylphosphonium iodide (P9)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.72 (m, 6H), 7.65-7.61 (m, 4H), 5.90 (d, J = 8.7 Hz, 1H), 4.12-3.87 (m, 3H), 3.33 (t, J = 14.5 Hz, 9H), 2.83 (d, J = 14.0 Hz, 3H), 1.29 (s, 9H), 1.20 (d, J = 6.0 Hz, 3H), 0.82 (s, 9H), 0.04 (s, 3H), 0.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 134.8 (d, J = 3.0 Hz), 134.6 (d, J = 3.0 Hz), 132.3 (d, J = 10.0 Hz), 132.3 (d, J = 10.0 Hz), 130.3 (d, J = 13.0 Hz), 130.1 (d, J = 12.0 Hz), 120.7, 119.3 (d, J = 85.2 Hz), 79.9, 70.1 (d, J = 14.3 Hz), 50.8, 28.2, 25.8, 23.76, 18.6, 17.9, 8.6 (d, J = 54.3 Hz), -4.6 (d, J = 9.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 23.91. HRMS (ESI) m/z calcd for C₂₈H₄₅NO₃PSiI [M-I]⁺ = 502.2091, found = 502.2095.

<u>benzyl((2S,3R)-2-((tert-butoxycarbonyl)amino)-3-((tert-butyldimethylsilyl)oxy)bu</u> <u>tyl)diphenylphosphonium bromide (P10)</u>

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.84 (m, 2H), 7.74-7.70 (m, 4H), 7.61-7.51 (m, 4H), 7.14-7.12 (m, 1H), 7.05 (t, J = 7.4 Hz, 2H), 6.94-6.93 (m, 2H), 6.08 (d, J = 8.9 Hz, 1H), 5.10 (t, J = 14.8 Hz, 1H), 4.49 (dd, J = 25.1, 12.6 Hz, 1H), 4.29 (t, J = 14.5 Hz, 1H), 3.93 (d, J = 6.0 Hz, 2H), 3.04 (t, J = 14.6 Hz, 1H), 1.24 (s, 9H), 1.15 (d, J = 5.8 Hz, 3H), 0.74 (d, J = 2.2 Hz, 9H), -0.00 (d, J = 2.6 Hz, 3H), -0.05 (d, J = 2.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 134.6 (d, J = 3.0 Hz), 134.5 (d, J = 3.0Hz), 133.9 (d, J = 7.4 Hz), 130.5 (d, J = 5.5 Hz), 129.9, 129.8, 129.7,

128.7 (d, J = 3.0 Hz), 128.1 (d, J = 4.0 Hz), 127.5 (d, J = 9.0 Hz), 117.7 (d, J = 28.0 Hz), 116.9 (d, J = 31.0 Hz), 79.5, 69.7 (d, J = 14.0 Hz), 50.2 (d, J = 5.0 Hz), 30.4 (d, J = 45.0 Hz), 28.2, 25.7, 20.9 (d, J = 52.0 Hz), 17.7 (d, J = 14.0 Hz), -4.7 (d, J = 16.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.22. HRMS (ESI) m/z calcd for C₃₄H₄₈NO₃PSiBr [M-Br]⁺ = 577.3141, found = 577.3136.

((2S,3R)-2-((*tert*-butoxycarbonyl)amino)-3-((*tert*-butyldimethylsilyl)oxy)butyl)(3, 5-dimethylbenzyl)diphenylphosphonium bromide (P11)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.85 (m, 2H), 7.74-7.69 (m, 4H), 7.62-7.55 (m, 4H), 6.76 (s, 1H), 6.44 (s, 2H), 6.13 (s, 1H), 4.94-4.87 (m, 1H), 4.39 (d, *J* = 11.4 Hz, 1H), 4.18 (t, *J* = 14.5 Hz, 1H), 3.93 (s, 2H), 3.03 (t, *J* = 14.6 Hz, 1H), 2.02 (s, 6H), 1.26 (d, *J* = 2.0 Hz, 9H), 1.17-1.15 (m, 3H), 0.75 (d, *J* = 1.9 Hz, 9H), 0.01 (d, *J* = 2.1 Hz, 3H), -0.04 (d, *J* = 1.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 138.3 (d, *J* = 3.4 Hz), 134.5,134.0 (d, *J* = 4.1 Hz), 134.0 (d, *J* = 4.1 Hz) 129.8 (d, *J* = 5.3 Hz), 129.7, 129.6, 129.5, 128.3 (d, *J* = 5.6 Hz), 127.0 (d, *J* = 8.9 Hz), 117.9 (d, *J* = 8.5 Hz), 117.1 (d, *J* = 11.0 Hz), 79.5, 69.8 (d, *J* = 13.8 Hz), 50.3, 30.5 (d, *J* = 45.5 Hz), 28.3, 25.7, 21.4, 20.9, 17.8, 0.1, -4.7 (d, *J* = 20.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.14. HRMS (ESI) m/z calcd for C₃₆H₅₂NO₃PSiBr [M-Br]⁺ = 605.3454, found = 605.3449.

((2S,3R)-2-((*tert*-butoxycarbonyl)amino)-3-((*tert*-butyldimethylsilyl)oxy)butyl)(3, 5-di-tert-butylbenzyl)diphenylphosphonium bromide (P12)

A white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J = 12.4, 7.8 Hz, 2H), 7.79-7.74 (m, 4H), 7.66-7.59 (m, 5H), 7.42 (s, 2H), 5.95 (d, J = 9.0 Hz, 1H), 5.64 (t, J

= 15.2 Hz, 1H), 4.63-4.50 (m, 2H), 3.99-3.93 (m, 2H), 3.12 (t, J = 14.5 Hz, 1H), 1.26 (s, 9H), 1.16 (d, J = 5.9 Hz, 3H), 0.74 (s, 9H), 0.02 (s, 3H), -0.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 135.3 (d, J = 21.0 Hz), 134.1, 133.9 (d, J = 9.2 Hz), 132.1 (d, J = 30.7 Hz), 131.2 (d, J = 8.8 Hz), 130.8, 130.4 (d, J = 5.1 Hz), 130.3 (d, J = 4.8 Hz), 124.0, 122.1, 121.3 , 116.7 (d, J = 18.0 Hz), 115.9 (d, J = 19.5 Hz), 79.8, 69.8 (d, J = 13.8 Hz), 50.2, 30.4 (d, J = 46.3 Hz), 28.3, 25.7, 21.5 (d, J = 51.3 Hz), 17.8, 17.62, 0.0, -4.7, -4.8. ³¹P NMR (162 MHz, CDCl₃) δ 27.32. HRMS (ESI) m/z calcd for C₄₂H₆₄NO₃PSiBr [M-Br]⁺ = 689.4939, found = 689.4940.

