Pd/Xiang-Phos-catalyzed Enantioselective Intermolecular Carboheterofunctionalization of Norbornene and Norbornadiene

Mengna Tao, ^a Wenbo Li *a and Junliang Zhang $^{*a,\,b,\,c}$

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
^b Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
^c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032 P. R. China

E-mail: <u>jlzhang@chem.ecnu.edu.cn</u> ; <u>wbli@chem.ecnu.edu.cn</u> junliangzhang@fudan.edu.cn

Table of Contents

1	General Information
2	Optimization of the intermolecular carboheterofunctionalization
2.1	Screened representative Sadphos ligands on the intermolecular carboamination of
no	rbornene
2.2	2 Optimization of the intermolecular carboamination of norbornene
2.3	³ Optimization of the intermolecular carboetherification of norborneneS7
3	Experimental procedures
3.1	General procedure for the intermolecular carboamination using 2-bromoaniline
de	rivatives (GP1)
3.2	2 General procedure for the intermolecular carboetherification using 2-bromophenol
de	rivatives (GP2)
4	Gram Scale Preparation of 3aS10
5	General Data for 3, 5, 7 and 8S11
6	X-ray structure of 3a and 5eS31
7	Confirmation of the absolute configuration of 3t, 3u, 7 and 8S32
8	References
9	¹ H, ¹³ C, ¹⁹ F Spectra for 3, 5 and 7S34

1. General Information

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere; materials obtained from commercial suppliers were used directly without further purification. The $[\alpha]_D$ was recorded using PolAAr 3005 High Accuracy Polarimeter. ¹H NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in chloroform-d₃; ¹³C NMR spectra were recorded on a Bruker 101 MHz or 126 MHz spectrometer in chloroform-d₃; ¹⁹F NMR spectra were recorded on a Bruker 376 MHz spectrometer in chloroform-d₃. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. The data is being reported as (s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration).

Trichloromethane (CHCl₃), dichloromethane, 1,2-dichloroethane and acetonitrile were freshly distilled from CaH₂; tetrahydrofuran (THF), toluene and ether were dried with sodium and benzophenone, and distilled before use.

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. 2-Br-aniline derivatives **1a**-**1t** were synthesized according to the corresponding literature^[1]. Other reagents and solvents were used as received from commercial sources (*Energy Chemical, J&K*[®], *Adamas-beta*[®], *Bidepharm*) without further purification. The enantionmeric excesses of the products were determined by chiral stationary phase HPLC using a Chiralpak IB, IC, IF, OJ-H.

2. Optimization of the intermolecular carboheterofunctionalizations

2.1 Scheme S1. Screened representative **Sadphos** ligands on the intermolecular carboamination of norbornene and **1a**

2.2 Table S1. Detailed optimization of the enantioselective intermolecular carboamination of norbornene and $1a^{[a]}$

Entry	Pd	L*	Base	Additive	Solvent	Temp. (°C)	$\begin{array}{c} \text{Yield} (\text{Ee}) \\ (\%)^{[b,c]} \end{array}$
1	Pd ₂ (dba) ₃	L7	CH ₃ OLi	-	MTBE	100	33(18)
2	Pd ₂ (dba) ₃	L7	LiO ^t Bu	-	MTBE	100	51(16)
3	Pd ₂ (dba) ₃	L7	EtONa	-	MTBE	100	49(39)
4	Pd ₂ (dba) ₃	L7	NaO ^t Bu	-	MTBE	100	65(26.2)
5	Pd ₂ (dba) ₃	L7	KO ^t Bu	-	MTBE	100	52(31)
6	Pd ₂ (dba) ₃	L7	CsF	-	MTBE	100	37(38.6)
7	Pd ₂ (dba) ₃	L7	Na ₂ CO ₃	-	MTBE	100	29(-9)
8	Pd ₂ (dba) ₃	L7	K_3PO_4	-	MTBE	100	55(43.4)
9	Pd ₂ (dba) ₃	L7	DABCO	-	MTBE	100	0
10	Pd ₂ (dba) ₃	L7	<i>i</i> Pr ₂ NEt	-	MTBE	100	0
11	Pd ₂ (dba) ₃	L7	NaOPh	-	MTBE	100	71(55.5)
12	Pd ₂ (dba) ₃	L7	NaOPh	-	2-Me-THF	100	42(22.7)
13	Pd ₂ (dba) ₃	L7	NaOPh	-	1,4-dioxane	100	34(12.5)
14	Pd ₂ (dba) ₃	L7	NaOPh	-	DCM	100	82(79.7)
15	Pd ₂ (dba) ₃	L7	NaOPh	-	DCE	100	84(77.9)
16	Pd ₂ (dba) ₃	L7	NaOPh	-	CHCl ₃	100	75(59.8)
17	Pd ₂ (dba) ₃	L7	NaOPh	-	Toluene	100	79(66.9)
18	Pd ₂ (dba) ₃	L7	NaOPh	-	PhCF ₃	100	80(75.6)

Supporting information								
19	$Pd_2(dba)_3$	L7	NaOPh	-	MeOH	100	63(57.1)	
20	Pd(dba) ₂	L7	NaOPh	-	DCM	100	66(75)	
21	Pd ₂ (dba) ₃ •CHCl ₃	L7	NaOPh	-	DCM	100	77(75)	
22	Pd(OAc) ₂	L7	NaOPh	-	DCM	100	69(71)	
23	Pd A	L7	NaOPh	-	DCM	100	73(75)	
24	Pd B	L7	NaOPh	-	DCM	100	82(77)	
25	Pd C	L7	NaOPh	-	DCM	100	77(71.7)	
26	Pd D	L7	NaOPh	-	DCM	100	25(83.3)	
27	Pd E	L7	NaOPh	-	DCM	100	59(72.3)	
28	Pd B	L7	NaOPh	3 Å	DCM	100	75(83.5)	
29	Pd B	L7	NaOPh	4 Å	DCM	100	78(89.1)	
30	Pd B	L7	NaOPh	5 Å	DCM	100	69(69.3)	
31	Pd B	L1	NaOPh	4 Å	DCM	100	53(-8.4)	
32	Pd B	L2	NaOPh	4 Å	DCM	100	73(66.1)	
33	Pd B	L3	NaOPh	4 Å	DCM	100	54(51.7)	
34	Pd B	L4	NaOPh	4 Å	DCM	100	66(56.5)	
35	Pd B	L5	NaOPh	4 Å	DCM	100	33(81.3)	
36	Pd B	L6	NaOPh	4 Å	DCM	100	41(80.8)	
37	Pd B	L8	NaOPh	4 Å	DCM	100	71(78.6)	
38 ^[d]	Pd B	L7	NaOPh	4 Å	DCM	80	79(92)	
39 ^[e]	Pd B	L7	NaOPh	4 Å	DCM	80	41(94.5)	
40 ^[d]	Pd B	L7	NaOPh	4 Å	DCM	60	50(97)	
41 ^[d]	Pd B	L7	NaOPh	4 Å	DCM	50	27(98)	
42 ^[d]	Pd B	L7	NaOPh	4 Å	DCM	25	trace	

[a] Unless otherwise specified, all reactions were carried out with **1a** (0.2 mmol), **2** (4 equiv.), [Pd] source (5 mol%), *N*-**Me-Xiang-Phos** (12 mol%), Base (2 equiv.), additive (50 mg) in solvent (0.2 M) for 24 hours. [b] Yield of isolated product. [c] Determined by chiral HPLC. [d] **L7** was added to 20 mol%. [e] 2 mol% [Pd] and 10 mol% **L7** were employed.

