Photoredox/palladium co-catalyzed propargylic benzylation with

internal propargylic carbonates

Zhao-Zhao Zhou,^{a,b,c} Rui-Qiang Jiao,^b Ke Yang,^d Xi-Meng Chen,^{*a} and Yong-Min Liang^{*b}

^a School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China

^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China

- ^c Department of Chemistry, Nanchang Normal University, Nanchang, 330000, P.R. China.
- ^d Technology Center of China Tabacco Guizhou Industrial Co. Ltd., Guiyang, Guizhou, 550000, P. R. China

Email: chenxm@lzu.edu.cn, liangym@lzu.edu.cn

Table of Contents

- S1. General Information and Materials
- S2. General Procedure for the photoredox/palladium dual-catalyzed propargylic benzylation reaction
- S3. Preparation of Starting Materials
- S4. Optimization of Reaction Conditions
- S5. Mechanism Characterization
- S6. References
- S7. Characterization Data of Products 1aa-1ma
- S8. Characterization Data of Products 2aa-2la
- S9. ¹H NMR and ¹³C NMR Spectra of the Products 1aa-1ma
- S10. ¹H NMR and ¹³C NMR Spectra of the Products 2aa-2la

1. General Information and Materials:

For product purification by flash column chromatography, silica gel (200~300 mesh) and *n*-pentane were used. ¹H NMR spectra were recorded on 400 MHz in CDCl₃, ¹³C NMR spectra were recorded on 100 MHz in CDCl₃, ¹⁹F NMR spectra were recorded on 376 MHz in CDCl₃ using TMS as internal standard. Melting points were determined on a microscopic apparatus and were uncorrected. All products were further characterized by HRMS (high resolution mass spectra). Copies of their ¹H NMR and ¹³C NMR spectra were provided. The starting materials were purchased from Sigma-Aldrich, Acros, TCI, Admas or J&K Chemicals and used without further purification.

Kessil brand 440 (\pm 15) nm LED was used in a reaction box equipped cooling fan to keep reaction temperature between 15 °C and 25 °C.

Photoredox devices with Kessil LED lights 440 $(\pm\ 15)\ nm$

2. General Procedure for the photoredox/palladium dual-catalyzed propargylic benzylation reaction:

In a 5.0 mL snap vial with Teflon cover and magnetic stirring bar the internal propargylic carbonates **1a-1o**, **2a-2n** (0.2 mmol), benzyl 1,4-dihydropyridines derivatives **1b** (0.3 mmol, 1.5 equiv), Pd₂dba₃ (0.005 mmol, 2.5 mol %), PCy₃ (0.02 mmol, 10 mol %), Ir(ppy)₃ (0.004 mmol, 2 mol %) and Cs₂CO₃ (0.3 mmol, 1.5 equiv) were dissolved in 2.0 mL MeCN. After degassing with argon by syringe needle for 5 minutes, the reaction mixture was then irradiated in reactor with cooling device using a 440 (\pm 15) nm LED (50 W). The reaction progress was monitored by GC analysis. After full conversion, the reaction mixture was transferred into a separating funnel and 10 mL of distilled water and 2 mL of brine were added. The resulting mixture was extracted with Et₂O (10 mL *2) and combined organic layer were dried over MgSO₄, filtered and concentrated in vacuum. Purification of the crude product was achieved by flash column chromatography using *n*-pentane as eluents on silica gel.

3. Preparation of Starting Materials:

All of propargylic carbonates and benzyl 1,4-dihydropyridine derivatives (DHP) were synthesized according to the previous literatures, and the NMR spectroscopy and GC-MS data were in full accordance with the data in the reported literatures.^{1,2}

4. Optimization of Reaction Conditions:

a) Screening of 1,4-dihydropyridines derivatives:

b) Screening of solvents and loading of liagand:

		O₂Me ∕Ph ⁺ Ph [≁] DHP	$\begin{array}{c} Pd_2dba_3(2.5\ m\\ PCy_3{}^\bulletHBF_4(10\\ \underline{Ir(ppy)_3}(2\ m\\ Cs_2CO_3,\ solve\\ blue\ LED \end{array}$	nol %) mol %) ol %) ent, Ar s	Ph	Ph
entries	Catalyst (2.5 mol %)	Ligand (7.5 mol %)	PC (2 mol %)	Base (1.5 equiv.)	Solvent	yield (%)
1	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	toluene	11
2	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	acetone	18
3	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	MeCN	77
4	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	THF	trace
5	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs ₂ CO ₃	dioxan e	trace
6	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	DMF	trace
7	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	DMAc	trace
8	Pd ₂ dba ₃	PCy ₃ (10 mol %)	Ir(ppy) ₃	Cs ₂ CO ₃	MeCN	82

c) Screening of leaving group on propargylic derivatives:

	LG	Ph ⁺ Ph ⁻ DHP	Pd ₂ dba ₃ (2.5 PCy ₃ •HBF ₄ (1 <u>Ir(ppy)₃ (2 n</u> Cs ₂ CO ₃ , Me blue LEI	mol %) 0 mol %) nol %) CN, Ar Os	Ph	Ph
entries	Catalyst	Ligand	PC	Base	LG	vield (%)
entities	(2.5 mol %)	(10 mol %)	(2 mol %)	(1.5 equiv.)		y ioia (70)
1	Pd_2dba_3	PCy ₃	Ir(ppy) ₃	Cs ₂ CO ₃	ОН	0
2	Pd_2dba_3	PCy ₃	Ir(ppy) ₃	Cs ₂ CO ₃	OAc	44
3	Pd_2dba_3	PCy ₃	Ir(ppy) ₃	Cs ₂ CO ₃	OMs	63
4	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs ₂ CO ₃	OCO ₂ Ph	31
5	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	OCO ₂ Bn	77
6	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs ₂ CO ₃	Br	13
7	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₃	Cs ₂ CO ₃	Cl	77

d) Screening of photocatalysis:

~		CO ₂ Me	Pd ₂ dba ₃ (2.5 mol %) PCy ₃ •HBF ₄ (10 mol %) PC (2 mol %) Cs ₂ CO ₃ , MeCN, Ar blue LEDs	Ph	Ph
antriag	Catalyst	Ligand	PC	Base	riald (0/)
entries	(2.5 mol %)	(10 mol %)	(2 mol %)	(1.5 equiv.)	yieid (%)

1	Pd ₂ dba ₃	PCy ₃	Ru(bpy) ₃ Cl ₂ ·6H ₂ O	Cs_2CO_3	trace
2	Pd ₂ dba ₃	PCy ₃	Ir(ppy) ₂ (dtbbpy)PF ₆	Cs_2CO_3	22
3	Pd ₂ dba ₃	PCy ₃	4CzIPN	Cs_2CO_3	11
4	Pd ₂ dba ₃	PCy ₃	Eosin Y	Cs_2CO_3	7

e) Screening of palladium catalysis:

$\begin{array}{c c} OCO_2Me & Pd (2.5 \text{ mol }\%) & Ph \\ PCy_3 \bullet HBF_4 (10 \text{ mol }\%) & \\ \hline PCy_3 \bullet 2 \text{ mol }\%) & \\ \hline PCy_3 \bullet 2 \text{ mol }\%) & \\ \hline Cs_2CO_3, \text{ MeCN, Ar} & \\ \hline blue \text{ LEDs} & \\ \hline O & \\ \end{array}$							
entries	Catalyst	Ligand	PC	Base	Solvent	vield (%)	
	(2.5 mol %)	(10 mol %)	(2 mol %)	(1.5 equiv.)	Solvent	y ieia (70)	
1	Pd(OAc) ₂	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	MeCN	68	
2	Pd(dba) ₂	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	MeCN	61	
3	Pd(PPh ₃) ₂ Cl ₂	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	MeCN	67	
4	Pd(MeCN) ₂ Cl ₂	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	MeCN	54	
5	[Pd(allyl)Cl] ₂	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	MeCN	77	

f) Screening of ligands:

OCO ₂ Me	Pd ₂ dba ₃ (2.5 mol %)	Ph
	L (10 mol %) Ir(ppy) ₃ (2 mol %)	
Ph Ph DHP	Cs ₂ CO ₃ , MeCN, Ar blue LEDs	Ph

ontrias	Catalyst	Ligand	PC	Base	Colvert	yield
entries	(2.5 mol %)	.5 mol %) (10 mol %) (2 mol %) (1.5 e		(1.5 equiv.)	Solvent	(%)
1	Pd_2dba_3	PCy ₃	Ir(ppy) ₃	Cs_2CO_3	MeCN	82
2	Pd ₂ dba ₃	PCy ₃ ·HBF ₄	Ir(ppy) ₃	Cs ₂ CO ₃	MeCN	87
3	Pd ₂ dba ₃	P ^t Bu ₃ ·HBF ₄	Ir(ppy) ₃	Cs_2CO_3	MeCN	51
4	Pd ₂ dba ₃	PPh ₃	Ir(ppy) ₃	Cs_2CO_3	MeCN	76
5	Pd ₂ dba ₃	$P(o-furan)_3$	Ir(ppy) ₃	Cs_2CO_3	MeCN	77
6	Pd ₂ dba ₃	$P(2-Me-Ph)_3$	Ir(ppy) ₃	Cs_2CO_3	MeCN	8
7	Pd ₂ dba ₃	P(3-OMe-Ph) ₃	Ir(ppy) ₃	Cs_2CO_3	MeCN	61
8	Pd ₂ dba ₃	DavePhos	Ir(ppy) ₃	Cs_2CO_3	MeCN	76
9	Pd ₂ dba ₃	CPhos	Ir(ppy) ₃	Cs_2CO_3	MeCN	51
10	Pd ₂ dba ₃	SPhos	Ir(ppy) ₃	Cs_2CO_3	MeCN	78
11	Pd ₂ dba ₃	RuPhos	Ir(ppy) ₃	Cs_2CO_3	MeCN	72
12	Pd ₂ dba ₃	CyJohnPhos	Ir(ppy) ₃	Cs_2CO_3	MeCN	78
13	Pd_2dba_3	XPhos	Ir(ppy) ₃	Cs_2CO_3	MeCN	61