4. General Procedure for the Synthesis of Substrates

General procedure for preparing allenoates:

All 2-benzothiazolimines and allenoates were prepared from the corresponding literature procedure.^[2,3] Unknown compounds **2a**, **2c** and **2e-f** were fully characterized.

5-(tert-butyl) 1-ethyl 2-ethylpenta-2,3-dienedioate (2a)

A colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 5.86 (t, *J* = 3.1 Hz, 1H), 4.27-4.16 (m, 2H), 2.42-2.28 (m, 2H), 1.47 (s, 9H), 1.27 (t, *J* = 7.1 Hz, 3H), 1.07 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 217.8, 165.6, 163.6, 106.5, 94.0, 81.7, 61.5, 28.2, 21.8, 14.3, 12.4. HRMS (ESI) *m*/*z* calcd for C₁₃H₂₀O₄ [M+Na]⁺ = 263.1259, found = 263.1257;

5-(tert-butyl) 1-ethyl 2-pentylpenta-2,3-dienedioate (2c)

A colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 5.82 (t, *J* = 2.8 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 2.39-2.21 (m, 2H), 1.46 (d, *J* = 5.2 Hz, 9H), 1.34-1.20 (m, 8H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 218.1, 165.6, 163.6, 104.8, 93.5, 81.7, 61.5, 31.2, 28.2 (d, *J* = 11.5 Hz), 27.5, 22.5, 14.3, 14.1. HRMS (ESI) *m*/*z* calcd for C₁₆H₂₆O₄ [M+Na]⁺ = 305.1729, found = 305.1726;

5-(tert-butyl) 1-ethyl 2-(3-chlorobenzyl)penta-2,3-dienedioate (2e)

A colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.32 (m, 1H), 7.27 (d, *J* = 3.3 Hz, 1H), 7.25-7.21 (m, 1H), 5.86 (t, *J* = 2.5 Hz, 1H), 4.27 (qd, *J* = 7.1, 0.9 Hz, 2H), 3.68 (ddd, *J* = 41.5, 15.2, 2.6 Hz, 2H), 1.54 (s, 9H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 218.5, 165.0, 163.0, 139.9, 134.2, 129.7, 129.2, 127.3, 127.1, 103.9, 94.1, 82.1, 61.8, 34.7, 28.2, 14.3. HRMS (ESI) *m*/*z* calcd for C₁₈H₂₁ClO₄ [M+Na]⁺ = 359.1026, found = 359.1026;

5-(tert-butyl) 1-ethyl 2-(2,4-dichlorobenzyl)penta-2,3-dienedioate (2f)

A colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 2.0 Hz, 1H), 7.27-7.26 m, 1H), 7.15 (dd, J = 8.3, 2.0 Hz, 1H), 5.76 (t, J = 2.7 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 3.74 (ddd, J = 44.9, 15.6, 2.7 Hz, 2H), 1.43 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 217.2, 163.7, 161.7, 134.0, 133.0, 132.13, 130.8, 128.2, 125.9, 101.7, 93.2, 80.8, 60.7, 30.8, 27.0, 13.1. HRMS (ESI) *m*/*z* calcd for C₁₈H₂₀Cl₂O₄ [M+Na]⁺ = 393.0636, found = 393.0634;

5. General Procedure for the Asymmetric Synthesis of 3 and 4.

To a flame-dried round bottle flask with a magnetic stirring bar were added the 2-benzothiazolimines (0.1 mmol), allenoates (0.12 mmol), phosphonium salt **P12** (0.01 mmol) and K_3PO_4 (0.4 mmol), followed by the addition of Hexane (0.5 mL). The reaction mixture was stirred at -10 °C for 36-72 h. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel to afford products **3/4**.

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2-phenyl-2*H*-benzo[4,5]thiazolo[3,2-*a*]pyrimidine-3-carboxylate (3a)

White foam, (42.2 mg), 91% yield; $[\alpha]^{25}{}_{D} = +83.3$ (*c* 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.41 (m 2H), 7.34-7.32 (m, 1H), 7.29-7.27 (m, 1H), 7.26-7.25 (m, 1H), 7.23-7.19 (m, 1H), 7.19-7.16 (m, 2H), 7.14-7.09 (m, 1H), 5.91 (s, 1H), 4.32-4.25 (m, 3H), 1.59 (s, 1H), 1.50 (d, *J* = 6.9 Hz, 3H), 1.40 (s, 9H), 1.29 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 164.7, 146.8, 141.3, 135.5, 128.5, 127.4, 126.9, 126.6, 125.7, 125.1, 124.5, 122.9, 115.1, 81.7, 61.4, 61.3, 39.2, 27.9,

16.1, 14.2. HRMS (ESI) m/z calcd for $C_{26}H_{28}N_2O_4S [M+Na]^+ = 487.1667$, found = 487.1665; The ee value was 90%, t_R (major) = 24.1 min, t_R (minor) = 32.9 min (Chiralcel IC, $\lambda = 254$ nm, 10% *i*-PrOH/hexanes, flow rate = 0.5 mL/min).

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2-(p-tolyl)-2*H*-benzo[4,5]thiazolo [3,2-*a*]pyrimidine-3-carboxylate (3b)

White foam, (43.0 mg), 90% yield; $[\alpha]^{25}{}_{D} = +94.4$ (*c* 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.30 (m, 3H), 7.19-7.13 (m, 2H), 7.12-7.06 (m, 3H), 5.89 (s, 1H), 4.31-4.26 (m, 3H), 2.28 (s, 3H), 1.49 (d, *J* = 6.9 Hz, 3H), 1.40 (s, 9H), 1.31 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 164.8, 157.3, 146.7, 138.5, 136.9, 135.6, 129.1, 126.8, 125.6, 125.1, 124.4, 122.8, 115.0, 110.6, 81.5, 61.3, 61.2, 39.1, 27.9, 21.1, 16.1, 14.2. HRMS (ESI) *m*/*z* calcd for C₂₇H₃₀N₂O₄S [M+Na]⁺ = 501.1824, found = 501.1820; The ee value was 90%, t_R (major) = 25.0 min, t_R (minor) = 31.0 min (Chiralcel IC, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 0.5 mL/min).