2.3 Table S2. Detailed optimization of the enantioselective intermolecular carboetherification of norbornene and $4a^{[a]}$

Entry	Pd	L*	Base	Additive	Solvent	Temp. (°C)	$\begin{array}{c} \text{Yield} (\text{Ee}) \\ (\%)^{[b,c]} \end{array}$
1	Pd ₂ (dba) ₃	L1	NaOPh	-	MTBE	100	trace
2	Pd ₂ (dba) ₃	L2	NaOPh	-	MTBE	100	64(70)
3	Pd ₂ (dba) ₃	L3	NaOPh	-	MTBE	100	44(62)
4	Pd ₂ (dba) ₃	L4	NaOPh	-	MTBE	100	70(61)
5	Pd ₂ (dba) ₃	L5	NaOPh	-	MTBE	100	trace
6	Pd ₂ (dba) ₃	L6	NaOPh	-	MTBE	100	trace
7	Pd ₂ (dba) ₃	L7	NaOPh	-	MTBE	100	45(72)
8	Pd ₂ (dba) ₃	L8	NaOPh	-	MTBE	100	51(64)
9	Pd ₂ (dba) ₃	L2	CH ₃ ONa	-	MTBE	100	11(58)
10	Pd ₂ (dba) ₃	L2	EtONa	-	MTBE	100	trace
11	Pd ₂ (dba) ₃	L2	NaO ^t Bu	-	MTBE	100	15(89)
12	Pd ₂ (dba) ₃	L2	HCOONa	-	MTBE	100	trace
13	Pd ₂ (dba) ₃	L2	CH ₃ OLi	-	MTBE	100	trace
14	Pd ₂ (dba) ₃	L2	LiO ^t Bu	-	MTBE	100	trace
15	Pd ₂ (dba) ₃	L2	KO ^t Bu	-	MTBE	100	N.D.
16	Pd ₂ (dba) ₃	L2	Na ₂ CO ₃	-	MTBE	100	N.D.
17	Pd ₂ (dba) ₃	L2	K_3PO_4	-	MTBE	100	42(50)
18	Pd ₂ (dba) ₃	L2	K_2CO_3	-	MTBE	100	45(49)
19	Pd ₂ (dba) ₃	L2	Cs_2CO_3	-	MTBE	100	50(44)
20	Pd ₂ (dba) ₃	L2	CsF	-	MTBE	100	49(48)

			11 0	·				
21	$Pd_2(dba)_3$	L2	DABCO	-	MTBE	100	N.D.	
22	Pd ₂ (dba) ₃	L2	<i>i</i> Pr ₂ NEt	-	MTBE	100	N.D.	
23	$Pd_2(dba)_3$	L2	NaO ^t Bu	-	THF	100	N.D.	
24	$Pd_2(dba)_3$	L2	NaO ^t Bu	-	2-Me-THF	100	N.D.	
25	Pd ₂ (dba) ₃	L2	NaO ^t Bu	-	1,4-dioxane	100	N.D.	
26	$Pd_2(dba)_3$	L2	NaO ^t Bu	-	DME	100	29(25)	
27	$Pd_2(dba)_3$	L2	NaO ^t Bu	-	DCM	100	18(83)	
28	Pd ₂ (dba) ₃	L2	NaO ^t Bu	-	DCE	100	22(80)	
29	$Pd_2(dba)_3$	L2	NaO ^t Bu	-	CHCl ₃	100	15(74)	
30	$Pd_2(dba)_3$	L2	NaO ^t Bu	-	Toluene	100	16(85)	
31	Pd ₂ (dba) ₃	L2	NaO ^t Bu	-	PhCF ₃	100	14(77.7)	
32	Pd ₂ (dba) ₃	L2	NaOtBu	-	MeOH	100	trace	
33	$Pd_2(dba)_3$	L2	NaO ^t Bu	3 Å	MTBE	100	40(86)	
34	Pd ₂ (dba) ₃	L2	NaO ^t Bu	4 Å	MTBE	100	38(87)	
35	Pd ₂ (dba) ₃	L2	NaO ^t Bu	5 Å	MTBE	100	45(64)	
36	Pd(dba) ₂	L2	NaO ^t Bu	4 Å	MTBE	100	29(86)	
37	Pd ₂ (dba) ₃ •CHCl ₃	L2	NaO ^t Bu	4 Å	MTBE	100	41(83)	
38	Pd(OAc) ₂	L2	NaO ^t Bu	4 Å	MTBE	100	23(85)	
39	Pd A	L2	NaO ^t Bu	4 Å	MTBE	100	trace	
40	Pd B	L2	NaO ^t Bu	4 Å	MTBE	100	60(90)	
41	Pd C	L2	NaO ^t Bu	4 Å	MTBE	100	55(83)	
42	Pd D	L2	NaO ^t Bu	4 Å	MTBE	100	N.D.	
43	Pd E	L2	NaO ^t Bu	4 Å	MTBE	100	26(86)	
44	Pd B	L7	NaO'Bu	4 Å	MTBE	100	56(93)	
45 ^[d]	Pd B	L7	NaO ^t Bu	4 Å	MTBE	100	50(86)	
46 ^[e]	Pd B	L7	NaO'Bu	4 Å	MTBE	100	68(93)	

_

[a] Unless otherwise specified, all reactions were carried out with **4a** (0.2 mmol), **2** (4 equiv.), [Pd] source (4 mol%), *N*-**Me-Xiang-Phos** (8 mol%), Base (2 equiv.), additive (50 mg) in solvent (0.2 M) for 36 hours. [b] Yield of isolated product. [c] Determined by chiral HPLC. [d] 4 mol% [Pd] and 10 mol% **L7** were employed. [e] 5 mol% [Pd] and 12 mol% **L7** were employed.

3. Experimental procedures^[2]

3.1 General procedure for the intermolecular carboamination using 2-bromoaniline derivatives (GP1)

Activated 4 Å (50 mg), Pd B (5 mol%) and (*S*, *R*_{*S*})-*N*-Me-X6 (20 mol%) were added in a sealed tube. The flask was evacuated and refilled with argon. Then 2-Br-anilines 1 (0.2 mmol) and dry DCM (1 mL) were added to the tube. NaOPh (2 equiv.) was subsequently added under a flow of argon, followed by 2 or 6 (4 equiv.). The mixture was stirred at 80 °C for 24-36 h. After the reaction was completed (monitored by TLC), solvent was removed under reduced pressure. The crude product was then purified by flash column chromatography on silica gel using hexane/EtOAc as the eluent to afford the desired product 3 or 7.