5. Mechanism characterization:

a) Control experiments:

MeO´	OCO ₂ Me Ph +	Pd2 PCy3 Ph DHP Cs2 1b	dba ₃ (2.5 mol %) •HBF ₄ (10 mol %) ppy) ₃ (2 mol %) pCO ₃ , MeCN, Ar blue LEDs	Ph NeO 1aa	Ph
	Catalyst	Ligand	PC	Base	yield
entries	$\frac{(2.3 \text{ mor } 76)}{\text{Pd}_2\text{dba}_3}$	PCy ₃ ·HBF ₄	(2 mor 76) Ir(ppy) ₃	Cs_2CO_3	(%)
1	Х	\checkmark	\checkmark	\checkmark	0
2	\checkmark	\checkmark	×	\checkmark	9
3	\checkmark	×	\checkmark	\checkmark	5
4	\checkmark	\checkmark	\checkmark	×	0
5*	\checkmark	\checkmark	\checkmark	\checkmark	0
6*	\checkmark	\checkmark	×	\checkmark	0

* In dark.

The control experiments revealed that photo catalyst $Ir(ppy)_3$ itself could not finish the catalytic cycle while Pd_2dba_3 with ligand gave 9% GC-MS yields under visible light. Meanwhile, ligand $PCy_3 \cdot HBF_4$ was proved to be the key factor for high yield and lack of base or visible light completely inhibited the reaction. It can be inferred from the entry 2 and 6, a visible-light-mediated palladium catalyzed propargylic benzylation would be proceed, even in only 9% yield by GC-MS. However, the dual catalytic system with $Ir(ppy)_3$ would accelerate this process.

b) Radical capture experiments:

Radical capture product **2ab** was detected by GC-MS in 12% yield under standard conditions through radical inhibition experiments with TEMPO, while no product **2ab** was observed without Ir(ppy)₃. The results indicated that two possible pathway: 1) PC/Pd dual catalytic system accelerated the catalytic ability compared with visible-light-mediated palladium catalyzed propargylic benzylation, leading to high density of propargylic Pd(I) radical species;³ 2) As proposed by Xiao⁴ and Yu⁵ group, low-valent Ir(II) reduced the propargylic Pd(II) species to generate Pd(0) and propargylic radical species. However, according to our control experiments, visible light is necessary for the generation of propargylic palladium species, namely propargylic Pd(I) radical species or propargylic Pd(II) species. Meanwhile, trace β -H elimination byproduct in our reaction (monitored by GC-MS) revealed that low-valent propargylic Pd(I) radical species would be more favorable (see plausible mechanism: Path A). Even though we thought that the radical coupling process with propargylic Pd(I) radical species might be more favorable, however, the addition of benzyl radical to propargylic Pd(II) species could not be fully ruled out (see plausible mechanism: Path B).^{5,6}

c) Plausible mechanism:

Path A:

6. References:

[1] (a) Z.-S. Chen, X.-H. Duan, L.-Y. Wu, S. Ali, K.-G. Ji, P.-X. Zhou, X.-Y. Liu and Y.-M. Liang, *Chem. Eur. J.*, 2011, **17**, 6918; (b) Y. Miyazaki, B. Zhou, H. Tsuji and M. Kawatsura, *Org. Lett.*, 2020, **22**, 2049; (c) P. Wu, M. Jia, W. Lin and S. Ma, *Org. Lett.*, 2018, **20**, 554; (d) C. R. Reddy, S. Z. Mohammed and P. Kumaraswamya, *Org. Biomol. Chem.*, 2015, **13**, 8310.