Delector	12341111				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	24.970	794397	46.565	32176126	41.214
2	29.516	145832	8.548	6449098	8.261
3	30.788	658325	38.589	32709433	41.897
4	39.769	107448	6.298	6736825	8.629
Total		1706002	100.000	78071483	100.000

Detector A	A 254nm				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	25.023	1991227	95.456	85535250	95.165
2	31.044	94785	4.544	4346053	4.835
Total		2086012	100.000	89881303	100.000

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2-(4-methoxyphenyl)-2H-benzo[4,5]thiazolo[3,2-*a*]pyrimidine-3-carboxylate (3c)

White foam, (41.5 mg), 84% yield; $[\alpha]^{25}{}_{D} = +138.1$ (*c* 0.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.32 (m, 3H), 7.21-7.12 (m, 3H), 6.82-6.78 (m, 2H), 5.85 (s, 1H), 4.28 (dd, *J* = 13.5, 6.8 Hz, 3H), 3.75 (s, 3H), 1.49 (d, *J* = 6.9 Hz, 3H), 1.39 (s, 9H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 164.8, 157.4, 158.9, 146.6, 135.6, 133.6, 128.1, 125.7, 125.1, 124.5, 122.9, 115.0, 113.8, 111.0, 81.6, 61.4, 60.9, 55.2, 39.2, 28.0, 16.1, 14.2. HRMS (ESI) *m*/*z* calcd for C₂₇H₃₀N₂O₅S [M+Na]⁺ = 517.1773, found = 517.1755; The ee value was 89%, t_R (major) = 37.6 min, t_R (minor) = 47.3 min (Chiralcel IC, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Jelector A	elector A 254IIII						
Peak#	Ret. Time	Height	Height%	Area	Area%		
1	38.911	298515	53.676	20943188	47.135		
2	48.567	257629	46.324	23489045	52.865		
Total		556143	100.000	44432233	100.000		

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2-(4-fluorophenyl)-2*H*-benzo[4,5] thiazolo[3,2-*a*]pyrimidine-3-carboxylate (3d)

White foam, (44.8 mg), 93% yield; $[\alpha]^{25}{}_{D} = +129.0$ (*c* 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 3H), 7.18-7.16 (m, 2H), 7.15-7.10 (m, 1H), 6.94 (ddd, *J* = 9.8, 5.9, 2.6 Hz, 2H), 5.87 (s, 1H), 4.34-4.22 (m, 3H), 1.49 (d, *J* = 6.9 Hz, 3H), 1.39 (s, 9H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 164.9, 163.6, 161.1, 157.8, 147.2, 137.6 (d, *J* = 3.0 Hz), 135.7, 128.8 (d, *J* = 8.0 Hz), 125.3, 124.8, 124.6 (d, *J* = 281.0 Hz), 115.6, 115.3 (d, *J* = 14.0 Hz), 110.6, 81.9, 61.6, 61.1, 39.4, 28.2, 16.3, 14.5. HRMS (ESI) *m/z* calcd for C₂₆H₂₇FN₂O₄S [M+Na]⁺ = 505.1573, found = 505.1571; The ee value was 85%, t_R (major) = 11.6 min, t_R (minor) = 13.0 min (Chiralcel IC, λ = 254 nm, 5% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

tert-butyl(*R*)-2-(4-chlorophenyl)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2*H*-benzo[4,5] [thiazolo[3,2-*a*]pyrimidine-3-carboxylate (3e)

White foam, (44.3 mg), 89% yield; $[\alpha]^{25}_{D} = +98.2$ (*c* 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.34 (m, 3H), 7.25-7.22 (m, 2H), 7.18-7.11 (m, 3H), 5.87 (s, 1H), 4.28 (dd, *J* = 13.4, 6.6 Hz, 3H), 1.49 (d, *J* = 6.9 Hz, 3H), 1.40 (s, 9H), 1.30 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 164.6, 157.6, 147.3, 140.2, 135.5, 133.1, 128.6, 128.3, 125.7, 125.1, 124.6, 122.9, 115.1, 109.9, 81.7, 61.4, 61.0, 39.2, 28.0, 16.1, 14.3. HRMS (ESI) *m*/*z* calcd for C₂₆H₂₇ClN₂O₄S [M+Na]⁺ = 521.1278, found = 521.1427; The ee value was 91%, t_R (major) = 19.6 min, t_R (minor) = 28.7 min (Chiralcel IC, λ = 254 nm, 5% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

PDA Ch1	254nm				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	19.556	1177492	96.064	48331101	95.492
2	28.682	48239	3.936	2281423	4.508
Total		1225731	100.000	50612524	100.000

White foam, (43.0 mg), 90% yield; $[\alpha]_{D}^{25} = +33.2$ (*c* 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 8.0 Hz, 1H), 7.24 (s, 1H), 7.20-7.09 (m, 5H), 7.03 (d, *J* =

7.3 Hz, 1H), 5.89 (s, 1H), 4.31-4.21 (m, 3H), 2.30 (s, 3H), 1.49 (d, J = 6.9 Hz, 3H), 1.40 (s, 9H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 165.1, 157.7, 146.9, 141.7, 138.2, 135.9, 128.5, 128.4, 128.1, 125.9, 125.3, 124.7, 124.0, 123.1, 115.2, 110.9, 81.8, 61.8, 61.6, 39.4, 28.2, 21.8, 16.4, 14.5. HRMS (ESI) m/zcalcd for C₂₇H₃₀N₂O₄S [M+Na]⁺ = 501.1824, found = 501.1822; The ee value was 86%, t_R (major) = 24.3 min, t_R (minor) = 26.9 min (Chiralcel IC, $\lambda = 254$ nm, 5% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2-(*o*-tolyl)-2*H*-benzo[4,5]thiazolo [3,2-*a*]pyrimidine-3-carboxylate (3g)