3.2 General procedure for the intermolecular carboetherification using 2-bromophenol derivatives (GP2)

Activated 4 Å (75 mg), Pd **B** (5 mol%), (*S*, *R_S*)-*N*-**Me-X6** (12 mol%) were added in a sealed tube. The flask was evacuated and refilled with argon. Then 2-Br-phenols **4** (0.3 mmol) and dry MTBE (1.5 mL) were added to the tube. NaO'Bu (2 equiv.) was subsequently added under a flow of argon, followed by **2** or **6** (4 equiv.). The mixture was stirred at 100 °C for 36-48 h. After the reaction was completed (monitored by TLC), solvent was removed under reduced pressure. The crude product was then purified by flash column chromatography on silica gel using hexane/Et₂O as the eluent to afford the desired product **5** or **8**.

4. Gram Scale Preparation of 3a

Activated 4 Å (500 mg), Pd B (2.5 mol%, 69 mg) and (*S*, *R*_{*S*})-*N*-**Me-X6** (10 mol%, 356 mg) were added in a sealed tube. The flask was evacuated and refilled with argon. Then *N*-(2-bromophenyl)-4-methylbenzenesulfonamide **1a** (5 mmol, 1.63 g) and dry DCM (10 mL) were added to the tube. NaOPh (2 equiv., 1.16 g) was subsequently added under a flow of argon, followed by **2** (4 equiv., 1.88 g). The mixture was stirred at 80 °C for 5 days. After the reaction was completed (monitored by TLC), solvent was removed under reduced pressure. The crude product was then purified by flash column chromatography on silica gel using hexane/EtOAc (8:1) as the eluent to afford the desired product **3a** (1.27 g, 75% yield, 89% *ee*).

5. General Data for 3, 5, 7 and 8

(1S,4R,4aR,9aR)-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3a; white solid (hexane/EtOAc = 8:1, 54 mg, 79% isolated yield); m.p. = 165-167 °C; $[\alpha]_D^{20}$ = 110.018 (*c* = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.15-7.11 (m, 1H), 7.02 (d, *J* = 7.4 Hz, 1H), 6.94 (td, *J* = 7.4, 0.9 Hz, 1H), 3.96 (d, *J* = 8.1 Hz, 1H), 3.08 (d, *J* = 8.1 Hz, 1H), 2.75 (d, *J* = 1.6 Hz, 1H), 2.34 (s, 3H), 2.24 (s, 1H), 1.60-1.58 (m, 2H), 1.37-1.35 (m, 1H), 1.30-1.27 (m, 2H), 1.15-1.12 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.72, 143.37, 134.95, 133.96, 129.55, 127.73, 127.06, 124.84, 123.63, 114.14, 69.78, 50.42, 43.89, 43.05, 32.22, 28.33, 25.29, 21.44. Enantiomeric excess: 92%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 93/7; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 21.4 min, second peak: t_R = 22.6 min; HRMS (ESI) m/z calcd. for C₂₀H₂₁NNaO₂S [M+Na]⁺ = 362.1185, found = 362.1186.

(1S,4R,4aR,9aR)-6-fluoro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3b; white solid (hexane/EtOAc = 8:1, 70 mg, 98% isolated yield); m.p. = 135-136 °C; $[\alpha]_D^{20}$ = 181.052 (*c* = 0.625, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.3 Hz, 2H), 7.54 (dd, *J* = 8.9, 4.6 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 2H), 6.83 (td, *J* = 8.8, 2.7 Hz, 1H), 6.71 (dd, *J* = 8.1, 2.5 Hz, 1H), 3.96 (d, *J* = 8.1 Hz, 1H), 3.04 (d, *J* = 8.1 Hz, 1H), 2.73 (s, 1H), 2.37 (s, 3H), 2.22 (s, 1H), 1.61-1.58 (m, 2H), 1.37-1.34 (m, 1H), 1.29-1.26 (m, 2H), 1.18-1.15 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.69 (d, *J* = 243.4 Hz), 143.92, 139.45 (d, *J* = 2.0 Hz), 136.11 (d, *J* = 8.1 Hz), 134.56, 129.63, 127.14, 115.25 (d, *J* = 8.1 Hz), 114.29 (d, *J* = 23.2 Hz), 111.91 (d, *J* = 24.2 Hz), 70.29, 50.38, 43.96, 42.98, 32.32, 28.27, 25.24,

21.49. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.80. Enantiomeric excess: 91%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 18.6 min, second peak: t_R = 19.6 min; HRMS (ESI) m/z calcd. for C₂₀H₂₀FNNaO₂S [M+Na]⁺ = 380.1091, found = 380.1078.

(1S,4R,4aR,9aR)-6-chloro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3c; white solid (hexane/EtOAc = 8:1, 64 mg, 86% isolated yield); m.p. = 112-113 °C; $[\alpha]_D^{20}$ = 189.059 (*c* = 0.542, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.3 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.10 (dd, *J* = 8.6, 2.1 Hz, 1H), 6.98 (d, *J* = 1.4 Hz, 1H), 3.96 (d, *J* = 8.1 Hz, 1H), 3.04 (d, *J* = 8.1 Hz, 1H), 2.74 (s, 1H), 2.37 (s, 3H), 2.23 (s, 1H), 1.61-1.59 (m, 2H), 1.37-1.34 (m, 1H), 1.29-1.26 (m, 2H), 1.18-1.16 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.04, 142.19, 136.00, 134.61, 129.70, 128.69, 127.77, 127.08, 125.06, 115.17, 70.22, 50.22, 43.91, 43.03, 32.30, 28.27, 25.23, 21.50. Enantiomeric excess: 96%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 16.1 min, second peak: t_R = 16.8 min; HRMS (ESI) m/z calcd. for C₂₀H₂₀ClNNaO₂S [M+Na]⁺ = 396.0795, found = 396.0788.

(1S,4R,4aR,9aR)-6-methyl-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3d; white solid (hexane/EtOAc = 8:1, 39 mg, 55% isolated yield); m.p. = 111-112 °C; $[\alpha]_D^{20}$ = 137.697 (*c* = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 1H), 7.19 (d, *J* = 8.1 Hz, 2H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.82 (s, 1H), 3.92 (d, *J* = 8.1 Hz, 1H), 3.02 (d, *J* = 8.1 Hz, 1H), 2.72 (s, 1H), 2.35 (s, 3H), 2.25 (s, 3H), 2.22 (s, 1H), 1.60-1.57 (m, 2H), 1.36 (d, *J* = 10.8 Hz, 1H), 1.29-1.25 (m, 2H), 1.13 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.60, 141.05, 134.88, 134.09, 133.26, 129.53, 128.35, 127.12, 125.46, 114.02, 69.93, 50.43, 43.92, 43.01, 32.28, 28.34, 25.31, 21.46, 20.81. Enantiomeric excess: 96%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 29.8 min, second peak: t_R = 32.2 min; HRMS (ESI) m/z calcd. for C₂₁H₂₃NNaO₂S [M+Na]⁺ = 376.1342, found = 376.1340.