[2] (a) Á. Gutiérrez-Bonet, J. C. Tellis, J. K. Matsui, B. A. Vara and G. A. Molander, ACS Catal., 2016, 6, 8004; (b) Á Gutiérrez-Bonet, C. Remeur, J. K. Matsui and G. A. Molander, J. Am. Chem. Soc., 2017, 139, 12251.

[3] Z.-Z. Zhou, J.-H. Zhao, X.-Y. Gou, X.-M. Chen and Y.-M. Liang, *Org. Chem. Front.*, 2019, 6, 1649.

[4] J. Xuan, T.-T. Zeng, Z.-J. Feng, Q.-H. Deng, J.-R. Chen, L.-Q. Lu, W.-J. Xiao and H. Alper, *Angew. Chem. Int. Ed.*, 2015, **54**, 1625.

[5] H.-H. Zhang, J.-J. Zhao and S. Yu, J. Am. Chem. Soc., 2018, 140, 16914.

[6] (a) S. B. Lang, K. M. O'Nele and J. A. Tunge, *J. Am. Chem. Soc.*, 2014, **136**, 13606; (b) J. Xuan, T.-T. Zeng, Z.-J. Feng, Q.-H. Deng, J.-R. Chen, L.-Q. Lu, W.-J. Xiao and H. Alper, *Angew. Chem. Int. Ed.*, 2015, **54**, 1625; (c) W.-M. Cheng, R. Shang, H.-Z. Yu and Y. Fu, *Chem. Eur. J.*, 2015, **21**, 13191; (d) S. B. Lang, K. M. O'Nele, J. T. Douglas and J. A.Tunge, *Chem. Eur. J.*, 2015, **21**, 18589; (e) C. Zheng, W.-M. Cheng, H.-L. Li, R.-S. Na and R. Shang, *Org. Lett.*, 2018, **20**, 2559.

7. Characterization Data of Products 1aa-1ma:

1aa: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 1.77-1.91 (m, 2H), 2.73-2.99 (m, 5H), 3.80 (s, 3H), 6.80-6.84 (dt, J_1 = 2.0 Hz, J_2 = 8.8 Hz, 4H), 7.16-7.23 (m, 4H), 7.25-7.33 (m, 8H); **¹³C NMR** (100 MHz, CDCl₃, δ ppm): 33.7, 33.9, 36.3, 41.6, 55.3, 83.0, 90.9, 113.8, 116.1, 125.8, 126.2, 128.1, 128.3, 128.5, 129.4, 132.9, 139.5, 142.0, 159.1; **HRMS** (ESI) calcd for C₂₅H₂₄O [M+H]⁺ m/z 341.1900, found 341.1903.

1ba: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 2.82-2.91 (m, 4H), 3.04-3.11 (m, 1H), 3.77 (s, 3H), 6.76-6.80 (dt, *J*₁ = 2.4 Hz, *J*₂ = 9.2 Hz, 4H), 7.21-7.24 (m, 4 H), 7.26-7.33 (m, 8H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 36.5, 41.0, 55.3, 83.3, 90.7, 113.8, 116.1, 126.3, 128.2, 129.4, 132.8, 139.6, 159.1;

HRMS (ESI) calcd for $C_{24}H_{22}O \ [M+H]^+ m/z \ 327.1743$, found 327.1747.

1ca: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 80/1;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 2.72-2.90 (m, 2H), 3.61-3.66 (m, 1H), 3.75 (s,3H), 4.05-4.07 (d, *J* = 8.4 Hz, 1H), 6.72-6.74 (d, *J* = 8.4 Hz, 2H), 7.05-7.07 (d, *J* = 8.4 Hz, 2H), 7.18-7.34 (m, 11H), 7.38-7.44 (m, 4H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 39.6, 39.9, 55.2, 55.4, 84.9, 89.9, 113.7, 116.0, 126.3, 126.4, 126.5, 128.0, 128.1, 128.2, 128.6, 129.0, 129.4, 132.6, 139.6, 142.7, 143.0, 159.0;

HRMS (ESI) calcd for $C_{30}H_{26}O \ [M+H]^+ \ m/z \ 403.2056$, found 403.2062.

1da: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.88-0.91 (t, *J* = 6.4 Hz, 3H), 1.30-1.31 (m, 4H), 1.43-1.62 (m, 4H), 2.74-2.89 (m, 3H), 3.79 (s, 3H), 6.79-6.81 (d, *J* = 8.8 Hz, 2H), 7.20-7.32 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 14.1, 22.6, 27.1, 31.7, 34.4, 34.6, 41.7, 55.3, 82.3, 91.5, 113.8, 116.2, 126.1, 128.1, 129.4, 132.8, 139.9, 159.0;

HRMS (ESI) calcd for $C_{22}H_{26}O \ [M+H]^+ \ m/z \ 307.2056$, found 307.2059.