White foam, (36.8 mg), 77% yield; $[\alpha]^{25}{}_{D}$ = +96.8 (*c* 0.47, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 7.6 Hz, 1H), 7.31 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.24-7.22 m, 1H), 7.19-7.07 (m, 5H), 6.04 (s, 1H), 4.38-4.29 (m, 3H), 2.62 (s, 3H), 1.53 (d, *J* = 6.9 Hz, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 164.8, 160.8, 158.4, 157.0, 146.6, 141.5, 132.0, 128.4, 127.4, 126.9, 115.5 (d, *J* = 9.0 Hz), 112.7, 112.4, 110.5, 110.4, 110.2, 81.6, 61.8, 61.4, 39.1, 28.0, 16.1, 14.2. HRMS (ESI) *m*/*z* calcd for C₂₇H₃₀N₂O₄S [M+Na]⁺ = 501.1824, found = 501.1820; The ee value was 86%, t_R (major) = 16.1 min, t_R (minor) = 26.1 min (Chiralcel IC, λ = 254 nm, 2% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

mAU

-

etector A	A 254nm				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	16.179	98772	57.460	6365696	50.384
2	26.262	73126	42.540	6268787	49.616
Total		171897	100.000	12634483	100.000

mV

tert-butyl(R)-4-((S)-1-ethoxy-1-oxopropan-2-yl)-2-(2-methoxyphenyl)-2H-benzo[4 ,5]thiazolo[3,2-a]pyrimidine-3-carboxylate (3h)

White foam, (36.5 mg), 74% yield; $[\alpha]^{25}{}_{D}$ = +148.8 (*c* 0.35, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (td, *J* = 8.0, 1.4 Hz, 2H), 7.24-7.15 (m, 3H), 7.09 (td, *J* = 7.5, 1.2 Hz, 1H), 6.89 (d, *J* = 7.8 Hz, 1H), 6.82 (td, *J* = 7.5, 0.8 Hz, 1H), 6.24 (s, 1H), 4.30-4.26 (m, 3H), 3.88 (s, 3H), 1.52 (d, *J* = 6.9 Hz, 3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 164.9, 157.5, 147.2, 135.9, 129.5, 129.0, 128.2, 125.8, 125.4, 124.4, 123.0, 120.7, 114.8, 114.1, 111.1, 81.3, 61.6, 57.1, 56.0, 39.4, 28.1, 27.2, 16.5, 14.5. HRMS (ESI) *m*/*z* calcd for C₂₇H₃₀N₂O₅S [M+Na]⁺ = 517.1773, found = 517.1772; The ee value was 84%, t_R (major) = 36.1 min, t_R (minor) = 28.9 min (Chiralcel IG, λ = 254 nm, 12% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

tert-butyl(*R*)-2-(3,4-dimethylphenyl)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2*H*-benzo [4,5]thiazolo[3,2-*a*]pyrimidine-3-carboxylate (3i)

White foam, (38.4 mg), 78% yield; $[\alpha]^{25}{}_{D} = +125.1$ (*c* 0.43, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.21-7.10 (m, 5H), 7.01 (d, *J* = 7.8 Hz, 1H), 5.87 (s, 1H), 4.30-4.26 (m, 3H), 2.21 (s, 3H), 2.19 (s, 3H), 1.49 (d, *J* = 6.9 Hz, 3H), 1.40 (s, 9H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 164.9, 157.3, 146.6, 138.9, 136.5, 135.7, 135.6, 129.5, 128.5, 125.6, 125.1, 124.3, 124.0, 122.8, 114.9, 110.7, 81.5, 61.3, 61.2, 39.1, 28.0, 19.9, 19.4, 16.1, 14.3. HSRMS (ESI) *m/z* calcd for C₂₈H₃₂N₂O₄S [M+Na]⁺ = 515.1980, found = 515.1970; The ee value was 92%, t_R (major) = 29.8 min, t_R (minor) = 32.8 min (Chiralcel IE, λ = 254 nm, 5% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Detector A	A 254nm				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	29.711	405132	51.489	22788558	49.315
2	32.258	381708	48.511	23421377	50.685
Total		786840	100.000	46209935	100.000

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2-(thiophen-2-yl)-2*H*-benzo[4,5]t hiazolo[3,2-*a*]pyrimidine-3-carboxylate (3j)

 mV

White foam, (42.3 mg), 90% yield; $[\alpha]^{25}{}_{D} = +167.7$ (*c* 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.35 (m, 1H), 7.21-7.11 (m, 4H), 6.97 (d, *J* = 3.5 Hz, 1H), 6.86 (dd, *J* = 5.0, 3.6 Hz, 1H), 6.12 (s, 1H), 4.36 (d, *J* = 5.7 Hz, 1H), 4.21 (dd, *J* = 14.0, 7.0 Hz, 2H), 1.48 (d, *J* = 6.9 Hz, 3H), 1.46 (s, 9H), 1.24 (t, *J* = 7.1 Hz,3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 164.2, 158.9, 147.1, 145.4, 135.5, 126.3, 125.7, 125.0, 124.6, 124.5, 124.1, 122.9, 115.2, 110.8, 81.8, 61.4, 57.2, 39.1, 28.0, 16.1, 14.2. HRMS (ESI) *m*/*z* calcd for C₂₄H₂₆N₂O₄S₂ [M+Na]⁺ = 493.1232, found = 493.1223; The ee value was 88%, t_R (major) = 14.8 min, t_R (minor) = 17.3 min (Chiralcel IC, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

100.000

43734120

100.000

1310205

Total

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-8-fluoro-2-phenyl-2*H*-benzo[4,5]t hiazolo[3,2-*a*]pyrimidine-3-carboxylate (3k)

White foam, (44.8 mg), 93% yield; $[\alpha]^{25}{}_{D}$ = +191.2 (*c* 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.38 (m, 2H), 7.28-7.26 (m, 1H), 7.24-7.18 (m, 2H), 7.08 (ddd, *J* = 10.3, 8.3, 3.5 Hz, 2H), 6.86 (td, *J* = 8.7, 2.7 Hz, 1H), 5.90 (s, 1H), 4.29-4.19 (m, 3H), 1.48 (d, *J* = 6.9 Hz, 3H), 1.38 (s, 9H), 1.28 (t, *J* = 7.2 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 165.0, 161.1, 158.0 (d, *J* = 118 Hz), 146.9, 141.6, 132.2, 128.7, 127.7, 127.1, 127.0 (d, *J* = 98.1 Hz), 115.8 (d, *J* = 8.0 Hz), 112.9 (d, *J* = 240.0 Hz), 110.7, 110.5, 81.9, 61.9, 61.7, 39.4, 28.2, 16.3, 14.4. HRMS (ESI) *m/z* calcd for C₂₇H₃₁FN₂O₄S [M+Na]⁺ = 505.1573, found = 505.1571; The ee value was 90%, t_R (major) = 21.3 min, t_R (minor) = 26.0 min (Chiralcel IC, λ = 254 nm, 5% *i*-PrOH/hexanes, flow rate = 0.5 mL/min).