(1S,4R,4aR,9aR)-6-methoxy-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3e; white solid (hexane/EtOAc = 4:1, 48 mg, 65% isolated yield); m.p. = 189-191 °C; $[\alpha]_D^{20}$ = 180.211 (*c* = 0.56, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.51 (d, *J* = 8.8 Hz, 1H), 7.19 (d, *J* = 8.1 Hz, 2H), 6.69 (dd, *J* = 8.8, 2.6 Hz, 1H), 6.57 (d, *J* = 2.5 Hz, 1H), 3.91 (d, *J* = 8.0 Hz, 1H), 3.74 (s, 3H), 3.01 (d, *J* = 8.0 Hz, 1H), 2.70 (s, 1H), 2.35 (s, 3H), 2.22 (s, 1H), 1.59-1.56 (m, 2H), 1.35 (d, *J* = 10.6 Hz, 1H), 1.28-1.25 (m, 2H), 1.13 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 156.56, 143.60, 136.81, 135.66, 134.52, 129.50, 127.13, 115.22, 112.72, 110.50, 70.03, 55.47, 50.57, 43.90, 42.88, 32.30, 28.25, 25.25, 21.44. Enantiomeric excess: 94%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH =

95/5; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: $t_R = 43.5$ min, second peak: $t_R = 47.0$ min; HRMS (ESI) m/z calcd. for C₂₁H₂₃NNaO₃S [M+Na]⁺ = 392.1291, found = 392.1285.

(1*S*,4*R*,4a*R*,9a*R*)-9-tosyl-6-(trifluoromethyl)-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3f; white solid (hexane/EtOAc = 8:1, 55 mg, 67% isolated yield); m.p. = 131-132 °C; $[\alpha]_D^{20}$ = 131.181 (*c* = 0.625, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.3 Hz, 2H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.40 (d, *J* = 8.5 Hz, 1H), 7.26-7.23 (m, 3H), 4.04 (d, *J* = 8.1 Hz, 1H), 3.13 (d, *J* = 8.1 Hz, 1H), 2.79 (s, 1H), 2.38 (s, 3H), 2.29 (s, 1H), 1.64-1.59 (m, 2H), 1.37-1.29 (m, 3H), 1.20 (d, *J* = 10.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.47, 144.31, 134.77, 134.61, 129.82, 127.02, 125.62 (q, *J* = 32.3 Hz), 125.46 (q, *J* = 3.7 Hz), 124.19 (q, *J* = 271.7 Hz), 122.08 (q, *J* = 3.7 Hz), 113.55, 70.37, 50.09, 43.84, 43.19, 32.28, 28.28, 25.23, 21.52. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.62. Enantiomeric excess: 99%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 97/3; flow rate 0.5 ml/min; 25 °C; 254 nm), first peak: t_R = 13.2 min, second peak: t_R = 14.3 min; HRMS (ESI) m/z calcd. for C₂₁H₂₀F₃NNaO₂S [M+Na]⁺ = 430.1059, found = 430.1045.

(1S, 4R, 4aR, 9aR) - 9 - tosyl - 6 - (trifluoromethoxy) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole) - 2, 3, 4, 4a, 9a - 1, 4a, 7a - 1, 4a,

3g; white solid (hexane/EtOAc = 8:1, 61 mg, 72% isolated yield); m.p. = 119-120 °C; $[\alpha]_D^{20}$ = 138.749 (*c* = 0.625, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 1H), 6.88 (s, 1H), 4.00 (d, *J* = 8.1 Hz, 1H), 3.08 (d, *J* = 8.1 Hz, 1H), 2.76 (s, 1H), 2.38 (s, 3H), 2.25 (s, 1H), 1.62-1.59 (m, 2H), 1.38-1.35 (m, 1H), 1.30-1.27 (m, 2H), 1.20-1.17 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.31, 144.11, 142.08, 135.80, 134.72, 129.73, 127.10, 120.58, 120.42 (q, *J* = 257.04 Hz), 117.90, 114.63, 70.36, 50.26, 43.88, 43.10, 32.32, 28.28, 25.20, 21.50. ¹⁹F NMR (376 MHz, CDCl₃) δ -58.12. Enantiomeric excess: 98%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 97/3; flow rate 0.5 ml/mi; 25 °C; 254 nm), first peak: t_R = 13.0 min, second peak: t_R = 14.2 min; HRMS (ESI) m/z calcd. for C₂₁H₂₀F₃NNaO₃S [M+Na]⁺ = 446.1008, found = 446.1001.

(1S,4R,4aR,9aR)-7-fluoro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3h; white solid (hexane/EtOAc = 8:1, 64 mg, 90% isolated yield); m.p. = 160-162 °C; $[\alpha]_D^{20}$ = 165.809 (*c* = 0.542, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.33 (dd, *J* = 10.3, 2.3 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 2H), 6.93 (dd, *J* = 7.7, 5.7 Hz, 1H), 6.63 (td, *J* = 8.6, 2.4 Hz, 1H), 3.99 (d, *J* = 8.1 Hz, 1H), 3.03 (d, *J* = 8.1 Hz, 1H), 2.75 (s, 1H), 2.37 (s, 3H), 2.21 (s, 1H), 1.61-1.57 (m, 2H), 1.36 (d, *J* = 9.7 Hz, 1H), 1.29-1.25 (m, 2H), 1.18-1.14 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.63 (d, *J* = 244.4 Hz), 144.77 (d, *J* = 11.1 Hz), 144.08, 134.77, 129.72, 129.41 (d, *J* = 3.0 Hz), 127.08, 125.39 (d, *J* = 10.1 Hz), 110.20 (d, *J* = 22.2 Hz), 102.19 (d, *J* = 28.3 Hz), 70.78, 49.83, 43.87, 43.07, 32.17, 28.22, 25.20, 21.49. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.74. Enantiomeric excess: 97%, determined by HPLC

(Chiralpak IB, hexane/*i*-PrOH = 97/3; flow rate 0.5 ml/min; 25 °C; 254 nm), first peak: $t_R = 13.1$ min, second peak: $t_R = 14.0$ min; HRMS (ESI) m/z calcd. for C₂₀H₂₀FNNaO₂S [M+Na]⁺ = 380.1091, found = 380.1080.

(1S,4R,4aR,9aR)-7-chloro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3i; white solid (hexane/EtOAc = 8:1, 56 mg, 75% isolated yield); m.p. = 197-199 °C; $[\alpha]_D^{20}$ = 285.882 (*c* = 0.625, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 0.9 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 6.94-6.90 (m, 2H), 3.97 (d, *J* = 8.1 Hz, 1H), 3.03 (d, *J* = 8.1 Hz, 1H), 2.74 (s, 1H), 2.38 (s, 3H), 2.22 (s, 1H), 1.61-1.57 (m, 2H), 1.37-1.34 (m, 1H), 1.29-1.26 (m, 2H), 1.18-1.14 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.64, 144.11, 134.73, 133.45, 132.54, 129.75, 127.06, 125.57, 123.68, 114.37, 70.46, 49.97, 43.84, 43.05, 32.22, 28.26, 25.21, 21.51. Enantiomeric excess: 95%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 97/3; flow rate 0.5 ml/min; 25 °C; 254 nm), first peak: t_R = 13.3 min, second peak: t_R = 14.3 min; HRMS (ESI) m/z calcd. for C₂₀H₂₀ClNNaO₂S [M+Na]⁺ = 396.0795, found = 396.0786.