1ea: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.86-0.90 (t, *J* = 6.8 Hz, 3H), 1.26-1.36 (m, 6H), 1.45-1.62 (m, 4H), 2.76-2.89 (m, 3H), 3.79 (s, 3H), 6.78-6.81 (dt, *J*₁ = 3.6 Hz, *J*₂ = 9.6 Hz, 2H), 7.20-7.32 (m, 7H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 14.1, 22.7, 27.4, 29.3, 29.5, 29.6, 31.9, 34.4, 34.6, 41.7, 55.2, 82.3, 91.5, 113.7, 116.2, 126.1, 128.1, 129.4, 132.8, 139.9, 159.0;

HRMS (ESI) calcd for $C_{23}H_{28}O [M+H]^+ m/z 321.2213$, found 321.2217.

1fa: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 0.86-0.89 (t, *J* = 6.8 Hz, 3H), 1.27-1.28 (m, 8H), 1.41-1.62 (m, 4H), 2.74-2.89 (m, 3H), 3.79 (s, 3H), 6.78-6.81 (dt, $J_1 = 2.8$ Hz, $J_2 = 8.8$ Hz, 2H), 7.19-7.32 (m, 7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 14.1, 22.7, 27.4, 29.3, 29.4, 31.9, 34.4, 34.6, 41.7, 55.2, 82.3, 91.5, 113.7, 116.2, 126.1, 128.1, 129.4, 132.8, 139.9, 159.0;

HRMS (ESI) calcd for $C_{24}H_{30}O [M+H]^+ m/z 335.2369$, found 335.2374.

1ga: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.86-0.89 (t, J = 6.8 Hz, 3H), 1.26-1.27 (m, 12H), 1.42-1.63 (m, 4H), 2.74-2.89 (m, 3H), 3.79 (s, 3H), 6.79-6.82 (d, J = 14.4 Hz, 2H), 7.20-7.33 (m, 7H); ¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 14.1, 22.7, 27.4, 29.3, 29.5, 29.6, 31.9, 34.4, 34.6, 41.7, 55.2, 82.3, 91.5, 113.7, 116.2, 126.1, 128.1, 129.4, 132.8, 139.9, 159.0; **HRMS** (ESI) calcd for C₂₆H₃₄O [M+H]⁺ m/z 363.2682, found 363.2688.

1ha: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **1H NMR** (400 MH_Z CDCl₃, δ ppm): 1.47-1.84 (m, 6H), 2.78-2.89 (m, 3H), 3.52-3.55 (t, J = 6.4 Hz, 2H), 3.79 (s, 3H), 6.78-6.88 (dt, J_1 = 2.8 Hz, J_2 = 9.6 Hz, 2H), 7.20-7.33 (m, 7H), **1**³**C NMR** (100 MHz, CDCl₃, δ ppm): 24.8, 32.4, 33.7, 34.3, 41.6, 44.9, 55.2, 82.6, 90.8, 113.8, 116.0, 126.3, 127.2, 128.1, 128.8, 129.3, 132.8, 139.6, 159.0; **HRMS** (ESI) calcd for C₂₁H₂₃ClO [M+H]⁺ m/z 327.1510, found 327.1515.

1ia: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.26-1.38 (m, 10H), 1.46-1.62 (m, 4H), 2.00-2.06 (dd, $J_I = 6.8$ Hz, $J_2 = 14.0$ Hz, 2H), 2.74-2.89 (m, 3H), 3.79 (s,3H), 4.91-5.01 (m, 2H), 5.76-5.86 (m,1H), 6.78-6.81 (d, J = 8.8 Hz, 2H), 7.20-7.33 (m, 7H),

¹³C NMR (100 MHz, CDCl₃, δ ppm): 27.4, 28.9, 29.1, 29.4, 29.5, 33.8, 34.4, 34.6, 41.7, 55.2, 82.3, 91.5, 113.7, 114.1, 116.2, 126.1, 127.2, 128.1, 128.8, 132.8, 139.2, 139.9, 159.0;
HRMS (ESI) calcd for C₂₇H₃₄O [M+H]⁺ m/z 375.2682, found 375.2689.

1ja: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 0.89-0.96 (m, 6H), 1.26-1.32 (m, 2H), 1.48-1.54(m, 1H), 1.90-2.00 (m, 1H), 2.79-2.89 (m, 2H), 3.79 (s, 3H), 6.78-6.81 (dt, J_1 = 2.8 Hz, J_2 = 9.6 Hz, 2H), 7.20-7.33 (m,7H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 21.6, 23.5, 26.1, 32.5, 42.1, 44.0, 55.2, 82.3, 91.3, 113.7, 116.2, 126.2, 128.1, 129.4, 132.8, 139.9, 159.0;

HRMS (ESI) calcd for $C_{21}H_{24}O [M+H]^+ m/z 293.1900$, found 293.1904.

