Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

**Supporting Information** 

Hexagonal ordering of racemic Ni(II) complexes in the interlayer

space of a clay mineral

Jun Yoshida,\* Kazunori Tateyama, Hidetaka Yuge, and Mitsuo Hara\*

## Materials and methods

All solvents employed were reagent grade. Sodium-montmorillonite clay (**Na-Mt**) was purchased from Kunimine Industries Co., Ltd as a specimen of the Clay Science Society of Japan (JCSS-3101). The elemental composition and cation-exchange capacity are (Na<sub>0.47</sub>Ca<sub>0.04</sub>)(Al<sub>1.51</sub>Mg<sub>0.35</sub>Fe<sub>0.13</sub>)(Si<sub>3.78</sub>Al<sub>0.22</sub>)O<sub>10</sub>(OH)<sub>2</sub> and 1.19 meq per gram, respectively. [Ni(phen)<sub>3</sub>]Cl<sub>2</sub> was prepared according to the reported procedure.<sup>1</sup> The intercalated and intersalated compounds of a montmorillonite clay with [Ni(phen)<sub>3</sub>]<sup>2+</sup> were prepared by adding an aqueous solution of [Ni(phen)<sub>3</sub>]Cl<sub>2</sub> into an aqueous suspension of **Na-Mt**. After the decantation, the suspension was filtered with a membrane filter. The precipitate was dried under air. The actual amount of adsorbed Ni complexes was determined by the UV-Vis spectra of the filtrate. The obtained adsorption isotherm is shown in Fig. S1.

UV-Vis spectra were recorded with V-570 (JASCO Corp.). Thermogravimetric (TG) analysis was performed with a Thermo plus EVO2 TG-DTA 8122 (Rigaku Corp.). FT-IR spectroscopy was performed with a JASCO FT/IR-4200 with an ATR unit (diamond, MicromATR Vision, Czitek). Micro-Raman spectroscopy was performed with a JASCO NRS-7200 using a 785nm laser. Before the measurements, the Raman shift was calibrated with a silicon substrate. One-dimensional X-ray diffraction was performed in reflection mode on an X-ray diffractometer SmartLab SE equipped with a 1D detector D/teX Ultra 250 (Rigaku Corp.) using Cu K $\alpha$  radiation ( $\lambda = 0.154$  nm), while two-dimensional XRD in transmission mode and GI-XRD was performed on an X-ray diffractometer FR-E equipped with a two-dimensional detector R-Axis IV (Rigaku Corp.) involving an imaging plate (Fujifilm Corp.) using Cu K $\alpha$  radiation ( $\lambda = 0.154$  nm).



Figure S1 Adsorption isotherm of [Ni(phen)<sub>3</sub>]Cl<sub>2</sub> on Na-Mt.



Figure S2 ATR-IR spectra of Na-Mt, Ni10-Mt, Ni50-Mt, Ni100-Mt, Ni150-Mt, and [Ni(phen)<sub>3</sub>]Cl<sub>2</sub>.



**Figure S3** Raman spectra of **Na-Mt**, **Ni10-Mt**, **Ni50-Mt**, **Ni100-Mt**, **Ni150-Mt**, **Ni160-Mt**, and [Ni(phen)<sub>3</sub>]Cl<sub>2</sub>. The wavelength of the laser used is 785 nm.



Figure S4 TG curves of Na-Mt, Ni100-Mt, Ni160-Mt, and [Ni(phen)<sub>3</sub>]Cl<sub>2</sub>.



Figure S5 Powder XRD patterns of (a) Na-Mt, (b) Ni10-Mt, (c) Ni100-Mt, and (d) Ni160-Mt measured in reflection mode with samples loaded on a glass plate. The reflections marked with circles are attributed to quartz included in Na-Mt as an impurity.



Figure S6 2D XRD image of Na-Mt measured in transmission mode.



Figure S7 2D XRD image of Ni50-Mt measured in transmission mode.



Figure S8 2D XRD image of Ni150-Mt measured in transmission mode.



**Figure S9** 1D XRD patterns of **Na-Mt**, **Ni50-Mt**, **Ni100-Mt**, **Ni150-Mt**, and **Ni160-Mt**, which were deduced from the azimuthal integration of 30°~60° and 120°~150° regions in each 2D XRD image. Indices of the basal reflections are shown in black characters, while the reflections attributed to the (020) plane are marked with blue characters.



**Figure S10** Enlarged view of 1D XRD patterns of **Ni150-Mt** and **Ni160-Mt**, which were deduced from the azimuthal integration of 30°~60° and 120°~150° regions in each 2D XRD image. Indices of the reflections attributed to the host clay are shown in black characters, whereas those attributed to two-dimensional assembly of Ni complexes are shown in red characters and arrows.



**Figure S11** 1D XRD patterns of **Ni160-Mt** derived from the GI-XRD image along (a) the meridional and (b) equatorial directions. (c) 1D XRD pattern of powder [Ni(phen)<sub>3</sub>]Cl<sub>2</sub>. Indices of the reflections attributed to the host clay and guest Ni complexes are shown in black and red characters, respectively. The reflections attributed to [Ni(phen)<sub>3</sub>]Cl<sub>2</sub> in **Ni160-Mt** are marked with red circles.

## Reference

1 G. B. Kauffman, L. T. Takahashi, K. H. Pearson, L. W. Sequin and S. Kirschner, *Inorg. Synth.*, 1966, 227–232.