(1S,4R,4aR,9aR)-7-methyl-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3j; white solid (hexane/EtOAc = 8:1, 46 mg, 65% isolated yield); m.p. = 224-225 °C; $[\alpha]_D^{20} = 180.176$ (*c* = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.43 (s, 1H), 7.20 (d, *J* = 8.2 Hz, 2H), 6.90 (d, *J* = 7.6 Hz, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 3.94 (d, *J* = 8.1 Hz, 1H), 3.03 (d, *J* = 8.1 Hz, 1H), 2.72 (s, 1H), 2.35 (s, 3H), 2.33 (s, 3H), 2.21 (s, 1H), 1.58-1.56 (m, 2H), 1.37-1.34 (m, 1H), 1.28-1.25 (m, 2H), 1.12 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.65, 143.54, 137.76, 135.06, 131.11, 129.56, 127.04, 124.40, 114.81, 70.11, 50.11, 43.85, 43.03, 32.19, 28.28, 25.31, 21.49. Enantiomeric excess: 95%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 97/3; flow rate 0.5 ml/min; 25 °C; 254 nm), first peak: t_R = 12.9 min, second peak: t_R = 14.2 min; HRMS (ESI) m/z calcd. for C₂₁H₂₃NNaO₂S [M+Na]⁺ = 376.1342, found = 376.1334.

(1S,4R,4aR,9aR)-7-methoxy-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3k; white solid (hexane/EtOAc = 5:1, 55 mg, 74% isolated yield); m.p. = 171-173 °C; $[\alpha]_D^{20} = 274.139$ (*c* = 0.625, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.22-7.20 (m, 3H), 6.90 (d, *J* = 8.2 Hz, 1H), 6.50 (dd, *J* = 8.2, 2.3 Hz, 1H), 3.96 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 3.01 (d, *J* = 8.1 Hz, 1H), 2.72 (s, 1H), 2.36 (s, 3H), 2.19 (s, 1H), 1.58-1.56 (m, 2H), 1.36 (d, *J* = 9.9 Hz, 1H), 1.29-1.24 (m, 2H), 1.13 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.71, 144.57, 143.77, 134.97, 129.60, 127.11, 126.07, 125.05, 109.57, 100.33, 70.65, 55.53, 49.77, 43.88, 43.03, 32.14, 28.19, 25.28, 21.49. Enantiomeric excess: 96%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 95/5; flow rate 0.8

ml/min; 25 °C; 254 nm), first peak: $t_R = 35.9$ min, second peak: $t_R = 39.4$ min; HRMS (ESI) m/z calcd. for C₂₁H₂₃NNaO₃S [M+Na]⁺ = 392.1291, found = 392.1283.

methyl (1S,4R,4aR,9aR)-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole-7-carboxylate

3l; white solid (hexane/EtOAc = 4:1, 46 mg, 58% isolated yield); m.p. = 166-167 °C; $[\alpha]_D^{20}$ = 296.895 (*c* = 0.313, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 4.0 Hz, 1H), 7.67 (d, *J* = 8.5 Hz, 3H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 7.8 Hz, 1H), 4.02 (d, *J* = 8.1 Hz, 1H), 3.92 (s, 3H), 3.11 (d, *J* = 8.1 Hz, 1H), 2.77 (s, 1H), 2.36 (s, 3H), 2.27 (s, 1H), 1.63-1. 60 (m, 2H), 1.35-1.26 (m, 3H), 1.17 (d, *J* = 10.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.78, 144.02, 143.82, 139.32, 134.77, 130.13, 129.69, 127.10, 125.55, 124.72, 114.80, 70.15, 52.17, 50.39, 43.92, 43.09, 32.31, 28.40, 25.21, 21.49. Enantiomeric excess: 98%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 27.3 min, second peak: t_R = 31.6 min; HRMS (ESI) m/z calcd. for C₂₂H₂₃NNaO₄S [M+Na]⁺ = 420.1240, found = 420.1236.

(1S,4R,4aR,9aR)-9-tosyl-7-(trifluoromethyl)-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3m; white solid (hexane/EtOAc = 8:1, 59 mg, 72% isolated yield); m.p. = 164-165 °C; $[\alpha]_D^{20}$ = 166.333 (*c* = 0.625, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.24-7.20 (m, 3H), 7.11 (d, *J* = 7.8 Hz, 1H), 4.03 (d, *J* = 8.1 Hz, 1H), 3.12 (d, *J* = 8.0 Hz, 1H), 2.78 (s, 1H), 2.37 (s, 3H), 2.27 (s, 1H), 1.63-1.60 (m, 2H), 1.37-1.26 (m, 3H), 1.19 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.27, 143.99, 137.95, 134.54, 130.28 (q, *J* = 32.2 Hz), 129.78, 127.05, 125.16, 124.01 (q, *J* = 272.3 Hz), 120.67 (q, *J* = 3.8 Hz), 110.88 (q, *J* = 3.9 Hz), 70.23, 50.24, 43.91, 43.11, 32.30, 28.36, 25.19, 21.49. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.18. Enantiomeric excess: 98%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 97/3; flow rate 0.5 ml/min; 25 °C; 254 nm), first peak: t_R = 12.6 min, second peak: t_R = 13.9 min; HRMS (ESI) m/z calcd. for C₂₁H₂₀F₃NNaO₂S [M+Na]⁺ = 430.1059, found = 430.1047.

(1S,4R,4aR,9aR)-5-fluoro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3n; white solid (hexane/EtOAc = 8:1, 46 mg, 65% isolated yield); m.p. = 118-120 °C; $[\alpha]_D^{20}$ = 6.840 (*c* = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.11 (td, *J* = 8.2, 6.0 Hz, 1H), 6.63 (t, *J* = 8.5 Hz, 1H), 4.00 (d, *J* = 8.1 Hz, 1H), 3.18 (d, *J* = 8.1 Hz, 1H), 2.76 (s, 1H), 2.43 (s, 1H), 2.37 (s, 3H), 1.62-1.59 (m, 2H), 1.40 (d, *J* = 10.7 Hz, 1H), 1.32-1.26 (m, 2H), 1.20 (d, *J* = 10.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.17 (d, *J* = 247.0 Hz), 145.87 (d, *J* = 8.4 Hz), 144.05, 134.72, 129.67, 129.59 (d, *J* = 8.2 Hz), 127.08, 120.21 (d, *J* = 21.4 Hz), 110.44 (d, *J* = 20.2 Hz), 109.92 (d, *J* = 3.3 Hz), 70.57, 47.62, 43.88, 40.89, 32.40, 28.29, 25.05, 21.49. ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -118.65. Enantiomeric excess: 89%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 97/3; flow rate 0.5 ml/min; 25 °C; 254 nm), first peak: t_R = 13.7 min, second peak: t_R = 15.1 min; HRMS (ESI) m/z calcd. for C₂₀H₂₀FNNaO₂S [M+Na]⁺ = 380.1091, found = 380.1086.