1ka: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.16-1.45 (m, 6H), 1.66-1.80 (m, 4H), 1.94-1.96 (d, *J* = 11.2 Hz, 1H), 2.65-2.69 (m, 1H), 2.79-2.90 (m, 2H), 3.78 (s, 3H), 6.77-6.81 (dt, *J*₁ = 3.6 Hz, *J*₂ = 11.6 Hz, 2H), 7.18-7.32 (m, 7H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 26.3, 26.4, 26.5, 28.9, 31.9, 38.9, 40.8, 41.0, 55.2, 83.3, 90.2, 113.7, 116.4, 126.0, 128.1, 129.2, 132.8, 140.4, 159.0;

HRMS (ESI) calcd for $C_{23}H_{26}O [M+H]^+ m/z 319.2056$, found 319.2060.

11a: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 80/1; **¹H NMR** (400 MH_Z CDCl₃, δ ppm): 2.76-2.89 (m, 4H), 2.99-3.07 (m, 1H), 3.78 (s, 3H), 3.79 (s, 3H), 6.77-6.79 (d, J = 8.8 Hz, 2H), 6.84-6.86 (d, J = 8.8 Hz, 2H), 7.19-7.32 (m, 9H); ¹³C NMR (100 MHz, CDCl₃, δ ppm): 36.6, 40.1, 40.9, 55.2, 83.2, 90.9, 113.6, 113.7, 116.1, 126.2, 128.1, 129.4, 130.3, 131.6, 132.7, 139.6, 158.1, 159.0; HRMS (ESI) calcd for C₂₅H₂₄O₂ [M+H]⁺ m/z 357.1849, found 357.1854.

1ma: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 2.74-2.91 (m, 4H), 3.00-3.07 (m, 1H), 3.78 (s, 3H), 6.77-6.81 (dt, $J_1 = 2.8$ Hz, $J_2 = 11.6$ Hz, 2H), 7.19-7.33 (m, 11H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 36.3, 40.2, 41.1, 55.2, 83.6, 90.2, 113.8, 115.8, 126.4, 128.2, 129.3, 130.7, 132.1, 132.7, 138.0, 139.3, 159.2;

HRMS (ESI) calcd for $C_{24}H_{21}CIO \ [M+H]^+ m/z \ 361.1354$, found 361.1359.

1na: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.76-1.88 (m, 2H), 2.74-2.83 (m, 4H), 2.91-2.98 (m, 1H), 3.80 (s, 3H), 6.81-6.83 (d, *J* = 8.8 Hz, 2H), 6.95-6.99 (t, *J* = 8.8 Hz, 2H), 7.16-7.32 (m, 9H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 33.7, 34.0, 36.3, 40.7, 55.3, 83.2, 90.5, 113.8, 114.7-114.9 (d, *J* = 20.9 Hz), 115.9, 125.8, 127.1, 128.4-128.5 (d, *J* = 15.4 Hz), 130.6-130.7 (d, *J* = 7.7 Hz), 132.8, 135.1, 141.9, 159.2;

¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -117.2 (s, 1F);

HRMS (ESI) calcd for C₂₅H₂₃FO [M+H]⁺ m/z 359.1806, found 359.1879.

10a: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 1.83-1.88 (m, 2H), 2.75-2.99 (m, 5H), 3.81 (s, 3H), 6.82-6.84 (d, *J* = 8.8 Hz, 2H), 7.18-7.31 (m, 7H), 7.36-7.38 (d, *J* = 8.0 Hz, 2H), 7.53-7.55 (d, *J* = 8.0 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 33.6, 33.7, 36.5, 41.3, 55.3, 83.5, 90.0, 113.9, 115.7, 125.0-125.1 (q, J = 3.7 Hz, CF3), 125.9, 128.4, 128.5, 129.6, 132.8, 141.7, 143.6, 159.2; ¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -62.3 (s, 3F); HRMS (ESI) calcd for C₂₆H₂₃F₃O [M+H]⁺ m/z 409.1774, found 409.1771.

1pa: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.80-1.87 (m, 2H), 2.73-2.99 (m, 5H), 3.77 (s, 3H), 3.81 (s, 3H), 6.75-6.85 (m, 5H), 7.16-7.34 (m, 8H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 33.7, 33.8, 36.3, 41.6, 55.1, 55.3, 83.0, 90.9, 111.8, 113.8, 114.9, 116.1, 121.8, 125.8, 128.3, 128.5, 129.0, 132.9, 141.1, 142.0, 159.1, 159.4;

HRMS (ESI) calcd for $C_{26}H_{26}O_2$ [M+H]⁺ m/z 371.2006, found 371.2004.