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-8-methoxy-2-phenyl-2*H*-benzo[4, 5]thiazolo[3,2-*a*]pyrimidine-3-carboxylate (3])

White foam, (45.0 mg), 91% yield; $[\alpha]_{D}^{25} = +87.6$ (*c* 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.3 Hz, 2H), 7.29-7.19 (m, 3H), 7.08 (d, *J* = 8.9 Hz, 1H),

6.90 (d, J = 2.6 Hz, 1H), 6.70 (dd, J = 8.9, 2.6 Hz, 1H), 5.91 (s, 1H), 4.32-4.21 (m, 3H), 3.78 (s, 3H), 1.49 (d, J = 6.9 Hz, 3H), 1.39 (s, 9H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 164.9, 161.5, 157.0, 147.1, 141.6, 129.4, 128.4, 127.3, 126.9, 126.5, 115.8, 111.5, 109.5 108.5, 81.4, 61.3, 55.8, 39.1, 31.6, 28.0, 22.7, 16.0, 14.2. HRMS (ESI) m/z calcd for C₂₇H₃₀N₂O₅S [M+Na]⁺ = 517.1773, found = 517.1754; The ee value was 91%, t_R (major) = 15.7 min, t_R (minor) = 26.7 min (Chiralcel IC, $\lambda = 254$ nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

100.000

28151698

100.000

632784

Total

Peak Table						
Peak#	Ret. Time	Height	Height%	Area	Area%	
1	15.699	402206	96.871	14750116	95.360	
2	26.945	12991	3.129	717726	4.640	
Total		415198	100.000	15467842	100.000	

tert-butyl(*R*)-5-((*S*)-1-ethoxy-1-oxopropan-2-yl)-7-phenyl-7*H*-thiazolo[3,2-*a*]pyri midine-6-carboxylate (3m)

Light yellow solid, (37.7 mg), 91% yield; $[\alpha]^{25}{}_{D} = +54.0 (c \ 0.50, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 7.2 Hz, 2H), 7.34-7.30 (m, 3H), 6.44 (d, J = 5.3 Hz, 1H), 5.88 (d, J = 5.2 Hz, 1H), 5.70 (s, 1H), 4.32-4.25 (m, 1H), 4.24-4.19 (m, 1H), 1.62 (s, 2H), 1.45 (t, J = 6.0 Hz, 3H), 1.34 (d, J = 7.2 Hz, 3H), 1.31 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 165.9, 156.9, 144.7, 143.4, 128.7, 127.6, 127.4, 121.3, 105.7, 102.2, 81.8, 62.1, 62.0, 38.3, 28.2, 14.4, 13.8. HRMS (ESI) *m/z* calcd for C₂₂H₂₆N₂O₄S [M+Na]⁺ = 437.1511, found = 437.1509; The ee value was 80%, t_R (major) = 10.3 min, t_R (minor) = 11.6 min (Chiralcel IC, $\lambda = 254$ nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxobutan-2-yl)-2-phenyl-2*H*-benzo[4,5]thiazolo[3, 2-*a*]pyrimidine-3-carboxylate (4a)

White foam, (42.5 mg), 89% yield; $[\alpha]^{25}_{D} = +88.4$ (*c* 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 7.3 Hz, 2H), 7.26 (d, *J* = 7.5 Hz, 1H), 7.21-7.17 (m, 2H), 7.15-7.11 (m, 1H), 7.10-7.08 (m, 2H), 7.07-7.01 (m, 1H), 5.89 (s, 1H), 4.29- 4.18 (m, 2H), 3.98 (d, *J* = 5.4 Hz, 1H), 2.21-2.14 (m, 1H), 1.89-1.81 (m, 1H), 1.34 (s, 1H), 1.32 (s, 9H), 1.26 (t, *J* = 7.2 Hz, 3H), 0.58 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 164.9, 157.5, 146.4, 141.7, 135.9, 128.6, 127.5, 127.2, 125.8, 125.43, 124.7, 123.1, 115.7, 110.8, 81.7, 62.0, 61.4, 46.7, 28.2, 24.7, 14.5, 11.9. HRMS (ESI) *m/z* calcd for C₂₇H₃₀N₂O₅S [M+Na]⁺ = 501.1824, found = 501.1820; The ee value was 90%, t_R (major) = 50.5 min, t_R (minor) = 56.9 min (Chiralcel IC, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxohexan-2-yl)-2-phenyl-2*H*-benzo[4,5]thiazolo[3, 2-*a*]pyrimidine-3-carboxylate (4b)

White foam, (48.0 mg), 92% yield; $[\alpha]^{25}_{D} = +138.1$ (*c* 0.40, CHCl₃); ¹H NMR (400

MHz, CDCl₃) δ 7.44 (d, J = 7.6 Hz, 2H), 7.36 (d, J = 7.2 Hz, 1H), 7.29-7.18 (m, 3H), 7.19-7.11 (m, 3H), 5.97 (s, 1H), 4.51 (dd, J = 10.8, 4.2 Hz, 1H), 4.40-4.28 (m, 2H), 4.10 (dd, J = 13.6, 4.2 Hz, 1H), 2.22-2.15 (m, 1H), 1.96-1.86 (m, 1H), 1.40 (s, 9H), 1.34 (t, J = 7.2 Hz, 3H), 1.09-0.99 (m, 3H), 0.90-0.84 (m, 1H), 0.73 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 164.7, 157.5, 146.2, 141.1, 135.6, 128.4, 127.4, 127.0, 125.7, 125.2, 124.6, 122.9, 115.4, 81.6, 61.5, 61.3, 44,7, 30.8, 29.1, 28.0, 22.2, 14.3, 13.7. HRMS (ESI) *m*/*z* calcd for C₂₉H₃₄N₂O₄S [M+Na]⁺ = 529.2173, found = 529.2135; The ee value was 87%, t_R (major) = 35.6 min, t_R (minor) = 40.0 min (Chiralcel IC, $\lambda = 254$ nm, 2% *i*-PrOH/hexanes, flow rate = 0.5 mL/min).