(1S,4R,4aR,9aR)-8-fluoro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

30; white solid (hexane/EtOAc = 8:1, 38 mg, 53% isolated yield); m.p. = 138-139 °C; $[\alpha]_D^{20}$ = 28.051 (*c* = 0.313, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 9.5 Hz, 2H), 6.93-6.88 (m, 1H), 6.85-6.79 (m, 2H), 4.52 (d, *J* = 8.0 Hz, 1H), 3.27 (d, *J* = 8.0 Hz, 1H), 2.70 (s, 1H), 2.39 (s, 3H), 2.25 (s, 1H), 1.62-1.60 (m, 2H), 1.36-1.26 (m, 3H), 1.16 (d, *J* = 10.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.19 (d, *J* = 252.0 Hz), 143.51, 138.96 (d, *J* = 2.5 Hz), 136.70 (d, *J* = 1.3 Hz), 130.36 (d, *J* = 8.82 Hz), 129.42, 127.27 (d, *J* = 1.3 Hz), 125.07 (d, *J* = 6.3 Hz), 120.39 (d, *J* = 3.8 Hz), 115.81 (d, *J* = 21.4 Hz), 71.05, 50.77, 43.73, 43.31, 32.24, 28.07, 25.49, 21.51. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.17. Enantiomeric excess: 84%, determined by HPLC (Chiralpak IF, hexane/*i*-PrOH = 90/10; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 19.3 min, second peak: t_R = 20.5 min; HRMS (ESI) m/z calcd. For C₂₀H₂₀FNNaO₂S [M+Na]⁺ = 380.1091, found = 380.1086.

(1S,4R,4aR,9aR)-6,7-difluoro-9-tosyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3p; white solid (hexane/EtOAc = 8:1, 70 mg, 93% isolated yield); m.p. = 144-145 °C; $[\alpha]_D^{20} = 93.154$ (*c* = 0.583, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.3 Hz, 2H), 7.46 (dd, *J* = 11.4, 6.9 Hz, 1H), 7.25 (d, *J* = 8.1 Hz, 2H), 6.80 (t, *J* = 8 Hz, 1H), 3.95 (d, *J* = 8.1 Hz, 1H), 3.02 (d, *J* = 8.1 Hz, 1H), 2.73 (s, 1H), 2.38 (s, 3H), 2.20 (s, 1H), 1.59 (d, *J* = 8.2 Hz, 2H), 1.37-1.33 (m, 1H), 1.28-1.24 (m, 2H), 1.18 (d, *J* = 10.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.36 (dd, *J* = 13.9, 323.8 Hz), 147.42 (dd, *J* = 13.9, 322.6 Hz), 144.24, 139.42 (dd, *J* = 9.4, 2.2 Hz), 134.38, 129.78, 129.63 (dd, *J* = 5.8, 3.2 Hz), 127.12, 113.17 (d, *J* = 19.0 Hz), 103.98 (d, *J* = 23.6 Hz), 70.50, 50.06, 43.91, 42.96, 32.23, 28.15, 25.13, 21.51. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.15 (d, *J* = 20.6 Hz), -143.40 (d, *J* = 20.6 Hz). Enantiomeric excess: 98%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 97/3; flow rate 0.5 ml/min; 25 °C; 254 nm), first peak: t_R = 14.4 min, second peak: t_R = 16.0 min; HRMS (ESI) m/z calcd. For C₂₀H₁₉F₂NNaO₂S [M+Na]⁺ = 398.0997, found = 398.0990.

(1S, 4R, 4aR, 9aR) - 9 - (phenyl sulfonyl) - 2, 3, 4, 4a, 9, 9a - hexahydro - 1H - 1, 4 - methanocarbazole

3q; white solid (hexane/EtOAc = 8:1, 50 mg, 77% isolated yield); m.p. = 115-117 °C; $[\alpha]_D^{20}$ = 162.429 (*c* = 0.625, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.76 (m, 2H), 7.60 (d, *J* = 8.1 Hz, 1H), 7.51 (dt, *J* = 14.9, 1.2 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.16-7.12 (m, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 6.95 (td, *J* = 7.4, 0.9 Hz, 1H), 3.97 (d, *J* = 8.1 Hz, 1H), 3.08 (d, *J* = 8.1 Hz, 1H), 2.75 (s, 1H), 2.24 (s, 1H), 1.61-1.58 (m, 2H), 1.37-1.34 (m, 1H), 1.30-1.27 (m, 2H), 1.16-1.12 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.24, 137.86, 133.95, 132.92, 128.94, 127.77, 127.02, 124.89, 123.75, 114.11, 69.80, 50.40, 43.88, 43.03, 32.20, 28.29, 25.29. Enantiomeric excess: 96%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 93/7; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 16.5 min, second peak: t_R = 17.5 min; HRMS (ESI) m/z calcd. For C₁₉H₁₉NNaO₂S [M+Na]⁺ = 348.1029, found = 348.1026.

(1*S*,4*R*,4a*R*,9a*R*)-9-(methylsulfonyl)-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3r; white solid (hexane/EtOAc = 8:1, 43 mg, 82% isolated yield); m.p. = 59-60 °C; $[\alpha]_D^{20}$ = 28.219 (*c* = 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.7 Hz, 1H), 7.17-7.14 (m, 2H), 7.03-6.99 (m, 1H), 4.08 (d, *J* = 8.1 Hz, 1H), 3.34 (d, *J* = 8.1 Hz, 1H), 2.85 (s, 3H), 2.67 (d, *J* = 2.2 Hz, 1H), 2.33 (s, 1H), 1.66-1.56 (m, 2H), 1.37-1.36 (m, 2H), 1.30-1.26 (m, 1H), 1.17 (d, *J* = 10.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.15, 133.74, 128.04, 125.17, 123.76, 113.16, 70.20, 50.52, 43.69, 43.18, 35.57, 31.97, 28.35, 25.11. Enantiomeric excess: 95%, determined by HPLC (Chiralpak IF, hexane/*i*-PrOH = 92/8; flow rate

0.5 ml/min; 25 °C; 254 nm), first peak: $t_R = 20.9$ min, second peak: $t_R = 21.7$ min; HRMS (ESI) m/z calcd. For C₁₄H₁₇NNaO₂S [M+Na]⁺ = 286.0872, found = 286.0868.

(1S, 4R, 4aR, 9aR) - 9 - ((4-nitrophenyl) sulfonyl) - 2, 3, 4, 4a, 9, 9a-hexahydro - 1H-1, 4-methanocarbazole

3s; white solid (hexane/EtOAc = 5:1, 40 mg, 54% isolated yield); m.p. = 189-191 °C; $[\alpha]_D^{20}$ = 192.648 (*c* = 0.313, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.27-8.24 (m, 2H), 7.98-7.94 (m, 2H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.20-7.16 (m, 1H), 7.06 (d, *J* = 7.4 Hz, 1H), 7.01 (td, *J* = 7.4, 0.9 Hz, 1H), 3.95 (d, *J* = 8.0 Hz, 1H), 3.11 (d, *J* = 8.0 Hz, 1H), 2.75 (d, *J* = 2.5 Hz, 1H), 2.27 (s, 1H), 1.63-1.59 (m, 2H), 1.35-1.26 (m, 3H), 1.17 (dd, *J* = 10.5, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.21, 143.30, 142.37, 134.02, 128.21, 128.06, 125.25, 124.55, 124.21, 114.01, 70.09, 50.39, 43.92, 43.01, 32.15, 28.19, 25.26. Enantiomeric excess: 97%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 93/7; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 20.9min, second peak: t_R = 21.7 min; HRMS (ESI) m/z calcd. For C₁₉H₁₈N₂NaO₄S [M+Na]⁺ = 393.0879, found = 393.0885.