1qa: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.87-1.94 (m, 2H), 2.76-3.07 (m, 5H), 3.80 (s, 3H), 6.79-6.83 (m, 2H), 7.16-7.35 (m, 11H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 32.3, 33.7, 36.6, 39.1, 55.3, 83.0, 90.4, 113.8, 116.0, 125.8, 126.4, 127.8, 128.3, 128.5, 129.4, 131.7, 132.8, 134.2, 137.3, 141.9, 159.1;
HRMS (ESI) calcd for C₂₅H₂₃ClO [M+H]⁺ m/z 375.1510, found 375.1509.

8. Characterization Data of Products 2aa-2la:

2aa: according to GP; colorless oil; Eluent: n-hexane;

¹H NMR (400 MH_z CDCl₃, δ ppm): 2.83-2.92 (m, 4H), 3.10-3.13 (m, 1H), 7.21-7.33 (m, 15H),
¹³C NMR (100 MHz, CDCl₃, δ ppm): 36.4, 41.0, 83.6, 92.3, 123.8, 126.3, 127.6, 128.1, 128.2, 129.4, 131.4, 139.4;

2ba: according to **GP**; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 2.30-2.31 (d, *J* = 2.4 Hz, 3H), 2.82-2.88 (m, 4H), 3.04-3.13 (m, 1H), 7.04-7.06 (d, *J* = 8.0 Hz, 2H), 7.17-7.33 (m, 12H),

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 21.4, 36.4, 41.0, 83.6, 91.5, 120.7, 126.3, 128.1, 128.9, 129.4, 131.3, 137.5, 139.5;

HRMS (ESI) calcd for $C_{24}H_{22}$ [M+H]⁺ m/z 311.1794, found 311.1800.

2ca: according to **GP**; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 0.90-0.93 (t, *J* = 7.2 Hz, 3H), 1.56-1.65 (m, 2H), 2.53-2.56 (t, *J* = 8.0 Hz, 2H), 2.82-2.91 (m, 4H), 3.04-3.11 (m, 1H), 7.05-7.07 (d, *J* = 8.0 Hz, 2H), 7.19-7.33 (m, 12H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 13.7, 24.4, 36.4, 37.9, 41.0, 83.6, 91.5, 121.0, 126.3, 128.1, 128.3, 129.4, 131.3, 139.5, 142.3;

HRMS (ESI) calcd for C₂₆H₂₆ [M+H]⁺ m/z 339.2107, found 339.2113.

2da: according to GP; colorless oil; Eluent: *n*-hexane;

¹**H** NMR (400 MH_Z CDCl₃, δ ppm): 0.86-0.89 (t, *J* = 6.8 Hz, 3H), 1.26-1.34 (m, 4H), 1.54-1.61 (m, 2H), 2.54-2.57 (t, *J* = 8.0 Hz, 2H), 2.82-2.91 (m, 4H), 3.04-3.11 (m, 1H), 7.05-7.07 (d, *J* = 6.8 Hz, 2H), 2H),

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 14.0, 22.5, 31.0, 31.4, 35.8, 36.4, 41.0, 83.6, 91.5, 121.0, 126.3, 128.1, 128.2, 129.4, 131.3, 139.5, 142.6;

HRMS (ESI) calcd for C₂₈H₃₀ [M+H]⁺ m/z 367.2420, found 367.2426.

2ea: according to GP; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 1.29 (s, 9H), 2.82-2.91 (m, 4H), 3.04-3.11 (m, 1H), 7.20-7.32 (m, 14H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 31.2, 34.7, 36.4, 41.0, 83.5, 91.6, 120.8, 125.1, 126.3, 128.1, 129.4, 131.1, 139.5, 150.7;

HRMS (ESI) calcd for $C_{27}H_{28}$ [M+H]⁺ m/z 353.2264, found 353.2269.

2fa: according to GP; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 2.85-2.94 (m, 4H), 3.08-3.15 (m, 1H), 7.22-7.57 (m, 19H); ¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 36.5, 40.9, 83.4, 93.1, 122.8, 126.4, 126.8, 127.0, 127.5, 128.2, 128.8, 129.4, 131.8, 139.4, 140.3, 140.5;

HRMS (ESI) calcd for $C_{29}H_{24}$ [M+H]⁺ m/z 373.1951, found 373.1957.