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxoheptan-2-yl)-2-phenyl-2*H*-benzo[4,5]thiazolo[3,2-*a*]pyrimidine-3-carboxylate (4c)

White foam, (47.3 mg), 91% yield; $[\alpha]^{25}{}_{D}$ = +199.8 (*c* 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.2 Hz, 2H), 7.34 (d, *J* = 7.5 Hz, 1H), 7.29-7.25 (m, 2H), 7.22-7.20 (m, 1H), 7.19-7.16 (m, 2H), 7.14-7.09 (m, 1H), 5.96 (s, 1H), 4.39-4.26 (m, 2H), 4.10 (d, *J* = 5.8 Hz, 1H), 2.21-2.13 (m, 1H), 1.97-1.88 (m, 1H), 1.39 (s, 9H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.16-1.07 (m, 3H), 0.99-0.88 (m, 3H), 0.71 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 165.2, 157.7, 146.8, 141.9, 136.2, 128.8, 127.7, 127.4, 126.0, 125.7, 124.9, 123.3, 115.8, 111.0, 81.9, 62.3, 61.70, 44.9, 31.6, 31.5, 28.4, 27.1, 22.8, 14.7, 14.3. HRMS (ESI) *m*/*z* calcd for C₃₁H₄₀N₂O₄S [M+H]⁺ = 521.2474, found = 521.2467; The ee value was 89%, t_R (major) = 114.8 min, t_R (minor) = 98.6 min (Chiralcel IG, λ = 254 nm, 2% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

тV

Peak#	Ret. Time	Height	Height%	Area	Area%
1	97.526	155285	53.774	35877931	47.604
2	110.354	14644	5.071	3429293	4.550
3	117.476	118846	41.155	36059840	47.846
Total		288774	100.000	75367064	100.000

tert-butyl(*R*)-4-((*S*)-1-ethoxy-1-oxo-3-phenylpropan-2-yl)-2-phenyl-2*H*-benzo[4,5] thiazolo[3,2-*a*]pyrimidine-3-carboxylate (4d)

White foam, (47.5 mg), 88% yield; $[\alpha]^{25}{}_{D}$ = +194.4 (*c* 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 7.2 Hz, 2H), 7.26-7.15 (m, 3H), 7.15-7.07 (m, 3H), 7.06-7.00 (m, 4H), 6.81-6.71 (m, 2H), 5.94 (s, 1H), 4.51 (dd, *J* = 10.8, 4.2 Hz, 1H), 4.46-4.28 (m, 2H), 3.55 (dd, *J* = 13.6, 4.2 Hz, 1H), 3.11 (dd, *J* = 13.6, 10.9 Hz, 1H), 1.47 (s, 9H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.60, 164.92, 157.0, 145.8, 141.5, 137.3, 135.3, 128.5, 128.3, 128.1, 127.2, 126.9, 126.7, 125.7, 125.0, 124.1, 122.4, 115.3, 110.5, 81.5, 61.5, 61.3, 45.9, 36.8, 28.1, 14.3. HRMS (ESI) *m/z* calcd for C₃₂H₃₂N₂O₄S [M+Na]⁺ = 563.1980, found = 563.1980; The ee value was 82%, t_R (major) = 39.4 min, t_R (minor) = 31.5 min (Chiralcel IE, λ = 254 nm, 5% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Yellow solid, (54.9 mg), 93% yield; $[\alpha]^{25}_{D} = +119.3$ (*c* 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 7.2 Hz, 2H), 7.25 (t, *J* = 1.7 Hz, 1H), 7.23-7.16 (m, 4H), 7.13 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.09-7.06 (m, 2H), 7.04-6.99 (m, 2H), 6.67-6.63 (m, 2H), 5.93 (s, 1H), 4.50 (dd, *J* = 10.8, 4.2 Hz, 1H), 4.44-4.33 (m, 2H), 3.51 (dd, *J* = 13.6, 4.3 Hz, 1H), 3.11 (dd, *J* = 13.6, 10.9 Hz, 1H), 1.47 (s, 9H), 1.36 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 164.8, 157.0, 145.7, 141.3, 139.4, 135.1, 134.3, 129.8, 128.3, 128.0, 127.2, 127.1, 126.9, 126.8, 125.7, 125.1, 124.4, 122.8, 115.2, 110.5, 81.7, 61.6, 61.2, 45.5, 36.5, 28.1, 14.3; HRMS (ESI) *m/z* calcd for C₃₂H₃₁ClN₂O₄S [M+Na]⁺ = 597.1591, found = 597.1569; The ee value was 99.5%, t_R (major) = 11.2 min, t_R (minor) = 16.6 min (Chiralcel IC, λ = 254 nm, 5% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Peak Table

PDA Ch1	254nm									
Peak#	Ret. Time	Height	Height%	Area	Area%					
1	10.744	53522	46.912	1648028	42.723					
2	12.070	9175	8.042	315354	8.175					
3	14.674	7905	6.929	332028	8.607					
4	16.336	43487	38.117	1562083	40.495					
Total		114090	100.000	3857493	100.000					

tert-butyl(*R*)-4-((*S*)-3-(2,4-dichlorophenyl)-1-ethoxy-1-oxopropan-2-yl)-2-phenyl-2*H*-benzo[4,5]thiazolo[3,2-*a*]pyrimidine-3-carboxylate (4f)

Yellow solid, (57.7 mg), 95% yield; $[\alpha]^{25}{}_{D}$ = +148.7 (*c* 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 7.2 Hz, 2H), 7.26-7.22 (m, 2H), 7.20-7.16 (m, 2H), 7.14-7.00 (m, 5H), 6.84 (d, *J* = 8.2 Hz, 1H), 5.94 (s, 1H), 4.69 (dd, *J* = 10.5, 4.4 Hz, 1H), 4.44-4.32 (m, 2H), 3.65 (dd, *J* = 13.5, 4.4 Hz, 1H), 3.21 (dd, *J* = 13.5, 10.5 Hz, 1H), 1.46 (s, 9H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 165.2, 157.6, 146.2, 141.6, 135.5, 134.7, 134.1, 134.0, 132.2, 129.4, 128.7, 127.9, 127.7, 127.3, 126.0, 125.9, 124.9, 122.8, 116.0, 111.2, 82.2, 62.0, 61.7, 43.6, 34.5, 28.5, 14.7. HRMS (ESI) *m*/*z* calcd for C₃₂H₃₀Cl₂N₂O₄S [M+Na]⁺ = 631.1201, found = 631.1192; The ee value was 84%, t_R (major) = 16.2 min, t_R (minor) = 10.7 min (Chiralcel IG, λ = 254 nm, 5% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