(1S,4R,4aR,9aR)-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3t; brown solid (hexane/EtOAc = 20:1, 20 mg, 63% isolated yield); $[\alpha]_D^{20} = -7.0841$ (*c* = 0.95, CH₂Cl₂); ¹H_NMR (500 MHz, C₆D₆) δ 7.00 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.3 Hz, 1H), 6.70 (td, *J* = 7.3, 0.5 Hz, 1H), 6.35 (d, *J* = 7.8 Hz, 1H), 3.38 (d, *J* = 8.2 Hz, 1H), 3.04 (d, *J* = 8.2 Hz, 1H), 2.89 (s, 1H), 2.12 (d, *J* = 3.5 Hz, 1H), 1.87 (d, *J* = 4.2 Hz, 1H), 1.56 (d, *J* = 10.1 Hz, 1H), 1.37-1.24 (m, 2H), 1.11-1.06 (m, 1H), 0.95-0.90 (m, 2H); ¹³C NMR (126 MHz, C₆D₆) δ 153.13, 131.70, 124.77, 118.08, 108.16, 65.52, 52.61, 44.58, 43.51, 32.43, 28.86, 25.54. Enantiomeric excess: 95%, determined by HPLC (Chiralpak IC, hexane/*i*-PrOH = 97/3; flow rate 0.5 ml/min; 25 °C; 254 nm), first peak: t_R = 10.4 min, second peak: t_R = 11.6 min; HRMS (ESI) m/z calcd. For C₁₃H₁₆N [M+H]⁺ = 186.1277, found = 186.1272.

(1S,4R,4aR,9aR)-9-methyl-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazole

3u; brown oil (hexane/EtOAc = 50:1, 38 mg, 85% isolated yield); $[\alpha]_D^{20} = -169.7366$ (*c* = 0.5, CH₂Cl₂); ¹H NMR (500 MHz, C₆D₆) δ 7.09 (t, *J* = 7.7 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.70-6.66 (m, 1H), 6.20 (d, *J* = 7.8 Hz, 1H), 3.17 (d, *J* = 8.3 Hz, 1H), 3.02 (d, *J* = 8.3 Hz, 1H), 2.44 (s, 3H), 2.15 (s, 1H), 2.10 (d, *J* = 3.0 Hz, 1H), 1.56-1.54 (m, 1H), 1.34-1.27 (m, 2H), 1.10-1.06 (m, 1H), 0.94-0.88 (m, 2H); ¹³C NMR (126 MHz, C₆D₆) δ 154.21, 131.79, 124.46, 116.66, 104.79, 73.01, 51.18, 43.47, 40.85, 32.74, 29.01, 25.22; Enantiomeric excess: 94%, determined by HPLC (Chiralpak IF, hexane/*i*-PrOH = 100/0; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 9.1 min, second peak: t_R = 9.8 min; HRMS (ESI) m/z calcd. For C₁₄H₁₈N [M+H]⁺ = 200.1434, found = 200.1430.

(1R,4S,4aR,9bR)-1,2,3,4,4a,9b-hexahydro-1,4-methanodibenzo[b,d]furan

5a; pale yellow oil (hexane/Et₂O = 20:1, 39 mg, 70% isolated yield); $[\alpha]_D^{20} = 25.120$ (*c* = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.11 (d, *J* = 7.3 Hz, 1H), 7.08-7.04 (m, 1H), 6.80 (td, *J* = 7.4, 0.7 Hz, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 4.68 (d, *J* = 7.2 Hz, 1H), 3.27 (d, *J* = 7.2 Hz, 1H), 2.53 (d, *J* = 3.1 Hz, 1H), 2.33 (s, 1H), 1.59-1.53 (m, 2H), 1.46-1.43 (m, 1H), 1.34-1.30 (m, 1H), 1.19-1.13 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.33, 129.61, 128.00, 124.70, 120.03, 108.44, 89.21, 51.61, 42.56, 42.24, 32.07, 27.89, 23.50. Enantiomeric excess: 95%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 100/0; flow rate 0.5 ml/min; 25 °C; 210 nm), first peak: t_R = 14.5 min, second peak: t_R = 15.1 min; HRMS (ESI) m/z calcd. For C₁₃H₁₄NaO [M+Na]⁺ = 209.0937, found = 209.0925.

(1R,4S,4aR,9bR)-8-fluoro-1,2,3,4,4a,9b-hexahydro-1,4-methanodibenzo[b,d]furan

5b; pale yellow oil (hexane/Et₂O = 20:1, 31 mg, 51% isolated yield); $[\alpha]_D^{20}$ = 30.649 (*c* = 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.80 (dd, *J* = 8.0, 2.4 Hz, 1H), 6.73 (td, *J* = 8.8, 2.7 Hz, 1H), 6.57 (dd, *J* = 8.7, 4.1 Hz, 1H), 4.69 (d, *J* = 7.3 Hz, 1H), 3.25 (d, *J* = 7.3 Hz, 1H), 2.51 (d, *J* = 2.3 Hz, 1H), 2.28 (s, 1H), 1.61-1.51 (m, 2H), 1.46-1.43 (m, 1H), 1.33-1.26 (m, 1H), 1.18-1.13 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 157.30 (d, *J* = 1.3 Hz), 157.20 (d, *J* = 236.2 Hz), 130.91 (d, *J* = 8.3 Hz), 113.99 (d, *J* = 24.1 Hz), 111.63 (d, *J* = 24.3 Hz), 108.33 (d, *J* = 8.5 Hz), 89.92, 51.85, 42.45, 42.30, 32.07, 27.80, 23.36. ¹⁹F NMR (376 MHz, CDCl₃) δ -125.25. Enantiomeric excess: 91%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 100/0; flow rate 0.5 ml/min; 25 °C; 210 nm), first peak: t_R = 15.1 min, second peak: t_R = 16.5 min; HRMS (ESI) m/z calcd. For C₁₃H₁₃FNaO [M+Na]⁺ = 227.0843, found = 227.0839.

(1R,4S,4aR,9bR)-8-methyl-1,2,3,4,4a,9b-hexahydro-1,4-methanodibenzo[b,d]furan

5c; amorphous solid (hexane/Et₂O = 20:1, 39 mg, 65% isolated yield); $[\alpha]_D^{20} = 48.527$ (*c* = 0.625, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.92 (s, 1H), 6.86 (dd, *J* = 8.1, 0.6 Hz, 1H), 6.58 (d, *J* = 8.1 Hz, 1H), 4.66 (d, *J* = 7.2 Hz, 1H), 3.23 (d, *J* = 7.2 Hz, 1H), 2.51 (d, *J* = 2.9 Hz, 1H), 2.28 (s, 1H), 2.26 (s, 3H), 1.57-1.54 (m, 2H), 1.46-1.44 (m, 1H), 1.33-1.29 (m, 1H), 1.18-1.12 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.24, 129.59, 129.23, 128.34, 125.30, 107.92, 89.29, 51.69, 42.52, 42.27, 32.09, 27.90, 23.48, 20.71. Enantiomeric excess: 94%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 100/0; flow rate 0.5 ml/min; 25 °C; 220 nm), first peak: t_R = 15.6 min, second peak: t_R = 18.9 min; HRMS (ESI) m/z calcd. For C₁₄H₁₆NaO [M+Na]⁺ = 223.1093, found = 223.1091.