2ga: according to **GP**; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 2.81-2.92 (m, 4H), 3.04-3.12 (m, 1H), 7.16-7.33 (m, 14H); ¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 36.5, 40.8, 82.6, 93.4, 122.3, 126.4, 128.2, 128.4, 129.3; **HRMS** (ESI) calcd for $C_{23}H_{19}Cl$ [M+H]⁺ m/z 331.1248, found 331.1254.

2ha: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1; **¹H NMR** (400 MH_z CDCl₃, δ ppm): 2.76-2.90 (m, 4H), 2.99-3.06 (m, 1H), 3.80 (s, 3H), 6.84-6.86 (d, *J* = 8.8 Hz, 2H), 6.92-6.97 (m, 2H), 7.12-7.33 (m, 9H);

¹³C NMR (100 MHz, CDCl₃, δ ppm): 36.6, 40.0, 40.8, 55.2, 82.5, 92.1, 113.6, 115.2, 115.4, 119.9, 126.3, 128.2, 129.3, 130.3, 131.5, 133.1, 133.2, 139.5, 158.2, 160.9-163.3 (d, *J* = 246.7 Hz);
¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -112.2 (s, 1F).

HRMS (ESI) calcd for $C_{24}H_{21}FO \ [M+H]^+ m/z \ 345.1649$, found 345.1653.

2ia: according to GP; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 2.29 (s, 3H), 2.82-2.91 (m, 4H), 3.04-3.11 (m, 1H), 7.05-7.33 (m, 14H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 21.2, 36.4, 40.9, 83.7, 91.9, 123.6, 126.3, 128.0, 128.2, 128.5, 128.5, 129.4, 132.0, 137.7, 139.5;

HRMS (ESI) calcd for $C_{24}H_{22}$ [M+H]⁺ m/z 311.1794, found 311.1799.

2ja: according to **GP**; colorless oil; Eluent: *n*-hexane/EtOAc = 100/1;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 2.83-2.92 (m, 4H), 3.05-3.12 (m, 1H), 3.77 (s, 3H), 6.80-6.90 (m, 3H), 7.14-7.33 (m, 11H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 36.4, 40.9, 55.2, 83.5, 92.2, 114.1, 116.4, 123.9, 124.8, 126.3, 128.2, 129.2, 129.4, 139.4, 159.2;

HRMS (ESI) calcd for $C_{24}H_{22}O [M+H]^+ m/z 327.1743$, found 327.1747.

2ka: according to GP; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_z CDCl₃, δ ppm): 2.83-2.91 (m, 4H), 3.07-3.14 (m, 1H), 6.90-6.98 (dd, J_I = 3.6 Hz, J_2 = 5.2 Hz, 1H), 7.03-7.04 (d, J = 2.8 Hz, 1H), 7.14-7.16 (d, J = 6.0 Hz, 1H), 7.21-7.33 (m, 10H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 36.7, 40.7, 96.3, 123.9, 126.0, 126.4, 126.7, 128.2, 129.3, 130.9, 139.2;

HRMS (ESI) calcd for $C_{21}H_{18}S [M+H]^+ m/z 303.1202$, found 303.1205.

2la: according to **GP**; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.52-1.61 (m, 4H), 1.99-2.15 (m, 4H), 2.73-3.02 (m, 5H), 5.87-5.93 (m, 1H), 7.12-7.33 (m, 10H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 21.6, 22.3, 25.5, 29.3, 36.2, 41.0, 85.3, 89.4, 120.9, 126.2, 128.1, 129.3, 133.2, 139.6;

HRMS (ESI) calcd for $C_{23}H_{24}$ [M+H]⁺ m/z 301.1951, found 301.1955.

3aa: according to GP; colorless oil; Eluent: *n*-hexane;

¹**H NMR** (400 MH_Z CDCl₃, δ ppm): 1.80-1.88 (m, 2H), 2.74-2.98 (m, 5H), 5.91 (s, 2H), 6.58-6.77 (m, 3H), 7.16-7.40 (m, 10H);

¹³**C NMR** (100 MHz, CDCl₃, δ ppm): 33.7, 34.1, 36.1, 41.1, 83.4, 92.4, 100.8, 107.9, 109.7, 122.3, 125.8, 127.6, 128.2, 128.3, 128.5, 131.5, 133.2, 141.9, 146.0, 147.4;

HRMS (ESI) calcd for $C_{25}H_{22}O_2$ [M+H]⁺ m/z 355.1693, found 355.1697.

9. ¹H NMR and ¹³C NMR Spectra of the Products 1aa-1ma:

70

60 50

40 30 20 10 0

210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm) -500

-10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (gpm)

-0

50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm)

10. ¹H NMR and ¹³C NMR Spectra of the Products 2aa-2la, 3aa:

-10

70

60 50

30 20 10

40

80

210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) --500

-10

0

80 70 60 50 40 30 20 10

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