<u>methyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2-phenyl-2*H*-benzo[4,5]thiazolo[3,2 -*a*]pyrimidine-3-carboxylate (4g)</u>

White foam, (38.4 mg), 91% yield; $[\alpha]^{25}{}_{D} = +33.2$ (*c* 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.2 Hz, 2H), 7.34 (dd, *J* = 8.0, 7.5 Hz, 1H), 7.30-7.27 (m, 2H), 7.25 (s, 1H), 7.24-7.21 (m, 2H), 7.20-7.11 (m, 2H), 6.02 (s, 1H), 4.36-4.26 (m, 3H), 3.71 (s, 3H), 1.46 (d, *J* = 6.8Hz, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 166.1, 157.2, 148.1, 141.0, 135.5, 128.6, 127.5, 127.0, 125.7, 124.7, 122.9, 115.1, 108.4, 100.0, 61.4, 51.9, 39.5, 29.7, 16.3, 14.3. HRMS (ESI) *m/z* calcd for C₂₃H₂₂N₂O₄S [M+Na]⁺ = 445.1198, found = 445.1195; The ee value was 87%, t_R (major) = 40.6 min, t_R (minor) = 37.0 min (Chiralcel IE, λ = 254 nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

Peak#	Ret. Time	Height	Height%	Area	Area%
1	37.153	220609	51.896	12953130	50.620
2	41.269	204489	48.104	12635641	49.380
Total		425098	100.000	25588771	100.000

<u>ethyl(*R*)-4-((*S*)-1-ethoxy-1-oxopropan-2-yl)-2-phenyl-2*H*-benzo[4,5]thiazolo[3,2-*a*]pyrimidine-3-carboxylate (4h)</u>

White foam, (38.8 mg), 89% yield; $[\alpha]_{D}^{25} = +129.0$ (*c* 0.60, CHCl₃); ¹H NMR (400

mAU

MHz, CDCl₃) δ 7.42-7.40 (m, 2H), 7.33 (dd, J = 7.6, 1.1 Hz, 1H), 7.28-7.24 (m, 2H), 7.22-7.09 (m, 4H), 6.02 (s, 1H), 4.34-4.23 (m, 3H), 4.22-4.12 (m, 2H), 1.47 (d, J =6.9 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 165.6, 157.4, 147.7, 141.1, 135.5, 128.5, 127.5, 127.0, 125.7, 125.2, 124.6, 122.9, 115.1, 108.9, 61.5, 61.0, 39.4, 31.6, 22.7, 16.2, 14.2. HRMS (ESI) m/zcalcd for C₂₄H₂₄N₂O₄S [M+Na]⁺ = 459.1354, found = 459.1357; The ee value was 86%, t_R (major) = 30.4 min, t_R (minor) = 51.7 min (Chiralcel IC, $\lambda = 254$ nm, 10% *i*-PrOH/hexanes, flow rate = 1.0 mL/min).

tert-butyl(*R*)-4-((*S*)-1-(*tert*-butoxy)-1-oxopropan-2-yl)-2-phenyl-2*H*-benzo[4,5]thi azolo[3,2-*a*]pyrimidine-3-carboxylate (4i)

White foam, (45.7 mg), 90% yield; $[\alpha]^{25}{}_{D} = +107.9$ (*c* 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.39 (m, 2H), 7.34 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.27 (t, *J* = 1.8 Hz, 1H), 7.25-7.20 (m, 3H), 7.19-7.09 (m, 2H), 5.91 (s, 1H), 4.24 (s, 1H), 1.48-1.45 (m, 12H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 164.5, 157.2, 147.7, 141.9, 135.8, 128.4, 127.3, 127.0, 125.6, 125.1, 124.3, 122.9, 114.8, 110.1, 81.7, 81.2, 61.8, 40.1, 28.2, 28.0, 15.8. HRMS (ESI) *m*/*z* calcd for C₂₈H₃₂N₂O₄S [M+Na]⁺ = 515.1980, found = 515.1972; The ee value was 86%, t_R (major) = 16.1 min, t_R (minor) = 26.0 min (Chiralcel IC, λ = 254 nm, 2% *i*-PrOH/hexanes, flow rate = 0.5 mL/min).

etector A	A 254nm				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	16.179	98772	57.460	6365696	50.384
2	26.262	73126	42.540	6268787	49.616
Total		171897	100.000	12634483	100.000

mV

Detector A	A 254nm				
Peak#	Ret. Time	Height	Height%	Area	Area%
1	16.135	120354	92.936	10896037	92.902
2	26.053	9149	7.064	832464	7.098
Total		129502	100.000	11728501	100.000

6. Scale-up Synthesis and Synthetic Elaboration of Product

(i). General procedure of scale-up synthesis

To a flame-dried round bottle flask with a magnetic stirring bar were added 2-benzothiazolimine **1a** (1.0 g, 4.20 mmol), allenoate **2e** (1.20 mmol), phosphonium salt **P12** (0.15 mmol) and K₃PO₄ (6.00 mmol), followed by the addition of Hexane. The reaction mixture was stirred at -10 °C for 8 days. The reaction was added H₂O (10 mL), and the mixture was extracted with DCM (10 mL x 3), dried over Na₂SO₄, the solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel to afford **4e** (1.61 g, 67% yield, >99% ee, >20:1 dr) as a yellow solid.

(ii). Synthetic elaboration of product

To a solution of **4e** (57.5 mg, 0.1 mmol) in DCM (5.0 mL) was added TFA (18.9 mg, 0.5 mmol) at 0 °C. Then, the mixture was allowed to stir under nitrogen atmosphere at room temperature for 8 h. After stirring for 8 h, the reaction mixture was quenched with saturated aqueous NaCl, the aqueous phase was extracted three times with DCM. The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduce pressure. The residue was purified by silica gel column chromatography to afford the desired product **5** as a light-yellow oil (45.2 mg, >99% ee, >20:1 dr).