(1R,4S,4aR,9bR)-8-methoxy-1,2,3,4,4a,9b-hexahydro-1,4-methanodibenzo[b,d]furan

5d; amorphous solid (hexane/Et₂O = 10:1, 40 mg, 61% isolated yield); $[\alpha]_D^{20} = 49.599$ (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.71-6.70 (m, 1H), 6.62-6.58 (m, 2H), 4.66 (d, J = 7.2 Hz, 1H), 3.75 (s, 3H), 3.25 (d, J = 7.2 Hz, 1H), 2.51 (s, 1H), 2.30 (s, 1H), 1.57-1.52 (m, 2H), 1.48-1.45 (m, 1H), 1.33-1.26 (m, 1H), 1.17-1.14 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 155.49, 153.78, 130.55, 112.78, 110.99, 108.16, 89.50, 55.97, 52.09, 42.43, 42.32, 32.11, 27.87, 23.42. Enantiomeric excess: 92%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 99/1; flow rate 0.5 ml/min; 25 °C; 220 nm), first peak: t_R = 10.5 min, second peak: t_R = 14.0 min; HRMS (ESI) m/z calcd. For C₁₄H₁₆NaO₂ [M+Na]⁺ = 239.1043, found = 239.1040.

methyl (1R,4S,4aR,9bR)-1,2,3,4,4a,9b-hexahydro-1,4-methanodibenzo[b,d]furan-7-carboxylate

5e; white solid (hexane/Et₂O = 10:1, 32 mg, 44% isolated yield); m.p. = 132-133 °C; $[\alpha]_D^{20} = 67.582$ (*c* = 0.4, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.52 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.31 (d, *J* = 1.2 Hz, 1H), 7.14 (d, *J* = 7.7 Hz, 1H), 4.73 (d, *J* = 7.2 Hz, 1H), 3.87 (s, 3H), 3.29 (d, *J* = 7.2 Hz, 1H), 2.55 (d, *J* = 3.0 Hz, 1H), 2.31 (s, 1H), 1.62-1.54 (m, 2H), 1.40 (d, *J* = 10.6 Hz, 1H), 1.35-1.31 (m, 1H), 1.19-1.15 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.97, 161.52, 135.28, 130.26, 124.32, 122.12, 109.16, 89.76, 51.97, 51.45, 42.50, 42.21, 32.07, 27.85, 23.34. Enantiomeric excess: 91%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 99/1; flow rate 0.5 ml/min; 25 °C; 254 nm), first peak: t_R = 14.2 min, second peak: t_R = 14.9 min; HRMS (ESI) m/z calcd. For C₁₅H₁₆NaO₃ [M+Na]⁺ = 267.0992, found = 267.0991.

5f; amorphous solid (hexane/Et₂O = 20:1, 40 mg, 66% isolated yield); $[\alpha]_D^{20}$ = 33.151 (*c* = 0.625, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.25 (s, 1H), 6.98 (d, *J* = 7.4 Hz, 1H), 6.62 (d, *J* = 7.4 Hz, 1H), 4.66 (d, *J* = 7.0 Hz, 1H), 3.22 (d, *J* = 7.2 Hz, 1H), 2.51 (s, 1H), 2.27 (s, 4H), 1.56-1.51 (m, 2H), 1.44 (d, *J* = 10.8 Hz, 1H), 1.34-1.28 (m, 1H), 1.17-1.10 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.59, 138.14, 126.68, 124.22, 120.74, 109.18, 89.51, 51.34, 42.53, 42.21, 32.03, 27.85, 23.49, 21.46. Enantiomeric excess: 95%, determined by HPLC (Chiralpak IB, hexane/*i*-PrOH = 100/0; flow rate 0.5 ml/min; 25 °C; 220 nm), first peak: t_R = 11.4 min, second peak: t_R = 13.4 min; HRMS (ESI) m/z calcd. For C₁₄H₁₆NaO [M+Na]⁺ = 223.1093, found = 223.1089.

(1R,4S,4aR,9aR)-4,4a,9,9a-tetrahydro-1H-1,4-methanocarbazole

7; yellow oil (hexane/EtOAc = 20:1, 28 mg, 73% isolated yield); $[\alpha]_D^{20} = -20.1196$ (*c* = 0.25, CH₂Cl₂); ¹H NMR (500 MHz, C₆D₆) δ 7.03 (t, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.3 Hz, 1H), 6.72 (td, *J* = 7.4, 0.8 Hz, 1H), 6.36 (d, *J* = 7.8 Hz, 1H), 6.05 (dd, *J* = 5.8, 2.9 Hz, 1H), 5.82 (dd, *J* = 5.8, 3.0 Hz, 1H), 3.55 (d, *J* = 8.1 Hz, 1H), 3.24 (d, *J* = 8.1 Hz, 1H), 2.88 (s, 1H), 2.70 (s, 1H), 2.48 (s, 1H), 1.67 (d, *J* = 8.8 Hz, 1H), 1.42-1.40 (m, 1H); ¹³C NMR (126 MHz, C₆D₆) δ 154.76, 139.77, 135.41, 129.60, 128.04, 124.42, 118.20, 108.85, 64.27, 50.69, 50.63, 48.75, 42.50; Enantiomeric excess: 94%, determined by HPLC (Chiralpak IF, hexane/*i*-PrOH = 99/1; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 9.1 min, second peak: t_R = 9.7 min; HRMS (ESI) m/z calcd. For C₁₃H₁₄N [M+H]⁺ = 184.1121, found = 184.1113.

(1S,4R,4aR,9bR)-1,4,4a,9b-tetrahydro-1,4-methanodibenzo[b,d]furan

8; yellow oil (hexane/EtOAc = 100:0, 25 mg, 45% isolated yield); $[\alpha]_D^{20} = 40.5192$ (c = 0.25, CHCl₃); Enantiomeric excess: 95%, determined by HPLC (Chiralpak OJ-H, hexane/*i*-PrOH = 100/0; flow rate 0.8 ml/min; 25 °C; 210 nm), first peak: t_R = 11.4 min, second peak: t_R = 13.2 min; HRMS (ESI) m/z calcd. For C₁₃H₁₃O [M+H]⁺ = 185.0961, found = 185.0957. (Please refer to Catellani's work for ¹H and ¹³C NMR)^[3]

6. X-ray structure of 3a and 5e

7. Confirmation of the absolute configuration of 3t, 3u, 7 and 8

The absolute configuration of compounds **3t**, **3u**, **7** and **8** was confirmed by comparing the rotational value of a series of transformed products with the previous products **3a** and **5a**.

7.1 Confirmation of the absolute configuration of **3t**

8. References

- 1 T. W. Liwosz and S. R. Chemler, Chem. Eur. J., 2013, 19, 12771.
- 2 M. Tao, Y. Tu, Y. Liu, H. Wu, L. Liu and J. Zhang, Chem. Sci., 2020, 11, 6283.
- 3 M. Catellani and A. Del Rio, Russ. Chem. Bull., 1998, 47, 928.

9. ¹H, ¹³C, ¹⁹F Spectra for 3, 5 and 7

7,75 7,55

¹H NMR (400 MHz, CDCl₃, 298 K)

5.883 5.8835 3.56 3.54 3.23 2.28 2.288 -2.70 -2.70 -2.48

1.40 1.40 1.40 1.40 1.40

¹H NMR (500 MHz, C₆D₆, 298 K)