Yellow oil; $[\alpha]^{25}_{D}$ = +97.2 (*c* 0.50, CHCl₃);¹H NMR (400 MHz, DMSO) δ 7.38 (d, *J* = 7.7 Hz, 1H), 7.32 (d, *J* = 7.4 Hz, 2H), 7.20 (t, *J* = 7.3 Hz, 3H), 7.16-6.98 (m, 5H), 6.71 (d, *J* = 9.0 Hz, 2H), 5.91 (s, 1H), 4.25 (dd, *J* = 17.7, 11.2 Hz, 3H), 3.33 (dd, *J* = 13.2, 4.1 Hz, 2H), 3.27-3.08 (m, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 170.6, 156.0, 142.7, 141.0, 135.7, 133.3, 130.1, 128.5, 128.3, 127.5, 127.4, 127.2, 126.7, 126.1, 124.2, 124.0, 123.2, 114.7, 62.0, 60.9, 45.3, 36.3, 14.6. HRMS (ESI) *m*/*z* calcd for C₂₈H₂₃N₂O₄S [M+Na]⁺ = 541.0965, found = 541.0940.

7. Mechanistic Studies and Proposed Mechanism

Figure S1. Deuterium-labeling Experiment.

(i). General procedure of *d*-3a

To a flame-dried round bottle flask with a magnetic stirring bar were added the2-benzothiazolimine **1a** (0.10 mmol), allenoate **2a** (1.20 mmol), phosphonium salt **P12** (0.10 mmol) and K₃PO₄ (4.00 mmol), followed by the addition of hexane and deuterium oxide (24 μ L, 1.20 mmol). The reaction mixture was stirred at -10 °C for 36 h. Then, the aqueous phase was extracted three times with DCM. The combined organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give *d*-**3a** as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.41 (m 2H), 7.34-7.32 (m, 1H), 7.30-7.25 (m, 2H), 7.22-7.21 (m, 1H), 7.17-7.16 (m, 2H), 7.14-7.08 (m, 1H), 5.91 (s, 1H), 4.31-4.25 (m, 2.5H), 1.68 (s, 1H), 1.50 (d, *J* = 6.9 Hz, 3H), 1.42 (s, 1H), 1.39 (s, 9H), 1.29 (t, *J* = 7.2 Hz, 3H); HRMS (ESI) *m*/*z* calcd for C₂₇H₂₇DN₂O₄S [M+Na]⁺ = 488.1730, found = 488.1726.

(ii). Control Experiments and Mechanism

The methylated catalysts **P12-1** was prepared and used for the [4 + 2] reaction to test the reactivities and enantioselectivities. The results were displayed in *Figure S2* When methylated catalysts were used, the enantioselectivities decreased. The result clearly verify the significance of the hydrogen bonding in the catalytic system. On the basis of the experiments, the deuterium-labeling experiment, our previous research and the absolute configuration, a plausible mechanism was presented.

a) Control experiments:

Figure S2. Control experiments and postulated mechanism.

8. Crystal Structure of Product 4e.

the X-ray crystal of 4e was obtained (Table S4). CCDC 1966944 contains the supplementary crystallographic data of the adduct 4e for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif *Table S4*. Crystal data and structure refinement for **4e**.

CO₂Et (R) _

X-ray structure of 4e CCDC (1966944)

Identification code	WTL-LDM-150K
Empirical formula	$C_{32}H_{31}CIN_2O_4S$
Formula weight	575.10
Temperature/K	150.01(10)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	8.29029(17)
b/Å	20.9516(4)
c/Å	8.39594(16)
α /°	90
β /°	97.0201(18)
γ /°	90
Volume/Å ³	1447.40(5)
Z	2
ρ calcg/cm ³	1.320
μ /mm ⁻¹	2.165
F(000)	604.0
Crystal size/mm ³	$0.6 \times 0.3 \times 0.3$
Radiation	CuKα (λ = 1.54184)
20 range for data collection/°8.44 to 143.5	534
Index ranges	-9 \leqslant h \leqslant 10, -25 \leqslant k \leqslant 25, -10 \leqslant l \leqslant 6
Reflections collected	13708

Independent reflections	5560 [Rint = 0.0453, Rsigma = 0.0483]
Data/restraints/parameters	5560/1/365
Goodness-of-fit on F ²	1.048
Final R indexes [I>=2σ (I)]	R ₁ = 0.0536, wR ₂ = 0.1369
Final R indexes [all data]	$R_1 = 0.0554$, $wR_2 = 0.1404$
argest diff. peak/hole / e Å ⁻³ 0.26/-0.41	
-lack parameter	-0.021(10)

9. Reference

[1] (a) X. Han, Y. Wang, F. Zhong and Y. Lu, J. Am. Chem. Soc., 2011, 133, 1726; (b) X.
Han, F. Zhong, Y. Wang and Y. Lu, Angew. Chem., Int. Ed., 2012, 51, 767; (c) F. Zhong,
X. Han, Y. Wang and Y. Lu, Chem. Sci., 2012, 3, 1231; (d) F. Zhong, X. Han, Y. Wang
and Y. Lu, Angew. Chem., Int. Ed., 2011, 50, 7837; (e) F. Zhong, J. Luo, G.-Y. Chen, X.
Dou and Y. Lu, J. Am. Chem. Soc., 2012, 134, 10222; (f) F. Zhong, X. Dou, X. Han, W.
Yao, Q, Zhu, Y. Meng and Y. Lu, Angew. Chem., Int. Ed., 2013, 52, 943.

[2] (a) Q. Ni, X. Song, J. Xiong, G. Raabe and D. Enders, *Chem. Commun.*, 2015, 51, 1263; (b) L. Jarrige, D. Glava[°]c, G. Levitre, P. Retailleau, G. Bernadat, L. Neuville and G. Masson, *Chem. Sci.*, 2019, 10, 3765.

[3] (a) T. Hashimoto, Y. Naganawa and K. Maruoka, J. Am. Chem. Soc., 2009, 131, 6614;

(b) T. Hashimoto, K. Sakata, F. Tamakuni, M. J. Dutton and K. Maruoka, *Nat. Chem.*, 2013, **5**, 240.

10. NMR Spectra

